
Math. Struct. in Comp. Science (1997), �ol. 7, pp. 195–206 Copyright # 1997 Cambridge University Press

Weak inclusion systems

VIRGIL EMIL CAC ZAC NESCU and GRIGORE ROST U

Uni�ersity of Bucharest, Faculty of Mathematics, Department of Computer Science,

Str. Academiei 14, R70109, Romania

Recei�ed 7 April 1995; re�ised 5 April 1996

We define weak inclusion systems as a natural extension of inclusion systems. We prove that

several properties of factorisation systems and inclusion systems remain valid under this

extension and we obtain new properties as algebraic tools in abstract model theory.

1. Introduction

It is well known that the categorical approaches to computer science, in spite of the clarity

of the proofs they handle, raise a serious problem: that of modelling properly practical

concepts. This is because category theory has appeared as a result of the efforts of many

mathematicians to unify mathematical concepts, rather than computing ones. For this

reason, the categorical approaches to computing fields come together with their proper

technical tools, which in many cases are different in shape but identical in spirit.

In this paper we propose weak inclusion systems as a mechanism of penetrating inside the

objects and the morphisms of a category. Our main goal is to give both definitions and

properties in the most general form, allowing the computer scientist to apply them as a

technical device in his (or her) fields of interests.

Weak inclusion systems represent an analogy with factorisation systems (e.g. see Herrlich

and Strecker (1973)), which have been used in many places with computer science (e.g. see

Goguen and Burstall (1990) and Tarlecki (1984; 1986), and the older papers Ne!meti (1982)

and Ne!meti and Sain (1981)).

Inclusion systems were first introduced in Diaconescu et al. (1993) as a categorical tool

for the study of modularisation. In some cases, including modularisation, they are more

useful than factorisation systems.

The rest of this paper is structured in four sections. Section 2 gives definitions and

describes basic properties of weak inclusion systems. The intuition for inclusion systems is

that they give for each morphism a unique object of factorisation, rather than merely up to

isomorphism as in the case of factorisation systems. In this paper we prefer to use a weaker

framework than that in Diaconescu et al. (1993), and we prove some old results about

factorisation systems and obtain some new results. The same idea appears in Hilbedrik (in

preparation), where the research goes in another direction.

We should mention that the category of many-sorted algebras, which is very much used

in theoretical computing (especially in semantics), does not admit an inclusion system in the

style of Diaconescu et al. (1993) but does admit a weak inclusion system.

A weak inclusion system for a category # consists of two subcategories ) and % having
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the same objects as #, such that ) is a partial order and every morphism f `# can be

factored uniquely as e ; i, where e `% and i `). In Hilbedrik (in preparation) every

morphism of % is supposed to be an epic. We do not need this hypothesis here, even if in

some interesting cases this hypothesis is useful. A similar restrictive assumption, but for

factorisation systems, has appeared within a series of interesting papers due to Ne!meti

et al. (e.g. see Ne!meti (1982) and Ne!meti and Sain (1981)).

It is easy to prove that the category of inclusions ) unambiguously determines %. We

show something more: a morphism is in % if and only if it has a diagonal-fill property.

From this we give an equivalent definition for weak inclusion systems (see Definition 10)

based only on the subcategory of inclusions.

Section 3 refers to categorical subobjects in the classical style (see Mac Lane (1971)). The

category of inclusions is an independent system of representatives for (categorical)

subobjects, that is, each subobject contains at most one inclusion. On the other hand, the

category of inclusions is a complete system of representatives, that is, each subobject

contains one inclusion if and only if each monic of % is an isomorphism. Within a category

that has several weak inclusion systems, it is better to look, if possible, for an inclusion

system in which % does not contain monics that are not isomorphisms.

Section 4 is concerned with building a weak inclusion system for a category #, starting

with both a category $ that admits a weak inclusion system and a faithful functor

5 :#U$. We give two conditions and prove that each is sufficient for building a weak

inclusion system for #. One of them generalizes a construction from Diaconescu et al.

