
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Ensari E, Özkar M (2018).
Shape computations with NURB curves.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 32, 282–294.
https://doi.org/10.1017/S0890060417000592

Received: 25 October 2016
Revised: 21 August 2017
Accepted: 24 August 2017

Key words:
Computer implementation; curve
implementation; NURB curve grammars;
shape grammars

Author for correspondence:
Elif Ensari, E-mail: elif.ensari@gmail.com

© Cambridge University Press 2018

Shape computations with NURB curves

Elif Ensari and Mine Özkar

Istanbul Technical University, Faculty of Architecture, Taskisla, Taksim, Istanbul 34437

Abstract

Freeform curves are commonly used in contemporary design practices, especially with digital
modeling tools. We investigate facilitating shape subtraction and addition with two-
dimensional (planar) non-uniform rational basis-spline (NURB) curves with the codes and
conventions of modeling while preserving the visual continuity of curved shapes. Our pro-
posed tool, developed in a common digital modeling environment, automates the adjustment
of parameters for tangential continuity of curves in shape rule applications. When the user
designates a curve range to subtract from an initial shape and provides a new curved shape
to add to it, the tool splits the initial shape, scales and aligns the curve to be added to fit
into this range, introduces additional control points at the joining ends of the new curve to
preserve continuity and redraws the new curve. We present a sample set of design variations
produced using this practical approach which can be utilized as a method or become part of
an automated NURB curve manipulation tool for designers.

Introduction

Non-uniform rational basis-spline (NURB) curves have come to be commonly used in com-
putational design tools, especially since the introduction and the rapid advancement of NURB
surface modeling software into design practice. Freeform curves, mostly modeled as NURB
curves, are parts of many contemporary design vocabularies. Implementations of shape gram-
mars have previously explored curves but there have been limitations in dealing with NURB
curves. An implementation that incorporates NURB curves holds potential for integrating
shape computation with conventional design tools and in generative design processes provid-
ing the designer a means of systematically working with multiple NURB curves.

In shape grammars, three primary steps of a shape rule application are embedding (part
relation), shape difference, and addition. In computer implementations of shape grammars,
embedding corresponds to a shape recognition problem. It defines the step where a certain
part of an existing shape is identified to be then replaced by another shape. Shape difference
is the removal of the identified part whereas shape addition is the summation of the leftover
part and the new shape from the right side of the rule. Visually, for both rectilinear and curved
shapes, these three steps are straightforward (Fig. 1).

In the implementations, however, shape embedding poses problems for freeform curves.
Shape grammars are originally defined for a broad range of shape types (Stiny, 2006) but
their computational implementations have mostly been for rectilinear shapes. Chau (2002),
McCormack and Cagan (2003), and Jowers and Earl (2009, 2011, 2015) explored implement-
ing shape grammars for curved shapes. Most of these studies adopt the maximal lines method
Krishnamurti (1992) developed for rectilinear shapes. For the computational implementation
of curved shapes, McCormack and Cagan (2003, 2006) use distinct shapes that are straight line
equivalents of curved shapes. Jowers et al. (2004) discuss the detection of segments within a
curve using maximal curve segments and their carrier curves where a carrier is an infinite
curve within which another curve is embedded. In the case that a curve carrier is to be descri-
bed piecewise, they show that a curve segment does not necessarily have the unique description
normally required for computer implementations. Their suggestion for future work is the use
of a combination of mathematical functions and curve properties to describe the carrier curves
and curve segments. We propose a new implementation approach that allows for working with
NURB curves without uniquely describing them, and to also freely select and transform any
part without being limited to maximal curve segments. This method is intuitive and compa-
tible with the way designers work with NURB curves.

Shape grammars value seeing sub-shapes when looking at shapes, including those that con-
sist of free-form curves. Jowers et al. (2010) and Keles et al. (2012) have both relied on visual
approaches in sub-shape detection. The latter approaches part relation entirely visually and,
using a weight function, overcomes the limitations of working with canonically describable
curves. This technique facilitates sub-shape recognition in shapes of any nature including free-
form curves but is not yet implemented as part of common design software.

