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In this article we investigate conditions by a unified method under which the
covariances of functions of two adjacent ordered random variables are
nonnegative. The main structural results are applied to several kinds of ordered
random variable, such as delayed record values, continuous and discrete
‘1
4-spherical order statistics, epoch times of mixed Poisson processes, generalized

order statistics, discrete weak record values, and epoch times of modified
geometric processes. These applications extend the main results for ordinary order
statistics in Qi [28] and for usual record values in Nagaraja and Nevzorov [25].

1. INTRODUCTION

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables
with a common distribution function F, and let X1:n � X2:n � � � � � Xn:n be the
corresponding order statistics. Qi [28] proved that

Cov(f (Xi:n);f (Xiþ1:n)) � 0; i ¼ 1; . . . ; n� 1; (1:1)

for all measurable real-valued functions f such the covariance exists. The result for
the case n ¼ 2 is due to Ma [23, 24]. Qi [28] and Li [22] gave counterexamples to
illustrate that (1.1) does not hold for nonadjacent order statistics; that is, for any
n . 2 and each pair (i, j), 1 � i, j � n and ji 2 jj . 1, there exists a function f

such that Cov(f (Xi:n), f (Xj:n)) , 0.
Nagaraja and Nevzorov [25] established the analogous result of (1.1) for usual

record values (the exact definition can be found in the sequel). More precisely, let
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fXL(n), n [ Nþg denote the record values of a sequence fXn, n [ Nþg of i.i.d.
random variables with a common distribution function F; here and henceforth
Nþ ¼ f1, 2, . . .g and N ¼ f0, 1, 2, . . .g; They proved that if F is continuous, then

Cov(f (XL(n));f (XL(nþ1))) � 0; n [ Nþ; (1:2)

for all measurable real-valued functions f such that the covariance exists.
Counterexamples were also given in Nagaraja and Nevzorov [25] to show that (1.2)
does not hold when F is discrete and that, for any i, j [ Nþ, ji 2 jj � 2 and a continuous
distribution function F, there exists a function f such that Cov(f (XL(i)), f (XL( j ))) , 0.

The purpose of this article is to investigate conditions by a unified method under
which the covariances between functions of two adjacent ordered random variables
are nonnegative. In Section 2 we give some structural theorems concerning general
ordered random variables T1 � T2 � � � � � Tn. These structural results are then
applied to continuous and discrete ordered random variables in Sections 3 and 4,
respectively. In Section 3 we consider delayed record values, continuous ‘1

4-spherical
order statistics, epoch times of mixed Poisson processes, and generalized order sta-
tistics. In Section 4 we consider discrete weak record values, discrete ‘1

4-spherical
order statistics, and epoch times of modified geometric processes. These applications
extend (1.1) and (1.2) to the more general ordered random variables. Some counter-
examples are presented in Section 5.

Throughout, “increasing” and “decreasing” mean “nondecreasing” and “nonin-
creasing”, respectively. When an expectation or a probability is conditioned on an
event such as X ¼ x, we assume that x is in the support of X. Also, we denote by
[XjA] any random vector (variable) whose distribution is the conditional distribution
of X given event A.

2. MAIN RESULTS

Motivated by the idea used in the proof of Theorem 3.1 in Qi [28], we have the
following two structural theorems, which give sufficient conditions to ensure non-
negativity of covariances between functions of two ordered random variables.

THEOREM 2.1: Let T1 � T2 � T3 � T4 be four random variables such that, for any s � t,

½(T2; T3)jT1 ¼ s; T4 ¼ t� ¼d (V1:2(s; t);V2:2(s; t)); (2:1)

where¼d means equality in distribution and V1:2 (s, t) � V2:2(s, t) are the order statistics
of i.i.d. random variables V1(s, t) and V2(s, t). Then

Cov(f (T2);f (T3)) � 0 (2:2)

for all measurable functions f : R! R such that the covariance exists.

PROOF: We use an idea from the proof of Theorem 3.1 in Qi [28]. First, assume that the
family fVi(s, t) : i ¼ 1, 2,8, s � tg is independent of fT1, T4g. For simplicity of notation,
let Wi ¼ Vi(T1, T4) and Wi:2¼ Vi:2 (T1, T4) for i ¼ 1, 2; that is, W1:2 and W2:2 are the order
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statistics of W1 and W2. By conditioning on T1 and T4, it follows from (2.1) that

E½f (T2)f (T3)� ¼ EfE½f (T2)f (T3)jT1; T4�g
¼ EfE½f (W1:2)f (W2:2)jT1; T4�g
¼ EfE½f (W1)f (W2)jT1; T4�g

¼ EfE½f (W1)jT1; T4�g2; (2:3)

where the last equality follows from the fact that, given (T1, T4), W1 and W2 are con-
ditionally i.i.d. Similarly,

E½f (T2)� ¼EfE½f (T2)jT1;T4�g¼EfE½f (W1:2)jT1;T4�g¼E½f (W1:2)� (2:4)

and

E½f (T3)� ¼ E½f (W2:2)�: (2:5)

It is obvious that

E½f (W1:2)� þ E½f (W2:2)� ¼ 2E½f (W1)�:

Therefore, from (2.3)–(2.5), we get that

Cov(f (T2);f (T3)) ¼ EfE½f (W1)jT1;T4�g2 �E½f (W1:2)�E½f (W2:2)�

¼ Var(E½f (W1)jT1;T4�)þ (E½f (W1)�)2 �E½f (W1:2)�E½f (W2:2)�

¼ Var(E½f (W1)jT1;T4�)þ
1
4
fE ½f (W1:2)� �E½f (W2:2)�g2

� 0:

This completes the proof of the theorem. B

THEOREM 2.2: Let T1 � T2 � T3 [resp. T2 � T3 � T4] be three random variables
such that, for any s,

½(T2; T3)jT1 ¼ s� ¼d (V1:2(s);V2:2(s))

½resp: ½(T2; T3)jT4 ¼ s� ¼d (V1:2(s);V2:2(s))�; (2:6)

where V1:2(s) � V2:2(s) are the order statistics of i.i.d. random variables V1(s) and V2(s).
Then (2.2) holds for all measurable functions f : R! R such that the covariance exists.