(1993) where, by definition, a morphism i of # is an inclusion if and only if 5(i) is an

inclusion of $. The two conditions have been used in Ca) za) nescu (1972) where the first

author has proved that they are sufficient for 5 to reflect limits and colimits, respectively.

Since in the practical cases 5 is a forgetful functor from complicated structures to simpler

ones, one can find weak inclusion systems for the complicated structures.

We give two examples where this result may be applied. One of them tells us that within

an institution (see Goguen and Burstall (1992)), if the category of signatures has a weak

inclusion system, the category of institutional theories has a weak inclusion system also.

The last section of the paper investigates pushout and pullback properties of weak

inclusion systems. They may be useful in many categorical approaches to computing,

especially for modularisation. Diaconescu et al. (1993) contains a particular form of them,

which are much used.

2. On the weak inclusion system definition

The reader is referred to Mac Lane (1971) and Herrlich and Strecker (1973) and to Mitchell

(1965) for all the necessary category theory background. Also, the reader who is acquainted

with model theory (Chang and Keisler 1973) and categorical approaches to it (e.g. see

Andre!ka and Ne!meti (1981), Goguen and Burstall (1992) and Tarlecki (1984)) will

understand more easily the ro# le of weak inclusion systems. We will denote by r# r the class

of objects of a category #, and by sMs the cardinal of a set M. The composition of the

morphisms f : AUB and g : BUC is denoted by f ; g : AUC. If f : AUB is a morphism, we

sometimes write dom ( f ) instead of A and write cod ( f ) instead of B.
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In this section we first present the definition of a factorisation system and then we give

two equivalent definitions of a weak inclusion system.

2.1. Factorisation systems

Factorisation systems have been used in many places in computer science. As an example,

in Goguen and Burstall (1992) and Tarlecki (1984) they have been used within the theory

of institutions and abstract algebraic institutions, respectively.

Definition 1. A factorisation system for a category # consists of a class - of monics and

a class % of epics in # such that

—- and % are subcategories of #,

—both - and % contain all the ismorphisms of #,

—every morphism f in # can be factored ‘uniquely up to isomorphism’, namely there

exist e `% and m `- such that f¯ e ; m and for any other e« `% and m« `- with

f¯ e« ;m« there is a unique isomorphism, let us say j, such that e ; j¯ e« and j ; m«¯m.

2.2. First definition and properties

Our first definition of a weak inclusion system is a natural extension of that of an inclusion

system Diaconescu et al. (1993).

Definition 2. ©),%ª is a weak inclusion system for a category # if ) and % are two

subcategories of # with r) r¯ r% r¯ r# r such that

1. ) is a partial order, i.e.,

—s)(A,B)s% 1 for each A, B ` r# r
—)(A,B)1φ and )(B,A)1φ imply A¯B.

2. Every morphism f in # can be factored uniquely as e ; i with e `% and i `).

The morphisms of ) are called inclusions. If we had required that % should contain only

epimorphisms and ) admit finite coproducts (denoted by ‘ ’), we would have obtained

inclusion systems Diaconescu (1993) or abstract inclusion systems Hilbedrik (in

preparation.

Example 1. If %¯# and ) consists of all the identities of #, then ©),%ª is a weak

inclusion system but not an inclusion system.

This example gives an uninteresting weak inclusion system, but it shows us that the

condition ‘% contains only epics ’ is independent. On the other hand, it also shows that the

concept of weak inclusion system is too general to include just the interesting cases.

It is well known that the two classes of morphisms of a factorisation system

unambiguously determine one another. In the case of weak inclusion systems a weaker

condition holds.

Lemma 3. If ©),%ª and !) «,% «" are two weak inclusion systems for # and if )X) «,
then % «X%.
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Proof. Let e« `% «. Factor e« as e ; i with e `% and i `). Factor e as e
"
; i

"
with e

"
`% «

and i
"
`) «. We have e«¯ e

"
; i

"
; i with i

"
; i `) «. But the factorisation is unique, therefore

e«¯ e
"

and i
"
; i¯ 1

cod(e
"
)
. Hence i

"
and i are identities and e«¯ e, that is e« `%. *

Note that )X) « does not imply % «¯%. This fact is easily seen by the next counter-

example, where we forget the identity morphisms.