Whereas the main challenge in a shape grammar implementation for curves is in handling
the part relation, it is just as important to recognize the challenges that working with curves

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060417000592
mailto:elif.ensari@gmail.com
https://doi.org/10.1017/S0890060417000592


introduces to the designer. Jowers and Earl (2015) already note
the vagueness in considering the embedding relation whether as
analytical or as visual. Shape rule application in curved forms is
not as straightforward as in the case of rectilinear forms. The
eye is tolerant and allows for a broader class of similarities in
curves. While adding curves, visual tolerance preserves the visual
continuity of the whole(s) but not necessarily the character of the
distinct curves. Visual continuity in the context of this paper is
that there are no apparent breaks in a line that curves and any dis-
tinct points from which the eye is inclined to split that curving
line into parts. The whole can be perceived as one maximal
shape. In our approach, we focus on visual continuity where the
added shape adapts to the existing shape so that the ends that
touch are tangentially continuous with it. In tangential continuity,
two curves share the same tangent at the touching ends.

Designers who work in digital modeling environments usually
and repetitively manipulate a NURB curve through the displace-
ment of its control points (from here on CPs). A curved shape can
be formed and re-formed this way as naturally as one shapes an
elastic material by hand. Continuous curved surfaces have become
a part of the architect’s vocabulary and facilitate a formal expres-
sion of flow between spaces, or response to contextual dynamics.
The challenge posed by their construction has been taken on
eagerly as a display of competency. A minimum of second degree
(curvature) continuity is necessary for the manufacturing of
smooth surfaces such as those in bodies of cars. Within the
scope of this paper, we focus on two-dimensional (2D) curves.
We look at the points where curve segments coincide and ensure
first degree (tangential) continuity to preserve the visual continu-
ity described above.

In order to ensure tangential continuity at touching ends of
two or more curves in a shape rule application, we developed a
tool in Grasshopper. Grasshopper is a plug-in for the NURB
curve modeler Rhinoceros 3D (from here on Rhino) developed
by McNeel, a commercial software commonly used by designers.
We also utilize Python programming within the Grasshopper
environment. Our tool follows three steps. First, the user manually
selects a part of a NURB curve using two parameters. Secondly,
that part is subtracted and thirdly, a new curved shape is added,
which may be any curve separately constructed by the user. The
newly added curve is unified into the initial shape preserving
visual continuity. Our tool automates the performance of subtrac-
tion and addition with a visually continuous result.

Fig. 1. Embedding, difference, and addition of rectilinear
shapes and curvilinear shapes.

Fig. 2. A NURB curve. Control points, control polygon, and knots.

Fig. 3. Shape difference and additions of varying shapes.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 283

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


For shape subtraction, we rely on the splitting procedure avail-
able in the Rhino software environment. This procedure automat-
ically adds CPs to the ends of the curve to preserve the shape of
the remaining curves, useful in our tool for preserving the visual
(tangential) continuity of curves that are worked with. This
requirement, although visually consistent and functional, changes
the mathematical construction of the NURB curve, by adding and

rearranging its CPs. Our approach can be regarded as a practical
application based on the visual processing of shapes, rather than
an analytical one concerned with their formal structures.
Nevertheless, some mathematical formulae are presented in the
next section to explain how NURB curves are described.

Basic principles to facilitate shape grammar
implementations of NURBs

NURBs are mathematical representations that can accurately
describe any 3D geometry that may range from rectilinear planar
shapes to complex freeform surfaces. This study focuses on 2D, or
planar NURB curves, but the method proposed may also be
expanded to work with 3D NURB curves and surfaces.

