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SUMMARY
A novel affect-sensitive human-robot cooperative frame-
work is presented in this paper. Peripheral physiological
indices are measured through wearable biofeedback sensors
to detect the affective state of the human. Affect recognition
is performed through both quantitative and qualitative
analyses. A subsumption control architecture sensitive to the
affective state of the human is proposed for a mobile robot.
Human-robot cooperation experiments are performed where
the robot senses the affective state of the human and
responds appropriately. The results presented here validate
the proposed framework and demonstrate a new way of
achieving implicit communication between a human and a
robot.
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1. INTRODUCTION
The main focus of this paper is on human-robot coordina-
tion based on implicit communication from human to robot.
Implicit communication, in the context of this paper, is
defined primarily as affective  communication1 where the
affective state of the person is interpreted by the robot. We
include implicit states such as frustration, anxiety, engage-
ment and fatigue within the domain of affective states. Such
a capability, alone or in conjunction with other capabilities
that allow explicit instructions from a human, is expected to
provide a new paradigm for human-robot (and human-
computer) interaction that will be intuitive, smooth and
efficient.1 It was clearly shown in reference [2] that even
rudimentary implicit communication significantly improved
the performance of human-computer interaction. The capa-
bility of the robot to alter its autonomy level (or in some
cases, task priority) based on human interaction is another
hallmark of a successful human-centered robotic system.3

Consider several human-robot exploration scenarios in
space, underwater, Antarctica, inside a dormant volcano and
in other similar risky environments where a human can
often encounter dangerous situations. Upon encountering

such a danger, the human’s reaction is likely to be one of
panic, fear, or anxiety. A robot that is capable of sensing
these internal psychological states can immediately take
meaningful actions to help the person. A similar situation
may arise in human-robot search and rescue operations or in
fire fighting. Robotic aid for rehabilitation could also use
affect sensing capability to provide exercise sequences that
are comfortable for the person. A robot that could sense the
fatigue of the worker on the shop floor with whom it works
would be able to take necessary precautions to avoid
accidents. All these potential applications will eventually
lead to the development of personal robots that will act as
understanding companions of humans.

Figure 1 presents affect-sensitive human-robot coordina-
tion architecture as developed in this paper. The
physiological signals from a human engaged in some task
are recorded. These signals are processed to determine the
affective state of the human. The affective state information
along with other environmental inputs is used by a
controller to decide the next course of action. The controller
instructs the robot to perform the desired action. The human
who is working in cooperation with the robot is then
influenced by the robot’s action, and the cycle begins anew.

In this paper we focus on using physiological measure-
ments to sense the person’s affective state. Physiological
responses are generally involuntary and less dependent on
culture, gender and age than are other indicators of emotion,
such as facial expressions or voice. Physiology offers an
avenue for recognizing affect that may be less obvious for
humans but more suitable for robots and computers, which
can quickly implement signal processing and pattern
recognition tools to infer underlying affective states. Recent
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advances in wearable computers and affective computing4

have ushered in the era of small and lightweight biofeed-
back sensors that can sense and process physiological
signals in a non-invasive manner that are comfortable for the
user to wear, unobtrusive, and fast enough for real-time
applications.5 Such capabilities inspire us to use physio-
logical sensing as an initial means to recognize human
affect for our proposed controller. The potential of physio-
logical sensing for affect recognition has already been
demonstrated by the pioneering work of Dr. Picard and her
colleagues.6, 7 In our earlier paper,8 we presented our initial
effort in stress detection using wearable sensing technol-
ogy.

We have, however, added a new dimension to the research
on affective computing by expanding and integrating it with
a robotic system that can use this information and respond
to the affective need shown by its human companion. We
have developed a robot control architecture that uses the
psychological state information to formulate and execute an
action plan. This action plan may require that the robot
change its autonomy level or adjust task priorities within the
same autonomy level.