Example 2. Let # be a three-object category with three nonidentity morphisms f
"
, f

#
, f

$

such that f
"
; f

#
¯ f

$
. We can take two weak inclusion systems as )¯² f

#
´, %¯² f

"
´ and

) «¯ ² f
"
, f

#
, f

$
´, % «¯φ.

Corollary 4. ) unambiguously determines %.

This corollary leads us to the idea of removing % from the above definition. We will

spend the rest of this section doing this.

A category with a weak inclusion system is said to be weak inclusi�e, and we will use e

to denote the morphisms from %, and i to denote the morphisms from ). For each f `#

we fix the notations f¯ e
f
; i

f
, where e

f
`% and i

f
`).

Fact 5. If ©),%ª is a weak inclusion system for #,

1. ) contains only monics.

2. Each morphism in )f% is an identity.

3. If f ; i `), then f `).

4. If f ; i `%, then i is an identity and f `%.

5. If f ; g `%, then g `%.

6. Any co-equalizer is in %.

7. Any retract is in %.

8. All isomorphisms in # are in %.

Proof.

1. Let i be an inclusion, and f, g `# such that f ; i¯ g ; i. Factor f as e
f
; i

f
and g as e

g
; i

g
. It

follows that e
f
; i

f
; i¯ e

g
; i

g
; i, that is, e

f
¯ e

g
and i

f
; i¯ i

g
; i. Since ) is a partial order, we

get i
f
¯ i

g
. Hence f¯ g.

2. Take f `)f%. Then f ; 1
cod(f)

¯ 1
dom(f)

; f, that is, f¯ 1
dom(f)

¯ 1
cod(f)

, because the

factorisation is unique.

3. Factor f as e
f
; i

f
. Then e

f
¯ 1

dom(f)
and i

f
; i¯ 1

cod(f ;i)
, since f ; i admits a unique

factorisation. Hence f¯ i
f
`).

4. Factor f as e
f
; i

f
. Then e

f
; i

f
; i `%, and then i

f
; i¯ 1

cod(ef)
. We deduce that i

f
and i are

identities and f¯ e
f
`%.

5. Factor g as e
g
; i

g
. Then f ; e

g
; i

g
`% and, moreover, i

g
¯ 1

cod(g)
(by Part 4 of this fact).

Hence g¯ e
g
.

6. Let r : AUB be a co-equalizer for the diagram containing the two morphisms

u, � : CUA. Factor r as e
r
; i

r
with e

r
: AUB« and i

r
: B«9B. Since i

r
is a monic (Part 1 of

this fact), e
r
is a cocone, and thus there is a unique h : BUB« such that r ; h¯ e

r
. It follows

that r ; (h ; i
r
)¯ r and, since r is an epic, we obtain h ; i

r
¯ 1

B
and, furthermore, i

r
¯ 1

B«

(by Part 4 of this fact). Therefore r¯ e
r
, that is, r belongs to %.
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7. It is known that a retract r of f is a co-equalizer for the diagram containing the

morphisms 1
dom(r)

and r ; f. Now, the conclusion follows from Part 6 of this fact.

8. This is obvious from Part 7, since each isomorphism is a retract. *

The following diagonal-fill lemma holds.

Lemma 6. (Diagonal-fill ) For each morphism f, g `# and for each e `% and i `), if f ;

i¯ e ; g, there is a unique morphism h `# such that e ; h¯ f and h ; i¯ g.

Proof. Factor f as e
f
; i

f
and g as e

g
; i

g
. Then e

f
; i

f
; i¯ e ; e

g
; i

g
, and thus e

f
¯ e ; e

g
and i

f
;

i¯ i
g
.

f

g

e i

ef if

eg ig

We take h¯ e
g
; i

f
. The uniqueness of h follows from h ; i¯ g and from Part 1 of Fact 5.

The following lemma represents the first step in removing % from the definition of a

weak inclusion system.

Lemma 7. Let u be a morphism of #. Then u `% if and only if for each f, g `# and i `)

such that f ; i¯ u ; g there exists a morphism h `# with u ; h¯ f and h ; i¯ g.