NURBs were invented by both Bezier and Casteljau around the
same period, based on the traditional ship construction techniques
that utilized controlled bending of bamboo strips called splines.
The invention of NURB curves allowed for an effective representa-
tion of curved lines and surfaces. This proved to be very useful in

Fig. 4. Curve shapes obtained by moving one CP in the
x direction, one unit at a time.

Fig. 5. Transforming one CP without disturbing the curve continuity.

Fig. 6. Subtraction and addition of curve parts.

Fig. 7. The continuity of the curve is disturbed.

284 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


the design and manufacturing of cars, ships, and airplanes, which
had aerodynamic forms. Quickly adopted by the design industry
and incorporated into computer-aided design software commonly
used by industrial designers and architects, NURB curve processors
greatly extended the formal vocabulary of computer-aided design.

“NURB” is an acronym for “Non-Uniform Rational
Basis-Spline.” “Basis Spline” refers to a curve controlled by CPs
(cp in Fig. 2) each associated with a basis function. “Rational”
implies that the CPs can (but do not necessarily have to) have
weights that are not equal to one and that determine the magni-
tude of the impact of each CP on the curve. The straight lines

joining the CPs are referred to as the control polygon.
“Non-uniform” stands for the free distribution of the knots
(K in Fig. 2), in other words, the intervals determining the limits
of influence of CPs along the length of a NURB curve. Knots are
the joining points of the piecewise described curves making up
the NURB curve. The following is the general mathematical equa-
tion for NURB curves (Piegl & Tiller, 1997).

C(u) =
∑n

i=0 Ni, p(u) wi Pi∑n
i=0 Ni, p(u) wi

, a , u , b.

Fig. 8. Shape part is replaced preserving the continuity; CPs are activated and tangents are drawn at endpoints.

Fig. 9. Subtraction and addition of curve shapes preserving continuity.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 285

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


where {Pi} are the CPs, {wi} are the weights, {Ni,p} are the
rational basis functions of pth degree and the p indicates the
degree of the NURB curve. In the case that u ranges from 0 to
1, or a = 0 and b = 1, assuming w > 0, we get:

C(u) =
∑n

i=0

Ri, p(u) Pi

where {Ri,p(u)} are the piecewise rational basis functions on
u ∈ [0,1] (Piegl & Tiller, 1997).

The shape of the curve is determined by a polynomial interpo-
lation over each CP. NURB curves are defined by an order, CPs,
knots and an evaluation rule. The degree refers to the highest
power of the polynomial function describing the curve and the
order of a curve is always one higher than its degree. The evalu-
ation rule refers to the parametric equation that gives the coordi-
nate values of a point parameter on a curve.

The weights of all CPs of the curves used in this study are
equal to one, which means the magnitude of influence for each
CP is equal and they are B-spline curves. A first degree (tangen-
tial) continuity is preserved in the following examples of compu-
ter applications of shape rules with NURB curves in a visual
programming environment.

Shape addition and difference in place of CP manipulation

In the Rhino modeling environment, to apply a shape rule to
curves, the user subtracts (the left side shape) from an initial
curve by splitting the initial curve. Splitting is a procedure defined
in Rhino that requires the user to designate points of reference for
where the curve will be cut. If the left side shape is to be sub-
tracted from the middle part of the initial curve, the user will
split the initial curve at two points. These are then the endpoints
of the leftover shape and a gap remains in between them. Rhino
automatically inserts additional CPs close to these ends of the

Fig. 10. Shape addition to create a closed curve.

Fig. 11. Recursive addition with rotation at the ends of curves.

Fig. 12. Recursive addition with rotation and scaling at the ends of curves.

Fig. 13. Recursive subtraction and addition of curves within certain ranges of curves.

