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On the unsteady characteristics of turbulent
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Turbulent separation bubbles over and behind a two-dimensional forward–backward-
facing step submerged in a deep turbulent boundary layer are investigated using a
time-resolved particle image velocimetry. The Reynolds number based on the step
height and free-stream velocity is 12 300, and the ratio of the streamwise length to
the height of the step is 2.36. The upstream turbulent boundary layer thickness is
4.8 times the step height to ensure a strong interaction of the upstream turbulence
structures with the separated shear layers over and behind the step. The velocity
measurements were performed in streamwise–vertical planes at the channel mid-span
and streamwise–spanwise planes at various vertical distances from the wall. The
unsteady characteristics of the separation bubbles and their associated turbulence
structures are studied using a variety of techniques including linear stochastic
estimation, proper orthogonal decomposition and variable-interval time averaging. The
results indicate that the low-frequency flapping motion of the separation bubble over
the step is induced by the oncoming large-scale alternating low- and high-velocity
streaky structures. Dual separation bubbles appear periodically over the step at a
higher frequency than the flapping motion, and are attributed to the inherent instability
in the rear part of the mean separation bubble. The separation bubble behind the step
exhibits a flapping motion at the same frequency as the separation bubble over the
step, but with a distinct phase delay. At instances when an enlarged separation bubble
is formed in front of the step, a pair of vertical counter-rotating vortices is formed
in the immediate vicinity of the leading edge.

Key words: boundary layer separation, turbulent boundary layers

1. Introduction

Separated and reattached turbulent flows have received significant research attention
prompted by their importance in advancing fundamental understanding of complex
turbulent shear flows, and widespread engineering and environmental applications. For
instance, a thorough understanding of the unsteady characteristics of separation and
reattachment is of great importance for the development of optimal control stratagem
for flow-induced structural vibrations, acoustic noise and mitigating structural
resonance. An in-depth knowledge of the underlying flow physics is also necessary
for reliable prediction of aerodynamic loads on buildings. In the case of low-rise

† Email address for correspondence: fangx@myumanitoba.ca

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2005-7269
mailto:fangx@myumanitoba.ca
https://doi.org/10.1017/jfm.2018.962


Turbulent separation over a forward–backward-facing step 995

buildings, their heights are typically smaller than the boundary layer thickness (δ), and
for a building or bluff body immersed in a deep turbulent boundary layer (i.e. δ�H,
where H is the height of the bluff body), the characteristics of the approaching
boundary layer flow that the bluff body sees include strong mean shear, high
turbulence intensity and large-scale streamwise-elongated coherent structures. These
characteristics can severely complicate the flow physics, for instance, in comparison
to bluff bodies in a uniform oncoming flow, and pose significant challenges to
fundamental understanding of the associated separated and reattached turbulent flows.
While considerable research has been dedicated to two-dimensional bluff bodies in
a uniform flow (Kiya & Sasaki 1983; Cherry, Hillier & Latour 1984), a laminar
boundary layer (Stüer, Gyr & Kinzelbach 1999; Wilhelm, Härtel & Kleiser 2003;
Lanzerstorfer & Kuhlmann 2012) or thin (compared to the body height) turbulent
boundary layers (Djilali & Gartshore 1991), much less has been documented on
two-dimensional bluff bodies immersed in a deep turbulent boundary layer. Therefore,
the motivation of the present study is to provide a detailed investigation on the
interactions of a deep upstream turbulent boundary layer with a two-dimensional
surface-mounted bluff body, with particular focus on the unsteady characteristics of
turbulent separations and the inherent turbulence structures.

Turbulent boundary layers (TBL) over a forward-facing step (FFS) and a backward-
facing step (BFS) are two canonical cases that are routinely used to investigate
the characteristics of turbulent separation and reattachment. Many research works
were dedicated to the investigation of the effects of the relative step height (δ/H),
Reynolds number and surface roughness on the reattachment length and one-point
statistics including the mean velocities and Reynolds stresses (Piirto et al. 2003;
Hattori & Nagano 2010; Sherry, Lo Jacono & Sheridan 2010; Essel & Tachie 2015,
2017). By using a planar particle image velocimetry (PIV), Sherry et al. (2010)
measured the turbulent separation bubble (TSB) over an FFS immersed in TBLs with
different values of δ/H and Reynolds numbers. They observed that for Reynolds
numbers (defined based on step height and free-stream velocity) lower than 8500, the
reattachment length increases as Reynolds number increases, whereas for Reynolds
numbers larger than 8500, the reattachment length does not vary significantly. Essel
& Tachie (2017) investigated the effects of Reynolds numbers and upstream wall
roughness on turbulent flows over an FFS using a planar PIV. For upstream TBLs
over smooth walls, the reattachment length of the separation bubble on the FFS
increased linearly with Reynolds number up to 6380 beyond which no further
change in reattachment length was observed. On the contrary, they observed that
the reattachment length for the upstream TBLs over rough walls decreased initially
with Reynolds number and attained Reynolds number independence at a Reynolds
number of 4000. Hattori & Nagano (2010) performed a direct numerical simulation
(DNS) study for TBLs over an FFS. They observed that near the leading edge of the
step, Reynolds shear stress (u′v′, where (·) denotes time averaging, (·)′ represents the
fluctuating component, u and v are the streamwise and vertical velocities, respectively)
and mean shear (S12 = (∂u/∂y+ ∂v/∂x)/2, where x and y denote the streamwise and
vertical directions, respectively) change signs at different locations, which implied the
occurrence of negatively valued eddy viscosity and deviation from the conventional
Boussinesq eddy-viscosity assumption. By employing a stereo PIV, Piirto et al. (2003)
estimated the transport equations of turbulent kinetic energy (TKE) for flows over
a BFS. Their results indicated that the dominant budget terms for TKE are the
viscous dissipation and production, and their peak locations coincide well at different
streamwise locations. With a planar PIV, Essel & Tachie (2015) measured turbulent
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flows over different wall roughness downstream of a BFS and concluded that wall
roughness tends to increase the mean reattachment length behind the step.