Proof. The ‘only if ’ part of this lemma is exactly the diagonal-fill lemma. Conversely, let

u be a morphism from #, and e
u
; i

u
be its unique factorisation. If we take f¯ e

u
and g¯

1
cod(u)

, it follows that there is a morphism h that verifies u ; h¯ e
u
and h ; i

u
¯ 1

cod(u)
. By Part

4 of Fact 5 we deduce i
u

is an identity. Hence u¯ e
u
, that is, u `%. *

2.3. Second definition

In this section an equivalent definition of weak inclusion systems is presented. This new

definition does not require % by hypothesis, because the class % is built knowing only the

class ) of inclusions.

Similar ideas may be found in some papers on factorisation systems (e.g. see Ne!meti and

Sain (1981)).

Definition 8. For each subcategory ) (not necessarily of inclusions) of # we define the class

of morphisms %) as follows: a morphism e of # belongs to %) if and only if it meets a weak

form of the diagonal-fill lemma, namely for each morphism f, g of # and for each morphism

i of ) such that f ; i¯ e ; g there exists a (not necessarily unique) morphism h that verifies

e ; h¯ f and h ; i¯ g.

Lemma 9. %) is a subcategory of # having the same objects as #.

Proof. Obviously 1
A
`%) for each object A in #.

For e
"
, e

#
`%) we show that e

"
; e

#
`%). Let f, g`# and i `) such that (e

"
; e

#
) ; g¯ f ; i. Since

e
"
`%), there exists h

"
`# with e

"
; h

"
¯ f and h

"
; i¯ e

#
; g. As e

#
`%), there is h `# having the
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properties e
#
; h¯ h

"
and h ; i¯ g. Hence (e

"
; e

#
) ; h¯ e

"
; (e

#
; h)¯ e

"
; h

"
¯ f and h ; i¯ g, that

is, e
"
; e

#
`%). *

Lemma 7 proves that if ©),%ª is a weak inclusion system, %) ¯%. Now we can define

the notion of weak inclusion system as follows.

Definition 10. ) is a weak inclusion system for # if ) is a subcategory of # such that

1. r) r¯ r# r and ) is a partial order,

2. ) is )-right cancellable, that is, if i `) and f ; i `), then f `),

3. for each f `# there exist e `%) and i `) such that f¯ e ; i.

The ro# le of Condition 2 of this definition may seem a little obscure. We note that within

many frameworks it is easier to verify a condition about inclusions like the above, than to

prove the uniqueness of factorisation. For example, we use this definition fully in Section

4, where we build weak inclusion systems within abstract frameworks.

It is straightforward to show that the definition above is equivalent to the first definition

of weak inclusion systems if and only if the uniqueness of factorisation holds.

Lemma 11. In the latter definition, for each f `# there exist a unique e `%) and a unique

i `) such that f¯ e ; i.

Proof. Let f¯ e« ; i« be another factorisation of f. Since e `%) and i« `), it follows from

the definition of %) that there is h `# such that e ; h¯ e« and h ; i«¯ i. There is also h« `#

such that e« ; h«¯ e and h« ; i¯ i«. Since ) is )-right cancellable, it follows that h, h« `).

But ) is a partial order, and therefore h and h« are identities. Thus the factorisation is

unique. *

Since we have obtained an equivalent definition of weak inclusion systems involving only

the category ) of inclusions, we will sometimes denote an inclusion system by ) rather

than ©),%ª.

3. Subobjects

Let # be a category. For each object A ` r# r, the equivalence relation C
A

is defined for each

pair of monics m :BUA and m« : B«UA by

mC
A
m« if there is an isomorphism j : BUB« such that m¯ j ;m«.

A (categorical ) subobject of A is a coset of C
A
. We suppose that # has a weak inclusion

system ).

Proposition 12. Each subobject of A contains at most one inclusion.