286 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


remaining curve to preserve its shape. Then, the curve that is
going to be added should be scaled and rotated to fit the gap
on the initial curve. Once it is positioned to fit the gap on the

initial curve precisely, the blending command is used at both
ends. Rhino provides options for this command to preserve the
continuity of different levels and inserts new CPs at user-specified
distances to the curve ends. Our tool automates this process using
the Grasshopper plugin, allowing the user to subtract and add
curves without having to repeat all these steps, substantially sim-
plifying and speeding up an iterative workflow. It first requires
that the user selects a range, delineating a section of the curve
for subtraction and that he provides a second curve to be added
to the initial curve. Our tool splits the initial curve at endpoints
of the user-defined range with the splitting command in Rhino.
It automatically scales and aligns the curve to be added to pre-
cisely fit the gap on the initial curve, then inserts new CPs at dis-
tances from the two ends to fit user-defined tolerances and finally
re-draws the curve using the CPs of the remaining and newly
added curve segments. When adding new CPs at joining ends,
the tool positions them in order to preserve tangential continuity.
As the added shape adapts to its context, also allowing variations
to multiple instances, its context is preserved. We propose that
such a tool can contribute to shaping computations in design pro-
cesses that incorporate NURB curves.

A number of examples are presented here to demonstrate both
the manual procedure in Rhino and our automated tool. We also
illustrate how the manipulation of CPs is utilized in a regular work-
flow in Rhino which we propose to replace with shape difference
and summation through the use of our tool. Figure 3 demonstrates
the operation of shape difference, followed by three different addi-
tions of NURB curve shapes to generate new shapes.

The three new parts that are added to the shape at each step are
the three CP-manipulated versions of the initial part that was sub-
tracted from the original shape. As demonstrated in Figure 4, the
three new shapes can, in fact, be generated, along with many
more, by moving one CP of the initial curve, one unit in the
x-direction at each step, without changing the positions of the
rest of the CPs. Achieving the same results by shape subtraction
and addition as intuitively and practically is the challenge we
take on and facilitate. The juxtaposition of all versions of the
shape is presented at the bottom of the figure.

Looking at the procedure of CP-manipulation more closely,
Figure 5 demonstrates how a CP is moved to change the shape
of a curve segment, without disturbing its continuity which
would be the case if we were to subtract the second half of the
curve and replace it with its manipulated version as demonstrated
in Figure 6.

In Figure 6, first, a part of a shape is delineated, then it is sub-
tracted from the initial shape, and a new curve is added in place of
the subtracted curve.

Figure 7 shows that the new curve added has CPs coinciding
with the CPs of the curve segment we have initially altered and
still, the continuity has been disturbed. This is due to the addition
of new CPs. Rhino has automatically added one CP to the existing
curve segment to preserve its shape when being split, and one CP
to the new curve which also happens to be a part of the altered
version of the curve in Figure 5. These CPs allow for preserving
the shapes of the parts of curves when they are split. However,
subtraction and addition of curves bring about different results
from manipulating their CPs.

There is a way to add and subtract curves seamlessly so that
their continuity is preserved the same way when they are altered
through the manipulation of their CPs. Below is the first example
where the many altered versions of one curve segment replace a
part of our original curve, preserving the shapes of the remaining

Fig. 14. The shapes at the top left side of each group are added within the defined
ranges of the curves at the bottom left side to attain the shapes on the right side.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 287

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


parts illustrated in black and the first-degree continuity in all of
the resultant curves (Fig. 8 top row). Tangents of the curves at
joining ends are equivalent.

To explain how this works, let us first look at how the CPs
behave in the procedures performed (Fig. 8 second row). To
add and subtract curves preserving their continuity is possible

through the following set of conventions. As long as the tangent
line at the end of the curve segment to be joined with a new curve
aligns with the first two CPs of the joining end of the second
curve, a new curve can be added to an end of any curve segment
preserving both its shape and continuity. The CPs at the joining
ends should coincide, and the second CPs only need to be aligned
with the tangent line. All pairs of CPs and the joining ends
remain on the tangent line at the joining end (Fig. 8 bottom row).

To be able to subtract and add curve segments while preser-
ving the continuity at the joining ends, we need to follow the
steps below.