PROOF: The proof is the same as that of Theorem 2.1 with minor modification and,
hence, is omitted. B

Recall from Shaked [30] and Rinott and Pollak [29] that two random variables X1

and X2 are said to positive function dependent (PFD) if

Cov(f (X1);f ( X2)) � 0
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for all real-valued function f such that the covariance exists. It is noted that a number
of interchangeable bivariate distributions (i.e., their joint distribution function is sym-
metric) are PFD. For example, if (X, Y ) is conditionally i.i.d., then (X, Y ) is PFD.
Shaked [30] proved that the class of PFD distributions is closed under convolution,
mixture, and convergence in distribution and also showed that not all PFD distri-
butions are conditionally i.i.d.

Remark 2.3: From the proof of Theorem 2.1, it is seen that the independence property
of V1(s, t) and V2(s, t) is used in (2.3). If, instead, V1(s, t) and V2(s, t)) are PFD and
interchangeable, then (2.3) is replaced by

E½f (T2)f (T3)� ¼ EfE½f (W1)f (W2)jT1; T4�g � EfE½f (W1)jT1; T4�g2;

and thus the conclusions of Theorems 2.1 and 2.2 are also valid.
We now give two special applications of Theorems 2.1 and 2.2. The corresponding

results are stated as the following two theorems (Theorems 2.4 and 2.6), which will be
used in Sections 3 and 4, respectively. Further applications of Theorems 2.1 and 2.2
will be given in Sections 3 and 4.

THEOREM 2.4: Let W, Z1, and Z2 be independent random variables such that Zi has an
exponential distribution with failure rate li for i ¼ 1,2. If

2l2 � l1, (2:7)

then

Cov
�
f (W þ Z1);f (W þ Z1 þ Z2)) � 0 (2:8)

for all measurable functions f : R! R such that the covariance exists.

PROOF: First, assume that 2l2 . l1. Let Z3 be another exponential random variable,
independent of everything else, with failure rate l3 ¼ 2l2 2 l1 . 0, and set T1 ¼ W
and Tj ¼ W þ

Pj21
i¼1 Zi for j ¼ 2, 3, 4. Without loss of generality, assume that W is

absolutely continuous with density function fW. Then the joint density function of
(T1, . . . , T4) is given by

fT1;...;T4 (t1; t2; t3; t4) ¼ fW (t1)l1l2l3e�l3t4þl1t1 ed(t2þt3); t1 , t2 , t3 , t4;

where d ¼ l2 2 l1. Hence, the conditional density function of [(T2,T3)jT1 ¼ s, T4 ¼

t], s , t, is given by

g(t2; t3js; t) ¼
ed(t2þt3)Ð Ð

s,x2,x3,t ed(x2þx3) dx2 dx3

¼ 2!gs;t(t2)gs;t(t3); s , t2 , t3 , t;
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where

gs;t(x) ¼
dedx

edt � eds
; s , x , t

0; otherwise

8<:
for d= 0, and

gs;t(x) ¼
1

t � s
; s , x , t

0; otherwise

8<:
for d¼ 0; that is, condition (2.1) is satisfied where V1(s, t) and V2(s, t) are i.i.d. with
density function gs,t. Therefore, the desired result for this case now follows from
Theorem 2.1.

Next, assume that 2l2¼ l1. Let d and T1, T2, T3 be as defined earlier. Then the
conditional density function of [(T2, T3)jT1¼ s] for any s is given by

g(t2; t3js) ¼ ed(t2þt3)ð ð
s,x2,x3

ed(x2þx3) dx2 dx3

¼ 2!gs(t2)gs(t3); s , t2 , t3;

where

gs(x) ¼ l2e�l2(x�s); x . s
0; otherwise;

�
that is, condition (2.6) is satisfied where V1(s) and V2(s) are i.i.d. with density func-
tion gs. Therefore, the desired result for this case now follows from Theorem 2.2. This
completes the proof of the theorem. B

It is shown by Counterexample 5.1 that (2.8) does not hold if condition (2.7) is
violated. To state and prove the next theorem, we need the following lemma.

LEMMA 2.5: Let V1 and V2 be two discrete random variables with support S and with
joint mass function given by

P(V1 ¼ x;V2 ¼ y) ¼
chxhy; x ¼ y; x [ S
1
2 chxhy; x = y; (x; y) [ S2

0; (x; y) [ S2,

8><>:
where fhx, x [ Sg is a sequence of positive real numbers and c is the normalizing
constant given by

c ¼
X

x;y[S;x�y

hxhy

" #�1

, þ1:

Then V1 and V2 are conditionally i.i.d. and, hence, PFD.
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PROOF: Let U0, U1, and U2 be independent discrete random variables with support S
and with probability mass functions given respectively by

h0(x) ¼ h2
xP

y[S

h2
y

; x [ S;

and

hi(x) ¼ hxP
y[S

hy
; x [ S; i ¼ 1; 2:

Let I be a Bernoulli random variable, independent of fU0, U1, U2g, with probability
mass function given by

P(I ¼ 0) ¼ c

2

X
x[S

hx

 !2

; P(I ¼ 1) ¼ c

2

X
x[S

h2
x :

Straightforward computations yield that

(V1;V2)¼d (IU0 þ (1� I)U1; IU0 þ (1� I)U2);

which implies that given (U0, I ), (V1, V2) is conditionally i.i.d. and, hence, PFD. This
completes the proof of the lemma. B

THEOREM 2.6: Let W, B1, and B2 be independent random variables such that Bi has a
geometric distribution with parameter pi for i ¼ 1, 2; that is, P(Bi ¼ n) ¼ pi(1 2 pi)

n

for n [ N. If

(1� p2)2 � 1� p1, (2:9)

then

Cov(f (W þ B1);f (W þ B1 þ B2)) � 0

holds for all measurable functions f : R! R such that the covariance exists.