Proof. Let i
i
C

A
i
#
. Then there exists an isomorphism j : B

"
UB

#
such that i

"
¯ j ; i

#
and j−" ;

i
"
¯ i

#
. By the property of right cancellability it follows that j, j−" `), that is B

"
¯B

#
and

i
"
¯ i

#
. *

In other words, the inclusions are an independent system of representatives for the

(categorical) subobjects of #.
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Definition 13. We say that ) is a complete system for # if for each A ` r# r, each subobject

of A contains one inclusion.

Proposition 14. ) is a complete system for # if and only if each monic in % is an

isomorphism.

Proof. If ) is a complete system and e is a monic from %, there exist an inclusion i and

an isomorphism j such that e¯ j ; i. By Part 4 of Fact 5 it follows that e¯ j, that is, e is an

isomorphism.

Conversely, let m : BUA be a monic in #. Factor m as e
m

; i
m

with e
m

`%(B,B« ). Since m

is a monic, it follows that e
m

is a monic, and, therefore, e
m

is an isomorphism. Hence

mC
A
i
m
. *

4. Constructions of weak inclusion systems

This section is concerned with building weak inclusion systems for a category. First, a

common part is presented and then two distinct ways are described. Finally, we show how

these results may be applied to build weak inclusion systems for two particular fields.

The theorems of the following two subsections may be used to construct weak inclusion

systems for a category # using a faithful functor from # to a weak inclusive category.

We suppose in this section that 5 : #U$ is a faithful functor such that for each

isomorphism t : CUC « if 5(t) is an identity, C¯C «.
A first consequence of this hypothesis is the following fact.

Fact 15. Let t : AUB and s : BUA be two morphisms in #. If 5(A)¯5(B) and 5(t)¯
5(s)¯ 15(A)

, then A¯B and t¯ s¯ 1
A
.

Proof. Since 5 is faithful and 5(t ; s)¯5(1
A
), we deduce that t ; s¯ 1

A
. Similarly, it

follows that s ; t¯ 1
B
, that is, t is an isomorphism, so by the hypothesis above, we obtain

A¯B. *

Lemma 16. Let 5 : #U$ be a functor as above. If ) is a subcategory of $ with r) r¯ r$ r
and ) is a partial order, then the family )# ¯²i `# r5 (i) `) ´ has the same objects as # and

it is a partial order also. Moreover, if ) is )-right cancellable, )# is )#-right cancellable.

Proof. It is obvious that )# is a subcategory of # with r)#r¯ r# r.

Let i
"
, i

#
`)#(A,B). Then 5(i

"
),5(i

#
) `)(5(A),5(B)), and, since ) is a partial order, it

follows that 5(i
"
)¯5(i

#
), and thus i

"
¯ i

#
, because 5 is faithful. Hence s)#(A,B)s% 1 for

each A, B ` r# r.

Let i
"
`)#(A,B) and i

#
`)#(B,A). Then 5(i

"
) `)(5(A),5(B)) and 5(i

#
) `)(5(B),5(A)),

and, because ) is a partial order, it follows that 5(A)¯5(B) and 5(i
"
),5(i

#
) are identities.

The fact above yields A¯B.

Let f `#(A,B) and i `)#(B,C ) be two morphisms such that f ; i `)#. Applying 5, we obtain

5( f ) ;5(i) `) and 5(i) `). Since ) is )-right cancellable, it follows that 5( f ) `), that

is, f `)#. *
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4.1. Final morphisms

In the following we define the notion of 5-final morphism. This definition generalizes a

concept within topological spaces and has been taken over from Ca) za) nescu (1972).

Definition 17. A morphism f : AUB of # is 5-final (see Ca) za) nescu (1972)) if for each

morphism h : 5(B)U5(C ) of $ such that 5( f ) ; h is the image by 5 of a morphism in

#(A,C ), there exists h« : BUC in # with 5(h«)¯ h.

Theorem 18. Let 5 : #U$ be a functor as above. Assume that for each morphism

f : 5(C )UDthereexistsa5-finalmorphismg : CUC «suchthat5(C «)¯Dand5(g)¯ f.If)is

a weak inclusion system for $, then )# ¯²i `# r5(i) `) ´ is a weak inclusion system for #.