Considerable research efforts have also been made to understand the unsteady
characteristics of turbulent separations. For separation over a blunt body in a
uniform oncoming flow, Kiya & Sasaki (1983) and Cherry et al. (1984) observed a
low-frequency flapping motion associated with enlargement/shrinkage of separation
bubbles, and a higher frequency induced by vortex shedding towards the downstream
direction. Similar observations were made by Hudy, Naguib & Humphreys (2003)
and Mohammed-Taifour & Weiss (2016) for separations induced by a fence and an
adverse pressure gradient, respectively. The low-frequency flapping motion has been
extensively studied (Eaton & Johnston 1982; Driver, Seegmiller & Marvin 1987;
Simpson 1989; Largeau & Moriniere 2007; Camussi et al. 2008), and is commonly
identified as a sharp peak in the frequency spectra of some parameters (such as
velocity fluctuations) associated with turbulent separations. Nonetheless, the underlying
physical mechanism of the low-frequency flapping motion is still not well understood.
Eaton & Johnston (1982) performed measurement in turbulent flow behind a BFS
using both hot-wire probes and thermal tuft probes, and observed that a significant
fraction of turbulence intensity was contributed by low frequencies. They speculated
that the low-frequency flapping motion was caused by the instantaneous imbalance
between shear layer entrainment from the recirculating region and reinjection of
fluid near the reattachment point. Driver et al. (1987) used a thermal tuft and
a laser-Doppler velocimetry (LDV) to simultaneously measure the wall friction and
velocity field over a BFS. By employing conditional averaging based on flow direction
near the reattachment point, they deduced that the flapping motion was caused by
the roll-up and pairing process residing in the free shear layer. Spazzini et al. (2001)
used a surface-mounted double hot-wire probe and a planar PIV to simultaneously
measure wall friction and velocity field over a BFS at different Reynolds numbers.
They conjectured that the flapping motion of separation behind the BFS is related or
dominated by the cyclic behaviour of the recirculation bubble near the leeward corner.
Lee & Sung (2002) employed an acoustical array microphone system and a hot-wire
probe to perform simultaneous measurement of the wall pressure and velocity fields
in turbulent flows over a BFS. They related the quasi-periodic pressure fluctuation
with the flapping motion of the separation bubbles. Camussi et al. (2008) used
surface-mounted piezoresistive pressure transducers and a time-resolved PIV (TR-PIV)
system to simultaneously measure the wall pressure fluctuations and turbulent flows
over an FFS, and used the cross-correlation of pressure and velocity to reveal the
flapping motion. They attributed the flapping motion to the shedding of shear layer
structures from the leading edge of the step. Largeau & Moriniere (2007) observed
a similar low frequency as Camussi et al. (2008) in wall pressure fluctuations,
and attributed it to the vortex shedding near the reattachment point. More recently,
Pearson, Goulart & Ganapathisubramani (2013) investigated the turbulent separation
in front of an FFS using a planar TR-PIV system. They observed the flapping motion
of turbulent separation through the frequency spectrum of areas of instantaneous
reverse flow. By using a conditional averaging technique, they showed that sudden
enlargement of separations occurred after impingement of upstream low-velocity flows
onto the windward face of the step. They also speculated that strong spanwise flows
across the step corner was influenced by the upstream coherent structures.

Unlike FFS and BFS, research on turbulent flows over steps with intermediate
aspect ratios is rather scarce in existing literature. Bergeles & Athanassiadis (1983)
performed measurement in turbulent flows over surface-mounted steps with different
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aspect ratios (1 6 L/H 6 10, where L represents the streamwise length of the step)
using a hot wire. With their specific thin upstream TBL (δ = 0.48H) and low
turbulence intensity (0.5 %), they observed reattachment on the top surface of the
step only when L/H > 5, and for these cases, the reattachment length behind the
step was not affected by aspect ratio. In other words, for cases with two distinct
separation bubbles over and behind the step, interaction between these different mean
separation bubbles was negligible. The current paper revisits this observation in a
deep TBL with characteristic high levels of turbulence intensity for an intermediate
aspect ratio (L/H = 2.36), where turbulent flow reattachment occurs intermittently
over the top surface of step.

The discussion presented above clearly shows that the unsteady characteristics
of separation flows induced by two-dimensional steps of intermediate aspect ratio
immersed in a deep TBL are still not well understood. Therefore, we perform an
experimental investigation of a forward–backward-facing step of an intermediate
aspect ratio (L/H = 2.36) immersed in a deep TBL. This particular aspect ratio is
large enough to ensure reattachment of the mean flow over the step, yet small enough
to allow direct/strong interaction between the separation bubbles over and behind the
step. We aim at studying the interaction between the upstream turbulence structure
and the separated shear layers, the flapping motions of turbulent separation bubbles,
and the associated turbulence structures.

The remainder of this paper is organized as follows. In § 2, the experimental set-up,
including the test facility, measurement system and statistical tools are described. In
§ 3, the results are analysed in terms of turbulence statistics and turbulence structures
associated with unsteady characteristics of turbulent separations. Finally, the major
conclusions of this research are summarized in § 4.

2. Experimental set-up and data processing
2.1. Test section and test conditions

The experiments were conducted using a time-resolved particle image velocimetry
(TR-PIV) system in a newly built recirculating open water channel at the University
of Manitoba. The test section of the water channel is 6000 mm long and has a
rectangular cross-section of 600 mm × 450 mm (width × depth). The two side
and bottom walls of the test section were manufactured with 31.8 mm thick Super
Abrasion Resistant transparent acrylic plates. The test section was preceded by a
flow conditioning unit that consists of perforated plate, hexagonal honeycomb, mesh
screens of different sizes and a 4.88:1 converging section. The recirculating water
was driven by a pump, and a 40 horsepower variable-speed drive motor was used to
regulate the speed of the pump.