2. PHYSIOLOGICAL INDICES FOR AFFECT
RECOGNITION
There is good evidence that the physiological activity
associated with affective state is differentiated and system-
atically organized. The transition from one affective state to
another, for instance from a relaxed to an anxious mental
state, is accompanied by dynamic shifts in physiological
activities. The physiological signals we will initially
examine include: various parameters of cardiovascular
activity,9, 10 including interbeat interval and relative pulse
volume, electrodermal activity (tonic and phasic skin
conductance activity11–15) and facial electromyographic
(EMG) activity (including activity of the corrugator super-
cilii [eyebrow] and masseter [jaw] muscles.16, 17 These
signals have been selected because they can be measured
non-invasively and are relatively resistant to movement
artifact.

By combining these multiple indicators of emotion in a
multivariate manner, we will be able to provide the affect
recognizers we will be developing with a rich array of
information from which to infer the person’s affective state.
Many of these signals, either in combination or separately,
have been used to detect affective states of a person who is
deliberately expressing a given emotion while at rest. In our
paper we have adopted the more challenging task of
identifying the person’s affective state online while the
person is actively engaged in a task and then designing a
robot controller that is sensitive to human affect.

3. AFFECT DETECTION
In this paper we have used the physiological responses of a
person to detect that person’s level of anxiety. We briefly
describe the steps of analyzing the physiological responses
discussed in Section 2.

We examined a broad range of parameters derived from
the physiological responses. The ones that are focused upon
in the following part are those that proved to be most useful
for anxiety detection in the current experiment. The main
physiological responses that we have used to determine the
anxiety level of a particular individual are: Cardiac response
(ECG signal, blood volume pulse signal), Electrodermal
response, and Electromyographic response.

3.1 Cardiac Response
Raw ECG signal: Time domain measures are the simplest
way of evaluating heart rate variability (HRV). HRV has
immense potential to determine the role of autonomic
nervous system (ANS) fluctuations in the human body. The
ANS controls smooth muscle, gland activity and cardiac
muscle. It is this system of the body and its control over
cardiac function that is of interest for anxiety detection. The
ANS is divided into two branches – the sympathetic nervous
system branch (SNS) (with dominant function in emergency
or so-called “fight or flight” situations) and the para-
sympathetic branch (PNS) (associated with more vegetative
functions such as digestion, relaxation, sexual activity, etc.).
Increased activity of the sympathetic branch causes an
increase in the heart rate while an increase in the
parasympathetic branch results in a slowing down of the
heart rate. Under normal situations there is a balance
between these two systems placing the body in a state of
homeostasis. However under a state of mental stress this
balance will be altered.8, 10, 18–21 Heart Rate Variability can be
used to detect this change in system balance.

Using Biofeedback sensors raw ECG of the human
subject performing a task is recorded. The sampling rate of
the encoder used is 1000 Hz. A typical ECG waveform is
shown in Figure 2. Each R-wave in the figure corresponds to
the point of systole, the point in the heartbeat where the
heart reaches maximal contraction to pump the blood
through the body. The number of beats in a minute is called
the heart rate and is typically 70-80 beats per minute at
rest.

Fig. 2. A typical ECG waveform showing the R-waves.
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(a) InterBeat Interval (IBI). The time in millisecond
between two normal “R” waves (Fig. 2) is called the
Inter Beat Interval (IBI). IBI is a valuable index for
measuring heart rate variability. IBI variability can be
determined either in the time domain or in the frequency
domain. Time domain analysis has the limitation of
needing very large sets of data (~24 hrs) for accurate
analysis. Frequency analysis does not have this short-
coming and allows the use of much smaller data sets.
Since we are interested in measuring anxiety during a
task, we prefer frequency domain analysis to time
domain analysis. From the raw ECG signal a time series
of IBIs is extracted using a peak detection algorithm.

(b) Power spectral analysis. A power spectral analysis is
performed on the IBI data to localize the sympathetic
and parasympathetic frequency ranges. Parasympathetic
and sympathetic nervous system activity have been
associated with two frequency bands. The high fre-
quency (HF) component (0.15–0.4 Hz; which corres-
ponds to the rate of normal respiration) measures the
influence of the vagus nerve in modulating the sinoatrial
node and is associated with parasympathetic nervous
system activity. The low frequency (LF) component
(0.04–0.15 Hz.) provides an index of sympathetic
effects on the heart. These associations between fre-
quency bands and nervous system activity have been
made through the use of functional and pharmaco-
logical testing.20, 21 When a human being is anxious, it is
commonly observed that the parasympathetic activity of
his/her heart decreases and the sympathetic activity
increases. We have exploited this feature of heart rate
variability to detect anxiety in a human subject.