PROOF: The proof is similar to that of Theorem 2.4. First, assume that (1 2 p2)2 ,

1 2 p1. Let B3 be another geometric random variable, independent of everything
else, with parameter

p3 ¼ 1� (1� p2)2

1� p1
. 0:

Let T1 ¼ W and Tj ¼ W þ
Pj21

i¼1 Bi for j ¼ 2, 3, 4. Without loss of generality, assume
that W is discrete with probability mass function fW. Then the joint mass function of
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(T1, . . . , T4) is given by

P(Ti ¼ ti; i ¼ 1; . . . ; 4) ¼ fW (t1)
Y3

i¼1

pi(1� pi)
tiþ1�ti

¼ fW (t1)p1p2p3(1� p1)t1 (1� p3)t4 1� p1

1� p2

� �t2 1� p2

1� p3

� �t3

¼ fW (t1)p1p2p3(1� p1)t1 (1� p3)t4dt2þt3

for t1 � t2 � t3 � t4, where

d ;
1� p1

1� p2
:

Hence, the conditional mass function of [(T2,T3)jT1 ¼ s, T4 ¼ t], s � t, is given by

P(T2 ¼ t2; T3 ¼ t3jT1 ¼ s; T4 ¼ t) ¼ dt2þt3X
0�i�j�t�s

d2sþiþj

¼
2!gs;t(t2; t3); s � t2 , t3 � t

gs;t(t2; t3); s � t2 ¼ t3 � t;

�
(2:10)

where

gs;t(x; y) ¼
cs;td

xþy�2s; s � x ¼ y � t
1
2 cs;td

xþy�2s; s � x = y � t
0; otherwise;

8<: (x; y) [ fs; sþ 1; . . . ; tg2;

is the joint mass function of some interchangeable random variables V1(s, t) and
V2(s, t). Here, cs,t ¼ ½

P
0�i�j�t2sd

iþj�21. Clearly, (2.10) means that condition
(2.1) is satisfied. By Lemma 2.5, (V1(s, t), V2(s, t)) is conditionally i.i.d. and,
hence, PFD. Therefore, the desired result for this case now follows from Remark 2.3.

Next, assume that (1 2 p2)2 ¼ 1 2 p1. Let T1, T2, and T3 be as defined earlier.
Then the conditional mass function of [(T2, T3)jT1 ¼ s] is given by

P(T2 ¼ t2; T3 ¼ t3jT1 ¼ s) ¼ (1� p2)t2þt3X
0�i�j

(1� p2)2sþiþj
; s � t2 � t3:

A similar argument to the above paragraph yields that (2.6) is satisfied and (V1(s),
V2(s)) is PFD. Therefore, the desired result for this case now follows from Remark
2.3. This completes the proof of the theorem. B

It is worthwhile to mention that for discrete random variables Ti’s, if P(T2 ,

T3jT1 ¼ s, T4 ¼ t) ¼ 1 for s , t, then representation (2.1) does not hold. So, in

NONNEGATIVITY OF COVARIANCES 563

https://doi.org/10.1017/S0269964807000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000320


Theorem 2.6, if the geometric distribution is replaced by the one truncated at zero,
then the conclusion of the theorem is in general not true.

3. APPLICATIONS TO ORDERED CONTINUOUS RANDOM VARIABLES

3.1. Delayed Record Values

Let fXn, n [ Nþg be a sequence of i.i.d. random variables with a continuous distri-
bution F. Let Y be a random variable independent of fXn, n [ Nþg. The delayed
record value sequence is fXL(n)

Y , n [ Ng, where L(0) ¼ 0, XL(0)
Y ¼ Y,

L(n) ¼ inf
n

i . L(n� 1) : Xi . XY
L(n�1)

o
; n [ Nþ;

and XL(n)
Y is the first Xi in the sequence after XL(n21)

Y to exceed XL(n21)
Y ; see Wei and Hu

[38]. The reason for the adjective “delayed” is that record values are not kept until
after a value Y has been observed. The usual record value sequence fXL(n), n [
Nþg is obtained with Y ¼ F21 (0), where

F�1(u) ¼ supfx : F(x) � ug; u [ ½0; 1):

In this case, the superscript Y is suppressed. The record values have been extensively
studied in the literature. For an excellent review, we refer to Ahsanullah [1, 2] and
Arnold, Balakrishnan, and Nagaraja [4].

The following lemma presents a stochastic representation of delayed record
values by partial sums of i.i.d. exponential random variables.

LEMMA 3.1 (Wei and Hu [38]): Let fZn, n [ Nþg be a sequence of i.i.d. unit rate
exponential random variables, independent of Y. If F is continuous, then

XY
L(0);X

Y
L(1);X

Y
L(2); . . .

n o
¼d fH(U);H(U þ Z1);H(U þ Z1 þ Z2); . . .g;

where U ¼ 2ln(1 2 F(Y )) and H(x) ¼ F21(1 2 e2x) for x [ Rþ.

THEOREM 3.2: Let fXL(n)
Y , n [ Ng be a sequence of delayed record values of i.i.d.

random variables fXn, n [ Nþg with a continuous distribution function F. Then

Cov(f (XY
L(n));f (XY

L(nþ1))) � 0; n [ Nþ;

for all measurable functions f : R! R such that the covariance exists.