Figure 1 illustrates a schematic of the test section as well as the two-dimensional
step and coordinate system used in this paper. The instantaneous velocity components
along the streamwise (x), vertical (y) and spanwise (z) directions are denoted by u,
v and w, respectively. The desired deep upstream TBL was generated using a two-
dimensional toothed barrier followed by an array of staggered cubes of height, k =
3 mm. The toothed barriers had a height of 15 mm, with triangular cut-outs at the top
of pitch 15 mm and depth 12 mm. The cubes were machined from a 6 mm acrylic
plate, and had centre-to-centre spacing of 3 mm in both the streamwise and spanwise
directions. A three-dimensional representation of the toothed barriers, arrays of cubes
and the step used to induce flow separation are shown in figure 1(a). As shown in
figure 1(b), the step had a cross-section of 30.0 mm × 70.8 mm (i.e. L/H = 2.36),
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(a)

(b)
9 mm

600 mm

2 mm

D = 430 mm

H = 30 mm

L = 70.8 mm
∂ = 144 mm

U∞ = 0.41 m s-1

UH = 0.29 m s-1

3 mm

75 mm 4000 mm

Camera 1
Camera 2

k = 3 mm

x

y

FIGURE 1. (Colour online) Schematic of experimental set-up and definition of the
coordinate system (not to scale): (a) three-dimensional view and (b) side view. The red
block is the studied two-dimensional step. The tooth barrier, surface mounted cubes, step
and the plate on which the step was mounted all extend the entire spanwise width of
the water channel, which is 600 mm. The origin of the z coordinate is at the mid-span
of the water channel. The marked velocities U∞ and UH represent the streamwise mean
velocities at the free stream and step height, respectively.

and extended the entire width of the water channel so that its spanwise width (S) is
600 mm (i.e. S/H=20.0). The step was screwed onto a 6 mm thick acrylic plate with
a cross-section of 600 mm× 600 mm (in the x and z directions, respectively) that was
installed immediately downstream of the cubes. The surface-mounted cubes, the step
and acrylic plate on which the latter was screwed were painted with non-reflective
black paint to minimize surface glare from laser illumination. All the experiments
were performed at a water depth (D) of 430 mm and a free-stream velocity (U∞) of
0.41 m s−1. The room temperature was maintained at 20 ◦C, as such, the kinematic
viscosity of the working fluid (ν) was 10−6 m2 s−1. The Reynolds number (Re∞ =
U∞H/ν) and Froude number (U∞/

√
gD) were 12 300 and 0.20, respectively, where

g = 9.81 m s−2 is the acceleration due to gravity. The streamwise mean velocity at
the step height is denoted by UH . Since the boundary layer thickness is significantly
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larger than the step height, UH is a more appropriate velocity scale than U∞ (Castro
1979; Lim, Castro & Hoxey 2007), and is used in the subsequent data representation.

2.2. Time-resolved particle image velocimetry (TR-PIV) system
In this research, a planar TR-PIV system was used to measure the velocity field in
turbulent flows over the step shown in figure 1. The flow was seeded with 10 µm
(dp) silver coated hollow glass spheres, which had a specific gravity of 1.4. Following
Raffel et al. (2007), the slip velocity of particles was estimated from

Us =
d2

p(ρp − ρf )

18ρfν
g, (2.1)

where ρp and ρf represent the density of the seeding particles and working fluid
(water), respectively. The calculated value of Us is 2.18× 10−5 m s−1, which is orders
of magnitude smaller than the smallest velocity scale of the measured fluid motion.
Thus, these seeding particles truthfully follow the flow. To quantify the response time
of the seeding particles to sudden changes in flow velocity, the relaxation time τp

was also estimated as

τp =
d2

p(ρp − ρf )

18ρfν
. (2.2)

The value of τp is 2.2 × 10−6 s. The smallest temporal scale (τf ) in the studied
turbulent flows is estimated to be of the order of ν/u2

τ = 1.6 × 10−3 s, where uτ
is the friction velocity, and is approximately 0.025 m s−1. As such, the Stokes
number (Sk = τp/τf ) is about 0.0014, which is within the recommended range of
Sk 6 0.05 proposed by Samimy & Lele (1991). Therefore, the adopted seeding
particles followed the fluid motions very well, and their instantaneous velocities were
accurate representation of the instantaneous local fluid velocities.

The flow field was illuminated by a diode pumped dual-cavity dual-head high
speed Neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (DM30-527DH,
Photonics Industries International, Inc.). Each cavity delivered a maximum pulse
energy of 30 mJ pulse−1 at an operation frequency of 1000 Hz (wavelength λ= 527
nm). This sampling frequency is approximately 1.6 wall units (i.e. f+ = f ν/u2

τ = 1.6),
and is of negligible energy, as will be shown in figure 15. Therefore, the sampling
frequency is sufficient to well resolve all temporal scales of importance in this study.
A laser sheet of approximately 1 mm thickness was formed by a combination of
spherical and cylindrical lenses. The scattered light from the particles was captured
by high speed 12-bit complementary metal oxide semiconductor (CMOS) cameras.
The cameras were operated at 2560 pixel × 1600 pixel (full resolution) and 1920
pixel × 1600 pixel at frame rates of 807 Hz and 1000 Hz, respectively, and were
fitted with either a Sigma 105 mm macro lens or a Nikon 60 mm lens, depending on
the resolution requirement (see table 1). Both the laser and cameras were installed on
a traverse mechanism to facilitate easy and accurate movement to different streamwise
locations simultaneously.