(c) Wavelet packet analysis. Power in the exact frequency
range is calculated using wavelet analysis.22–24 In the
Wavelet Packet (WP) decomposition,25, 26 the approx-
imation coefficients as well as the detail coefficients are
recursively decomposed using the same filtering and
down sampling techniques that are used in Discrete
Wavelet Transform. Figure 3 show the tree decomposi-
tion used for wavelet packet analysis. A wavelet packet
analysis provides us with a convenient tool to analyze a
signal for a desired frequency without losing the time
information. The wavelet packets can be used for
numerous expansions of a given signal, from which we
can extract the exact frequency band that we are

interested in. The WP decomposition of the input signal
is performed by computing the convolution of the signal
f [n] with the wavelet atoms:

w[n]=2� j/2 �
k

f [n]Wp(2
� j/2k�n) (2)

These wavelet atoms can be obtained from the high pass
filter (g[n]) and the low pass filter (h[n])

W2p(t)=�2�
n

h[n]Wp(2t�n) (3)

W2p+1(t)=�2�
n

g[n]Wp(2t�n) (4)

Each atom Wp (2� j/2k�n) is characterized by three
parameters – frequency p, scale j, and position m. For
our purpose, we have used the Daubechies wavelet filter
db5. This filter has been used because it best extracts the
frequency contents that are required to analyze the IBI
signal. The wavelet db5 has been used for ECG signal
processing in many cases.27, 28 The parameters obtained:
sympathetic power (Sp) and parasympathetic power
(Pp).

3.2 Electrodermal Activity. Raw Skin Conductance Activity
(SCA)
Skin Conductance Activity – one of the several kinds of
EDA, describes changes in the skin’s ability to conduct
electricity, which occur due to interaction between environ-
mental events and an individual’s psychophysiological
state.13, 15 One of the fastest responding measures of anxiety/
stress response, it has been found to be one of the most
robust and non-invasive physiological measures of sym-
pathetic activity. The SCA signal was sampled at 1000 Hz.
A typical signal has been shown in Figure 4. We denoised
the raw SCA signal and then decomposed it into its tonic
and phasic components. Then we measured the mean
amplitude of phasic responses and the rate at which these
occurred.

Fig. 3. Wavelet packet decomposition.
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Phasic response measures the event-related responses that
occur in an individual. Occurrences of environmental
stimuli cause time-related changes in the skin conductance.
A stimulus may be anything from a thought burst to a deep
sigh. A skin conductance response (SCR) caused by a
momentary increase in skin conductance, resembles a peak.
The characteristics of a typical SCR are shown in Figure 5.

We had the following criterion for considering a partic-
ular peak as a valid skin conductance response:

(i) The slope of the rise to the peak should be greater
than 0.05 Micro-Siemens/minute

(ii) The amplitude should be greater than 0.05 Micro-
Siemens

(iii) The rise time should be greater than 0.25 sec.

Using a response detection algorithm, we count the
number of such responses that meet the above criterion in
a given interval and determine the rate of response for the
given task (number of responses per minute). The mean
phasic amplitude is also computed which is simply the

mean of the amplitudes of all the responses in a given
epoch. All the signal points that are not included in the
response constitute the tonic part of the skin conductance
signal. The parameters obtained: mean phasic amplitude
(Pm) and rate of phasic response (Pr).

3.3 Electromyographic Activity
The electromyogram (EMG) sensor placed over a particular
muscle measures the electrical activity associated with that
particular muscle’s contraction or movement.16, 17 Electro-
myographic activity over the eyebrow region (of the
corrugator supercilii muscle) and the jaw region (of the
masseter muscle) has been studied extensively because
anxiety, tension or mental efforts are often accompanied by
increased EMG activity over these sites. Activities like
frowning, jaw-clenching, etc. have a high correlation with
the affective state of a person and are reflected in increased
EMG activity. A typical EMG signal (rectified and inte-
grated) is shown in Figure 6. The signal was sampled at
1000 Hz. It is rectified and integrated within the encoder
system before digitization.