PROOF: Let f be any function such that the covariance exists. and define c (x) ¼
f(H(x)) for x [ Rþ. Denote W ¼ U þ

P
i¼1
n21 Zi, where U and the Zi’s are defined

in Lemma 3.1. Then by Lemma 3.1 and Theorem 2.4, we have

Cov(f (XY
L(n));f (XY

L(nþ1))) ¼ Cov(c (W þ Zn);c (W þ Zn þ Znþ1)) � 0:

This completes the proof. B
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An immediate consequence of Theorem 3.1 is (1.2) (Theorem 1 in Nagaraja and
Nevzorov [25]). They proved it by using the properties of Laguerre polynomials and
expanding the function f(x) into a series in Laguerre polynomials.

3.2. Continuous ‘1
4-Spherical Order Statistics

‘1
4-Spherical order statistics arise naturally in the Bayesian statistical theory of

reliability; see Spizzichino [34, Sects. 1.4 and 4.3]. Nonnegative random variables
T1 � T2 � � � � � Tn are said to be ‘1

4-spherical order statistics if their joint density
function is of the form

fT1;...;Tn (t1; . . . ; tn) ¼ w(tn); 0 � t1 � t2 � � � � � tn
0; otherwise;

�
(3:1)

for some nonnegative function w. The Ti’s can be regarded as the order statistics of
interchangeable random variables X1, X2, . . . , Xn with density function given by

fX1;...;Xn (x1; . . . ; xn) ¼ 1
n!
w max

n

i¼1
xi

� �
; (x1; x2; . . . ; xn) [ Rn

þ

which is called spherical in ‘1-norm. Define

Z1 ¼ T1; Z2 ¼ T2 � T1; . . . ; Zn ¼ Tn � Tn�1:

Then T1, . . . , Tn are ‘1
4-spherical order statistics if and only if the density function of

(Z1, . . . , Zn) is of the form

fZ1;...;Zn (z1; . . . ; zn) ¼ w
Xn

i¼1

zi

 !
; (z1; z2; . . . ; zn) [ Rn

þ;

which is called Schur constant (see Spizzichino [34]).
Shaked, Spizzichino, and Suter [32, 33] characterized, among other things,

‘1
4-spherical distributions by means of epoch times of nonhomogeneous pure birth

processes and by means of the uniform and general order statistics property.

THEOREM 3.3: Let T1 � T2 � � � � � Tn be ‘1
4-spherical order statistics with density

function of the form (3.1), and let f be any measurable real-valued function such
that the covariances below exist. Then

Cov(f (Tr);f (Trþ1)) � 0 (3:2)

for r ¼ 1, . . . , n 2 2. Moreover, if w is differentiable and decreasing, then (3.2) holds
for r ¼ n 2 1.

PROOF: Fix r [ f1, 2, . . . , n 2 2g. By Proposition 2.4 in Shaked et al. [33] we have

½(T1; T2; . . . ; Trþ1)jTrþ2 ¼ t� ¼d (V1:rþ1;V2:rþ1; . . . ;Vrþ1:rþ1);

where V1:rþ1 � V2:rþ1 � � � � � Xrþ1:rþ1 are order statistics of i.i.d. uniform (0, t)
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random variables V1, V2, . . . , Vrþ1. It can be checked that

½(Tr; Trþ1)jTr�1 ¼ s; Trþ2 ¼ t� ¼d ½(Vr:rþ1;Vrþ1:rþ1)jVr�1:rþ1 ¼ s�

¼d (V1:2(s; t);V2:2(s; t));

where V1:2(s, t) � V2:2(s, t) are the order statistics of i.i.d. uniform (s0, t) random vari-
ables V1(s, t) and V2(s, t), and the second equality follows from Arnold, Balakrishnan,
and Nagaraja [3, pp. 25–26]. Now, by Theorem 2.1, (3.2) follows.

If w is differentiable and decreasing, Shaked et al. [33] proved that there exists a
random variable Tnþ1 such that T1 � � � � � Tn � Tnþ1 have an ‘1

4-spherical density of
the form

fT1;...;Tnþ1 (t1; . . . ; tnþ1) ¼ ew(tnþ1); 0 � t1 � t2 � � � � � tnþ1

0; otherwise;

�
where

ew(x) ¼ � d

dx
w(x); x [ Rþ:

Thus, (3.2) holds for r ¼ n 2 1 by the same reasoning as in the above paragraph. This
completes the proof. B

Counterexample 5.5 illustrates that (3.2) cannot be true for r ¼ n 2 1 if w is dif-
ferentiable but not decreasing.

Remark 3.4: By applying increasing transformation, the conclusion of Theorem 3.3 also
holds for ordered random variables T1 � T2 � � � � � Tn with joint density of the form

fT1;...;Tn (t1; . . . ; tn) ¼ w (a(tn))
Qn
i¼1

a0(ti); 0 � t1 � t2 � � � � � tn

0; otherwise;

8<:
for some nonnegative function w and some strictly increasing and differentiable function
a : Rþ ! Rþ.

We now consider epoch times of mixed Poisson processes. A counting process
fN(t), t [ Rþg is said to be a mixed Poisson process if there exist a nonnegative
random variable L and a unit rate homogeneous Poisson process fÑ(t), t [ Rþg, inde-
pendent of each other, such that

fN(t); t [ Rþg¼d feN(Lt); t [ Rþg: (3:3)

Equivalently, fN(t), t [ Rþg is a mixed Poisson process if and only if the interepoch
intervals fZi, i [ Nþg of fN(t), t [ Rþg are a mixture of i.i.d. exponential random
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variables; that is, for any n [ Nþ, the joint density of (Z1, Z2, . . . , Zn) is of the form

fZ1;...;Zn (z1; . . . ; zn) ¼
ð1

0�
lne�l(z1þ���þzn)d G(l); (z1; . . . ; zn) [ Rn

þ; (3:4)

where G is the distribution function of some nonnegative random variable L. Mixed
Poisson processes play an important role in many branches of applied probability (for
instance, in actuarial mathematics and physics). Grandell [16] provided a detailed cover-
age of the theory and applications of mixed Poisson processes.