The experimental campaign included velocity measurements in the streamwise–
vertical (x–y) plane upstream of the step to quantify the characteristics of the upstream
TBL, and subsequently in the x–y and streamwise–spanwise (x–z) planes over the
step. Details of the measurement planes together with specific information on the
field of view (FOV), sampling frequency, sample size, digital resolution and vector
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Planes x/H range y/H range z/H range Frequency (Hz) Sample size Vector spacing

U1 [−12.5,−0.8] [−0.3, 7.0] 0 1000 12 000 0.0365H
U2 [−9.3,−4.0] [−0.1, 3.2] 0 100 6000 0.0165H
S∗xy,a [−0.17, 2.47] [0.52, 2.68] 0 1000 32 000 0.0108H
Sxy,b [2.03, 8.60] [−1.14, 4.29] 0 1000 32 000 0.0271H
S∗xz,1 [−3.5, 0.0] 0.5 [−1.08, 1.08] 807 60 000 0.0108H
S∗xz,2 [−3.0, 0.5] 1.1 [−1.08, 1.08] 807 30 000 0.0108H
S∗xz,3 [−0.5, 3.0] 1.1 [−1.08, 1.08] 807 30 000 0.0108H

TABLE 1. List of measurement planes. Measurements in planes U1 and U2 were performed
without installing the step. Note that measurements in planes S∗xy,a and Sxy,b were performed
simultaneously. To ensure a higher spatial resolution above the step, a Sigma 105 mm
macro lens was used in planes with an asterisk superscript (such as S∗xy,a), and a Nikon
60 mm lens was used in other planes.

spacing are provided in table 1. For the upstream boundary layer measurements,
two sets of measurements were conducted at the mid-span of the water channel
without installing the step. The first measurement (U1 in table 1) used a large FOV
(352 mm× 220 mm) to capture the entire thickness of TBL. In this case, the images
were acquired at a rate of 1000 Hz and a reduced resolution of 1920 pixel × 1600
pixel in a continuous mode. Next, measurements were carried out using a smaller
FOV of 160 mm× 100 mm (U2 in table 1) at a rate of 100 Hz and a full resolution
(2560 pixel × 1600 pixel) in a double-frame mode. This is to achieve a better spatial
resolution and reliable quantification of second-order moments for the upstream TBL.

The x–y plane measurements over the step were also located at channel mid-span.
For these measurements, two cameras, one fitted with Sigma 105 mm macro lens (S∗xy,a
in table 1) and the other with Nikon 60 mm lens (S∗xy,b), were used simultaneously
to image the flow field at a sampling rate of 1000 Hz and a resolution of 1920
pixel × 1600 pixel. The FOV of these cameras overlapped by 13.2 mm. To perform
measurement in the x–z planes (S∗xz,j with j = 1, 2 and 3), the CMOS cameras were
placed above the free surface of the water as schematically shown in figure 1(b).
Distortion of the captured images from the surface waves was eliminated by placing
a 9 mm thick acrylic plate (with a cross-sectional area of 600 mm × 600 mm in
the x–z plane) beneath the cameras and submerged into the water by approximately
2 mm. The leading edge of the acrylic plate was rounded to further minimize its
influence on the flows. The x–z plane measurements were performed at a vertical
distance of 0.5H above the top plane of the cubes (S∗xz,1) and at 0.1H above the
step (S∗xz,2 and S∗xz,3). It should be noted that the planes S∗xz,1 and S∗xz,2 measured the
upstream boundary layer at different elevations, whereas S∗xz,3 was used to investigate
the turbulent separated flows over the step in the streamwise–spanwise plane. For
these x–z plane measurements (S∗xz,j with j= 1, 2 and 3), the sampling frequency was
set to 807 Hz which allowed the full resolution of the cameras (2560 pixel × 1600
pixel) to be used.

The data acquisition was controlled by commercial software (DaVis version 8.4)
provided by LaVision Inc. In all cases, the particle image diameter was within the
range 2–4 pixels, which is the recommended values for minimizing peak locking
(DaVis manual by LaVision Inc.). The velocity vectors were calculated using a
multi-pass cross-correlation algorithm. Specifically, the interrogation area (IA) was
initialized as 128 pixel × 128 pixel with 50 % overlap, and finalized as 32 pixel ×
32 pixel with 75 % overlap.
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2.3. Statistical tools

In this paper, the operators (·) and 〈·〉 denote temporal averaging and conditional
averaging, respectively. The mean velocities are also represented using an upper case
for convenience, e.g. u≡U. The fluctuating components are denoted by a superscript
(·)′, e.g. u′ ≡ u− U. Other statistical tools used in this paper are summarized in the
following subsections for reference.

2.3.1. Correlation
Correlation coefficient is commonly used to quantify spatial/temporal scales

(Townsend 1976). It is defined as

RΥ ξ (Xref , 1X)=
Υ (Xref )ξ(Xref +1X)

Υrms(Xref )ξrms(Xref +1X)
, (2.3)

where Υ and ξ are two general fluctuating components (such as u′ and v′). In the
above equation, X and 1X denote a general space–time position and a relative
displacement, respectively. The subscripts (·)ref and (·)rms represent the chosen
reference point and root-mean-square (r.m.s.), respectively.

2.3.2. Linear stochastic estimation (LSE)
The linear stochastic estimation (LSE) proposed by Adrian & Moin (1988) can be

used to extract coherent structures associated with a given condition. In the original
proposal of LSE by Adrian & Moin (1988), an arbitrary number of condition events
was employed. However, in the literature, single condition event is the most commonly
used approach (e.g. Hambleton, Hutchins & Marusic 2006), and is also employed in
this paper. This can be expressed as

〈Υ (xref +1x)|E(xref )〉 =
E(xref )Υ (xref +1x)

E2
rms(xref )

E(xref ). (2.4)

The above equation gives an optimal estimation (in terms of the least square error) of
a turbulent field solely based on a single-point instantaneous event E(xref ).