Moreover, f `%)#
if and only if f is 5-final and 5( f ) `%).

Proof. We prove this result using Definition 10. By the lemma above, )# is a subcategory

of # with r)# r¯ r# r, )# is a partial order and )# is )#-right cancellable.

We show that e `#(A,B) is 5-final and 5(e) `%) imply e `%)#
. Let f `#(A,C ), g `#(B,D)

and i `)#(C,D) such that e ; g¯ f ; i. Since 5(e) ;5(g)¯5( f ) ;5(i), 5(e) `%) and 5(i) `),

there exists a morphism h : 5(B)U5(C ) such that 5(e) ; h¯5( f ) and h ;5(i)¯5(g).

But e is 5-final, therefore there is h« : BUC with 5(h«)¯ h. Consequently there exists

h« `#(B,C ) such that e ; h«¯ f and h« ; i¯ g (by the faithfulness of 5 ), that is, e `%)#
.

Now we show the existence of a factorisation. Let f be a morphism in #(A,B). Factor

5( f ) as e5(f)
; i5(f)

with e5(f)
`%)(5(A),T ) and i5(f)

`)(T,5(B)). By hypothesis there exists

a 5-final morphism e
f
`#(A,T «) such that 5(e

f
)¯ e5(f)

`%), and hence e
f
`%)#

. Since e
f
is

5-final and 5( f )¯5(e
f
) ; i5(f)

, there exists i
f
`#(T «,B) with 5(i

f
)¯ i5(f)

. Hence i
f
`)# and

f¯ e
f
; i

f
.

Therefore )# is a weak inclusion system. Note that if f above belongs to %)#
, we have

f¯ e
f
by the uniqueness of factorisation, and, therefore, f is 5-final and 5( f ) `%). *

4.2. Initial morphisms

The concept of 5-initial morphism Ca) za) nescu (1972) is the dual of the notion of 5-final

morphism. We remind the reader of the definition.

Definition 19. A morphism f : AUB of # is 5-initial (see Ca) za) nescu (1972)) if for each

morphism h : 5(C )U5(A) of $ such that h ;5( f ) is the image by 5 of a morphism in

#(C,B), there exists h« : CUA in # with 5(h«)¯ h.

Theorem 20. Let 5 : #U$ be a functor as above. Assume that for each morphism

f : DU5(C ) there exists a 5-initial morphism g : C «UC such that 5(C «)¯D and 5(g)¯ f.

If ) is a weak inclusion system for $, then *¯² f `# r5( f ) `), and f is 5-initial´ is a

weak inclusion system for #. Moreover, for each g `#, g `%* if and only if 5(g) `%).

Proof. Since the 5-initial morphisms of # form a subcategory with the same objects as

#, we deduce by Lemma 16 that * is a subcategory having the same objects as # and that
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* is a partial order. Since f ; g is 5-initial implies f is 5-initial, we deduce that * is *-right

cancellable.

For each morphism e of # we show 5(e) `%) implies e `%*. Let e ; g¯ f ; i where i `*.

Since 5(e) ;5(g)¯5( f ) ;5(i), 5(e) `%) and 5(i) `), there exists h in $ such that 5(e) ;

h¯5( f ) and h ;5(i)¯5(g). Since i is 5-initial, there exists h« in # with 5(h«)¯ h. We

deduce that e ; h«¯ f and h« ; i¯ g. Therefore e `%*.

Let h : AUC be a morphism from # and 5(h)¯ e ; i be the unique factorisation of 5(h) in

$ with e `%)(5(A),D) and i `)(D,5(C )). By hypothesis there exist B ` r# r and a 5-initial

morphism i
h
`#(B,C ) such that 5(B)¯D and 5(i

h
)¯ i. Therefore i

h
`*. Moreover, as i

h

is 5-initial and e ;5(i
h
)¯5(h), there exists e

h
`#(A,B) such that 5(e

h
)¯ e. Hence e

h
is in

%* and h¯ e
h
; i

h
is a factorisation for h.