(a) Corrugator Activity. The EMG signal from the
corrugator supercilii muscle (eyebrow region) was
recorded. This not only captures frowning instances of a
person but also detects the tension in the corrugator
supercilii muscle due to thought concentration or
increased mental activity. The signal was denoised and
down sampled before the mean amplitude of the
corrugator muscle was calculated. The parameter
obtained: mean corrugator activity (Cm).

(b) Masseter Activity. The EMG signal from the masseter
muscle (upper jaw region) was recorded. This captures
the muscle movements while clenching/tightening of
jaws. The signal was denoised and down sampled
before the variability of the masseter muscle was
calculated. The parameter obtained: masseter variability
(MV).

Fig. 4. A typical skin conductance signal.

Fig. 5. A skin conductance response. Fig. 6. A typical EMG signal.
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4. AFFECT RECOGNITION
For meaningful Human-robot interaction, it is important
that the robot interprets the physiological signals of the
subject intelligently to deduce his/her affective state. Our
next step was to design a robust and reliable decision
making system that could take in the information from the
selected physiological parameters and generate an anxiety
index based on this information. This index would then be
used to infer the state of the human subject. Several
techniques were investigated for this purpose. Since the
transition from one physiological state to another is a
gradual one, these states cannot be treated as classical sets,
which will either wholly include a given affect or exclude it.
Even within the physiological response variables, one set
merges into another and cannot be clearly distinguished
from another. For instance consider two affective states – a
relaxed state and an anxious state. If we use the concept of
classical sets a person can either be relaxed or anxious at a
given instance, he cannot be both. Also the transition from
one set to another is rather abrupt which does not happen in
real life. In such a case, fuzzy reasoning can prove
invaluable in making the decision-making process resemble
human reasoning.

A series of problem-solving tasks was designed for the
human companion. These included anagram solving, mathe-
matical problem solving and auditory discrimination tasks.
Using these experiments initially, we obtained pilot data to
design and train a 6-input 1-output fuzzy logic system.

• Input set = {Sp, Pp, Tm, Pr, Cm, MV}
• Output set = {anxiety index}
• The membership functions used: Gaussian or sigmoidal

(depending upon the kind of variation these variables
showed with the change in affective state.)

Fuzzy logic is based on the theory of fuzzy sets. Fuzzy set
theory implements classes of data with boundaries that are
not sharply defined.19 A fuzzy set can contain elements with
only a partial degree of membership. This enables the fuzzy
models to exercise flexibility in capturing various aspects of
vagueness in the data available to us.30–32 Fuzzy set theoretic
methods have been used extensively for pattern recognition
in the past. In the present application we used fuzzy logic to
identify the patterns of physiological activity, as reflected in
the parameters described above, indicating anxiety.

The design and implementation of this fuzzy model
involves the following steps:33, 34 (i) specifying  the input and
output variable membership functions, (ii) fuzzification of
the input variables, (iii) defining the rule statements that
relate the input variables to the output, (iv) aggregating all
outputs (Fuzzy Inference), and (5) defuzzification of the
output variable.

The experimental results coupled with the self-reports of
the human were used to formulate a set of rules for this
fuzzy system. The results of this fuzzy inference engine are
presented in Section 5 where Table I shows the inputs and
output for a few experiment sessions.

5. AFFECT-SENSITIVE CONTROL
ARCHITECTURE
We aimed at designing a behavior-based architecture for a
mobile robot system working with a human in an unknown
environment. The robot would be capable of detecting and
responding to affective cues from the companion. Without
the affective input from the human companion this would be
an ordinary exploration exercise that requires the mobile
robot to perform particular tasks. However, in this case the
robot was expected to behave as a living coworker to its
human companion. This requires the mobile robot to
respond appropriately to the affective cues from the human
companion while not losing sight of the importance of its
own survival and work performance. The chief requirements
of the affect sensitive robotic control system under con-
sideration are:

• Rapid reflexive responses to the changing environment
• Execution of responses in accordance to the priority

associated with each response
• Navigation or workspace exploration in absence of reflex

eliciting inputs from the environment.