Puri [27] and Hayakawa [17] characterized mixed Poisson processes by using
uniform order statistics property (see also Feigin [15] and Huang and Shoung [18]). It
is seen from Shaked et al. [33] that a counting process fN(t), t [ Rþg is a mixed
Poisson process if and only if, for all n [ Nþ, the first n epoch times of the process
have an ‘1

4-spherical distribution and that not all ‘1
4-spherical order statistics are the

epoch times of some mixed Poisson process.
An immediate consequence of Theorem 3.3 is the following corollary.

COROLLARY 3.5: For epoch times fTn, n [ Nþg of a mixed Poisson process, we have

Cov(f (Tn);f (Tnþ1)) � 0 (3:5)

for n [ Nþ and all measurable functions f such that the covariance exists.

Recall that a counting process fN(t), t [ Rþg is said to be a nonhomogeneous
pure birth process with intensity functions kn � 0 if the following hold:

1. fN(t), t [ <þg has the Markov property,
2. P(N(t þ Dt) ¼ n þ 1jN(t) ¼ n) ¼ kn(t)Dt þ W(Dt) for n [ N,
3. P(N(t þ Dt) . n þ 1jN(t) ¼ n) ¼ W(Dt) for n [ N,

where each kn is assumed to satisfyð1

t
kn(u) du ¼ þ1; t [ Rþ;

this ensures that, with probability 1, the process has a jump after any time point t. There
is a close relationship between mixed Poisson processes and nonhomogeneous pure
birth processes; see, for example, Grandell [16, Sect. 6.1] or Pfeifer and Heller [26].

Example 3.6 (Pólya process): Let fN(t), t [ Rþg be a nonhomogeneous pure birth
process with intensity functions kn given by

kn(t) ¼ gþ n

bþ t
; t [ Rþ; n [ N;

where g � 0 and b . 0 are constants: It is known from Grandell [16, pp. 67] or
Shaked et al. [32] that such a process is also a mixed Poisson process with G in
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(3.4) having G(b, g) distribution, whose density function is given by

g(l) ¼ bglg�1

G(g)
e�bl; l [ Rþ:

Therefore, Corollary 3.5 can be applied to the epoch times of such a process.

3.3. Generalized Order Statistics

The concept of generalized order statistics was introduced by Kamps [19, 20] as a
unified approach to a variety of models of ordered random variables.

DEFINITION 3.7: Let n [ Nþ, k . 0, and (m1, . . . , mn21) [ Rn21 be parameters such
that

gr;n ¼ k þ
Xn�1

j¼r

(mj þ 1) . 0; r ¼ 1; . . . ; n; (3:6)

and let m̃ ¼ (m1, . . . , mn21) if n � 2 (m̃ arbitrary if n ¼ 1). If the random variables
U(r,n,m̃,k), r ¼ 1, . . . , n, possess a joint density of the form

fU(1;n;~m;k);...;U(n;n;~m;k) (u1; . . . ; un) ¼ k
Yn�1

j¼1

gj;n

 ! Yn�1

i¼1

(1� ui)
mi

 !
(1� un)k�1

on the cone 0 � u1 � u2 � � � � � un , 1 of Rn, then they are called uniform general-
ized order statistics (GOSs, for short). Now, let F be an arbitrary distribution func-
tion. The random variables

X(r;n;~m;k) ¼ F�1(U(r;n;~m;k)); r ¼ 1; . . . ; n ,

are called the GOSs based on F.
In the particular case m1 ¼ � � � ¼ mn21 ¼ m, the above random variables are

denoted by U(r,n,m,k) and X(r,n,m,k), r ¼ 1, . . . , n, respectively.

In the past 10 years, there is a vast amount of literature on studying various properties
of GOSs. Khaledi and Kochar [21] and Cramer [9] investigated the dependence struc-
ture of GOSs. The structure of GOSs can be characterized by sums of independent
exponential random variables as stated in Lemma 3.8 (see Cramer and Kamps [11]).

LEMMA 3.8: Let X(1,n,m̃,k), . . . , X(n,n,m̃,k) be GOSs based on a continuous distribution
function F, and let Z1, . . . , Zn be independent exponential random variables with
failure rates g1,n, . . . , gn,n, respectively, where gn,n ¼ k. Then

X(1;n;~m;k);X(2;n;~m;k); . . . ;X(n;n;~m;k)
� �

¼d H(Z1);H(Z1 þ Z2); . . . ;H
Xn

i¼1

Zi

 ! !
;

where H(x) ¼ F21(1 2 e2x) for x [ Rþ.
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THEOREM 3.9: Let X(1,n,m̃,k), . . . , X(n,n,m̃,k) be GOSs based on a continuous distribution
function F. If 2gr,n � gr21,n for some r, 2 � r � n; then

Cov(f (X(r�1;n;~m;k));f (X(r;n;~m;k))) � 0

for all measurable functions f : R! R such that the covariance exists.

PROOF: The proof is similar to that of Theorem 3.2 by using Lemma 3.8 and Theorem
2.4. B

From (3.6), it follows that

2gr;n � gr�1;n ¼ grþ1;n þ (mr � mr�1) for r ¼ 2; . . . ; n� 1

and

2gn;n � gn�1;n ¼ k � (mn�1 þ 1):

Thus, a sufficient condition for 2gr,n � gr21,n is that mr � mr21 for r ¼ 2, . . . , n 2 1
and k � mn21 þ 1 for r ¼ n. In virtue of this observation, an immediate consequence
of Theorem 3.9 is the following corollary.