Therefore * is a weak inclusion system. Note that if h above is in %*, then h¯ e
h

by the

uniqueness of factorisation, and, therefore, 5(h) `%). *

4.3. Examples

In this section we show how to build weak inclusion systems for two fields of interest. Note

that Set, the category of sets and functions, is a weak inclusive category where the

inclusions really are inclusions.

4.3.1. Topological spaces

Let 5 : TopUSet be the forgetful functor from topological spaces to sets. An application

f : (T,σ)U (T «,σ«) is a morphism in Top if it is a continuous application, i.e. for any D« `σ«
it follows that f −"(D«) `σ.

The following proposition appears in Ca) za) nescu (1972) and we omit its proof.

Proposition 21. The morphism f : (T,σ)U (T «,σ«) is a 5-final morphism if and only if for

each D«XT «, D« `σ« iff f −"(D«) `σ. The morphism f is 5-initial if and only if the topology

σ is generated by ² f −"(D«) rD« `σ«).

Now we show that the functor 5 satisfies the hypotheses in Section 4.

For the first hypothesis at the beginning of Section 4, note that if 1
T
: (T,σ)U (T,σ«) is

an isomorphism, σ¯σ«.
For the hypothesis of Theorem 18, let f : (T,σ)UT « be a function. We take σ«¯

²D«XT « r f −"(D«) `σ´. It follows that (T «,σ«) is a topological spaceand f is amorphism.By the

previous proposition we deduce that f is 5-final.

By Theorem 18,

)¯² f : (T,σ)U (T «σ«) rTXT « and f is a continuous inclusion´

is a weak inclusion system for Top. Note that (T,σ) is a topology denser than the induced

topology, that is, the induced topology is included in σ.

Since f belongs to %) iff f is a 5-final continuous surjection, we deduce that the weak

inclusion system ) is complete.
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For the hypothesis of Theorem 20, let f :TU (T «,σ«) be a function. If σ is the topology

generated by ² f −"(D) rD `σ«´, then f : (T,σ)U (T «,σ«) is 5-initial.

By Theorem 20,

*¯²(A,σ)9 (B, τ) rAXB and σ is the induced topology´

is a weak inclusion system. Since f belongs to %* iff f is a continuous surjection, we deduce

that the weak inclusion system * is not complete because %* contains monics that are not

isomorphisms.

4.3.2. Institutional theories

The following example will be easily understood by anyone familiar with the theory of

institutions (e.g. see Goguen and Burstall (1993) or Tarlecki (1984)).

An institution consists of two functors denoted Sen : SignUSet and Mod : SignUCatop

together with a Satisfaction Relation z as a family of relations ²zΣrΣ ` rSignr ´ where

zΣ X rMod(Σ)r¬Sen(Σ), which verifies the Satisfaction Condition, that is, for any signature

morphism φ : ΣUΣ«

(cM ` rMod(Σ«)r) (ce `Sen(Σ))MzΣ« Sen(φ) (e)5Mod(φ) (M )zΣ e.

If EXSen(Σ), we will use EE to denote the set of sentences satisfied in any model that

satisfies E.

The following Closure Lemma (Goguen and Burstall 1993) holds.

Lemma 22. For each signature morphism φ :ΣUΣ« and each EXSen(Σ) we have

Sen(φ) (EE)XSen(φ) (E )E.

A theory is a pair (Σ,E ) where Σ ` rSignr and E is a closed set of Σ-sentences, that is,

EXSen(Σ)withE¯EE.Amorphismof theoriesφ : (Σ,E )U (Σ«,E «) is a signaturemorphism

with Sen(φ) (E )XE «. We will denote by 4h(9) the category of the theories of an

institution 9. We will show that if Sign is a weak inclusive category, 4h(9) is a weak

inclusive category also.

Let 5 : 4h(9)USign be the forgetful functor that preserves only the signature of a

theory.

We show that the faithful functor 5 satisfies the hypotheses in Section 4.

For the first hypothesis at the beginning of Section 4 note that if 1Σ : (Σ,E )U (Σ,E «) is a

theory isomorphism E¯E «.