Step one: The segment to be replaced is delineated. Splitting pro-
cedure is carried out. CPs are activated, and the curve segment is
deleted.

Step two: Using the two consecutive CPs at both ends of the curve
segments on which the joining procedure will be performed, tan-
gent lines are drawn.

Step three: A new curve segment that starts with two CPs coincid-
ing with the tangent lines at the end of the first existing curve

Fig. 15. The shapes at the top left side of each group are added within the defined ranges of the curves at the bottom left side and the initial range is repetitively
remapped onto the new curve.

Fig. 16. Grasshopper definition allows for selection of range and tolerance value for
smoothness.

288 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


segment, and ends with two CPs coinciding with the joining end
of the second curve segment is added to the shape.

Step three can be repeated by the addition of many different curve
segments (Fig. 9).

While the correspondence of the couples of CPs at the join-
ing ends of curves is necessary, the matching of the number of
CPs in between the ends of the replaced NURB segment and
the new one is not a requirement to preserve the continuity
of the whole curve. It is worthwhile to note here that the opera-
tions employed in our examples are not within a closed algebra

since the new curve parts that replace the subtracted segments
are new to our initial curve vocabulary. Jowers and Earl (2015)
have introduced examples of closed algebras for curves. Notice
that in step one, where we delineate the segment we will
subtract from the initial shape, we apply a splitting procedure
in the software environment. Visually, this would simply be
embedding a part within the context of shape grammars.
While visually this step does nothing to change the shape of
the initial curve, it actually changes the mathematical construc-
tion of the NURB curve, by automatically increasing and rear-
ranging its CPs.

Fig. 17. Two different shape rules are applied to quarter circles.

Fig. 18. Four different shape rules are applied to the parts of resultant curves of the previous example.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 289

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


The splitting procedure, performed at the boundary points of
the part that is to be replaced, is necessary for the rules that follow.
Splitting is necessarily a procedure performed through a com-
mand, algorithms of which are part of the NURB curve processor
Rhino.

Following the rules defined above, both ends of a curve seg-
ment can be joined with other NURB curve segments, in the fol-
lowing example, constructing a closed curve. Again, the two CPs
of the new curve align with the tangent lines at both ends. The
applicability of the method to closed curve segments is meaning-
ful considering that the 2D representation such as section cut
drawings of 3D objects to be manufactured are always closed
curved shapes (Fig. 10).

This procedure requires that if a new curve is to be added to
the end of another curve, the tangent lines at both ends of the
curve work as a guide to help satisfy the tangent alignment rule.

Application of the method with Euclidean transformations

Let us assume starting with a NURB curve segment as in the first
shape in Figure 11. We can duplicate it, rotate and add this new
curve segment to the end of the first curve, so that the two CPs at
the joining ends align with the tangent of the first curve’s joining
end. This procedure can be repeated the same way Euclidean
transformations can be applied to rectilinear shapes recursively
through the original shape grammar rules (Fig. 11).

For another example, we can start with a NURB curve seg-
ment, duplicate it, transform its scale by 0.5 and rotate and add
it to the end of the first curve, so that the two CPs at the joining
ends align with the tangent of the first curve’s joining end. Again,

this procedure can be applied recursively, to get a fractal NURB
curve (Fig. 12). Clearly, the requirement for the alignment of
end CP tangents poses a limitation here: the rotation angles of
the duplicated curves to be added at the ends are predefined to
satisfy the rule and preserve the continuity of the curve.

The subtraction and addition operations can also be repeated
following the rule to keep the two-end CPs aligned, to recursively
add new curve segments within an existing NURB curve segment
(Fig. 13). The examples presented in this section demonstrate the
applicability of the procedure to any part of any NURB curve,
allowing for the addition, subtraction and Euclidean transforma-
tions. This facilitates the use of shape grammars as a method
when working with NURB curves.