2.3.3. Proper orthogonal decomposition (POD)
Proper orthogonal decomposition (POD) provides the optimal approximation (in the

sense of including the most kinetic energy) for a given number of modes (Berkooz,
Holmes & Lumley 1993). In POD, the turbulent velocity field is decomposed into
different eigenfunctions (or modes) of spatial correlation function (Townsend 1976). In
this paper, the fluctuating velocity field is decomposed into different modes as follows:

u(x, t)=U(x)+
M∑

j=1

a( j)(t)φ( j)(x)=U(x)+ΦA, (2.5)

where φ( j) and a( j) represent the jth mode (or basis function) and the associated
coefficient, respectively, and M is the number of modes considered. In the above
equation, modes and their coefficients are also expressed using matrix notations as
Φ = [φ(1), φ(2), φ(3), . . . , φ(M)] and A = [a(1), a(2), a(3), . . . , a(N)]T, where N is the
number of snapshots and the superscript (·)T represents the transpose of a matrix.
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Let Ψ = [u′(t1), u′(t2), u′(t3), . . . , u′(tN)] be an M × N matrix containing all
snapshots of fluctuating velocity, and then its singular value decomposition (SVD) is
defined as

Ψ = VΛW T. (2.6)

In (2.6), V is an M ×M orthogonal matrix, W is an N × N orthogonal matrix, and
Λ is an M × N diagonal matrix. In accordance with (2.5) and (2.6), POD can be
simply implemented by letting Φ = V and A=ΛW T. The positively valued diagonal
components (denoted as λj with j = 1, 2, 3, . . . , min(M, N) in a descending order)
of Λ2 are eigenvalues of Ψ Ψ T. As such,

∑min(M,N)
j=1 λj is a measure of TKE (for the

current planar PIV, M� N and
∑N

j=1 λj =
∫
A(u

′u′ + v′v′) ds, with A representing the
area considered in POD). Therefore, λj represents the contribution of the jth POD
mode to the integration of TKE in the area (A). This implementation of POD is
equivalent to that of Meyer, Pedersen & Özcan (2007).

2.3.4. Variable-interval time averaging (VITA)
Blackwelder & Kaplan (1976) proposed a so-called variable-interval time-averaging

(VITA) approach to quantify a local (in either space or time) intermittence of turbulent
motions. (See Kim (1983) for an application of VITA in space. In this paper, we only
adopt VITA in time.) In the VITA approach, a local variance of a general turbulence
signal (Υ (t)) in a variable time interval (T) is defined as

σΥ (t, T)=
1
T

∫ t+(1/2)T

t−(1/2)T
Υ 2(s) ds−

(
1
T

∫ t+(1/2)T

t−(1/2)T
Υ (s) ds

)2

. (2.7)

Evidently, for a sufficiently large T , the above equation reduces to the calculation of
a global variance (ΥΥ ). Following Bogard & Tiederman (1986, 1987) and Luchik &
Tiederman (1987), a VITA event (Υ (tj)) is pronounced when σΥ (tj, T) > 0.4ΥΥ and
dΥ /dt|tj > 0. To further inform the preceding and subsequent turbulent motions of the
detected VITA events, an ensemble average of neighbouring tj is calculated as follows:

〈Υ (1t)〉 =
1
G

G∑
j=1

Υ (tj +1t), (2.8)

where G denotes the number of detected VITA events.

3. Results and discussion
3.1. Upstream boundary layer

Figure 2 shows the vertical profiles of streamwise mean velocity and r.m.s. of velocity
fluctuations for the upstream TBL. The TBL thickness (δ) is much larger than the
step height (δ = 4.8H). By fitting U profile onto the log law, the friction velocity
uτ is estimated to be 0.025 m s−1. Therefore, δ+ (= δuτ/ν) is 3600. Also, H+ (=
Huτ/ν) is 750, and is well into the log-law region, which extends up to y+ ≈ 1200.
Reθ (= θU∞/ν, where θ denotes the momentum thickness of TBL) is 6900. Due to
the deep TBL, the values of u′rms and v′rms do not vary significantly (u′rms≈ 0.15UH and
v′rms ≈ 0.1UH) in the region of y/H ∈ [0, 2], where a strong interaction of TBL with
the step is expected.

Pearson et al. (2013) observed an enlargement process of reverse flow in front
of the step due to the interaction of the step geometry with oncoming low-velocity
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FIGURE 2. Vertical profiles of (a) streamwise mean velocity and (b) r.m.s. of measured
velocity fluctuations. For clarity, every fourth measured point is plotted.
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0
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FIGURE 3. LSE based on the condition of prograde swirling events at step height (y/H=
1). To facilitate visual inspection, a straight line inclined at 13◦ is drawn and the vectors
are normalized to be of unity length. For clarity, every fourth vector is plotted in both x
and y directions.