Fact 23. Let φ : (Σ,E )U (Σ«,E «) be a theory morphism. Then

1. φ is 5-final iff Sen(φ) (E )E ¯E «.
2. φ is 5-initial iff E¯Sen(φ)−"(E «).

This fact shows that the hypotheses in Theorems 18 and 20 are fulfilled.

By Theorem 18,

)¯²φ : (Σ,E )U (Σ«,E «) rφ : Σ9Σ« is an inclusion´

is a weak inclusion system for 4h(9).
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On the other hand, by Theorem 20,

*¯²φ : (Σ,E )U (Σ«,E «) rφ : Σ9Σ« and E¯Sen(φ)−"(E «)´

is another weak inclusion system for 4h(9).

5. Pushout and pullback properties

This section is concerned with giving preservation properties of the morphisms from both

% and ) by pushouts and pullbacks, respectively. Similar results are known for a lot of

particular cases of weak inclusion systems as well as for factorisation systems.

Proposition 24. Let # be a weak inclusive category with ©),%ª its weak inclusion system.

Let u : CUA be in # and e : CUB be in %. If © f :AUD, g : BUDª is a pushout in # of these

morphisms, f `%.

Proof. Factor f as e
f
; i

f
with e

f
: AUD«.

f

g
e

ef
if

B

A

C D « D

u

h
t

Note that e ; g¯ (u ; e
f
) ; i

f
, and therefore, according to the diagonal-fill lemma, there is a

unique morphism h : BUD« such that e ; h¯ u ; e
f
and h ; i

f
¯ g. Since ©e

f
, hª is a co-cone for

©u, eª, there is a unique t : DUD« such that f ; t¯ e
f
and g ; t¯ h. For the morphism t ; i

f
we

have f ; (t ; i
f
)¯ e

f
; i

f
¯ f and g ; (t ; i

f
)¯ h ; i

f
¯ g. Since © f, gª is a pushout, it follows that t ;

i
f
¯ 1

D
, and because 1

D
`%, it yields i

f
¯ 1

D
by Part 4 in Fact 5. Hence f¯ e

f
.

Proposition 25. Let # be a weak inclusive category with pullbacks. Let i : A9C be an

inclusion and u : BUC be a morphism. Then there is a unique pullback in # for these

morphisms such that the opposite arrow of i is also in ).

Proof. Existence

Let © f : DUA, g : DUBª be a pullback of ©i, uª. Factor g as e
g
; i

g
with e

g
: DUD«.

i

eg

ig

sr
E

B C

AD«

D

t g

u

h

f

Note that f ; i¯ e
g
; (i

g
; u), and therefore, according to the diagonal-fill lemma, there is a

unique morphism h : D«UA such that e
g
; h¯ f and h ; i¯ i

g
; u. Therefore ©h, i

g
ª is a cone for

©i, uª. Let ©s : EUA, t : EUBª be another cone for ©i, uª. Since © f, gª is a pullback, it

follows that there is a unique r : EUD such that r ; f¯ s and r ; g¯ t. So the morphism r ;
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e
g
verifies (r ; e

g
) ; h¯ s and (r ; e

g
) ; i

g
¯ t. The fact that i

g
is a monic implies the uniqueness

of r ; e
g
with these properties. Hence ©h, i

g
ª is a pullback.

Uniqueness

If ©h
"
: D

"
UA, i

"
: D

"
9Bª and ©h

#
: D

#
UA, i

#
: D

#
9Bª are two pullbacks of ©i, uª, then

according to Part 3 in Fact 5 it follows that D
"
¯D

#
. Now it is obvious that h

"
¯ h

#
(i is

a monic). *

The following corollary appears in Diaconescu (1993) as a particular case of the above

proposition for inclusion systems.

Corollary 26. Let # be a weak inclusive category that has pullbacks. Let i
A
: A9C and

i
B
: B9C be two inclusions. Then there is a unique pullback in # such that all the arrows

are inclusions.

Proof. By the previous proposition, let ©h : DUA, i : D9Bª be the unique pullback such

that i `). Since h ; i
A
¯ i ; i

B
is in ), one deduces h `) by Part 3 in Fact 5. *
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