In all examples presented in this section, the shape grammar
formalism

S � S− a+ (b)

can be utilized to describe the steps followed. However, the shape
to be added (b) is carefully selected or generated to satisfy the
defined conventions that facilitate visual continuity of the resul-
tant curves. At both joining ends of the curves, the two CPs of
the new curve and the existing curve parts are congruent.

Implementation of the procedures in a visual programming
environment

As results of a testing of the shape delineation, difference and
addition steps of shape rule applications on NURB curves, this
section illustrates computer-generated examples where we

Fig. 19. Four new shape rules are applied to the resultant curves of the previous example.

290 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


automate the above-explained procedures through our tool using
the Grasshopper plugin.

The following is a list of the automated procedures in the
examples to follow.

(a) Definition of a range on a curve, for the delineation of a part
for shape difference. The user defines two values between
zero and one. This step replaces the embedding step in tradi-
tional shape rule applications;
then

(b) Rotation, scaling, and repositioning of the new curve to be
added to the initial shape;
and

(c) Redrawing of the curve with the insertion of additional CPs
in between the curves, to preserve continuity.

The examples in Figure 14 demonstrate the shape difference
and addition operations automated through the steps (a)–(c)
defined above. “Rs” and “re” stand for the starting and ending
points of the range defined by the user through our tool. This
range can be between zero and one, zero denoted to the begin-
ning, and one to the ending of the curve.

When the subtraction and addition operations are recursively
applied, the range to subtract and add new shapes within the
curve needs to be redefined. In the examples in Figure 15, the
initial range defined was repetitively remapped onto the new
curve, so that a fractal-like repetitive scaling and positioning
was obtained. The last example demonstrates the application of
the same procedure on a number of curves at the same time.

The interface in the Grasshopper environment allows for real-
time manipulation of the range within the initial curve, automat-
ically altering the scale and rotation of the new curves that are
added to it (Fig. 16). The tolerance factor determines the distance
of the CPs that are inserted to the starting and ending points of
the range. The larger the tolerance defined by the user, the
more continuous the curve is perceived. This is due to the
increased distance of the CPs from the joining ends in the tangent
direction at these points.

What deviates from the analog shape grammars approach in
these examples is that some curve segments are inserted between
the remaining shape and the new curve that is added, to blend the
curve segments into a continuous whole. These segments are
necessary for the preservation of visual (tangential) continuity
of our curve.

Fig. 20. Five shape rules are applied to initial shapes with parametric variations.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 291

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


Application of the method on a design problem: seamless
tile motifs

In this section, we present a set of examples where the
Grasshopper tool we have developed to automate our workflow
is used to design some seamless tile motifs. The idea is that a sim-
ple base of continuous curved shapes is arranged as a repeatable
tile motif, and variations of new curved patterns are obtained pre-
serving the continuity of each shape while the tile design remains
repeatable. The choice of examples in the form of tile motifs pro-
vides an underlying grid canvas to easily demonstrate the varia-
tions within curved shapes in a uniform system.

Initial curved shapes are manipulated using the same set of
steps previously defined in the section “Implementation of the
procedures in a visual programming environment” of this text.
Certain ranges within each curve segment are delineated as
explained in the section “Shape addition and difference in place

of CP manipulation”. The parameters determining these ranges
have been provided with the images. Then each segment is
removed and then replaced by a new curve segment, similarly
with the shape grammar subtraction and addition, however, as
defined in the previous section, additional curve segments are
generated to preserve visual continuity.

In Figure 17, two shape rules are applied to the initial curves
which are quarters of circle arcs, adding in both cases, the same
shape at the top in two different rotations. In Figure 18, the initial
shapes are parts of the curves that were the resultant shapes of the
previous example (Fig. 17). Here, there are four different shape
rules, each applied to a different shape. In Figure 19, the resultant
curves of the example in Figure 18 are taken as initial shapes, and
again, four different shape rules are applied to them. In all these
three examples, the rule is obtained by the subtraction of the deli-
neated parts (the ranges of which are indicated at the bottom right

Fig. 21. Five new shape rules are applied to parts of the resultant curves of the previous example.