The subsumption architecture as originally proposed by
Brooks35–37 was found to be the one most suited to build our
required system upon. For the affect sensitive robotic
control system under discussion, we have defined some
behaviors:

Exploratory:
• Move in straight lines and turn at random angles at

random times.

Table I.

Physiological Parameter Session 1 Session 2 Session 3 Session 4 Session 5

Power (sympathetic activity) 84023.02 54180.64 278221.78 41628.53 319226.20
Power (parasympathetic activity) 28142.35 48625.93 40523.58 4762.10 29481.15
Mean phasic activity level 0.8742 0 0.66586 1.3795 0.7285
Rate of response of phasic activity 6.86 0 8.38 7.31 6.98
Mean of the corrugator activity (EMG) 1.22 11.02 9.02 7.94 6.80
Variability of the masseter activity 2.4153 1.3856 2.9474 1.9658 2.3959
Self report of the operator (scale of 9) 2.00 2.66 4.33 4.67 5.67
Anxiety index (scale of 1) 0.31 0.41 0.62 0.63 0.65
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Survival:
• Turn to right and reverse if obstacle is on left;
• Turn to left and reverse if obstacle is on right;
• Reverse if obstacle is in front or on both sides.

Affective:
• Query: Ask the human companion if he/she is anxious or

needs assistance of any kind;
• Report: Raise an alarm and send feedback regarding the

state of its human companion to the Base Station;
• Homing: Return to the point where its human companion

is working.

We have used subsumption architecture to execute these
tasks in a priority-based manner, allowing one behavior to
be executed at a time. Figure 7 shows that in the absence of
any affective signals from its human companion and any
survival-relevant signals, the robot remains in the wandering
or the exploratory mode, moving around and navigating the
workspace.

As it gets an affect signal from its companion indicating
that he/she is anxious, the robot suspends the wandering
task and enters the affect mode, wherein it rushes to the
rescue of its companion or simply queries him depending
upon the urgency of the situation.

If, however, the robot encounters at any time a situation
that puts its own survival at stake, it will enter the survival
mode, suspending either the affect or the wandering mode it
is in at that instant to do the best possible task to save
itself.

6. EXPERIMENT

6.1 Task Description
The goal of the experiment was to develop and implement
real-time, affect sensitive human-robot co-ordination that
would enable the robot to recognize and respond to the
psychological states of a human. This work therefore
involves online sensing of physiological indices, mathemat-
ical analysis to infer psychological states, and imple-
mentation of a robot control architecture that allows the
robot to respond to psychological needs of its human
companion. In this experiment we have tried to simulate
under laboratory conditions a human-robot system working
in close coordination on a navigation task. An ideal real life
situation analogous to this may be an astronaut and a robotic
vehicle exploring a planet, each carrying out the exploration

task individually with the robot being responsive to the
astronaut’s affective states (for instance stress, panic or
fatigue).

The experiment consists of two major components: first,
gathering pilot data to design and train a fuzzy logic-based
affect-recognizer that could recognize or “understand” the
physiological responses of a person and second, implement-
ing a human-robot co-operation task consisting of a mobile
robot navigating a workspace and its human companion
whose physiological state is being continuously monitored.
Due to the limitations in producing stress conditions in a
human subject repeatedly for the purpose of human-robot
co-ordination sessions, the above-mentioned two compo-
nents of the experiment were conducted separately. A
human subject’s physiological responses under various
levels of mental anxiety were recorded. Later, while
conducting the human-robot co-operation experiments, this
physiology data was fed to the system in the manner it
would have been received from a human being in real-
time.

One of the most challenging aspects of this experiment is
the detection and recognition of affect signals produced by
a human. We needed to design and train a fuzzy logic based
affect recognizer that could recognize or “understand” the
physiological responses of a person.

To generate pilot data for the above purpose we
performed several experiments that generated mental stress
in a human subject by involving him in cognitive activities.
Such tasks that usually cause anxiety include mathematical
problem solving, anagrams solving, etc. By manipulating
the difficulty of the tasks that an individual is made to do, it
is relatively easy to systematically produce various levels of
affect, states ranging from boredom (a long sequence of
trivially easy subtasks), optimal engagement (somewhat
challenging subtasks), to high levels of frustration and
anxiety (a sequence of highly difficult subtasks).