COROLLARY 3.10: Let X(1,n,m,k), . . . , X(n,n,m,k) be GOSs based on a continuous distri-
bution function F, and let f be any measurable function such that the covariances
below exist. Then

Cov(f (X(r�1;n;m;k));f (X(r;n;m;k))) � 0 for r ¼ 2; . . . ; n� 1:

Moreover, if k � m þ 1, then

Cov(f (X(n�1;n;m;k));f (X(n;n;m;k))) � 0:

It is worthwhile to mention that Theorem 3.9 and Corollary 3.10 do not hold in
general for the case of nonadjacent GOSs, as shown by Counterexamples 5.2 and 5.3.
Furthermore, Counterexample 5.4 shows that Theorem 3.9 might even not be true for
the case of adjacent GOSs if 2gr,n , gr21,n.

Choosing the parameters appropriately, several other models of ordered random
variables are seen to be particular cases. Ordinary order statistics of a random sample
from a distribution F are a particular case of GOSs when k ¼ 1 and mr ¼ 0 for r ¼ 1,
. . . , n 2 1. When k ¼ 1 and mr ¼ 21 for r ¼ 1, . . . , n 2 1, we get the first n record
values from a sequence of i.i.d. random variables with distribution F. Some other
models are as follows.

† kth record values: Fix k [ Nþ. Let fXn, n [ Nþg be a sequence of i.i.d.
random variables with a continuous distribution F. The random variables
L(k)(1) ¼ 1 and

L(k)(nþ 1) ¼ min j . L(k)(n) : Xj:jþk�1 . XL(k)(n):L(k)(n)þk�1

� �
; n [ N;
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are called k-record times, and

XL(k)(n) ¼ XL(k)(n):L(k)(n)þk�1

is called nth k-record values (see Kamps [20, p. 34] and Arnold et al. [4]). For
k ¼ 1, XL(1)(n) reduces to XL(n). The first n k-records (XL(k)(1), . . . , XL(k)(n)) are the
GOSs (X(1,n,21,k), . . . , X(n,n,21,k)) based on F. By Corollary 3.10, we have

Cov f (XL(k)(n));f (XL(k)(nþ1))
� �

� 0; n [ Nþ;

for all measurable real-valued functions f such that the covariance exists.
† Progressive type II censored order statistics: Progressive type II censoring

has been suggested in the field of life-testing experiments. Suppose that N
units are placed on a lifetime test. The failure times are described by i.i.d.
random variables with a common distribution F. A number n (n � N ) of
units are observed to fail. A predetermined number Ri of surviving units at
the time of the ith failure are randomly selected and removed from further
testing. Thus,

P
i¼1
n Ri units are progressively censored; hence, N ¼ n þP

i¼1
n Ri. The n observed failure times are called progressive type II censored

order statistics based on F, denoted by T1 � T2 � � � � � Tn, which correspond
to the GOSs based on F with parameters k ¼ Rn þ 1, mr ¼ Rr and gr,n ¼ N 2

r þ 1 2
P

i¼1
r21 Ri for r ¼ 1, . . . , n 2 1. For details on the model of progressive

type II censoring, we refer to Balakrishnan and Aggarwala [6] and Cramer and
Kamps [10]. If Ri is decreasing in i and F is continuous, then, by Theorem 3.9
and the comments after Theorem 3.9, we have

Cov(f (Tr);f (Trþ1)) � 0 (3:7)

For r ¼ 1, . . . , n 2 1 and for all measurable real-valued functions f such that
the covariance exists.

† Order statistics under multivariate imperfect repair Policy( p1, . . . , pn):
Suppose that n items with i.i.d. random lifetimes, with distribution function
F, start to function at the same time 0. Upon failure, an item undergoes a
repair and the repair is instantaneous. If i items have already been scrapped,
then with probability piþ1, the repair is unsuccessful and the item is scrapped,
and with probability 1 2 piþ1, the repair is successful and minimal (i.e., the
item is restored to a working condition just prior to the failure). When an
item fails and is successfully minimally repaired, the other functioning items
“do not know” about the failure and repair. The ordered failure times T1 �
T2 � � � � � Tn are the special case of GOSs based on F with parameters
k ¼ pn, mr ¼ (n 2 r þ 1)pr 2 (n 2 r)prþ1 2 1 and gr,n ¼ (n 2 r þ 1)pr for
r ¼ 1, . . . , n 2 1. For more details, see Shaked and Shanthikumar [31] and
Belzunce, Mercader, and Ruiz [7]. Applying Theorem 3.9 yields that if

2(n� r)prþ1 � (n� r þ 1)pr (3:8)

for some r, 1 � r , n, then (3.7) holds for measurable real-valued functions f
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such that the covariance exists. A sufficient condition for (3.8) is that pi is
increasing in i.

† Yule process: A Yule process fN(t), t [ Rþg, with initial population size u, is
a special homogeneous pure birth process with intensity functions

ki(t) ¼ il; i [ fu; uþ 1; . . .g;

where l . 0 is a constant. Let T1 � T2 � � � � � Tn be the first n epoch times of
the process. Then the Ti’s can be regarded as the GOSs X(i,n,m,k) based on unit rate
exponential distribution, where k ¼ l(u þ n 2 1) and m ¼ 2l 21. Therefore,
by Corollary 3.10, (3.7) holds for r [ Nþ and all measurable functions f.

4. APPLICATIONS TO ORDERED DISCRETE RANDOM VARIABLES

4.1. Discrete Weak Record Values

In the context of record values, a repetition of a record value can be regarded as a new
record, and this makes sense for discrete distributions. This leads to the notion of
weak records introduced by Vervaat [37]. Recently, a considerable amount of work
has been done on weak record statistics; see Stepanov, Balakrishnan, and Hofmann
[36], Wesolowski and López-Blázquez [39], Dembińska and López-Blázquez [13],
Bairamov and Stepanov [5], Belzunce, Ortega, and Ruiz [8], Dembińska and
Stepanov [14], Danielak and Dembińska [12], and references therein.