292 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


of shape rules) followed by the addition of the same curved shape
at the top in Figure 17. This shape is added to the left side of the
curves by our tool, as previously demonstrated in the examples in
Figures 14 and 15. Notice in all these examples that while the
shapes on the left side of the rule remain unchanged, the shapes
on the right side do not consist merely of the remaining part and
the added curve. Additional curve segments have been generated
that blend the curve parts together, the lengths of which are deter-
mined by the tolerance factor, adjustable as a feature of our tool.

Figures 20 and 21 show further exploration of the same work-
flow, where multiple rules are generated by the subtraction and
addition of the same shape at the top in Figure 17 into initial
shapes making up seamless, repeatable patterns.

Figure 22 illustrates the use of the same workflow. However,
this time the rules are generated with seven different curved
shapes added to the curve segments following the subtraction of

the delineated parts. Notice that not all parts of the initial shapes
in the final example (Fig. 22) exactly match with the initial shapes
in our shape rules; however, they are versions of the same curves
with an identical number of CPs, altered through the manipula-
tion of their CPs.

The examples above demonstrate that the continuity and
repeatability of the final pattern depend on the initial shapes.
Once these requirements are satisfied for the initial shapes, the
resultant patterns generated by the application of the rules do
not break these requirements.

Our automated workflow, actualized in the tool, can be helpful
in working with NURB curve geometries, especially when visual
continuity is a concern, and the designer is seeking to apply
shape rules to explore variations and experiment with families
of curved shapes. Starting with relatively simple curves that are
easier to manipulate and then generating new shapes based on

Fig. 22. Seven different rules are applied to half circles in rows.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 293

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592


these curves with the presented workflow will simplify and speed
up the process of working with curved shapes, as well as providing
rapid multiplication of variations.

Conclusion

The properties of NURB curves challenge computer implementa-
tions of shape rule applications. Nevertheless, we show that it is
possible to incorporate these two notions in a partial solution.
Instead of a complete implementation, the contribution here is
a modest tool programmed within an existing design platform
that enables automated workflows with NURB curves in shape
computations as part of common design processes. Our approach
automates steps in the common design modeling environment
Rhino. These steps are namely splitting a NURB curve, scaling,
rotating and aligning the new curve part, adding CPs and redraw-
ing the resulting NURB curve. By way of this tool, any NURB
curve segment regardless of type or mathematical description
can be added to any curved shape, guaranteeing a continuous
resultant curve. We have shown multiple rule applications and
multiple instances of parametric rule applications. While the
cases up till Figure 13 demonstrate our steps for NURB curve
addition and principles behind them, the examples in Figures
14 and 15 show multiple versions of shapes that can be generated
using our presented design tool. The examples in Figures 17–22
show how our tool can be used in a design problem to generate
seamless tile motifs.

There are some limitations to the presented method. Firstly, we
do not utilize an analytical approach for shape recognition but
suggest alternative means to delineate curve parts by defining a
range. As this requires numeric specification, it is a step away
from a visual selection. Nonetheless, due to the nature of freeform
curves, any part of a curve can be removed, and any new curve
can replace that part, as long as a visual or, as specified in this
paper, tangential continuity is preserved throughout the initial
and resulting curved shapes. Secondly, while adding and rearran-
ging the CPs of a NURB curve yields results that are visually con-
sistent and functional, it actually changes the mathematical
construction of the NURB curve. Nonetheless, the addition and
removal of CPs without disturbing the ones neighboring the join-
ing boundaries visually preserves the parts of the shapes that are
not replaced and work for the purposes described in this paper.
Also, the requirement to preserve the tangent lines at the bound-
ary points poses a limitation in the Euclidean transformation of
rotation as it allows only for a specific angle. In the case that a
curve is added within a range of another curve as opposed to
being added to its end, the Euclidean transformation of scaling
is also limited by the distance between the two points defining
the range within the curve.