Biofeedback sensors were placed on the body of the
person whose physiology was being monitored. A typical
experimental set up is shown in Figure 8. The serial
interface of MATLAB was used for online data acquisition
and processing of the sensor data. There was continuous
signal processing of the incoming sensor data. The signal
conditioning involved filtering, smoothening, performing
spectral analysis, wavelet analysis and other similar proc-
essing techniques. Each sensor channel was processed to
obtain the relevant parameters from it. For instance a
measure of the sympathetic and parasympathetic activities
was obtained from the ECG (heart activity) signal and the
mean phasic and tonic levels were extracted from the EDA
(skin conductance) signal. Using all the relevant parameters
of cardiac activity, electrodermal activity and electromyo-
graphic activity the affective state of the person was
determined. This information was then used in implicit
human-robot co-operation.

The second part of the experiment consisted of imple-
menting a real-time human-robot interaction framework that
would enable the robot to recognize the human’s psycho-
logical state through continuous physiological sensing, and
act accordingly to address the psychological needs of the
human. The mobile robot-Trilobot38 was used in the

Fig. 7. Affect-sensitive subsumption architecture.
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implementation of the human-robot co-ordination task. The
robot’s tasks included:

• Wandering in a random manner exploring the workspace;
• Avoiding obstacles in the workspace;

• Responding to the affect signals of the human com-
panion.

The priorities and timings of the execution of the above
tasks are decided by the robot’s architecture, which has been
discussed in detail in the previous section. At any given time
the robot’s sensors map its environment onto its memory.
The sonar range finder and the touch sensors give
information regarding the obstacles in the workspace, the
compass indicates the orientation of the mobile robot, the
optical encoders indicate the motor speed and distance
traveled and the physiological sensors give an indication of
the affect state of the human.

6.2 Results
(i) Affect detection and recognition. A human subject

was engaged in a series of cognitive problem-solving
tasks that varied in difficulty in ways that were designed
to produce variations in the person’s anxiety levels over
the course of performing the tasks. Wearable sensors
were used to continuously monitor the person’s physio-
logical activities, and the physiological parameters as
mentioned in Section 3 were calculated using custom-
ized algorithms.

Using the self-report of the human doing the tasks we
computed an anxiety index, which essentially indicated
how anxious the person was at various points while
performing the tasks. There were reliable correlations
between the physiology and the person’s self-reported
anxiety levels. This further supported the hypothesis
that there is a distinct relationship between the physiol-
ogy and affective state of a person. The person’s
physiological activities and self-reported anxiety levels
were monitored across a total of approximately 50
different task intervals. To illustrate the differences in
physiological activity associated with high versus low
anxiety for this person, the two intervals that corre-
sponded to the lowest level of self-reported anxiety and

Fig. 8. Physiological monitoring of a human subject.

Fig. 9. Power of sympathetic activity (a) and parasympathetic
activity (b) of heart under conditions of low versus high anxiety
(msec2).
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the highest level of self-reported anxiety index were
examined. The physiological activities associated with
these intervals are presented in Figures 9–11.

Cardiac activity was a strong indicator of anxiety.
The power in the sympathetic activity frequency range
increased and the power in the parasympathetic activity
frequency range decreased as the human subject
showed anxiety (Figure 9). There was marked increase
in the mean amplitude of skin conductance responses
with increased anxiety (Figure 10a). The rate of these
responses also increased (Figure 10b). Similar increases
were observed in the mean level of corrugator activity,
and in the variability of masseter activity (Figure 11).

Once a pattern had been established between the
physiological responses and the affective state, a fuzzy
logic decision-making system was designed to infer the
affective state given a particular set of responses. Table
I shows the results of testing the fuzzy logic system on
five blocks of pilot data that were obtained from the
problem-solving task sessions. The self-reports of the
subject are also indicated in the table so that we can
evaluate the anxiety index generated by the fuzzy
system against this measure of the person of his own
anxiety. We observed that there was an appreciable
correlation between the anxiety index that the fuzzy
decision making system generates and the self-report of

anxiety of the subject. Five sessions have been selected
to demonstrate the robustness and reliability of the
fuzzy system. The fine-tuning of the weight of each rule
and alternation of the shape of the membership
functions were performed until very accurate results
were obtained.