streaks, which are associated with the ejection event generated beneath the head of
a hairpin structure (Zhou et al. 1999; Adrian, Meinhart & Tomkins 2000). Inspired
by Pearson et al. (2013), it is worthwhile examining the hairpin structure signature
in the upstream flow near the step height because these coherent structures are
convected downstream and will eventually interact with the step. Figure 3 shows
the LSE of prograde swirling events at the step height for the upstream TBL.
Following Christensen & Adrian (2001), a prograde swirling event is defined as
λciωz/|ωz|< 0, where λci is the imaginary part of the instantaneous velocity gradient,
and ωz represents the instantaneous vorticity in the spanwise (z) direction. The
pattern of vectors shown in figure 3 is similar to those observed by Christensen &
Adrian (2001) and Volina, Schultz & Flack (2009) in TBLs over smooth and rough
walls. Specifically, a prograde swirling motion is imposed at the reference point, and
multiple smaller swirling motions (more visible if figure 3 is zoomed in without
skipping any vectors) occur along a clear inclined edge (as marked by the straight
line) extending both upstream and downstream of the reference point. The inclination
of the spanwise vortices observed in figure 3 is at 13◦, an angle commonly reported
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FIGURE 4. (Colour online) Contour of streamwise mean velocity (U) and mean
streamlines. Mean flow reattachment occurs at x/H= 1.6 and 7.4. The superimposed solid
and dashed isopleths are Ψ = 0 and γ = 0.5, respectively. In this paper, the turbulent
separation bubbles over and behind the step are respectively denoted by TSBA and TSBB
for conciseness.

in the literature as a signature of hairpin packets (Adrian et al. 2000; Christensen
& Adrian 2001; Hambleton et al. 2006; Volina et al. 2009). It is worth noting here
that the marked edge in figure 3 clearly separates areas of positively and negatively
valued u′.

3.2. Turbulence statistics
Figure 4 shows the contour of streamwise mean velocity superimposed with mean
streamlines. In the figure, three distinct separation bubbles (shown as recirculation
regions) can be observed. The small separation bubble in the corner around x/H= 2.8
is not of particular interest. The large separation bubbles over and behind the
step, which are the primary focus of this study, are denoted by TSBA and TSBB,
respectively, for conciseness in the analysis. The isopleth of 50 % forward-flow
fraction γ is also plotted, and exhibits a pattern that originates from the leading or
trailing edge of the step, passes through the centroid of the separating bubble and
terminates on the wall very close to the reattachment points, which is consistent with
observations made by Djilali & Gartshore (1991) and Mohammed-Taifour & Weiss
(2016). In figure 4, the isopleth of Ψ = 0 is also plotted, where Ψ is the integral of
streamwise mean velocity in the vertical direction, i.e. Ψ (x, y)=

∫ y
wall U(x, Y) dY . The

isopleth of Ψ = 0 coincides with the separating streamline (Castro & Haque 1987;
Mohammed-Taifour & Weiss 2016), which is the mean streamline traced from the
leading edge to the reattachment point. Evidently, the isopleths of γ = 0.5 and Ψ = 0,
respectively, indicate the centre and upper bound of the mean separation bubbles, and
therefore are used in subsequent plots as position references whenever applicable.

TSBA reattaches on the step at x/H = 1.6. This value is comparable to 1.3–2.0H,
1.5–2.1H, 1.82–2.04H reported by Camussi et al. (2008), Hattori & Nagano (2010)
and Essel & Tachie (2017), respectively, for flows over FFS with different turbulent
boundary layer thicknesses and Reynolds numbers. In contrast, the reattachment of
TSBA is significantly smaller than that (4–5H) observed by Bergeles & Athanassiadis
(1983) with an upstream thin boundary layer and low turbulence intensity. The mean
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reattachment point behind the step is at x/H = 7.4, i.e. 5.1H away from the leeward
face of the step. The latter distance is comparable to the reattachment length 5.05–
6.54H observed by Spazzini et al. (2001) for a BFS at Reynolds numbers (based on
the upstream free-stream velocity and step height) of 3500–16 000.

To further analyse the growth of the mean shear layers encompassing TSBA and
TSBB, the vorticity thickness, which is defined as δω = (Umax −Umin)/(∂U/∂y)max, is
employed. Here, Umax (= U∞) and Umin denote the maximum (free stream) and
minimum streamwise mean velocity, respectively, in the vertical direction. The
vorticity thickness was originally proposed by Brown & Roshko (1974) for a plane
mixing layer, and has since been adopted to quantify the growth of separated shear
layers. In fact, many studies have shown that the streamwise development of δω
along the first half of TSB is very similar to that of a mixing layer. Specifically, it
has been observed that δω varies linearly with streamwise distance with a slope of
dδω/dx ∈ [0.15, 0.22] for both TSB and mixing layer (Wygnanski & Fiedler 1970;
Brown & Roshko 1974; Moss & Baker 1980; Kiya, Sasaki & Arie 1982; Cherry et al.
1984; Djilali & Gartshore 1991; Hancock 2000; Lander et al. 2016). In view of the
two distinct separation bubbles (TSBA and TSBB) formed due to the intermediate
aspect ratio of the step examined herein, there is a need to carefully refine the
definition of δω to accommodate the possible overlap of shear layers, especially
in the region immediately downstream of the trailing edge of the step. We define
(∂U/∂y)max as local (instead of ‘global’) maximum in the vertical direction, so that
multiple peaks of ∂U/∂y can be captured in accordance with the multiple shear
layers.

The topology of the shear layers of the TSBs examined herein is significantly more
complex than that over an FFS or downstream of a BFS. In the case of FFS (or BFS),
(∂U/∂y)max of the shear layer emanating from the leading (or trailing) edge decays in
the downstream direction, whereas that of the shear layer initiated by the wall behind
the reattachment point increases, and eventually the shear layer away from the wall
disappears and a canonical TBL is re-established. Figure 5 shows the streamwise
variation of multiple vorticity thicknesses. Evidently, due to the short streamwise
extent of the step, a canonical TBL is not established over the step. Immediately
downstream of the trailing edge, there exist two shear layers, one emanating from
the leading edge (hereafter referred to as SLA) and the other from the trailing edge
(hereafter referred to as SLB) (see the inset sketch of figure 5). After x/H≈ 3.5, only
one peak in ∂U/∂y is observed, indicating that SLA and SLB merge into a single
shear layer, which is denoted by SLM.