The proposal in this study is only for planar NURB curves
with equally weighted CPs but can be extended to 3D NURB
curves and surfaces in future work. Further development of the
method into a NURB curve implementer, followed by its testing
on simple basic design problems in a workshop with experienced
designers or an educational environment with novice designers
may be fruitful in understanding its presumed practicality and

applicability for shape computation in professional use and ped-
agogical agendas.

References

Chau HH (2002) Preserving brand identity in engineering design using a gram-
matical approach (Doctoral dissertation). University of Leeds, Leeds, United
Kingdom.

Jowers I and Earl C (2009) The construction of curved shapes. Environment
and Planning B: Planning and Design 37, 42–58.

Jowers I and Earl C (2011) Implementation of curved shape grammars.
Environment and Planning B: Planning and Design 38, 616–635.

Jowers I and Earl C (2015) Extending the algebras of design. Nexus Network
Journal 17(3).

Jowers I, Hogg DC, McKay A, Chau HH and de Pennington A (2010) Shape
detection with vision: implementing shape grammars in conceptual design.
Research in Engineering Design 21, 235–247.

Jowers I, Prats M, Earl C and Garner S (2004) On curves and computation
with shapes. In Akin O, Krishnamurti R and Lam KP (eds). Generative
CAD Systems Symposium: G-CADS 2004. Pittsburgh: Carnegie Mellon
University, pp. 439–457.

Keles HY, Özkar M and Tari S (2012) Weighted shapes for embedding
perceived wholes. Environment and Planning B: Planning and Design 39,
360–375.

Krishnamurti R (1992) The maximal representation of a shape. Environment
and Planning B: Planning and Design 19, 267–288.

McCormack JP and Cagan J (2003). Increasing the scope of implemented
shape grammars: a shape grammar interpreter for curved shapes. In Proc.
ASME 2003 Int. Design Engineering Technical Conf. & Computers and
Information in Engineering Conf., Paper No. DETC2003/DTM-48643,
Chicago, IL, September 2–6.

McCormack JP and Cagan J (2006) Curve-based shape matching: supporting
designers’ hierarchies through parametric shape recognition of arbitrary
geometry. Environment and Planning B: Planning and Design 33, 523–540.

Piegl L and Tiller W (1997) The NURBS Book, 2nd edn. New York: Springer-
Verleg.

Stiny G (2006) Shape: Talking About Seeing and Doing. Cambridge,
Massachusetts: MIT Press.

Elif Ensari is a PhD candidate at Istanbul Technical University, in the
Architectural Design Computing Program, and at University of Lisbon,
Faculty of Architecture. Her current research interests include shape gram-
mars implementations and computational tools for assessment and design
generation for urban design. She holds a BArch degree from Middle East
Technical University and an MArchII degree from Southern California
Institute of Architecture. She is a part-time scholar at Istanbul Bilgi
University and co-owns Iyiofis, an architectural design practice based in
Istanbul.

Mine Özkar is the Coordinator of the Architectural Design Computing
Program and a Professor of Architecture at Istanbul Technical University.
Her research focuses on visual, spatial, and material aspects of design com-
putation, and their integration to foundational design education. Her own
teaching of computation theory and studios at both undergraduate and grad-
uate levels is centered on students’ critical thinking and involved doing. Mine
completed SMArchS in design inquiry, PhD in design and computation at
MIT where she was a visiting professor for a semester in 2013.

294 Elif Ensari and Mine Özkar

https://doi.org/10.1017/S0890060417000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000592

	Shape computations with NURB curves
	Introduction
	Basic principles to facilitate shape grammar implementations of NURBs
	Shape addition and difference in place of CP manipulation
	Application of the method with Euclidean transformations
	Implementation of the procedures in a visual programming environment
	Application of the method on a design problem: seamless tile motifs
	Conclusion
	References