(ii) Robot Behavior. Three triggers were continuously
generated using the feedback from the robot’s environ-
ment. These were also evaluated in a continuous fashion
by the mobile robot as it assessed its surroundings and
decided the next course of action. The triggers men-
tioned above were: the survival trigger (which when
triggered indicated any immediate danger to the robot’s
own safety at any given instant), the affect trigger
(which when triggered indicated that its human com-
panion was above some threshold level of anxiety) and
the wander trigger (which when triggered indicated that
the mobile robot was expected to be in its wander mode,
i.e. carrying on the exploration task unimpeded). By
default the mobile robot would be wander triggered at
all times.

At any given instant the mobile robot received one or
all of the three triggers. The decision regarding the

Fig. 10. (a) Mean level of phasic activity and (b) Rate of response
of phasic activity in states of low versus high anxiety.

Fig. 11. (a) Mean activity of the corrugator muscle and (b)
Variability of the masseter muscle in states of low versu high
anxiety.
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trigger that will be processed first was decided by the
robot’s architecture that has been discussed in detail in
Section 3. A trigger that was being processed caused the
robot to go into that particular mode. For instance if the
robot was processing the affect trigger then the robot
would go into the affect mode in which it would do any
particular task or sequence of tasks that enabled it to
respond to that situation in the best possible manner.
The affect mode included tasks like assisting the
companion in navigation, querying its companion about
his/her well being, locating its companion in the
workspace and returning to him/her or simply raising an
alarm.

One of the timing diagrams as obtained from a
15-minute experiment session is shown in Figure 12. As
seen in Figure 12, in absence of any affect or survival
trigger the only trigger that remains active is the wander
trigger, as a result of which the robot stays in the
wander mode. As soon as any survival trigger is

received, it suppresses the wander trigger or it assumes
priority over the wander trigger. As a result the robot
receives the survival trigger at that instant.

The robot immediately goes in to the survival mode,
thereby suspending the wander mode tasks that it had
been performing till that instant. Now that the robot is
in the survival mode it diagnoses the nature of threat it
faces and takes some steps to get out of that threatening
situation. For example, if the robot hits an obstacle in
front of it, its sensors will provide it with accurate
information regarding this and the robot will back up
and steer itself away from the obstacle. Similarly if the
robot while in the wander mode detects that the affect
trigger is activated, it will forego the navigation task
and activate the affect mode wherein it will respond to
the need of its human companion.

It might query, assist or alert its companion depend-
ing on the nature of the affect that the root has detected.
Here the affect states of the human subject that might

Fig. 12. Timing diagram of the triggers that are received by the robot and the modes activated by those.
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activate the affect trigger are low, medium or high level
of anxiety. Sometimes the survival trigger and the affect
trigger get activated simultaneously. In such cases the
robot will first process the survival trigger and place the
affect trigger in waiting. After it has taken a suitable
action to get out of a threatening situation, it will
process the affect trigger.

7. CONCLUSION
We proposed an innovative theoretical, computational and
experimental approach drawing from emerging results from
affective computing, psychology, and advanced control
theory to develop a human-robot interaction framework that
is affect-sensitive and is capable of addressing affective
need. We have demonstrated through experiments an
implicit communication between a human and robot
wherein the robot detects and recognizes anxiety in its
human companion and changed its task sequence to
accommodate a suitable response.

Successful affect recognition results were obtained from
physiological responses alone in spite of the absence of
multiple modalities, for instance voice, gesture and posture.
As an important part of the future work, affect detection and
recognizing algorithms will be made more robust by testing
them with more physiology data from human subjects. Its
reliability will be tested not only over the same subject but
also over multiple subjects. A context analyzer that
realistically investigated the cause of some affect shown by
a human and prompted the robot to take corrective actions
would be the next big step towards an advanced level of
human-robot interaction.
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