Formally, let fX, Xn, n [ Nþg be a sequence of i.i.d. discrete random variables
with support being a subset of N. The sequence of weak record times fLw(n), n [
Nþg is defined by

Lw(1) ¼ 1;

Lw(nþ 1) ¼ minf j . Lw(n) : Xj � maxfX1;X2; . . . ;Xj�1gg; n [ Nþ;

and fXLw
(n), n [ Nþg is the sequence of weak records. The discrete weak record

values possess the Markov property (see Vervaat [37]); that is,

P(XLw(nþ1) ¼ jjXLw(n) ¼ i) ¼ P(X ¼ j)
P(X � i)

; i � j: (4:1)

Thus, the joint mass function of the first n weak record values is given by

P(XLw(1) ¼ j1; . . . ;XLw(n) ¼ jn) ¼ P(X ¼ jn)
Yn�1

r¼1

hjr

For j1 � j2 � � � � � jn, where

hj ¼
P(X ¼ j)
P(X � j)

(4:2)

is the failure rate function of X.
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THEOREM 4.1: For the sequence fXLw
(n), n [ Nþg of weak record values, we have

Cov(f (XLw(n));f (XLw(nþ1))) � 0; n [ Nþ,

for all real-valued functions f such that the expectation exists.

PROOF: From (4.1), it follows that the joint mass function of fXLw
(r), r ¼ n 2 1, . . . ,

n þ 2g is given by

P(XLw(r) ¼ jr; r ¼ n� 1; . . . ; nþ 2) ¼ P(XLw(n�1) ¼ jn�1)
P(X � jn�1)

P(X ¼ jnþ2)hjnhjnþ1

for jn21 � jn � jnþ1 � jnþ2 and n [ Nþ, where XLw(0) ¼ 0. Thus,

P(XLw(n) ¼ x;XLw(nþ1) ¼ yjXLw(n�1) ¼ s;XLw(nþ2) ¼ t)

¼
hxhyP

s�i�j�t
hihj

¼
2!gs;t(x; y); s � x , y � t

gs;t(x; y); s � x ¼ y � t;

�
(4:3)

where

gs;t(x; y) ¼
cs;th

2
x ; s � x ¼ y � t

1
2 cs;thxhy; s � x = y � t
0; otherwise;

8<: (x; y) [ fs; sþ 1; . . . ; tg2;

is the joint mass function of some interchangeable random variable V1(s,t) and V2(s,t).
Here, cs,t ¼ [Ps�i�j�t hxhj]21. Clearly, (4.3) means that condition (2.1) is satisfied.
The desired result now follows from Lemma 2.5 and Remark 2.3. B

Now, let Bi be the number of weak record values that are equal to i for i [ N. Then

Mr ¼
Xr

i¼0

Bi

is the number of weak record values that are less than or equal to r, r [ N. Denote by
Pi ¼ P(X � i) and by uX the right end point of the support of X. Stepanov [35] proved
that Bi, i [ N, are independent,

P(Bi ¼ n) ¼ Piþ1

Pi
1� Piþ1

Pi

� �n

; n [ N; (4:4)

for i ¼ 0, 1, . . . , uX 2 1, and P(BuX
¼ þ1) ¼ 1 if uX , 1.

By Theorem 2.6, we obtain the next result, whose proof is trivial and, hence, is
omitted.
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THEOREM 4.2: Let hi be the discrete failure rate of X, defined by (4.2). If hrþ1
2 � hr for

some r [ f0, 1, . . . , uX 2 2g, then

Cov(f (Mr);f (Mrþ1)) � 0 (4:5)

for all real-valued functions f such that the expectation exists.

4.2. Discrete ‘1
4-Spherical Order Statistics

Let T1 � T2 � � � � � Tn be N-valued random variables. T1, . . . , Tn are said to be
(discrete) ‘1

4-spherical order statistics if their joint mass function of the form

pT1;...;Tn (t1; . . . ; tn) ¼ w(tn); 0 � t1 � t2 � � � � � tn
0; otherwise;

�
(4:6)

for some nonnegative function w (see Shaked et al. [33]).
The following result is a discrete analogue of Theorem 3.3. Its proof is a straight-

forward modification of the proof of Theorem 4.1 and, hence, is omitted.

THEOREM 4.3: Let T1 � T2 � � � � � Tn be ‘1
4-spherical order statistics on Nn. Then

Cov(f (Tr);f (Trþ1)) � 0 (4:7)

for r ¼ 1, . . . , n 2 2 and for all real-valued functions f such the covariance exists.

We now modify the definition of a mixed geometric process introduced by
Huang and Shoung [18].

DEFINITION 4.4: A discrete-time discrete-state process fMt, t [ Ng is called a modi-
fied mixed geometric process if there exists a random variable Q that takes on values
in (0,1) such that, given Q ¼ u, the interepoch intervals Zi, i [ Nþ, of the process are
i.i.d. with P(Z1 ¼ z) ¼ u(1 2 u)z for z [ N.

A modified mixed geometric process can have jumps larger than unity at the
jump epochs. Denote by Jt the number of jumps occurring at time t; that is, J0 ¼

M0 and Jt ¼ Mt 2 Mt21 for t [ Nþ. For a modified mixed geometric process, it is
seen from Theorem 4.7 in Shaked et al. [33] that the first n epoch times T1, . . . , Tn

are ‘1
4-spherical and that the jump amounts J0, J1, . . . , Jn have a Schur-constant

mass function on Nn, which implies that M0,M1, . . . , Mn are also ‘1
4-spherical. By

Theorem 4.3, we have the following corollary.

COROLLARY 4.5: Let fTn, n [ Nþg be the sequence of epoch times of a modified
mixed geometric process fMt, t [ Ng. Then (4.5) and (4.7) hold for all r [ Nþ
and all real-valued functions f such that the covariances exist.

5. COUNTEREXAMPLES

In this section several counterexamples are presented to illustrate that the conditions
of the theorems and corollaries in the previous sections cannot be dropped off and that
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the nonnegativity property of the covariances do not hold for nonadjacent ordered
random variables.