As seen in figure 5, for SLA, δω increases linearly with streamwise distance along
the front half of the separation bubble (06 x/H 6 1.0) with a slope of dδω/dx= 0.30.
This slope is 36–100 % higher than the more commonly reported values of 0.15–0.22
for FFS and BFS, but is in very good agreement with 0.33 observed by Agelinchaab
& Tachie (2008) for turbulent flows over a forward–backward-facing step (L/H = 6)
with an upstream deep TBL (δ= 9.1H) at Reθ = 1800. In the region x/H ∈ [1.0, 2.7],
δω monotonically increases at a faster rate than observed within the first half of the
TSBA. This is at variance with the notion that growth rate of δω decreases in the rear
part of a single separation bubble (Castro & Haque 1987; Djilali & Gartshore 1991;
Agelinchaab & Tachie 2008). These observations indicate that even though TSBA
preserves some of the characteristics of a single separation bubble in the front half,
it is noticeably influenced by TSBB in the rear part. It is also apparent from figure 5
that the linear range of δω for SLB is very short (approximately x/H ∈ [2.4, 2.8]), and
its growth rate of 1.45 represents 7-fold to 10-fold typical values (0.15–0.22) reported
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FIGURE 5. Streamwise variation of vorticity thicknesses (δω). For clarity, a different
number of points are skipped depending on the local cluster of the data points. As shown
in the inset sketch (not to scale), the shear layers emanating from the leading and trailing
edges of the step (which are, respectively, denoted as SLA and SLB) merge into one shear
layer (which is denoted as SLM). Multiple vorticity thicknesses are plotted: solid circles
are for SLA; hollow triangles are for wall shear layer developed after reattachment of
TSBA; solid triangles are for SLB; hollow squares are for SLM; and solid squares are
for wall shear layer developed after reattachment of TSBB.

for an isolated separation bubble behind a BFS. This is a clear manifestation that
TSBB is considerably altered by TSBA. It is also interesting to see in figure 5 that
the value of dδω/dx of SLM is approximately 0.18, which is close to that (0.15–0.22)
observed in mixing layers (Wygnanski & Fiedler 1970; Brown & Roshko 1974).

Figure 6(a–c) shows the contours of Reynolds stresses (u′u′, v′v′ and u′v′) in the
x–y plane. It is evident from the figures that strong turbulent levels (quantified by
all three plotted Reynolds stresses) are apparent near the leading edge of the step
((x/H, y/H) = (0, 1), separation point of TSBA), and decrease in the downstream
direction. This is remarkably different from turbulent separations with upstream
conditions of low turbulence intensity. As an example, for the separation developed
over a blunt body with a uniform upstream condition (with characteristic low turbulent
intensity), transition to turbulence occurs in the rear part of the separation bubble
(Alam & Sandham 2000; Yang & Voke 2001; Lanzerstorfer & Kuhlmann 2012).
This is also consistent with the experimental observations by Kiya & Sasaki (1983),
Djilali & Gartshore (1991) and Anand & Sarkar (2017) that u′rms was trivial near the
leading edge and only got amplified in the rear part of separation bubble. Samson
& Sarkar (2016) conducted PIV measurements for separation bubbles over a blunt
body with different oncoming turbulence intensities. They also observed that a higher
approaching turbulence level tends to shift transition to turbulence from the rear part
of the separation bubble to the leading edge. The existence of strong turbulence near
the leading edge is also reflected by the plotted isopleth of γ . It is straightforward
that the forward-flow fraction is expected to be either zero or one in a laminar state,
which is not observed in any part of separation bubbles shown in figure 6. It follows
from the above analysis that the high turbulence intensity from the upstream condition
in the present study induces a strong disturbance to TSBA, so that TSBA drifts away
from the transition state.
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FIGURE 6. (Colour online) Contours of Reynolds stresses and mean strain rate in the
x–y plane: (a) u′u′, (b) v′v′, (c) u′v′, and (d) −S12. The superimposed solid and dashed
isopleths are Ψ = 0 and γ = 0.5, respectively. In (c), the dotted isopleth encompasses the
area with negatively valued S12, and the inset zooms in on the region near the leading
edge. Note in (d) that instead of S12, −S12 is shown to facility visual comparison with
u′v′.

The Reynolds shear stress u′v′ exhibits some peculiar features that are different
to those in a canonical TBL or separation bubble induced by an adverse pressure
gradient. With an upstream TBL, Mohammed-Taifour & Weiss (2016) observed that
Reynolds shear stress u′v′ is of a negative sign within the entire separation bubble
induced by an adverse pressure gradient, and possesses a peak magnitude above the
reattachment point. In contrast, as seen from figure 6(c), strong positively valued u′v′
appears in an inclined narrow area near the leading edge, where strong positively
valued S12 (see figure 6d) is also observed. This is inconsistent with the Boussinesq
eddy-viscosity assumption (BEA), because the BEA predicts that u′v′ and S12 are of
opposite signs, i.e. u′v′=−2νTS12, where νT is positively valued eddy viscosity. Near
the leading edge, a similar contradiction of u′v′ with the BEA has been observed by
Hattori & Nagano (2010) in their DNS study of turbulent flows over an FFS, and
also by Essel & Tachie (2017) in their experimental study of smooth and rough wall
turbulent flows over an FFS.