Throughout this section, let Z1, Z2, and Z3 be independent exponential random
variables with failure rates l1, l2, and l3, and denote their means by m1, m2, and m3.
Choose f (x) ¼ x2 2 x. Since E[Zi

2] ¼ 2mi
2, E[Zi

3] ¼ 6mi
3 and E[Zi

4] ¼ 24mi
4 for

each i, it is easy to see that

Var(f (Z1)) ¼ E½Z4
1 � 2Z3

1 þ Z2
1 � � ½EZ2

1 � EZ1�2 ¼ 20m4
1 � 8m3

1 þ m2
1

and

Cov(f (Z1); Z1Z2) ¼ E½Z3
1 � Z2

1 � � (EZ2
1 � EZ1)EZ1

� �
EZ2 ¼ m2½4m3

1 � m2
1�;

Cov(f (Z1); Z1Z3) ¼ m3½4m3
1 � m2

1�:

Then we have

Cov(f (Z1);f (Z1 þ Z2 þ Z3)) ¼ Cov f (Z1);
X3

i¼1

f (Zi)þ 2Z1Z2 þ 2Z1Z3 þ 2Z2Z3

 !
¼ Var(f (Z1))þ 2 Cov(f (Z1);Z1Z2)

þ 2 Cov(f (Z1);Z1Z3)

¼ 20m4
1 � 8m3

1 þm2
1 þ 2(m2 þ m3)(4m3

1 �m2
1)

(5:1)

and

Cov(f (Z1);f (Z1 þ Z2)) ¼ 20m4
1 � 8m3

1 þ m2
1 þ 2m2(4m3

1 � m2
1): (5:2)

Counterexample 5.1: Choose f(x) ¼ x2 2 x and l1 ¼ 6, l2 ¼ 2 such that 2l2 2

l1 , 0. From (5.2), it follows that

Cov(f (Z1);f (Z1 þ Z2)) ¼ � 1
324

, 0:

This shows that Theorem 2.4 does not hold if condition (2.7) is violated.

Counterexample 5.2: Let X(1,3,m̃,4) � X(2,3,m̃,4) � X(3,3,m̃,4) be GOSs based on the
standard exponential distribution with m̃ ¼ (2, 1), and choose (l1, l2, l3) ¼
(9, 6, 4) and f(x) ¼ x2 2 x. By Lemma 3.8, we get

(X(1;3;~m;4);X(2;3;~m;4);X(3;3;~m;4))¼d (Z1; Z1 þ Z2; Z1 þ Z2 þ Z3):

From (5.1), straightforward computations give

Cov(f (X(1;3;~m;4));f (X(3;3;~m;4))) ¼ Cov(f (Z1);f (Z1 þ Z2 þ Z3)) ¼ � 51
6� 94

, 0:
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Clearly, 2gr,3 . gr21,3 for r ¼ 2, 3, satisfying the assumption of Theorem 3.9. This
shows that Theorem 3.9 does not hold for the case of nonadjacent GOSs.

Counterexample 5.3: Let X(1,3,1,4) � X(2,3,1,4) � X(3,3,1,4) be GOSs based on the stan-
dard exponential distribution, and choose (l1, l2, l3) ¼ (8, 6, 4) and f (x) ¼ x2 2 x.
By Lemma 3.8, we get

(X(1;3;1;4);X(2;3;1;4);X(3;3;1;4))¼d (Z1; Z1 þ Z2; Z1 þ Z2 þ Z3):

Straightforward computations give

Cov(f (X(1;3;1;4));f (X(3;3;1;4))) ¼ Cov(f (Z1);f (Z1 þ Z2 þ Z3)) ¼ � 5
3072

, 0:

This shows that Corollary 3.10 does not hold for the case of nonadjacent GOSs.

Counterexample 5.4: Let X(1,3,m̃,1) � X(2,3,m̃,1) � X(3,3,m̃,1) be GOSs based on the
standard exponential distribution with m̃ ¼ (3, 4), and choose (l1, l2, l3) ¼ (10, 6,
1) and f(x) ¼ x2 2 x. It is easy to see from Lemma 3.8 that

(X(1;3;~m;1);X(2;3;~m;1);X(3;3;~m;1))¼d (Z1; Z1 þ Z2; Z1 þ Z2 þ Z3):

Straightforward computations give

Cov(f (X(2;3;~m;1));f (X(3;3;~m;1)))

¼ Cov(f (Z1 þ Z2);f (Z1 þ Z2 þ Z3))

¼ 20m4
1 þ 20m4

2 � 8m3
1 � 8m3

2 þ m2
1 þ m2

2 þ 2(2m2 þ m3)(4m3
1 � m2

1)

þ 2(2m1 þ m3)(4m3
2 � m2

2)þ 12m2
1m

2
2 þ 4m1m2m3(m1 þ m2)

¼ �0:0069

, 0:

This shows that Theorem 3.9 might even not be true for adjacent GOSs if 2g3,3 ,

g2,3.

Counterexample 5.5: Let (T1, T2) have an ‘1
4-spherical density of the form

fT1;T2 (t1; t2) ¼ 3t2; 0 � t1 � t2 � 1
0; otherwise:

�
Then the marginal densities of T1 and T2 are respectively given by

fT1 (t1) ¼
3
2 (1� t2

1); 0 � t1 � 1

0; otherwise;

�

fT2 (t2) ¼ 3t2
2; 0 � t2 � 1

0; otherwise:

�
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Choose f (x) ¼ x2 2 x. Then E[f (T1)] ¼ 27/40, E[f (T2)] ¼ 23/20, and
E[f (T1)f (T2)] ¼ 11/420. Therefore, Cov(f (T1), f (T2)) ¼ 21/16800 , 0. This
shows, by a limiting argument, that (3.2) in Theorem 3.3 cannot be true for r ¼
n 2 1 if w is differentiable but not decreasing.
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