In general, the relationship between Reynolds shear stress and mean strain in
turbulent flows with unidirectional mean flow is much easier to predict/model than in
separated and reattached turbulent flows with acute streamline curvature. Therefore, we
further examine the relationship between Reynolds shear stress and mean strain rate
in the curvilinear coordinate system along the mean streamlines. This is to convert the
complex separated and reattached mean flow into (at least locally) unidirectional flow
in the curvilinear coordinate system. As such, the transformed mean strain reduces to
S12,t= (∂Ut/∂yt)/2 (simply because ∂Vt/∂xt=0 based on the definition of streamlines),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.962


1008 X. Fang and M. F. Tachie

1.0 1.0

y/H

2.0

1.8

1.6

1.4

1.2

0 0.5 1.0 1.5
x/H

2.0

2.0

1.8

1.6

1.4

1.2

0 0.5 1.0 1.5
x/H

2.0

-4 -2 0 2 4-(™Ut/™yt)H/UH-0.04 -0.02 0 0.02 0.04u�
t√�

t/U2
H

(a) (b)

FIGURE 7. (Colour online) Contours of (a) u′tv′t and (b) −∂Ut/∂yt over the step. The
corresponding contours behind the step are not shown to better visualize the dominant
variation around the leading edge. The superimposed solid and dashed isopleths are Ψ = 0
and γ =50 %, respectively. In (a), the dotted isopleth encompasses the area with negatively
valued ∂Ut/∂yt.

where subscript (·)t denotes the transformed variable, xt is along the mean streamline
and yt axis is 90◦ with the mean streamline in the anti-clockwise direction. Therefore,
along the mean streamlines in the curvilinear coordinate system, the BEA reduces to
u′tv′t=−νT∂Ut/∂yt, which is simply Prandtl’s mixing-length hypothesis (PMH) (Prandtl
1925). Indeed, within the framework of the PMH, ∂Ut/∂yt is a quantification of the
effectiveness of momentum transfer (consequently, Reynolds shear stress generation)
by a fluid parcel drifting into different streamlines. The transformed Reynolds shear
stress u′tv′t = u′v′ cos 2θ − (u′u′ − v′v′)/2 sin 2θ (refer to Mohr’s circle for derivation)
is calculated with θ being the angle between velocity vector and the x direction. To
calculate ∂Ut/∂yt, velocities within 3 × 3 neighbour grids are interpolated into the
curvilinear coordinate system, and then a finite difference method is used to calculate
the derivative. If the PMH is valid even in separated and reattached flows, we should
see that u′tv′t and ∂Ut/∂yt are of opposite sign everywhere.

Figure 7 shows the contours of u′tv′t and −∂Ut/∂yt over the step. By comparing
figure 7(a) against the inset of figure 6(c), it is evident that the area with strong
positively valued u′v′ near the leading edge is now replaced by strong negatively
valued u′tv′t . Furthermore, the shear layer along the separating streamline (area of
strong positively valued ∂Ut/∂yt emanating from the leading edge in figure 7b)
is associated with strong negatively valued u′tv′t . This is consistent with the PMH.
Therefore, the positively valued u′v′ and its inconsistency with the BEA observed
in figure 6(c) is merely an artefact of misalignment of the local streamlines with
the predefined x direction. However, the coordinate transformation performed here
also leads to areas where the Reynolds shear stresses are inconsistent with the PMH
(featuring the same signs of u′tv′t and ∂Ut/∂yt), such as the area encompassed by
dashed isopleths in figure 7(a) and in the immediate vicinity of isopleth of γ = 0.5.

3.3. Interaction between different turbulent separation bubbles
From figure 5, we observed the influence TSBA exerted onto TSBB. In this section,
we further investigate the interaction between TSBA and TSBB in more detail.
Figure 8 shows an instantaneous velocity field from the simultaneous measurement
of TSBA and TSBB (planes S∗xy,a and S∗xy,b in table 1). As seen in figure 8(a), reverse
flows commonly appear in irregular shaped areas. The areas of reverse flow are also
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FIGURE 8. (Colour online) Contours of instantaneous velocity fields. In (a), the blue
contour is at u/UH 6 0. In (b), the red and blue contours are at v/UH > 0.1 and v/UH 6
−0.1, respectively.

visible beyond the mean reattachment point. These observations reflect the commonly
accepted unsteadiness of reverse flows (Kiya & Sasaki 1983; Cherry et al. 1984;
Le, Moin & Kim 1997; Pearson et al. 2013). In figure 8(b), areas of alternating
positively and negatively valued v emanating from the leading edge of the step can
be observed, which is reminiscent of spanwise vortex shedding motions. Le et al.
(1997) also observed a similar alternating positively and negatively valued v shed
from the trailing edge of a BFS. However, the vortices shed from the trailing edge
are not visible in figure 8(b), indicating the dominance of vortex shedding from the
leading edge. In other words, it is reasonable to expect that TSBB can be directly
influenced by the TSBA.

To further investigate the influence of TSBA on TSBB, the areas of reverse flow in
TSBA and TSBB (denoted as AA and AB, respectively) at different times are calculated.
It is straightforward to calculate AA(t), i.e. by simply summing up areas of u<0 above
the step. However, some approximation is necessary to find AB(t). The reverse flow
induced by the small vortex in the corner behind the step (see figure 4) is not excluded
from AB(t), as it is much smaller than TSBB in area. Only the reverse flows in x/H ∈
[2.3, 8.5] are accounted for, due to the limitation of our FOV. These approximations
are of minor importance in the examination of the interactions of TSBA and TSBB.
The reasons are twofold: most reverse flows occur immediately behind the step (see
figure 8a), which is well captured, and the interaction between TSBA and TSBB is
expected to be most significant near the trailing edge and decay in the downstream
direction.

Figure 9 shows sample time variation of the areas of TSBA and TSBB. Evidently,
both TSBA and TSBB exhibit strong enlargement/shrinkage fluctuations. To further
understand the temporal scales of these two separation bubbles, figure 10 compares
the temporal autocorrelations and frequency spectra of AA and AB. As indicated by
the much slower decay rate of RBB shown in figure 10(a), the temporal scale of
TSBB is much larger than that of TSBA. This is consistent with the observation in
figure 10(b). Furthermore, as seen in figure 10(b), fφAA possesses a sharp peak at
St= 0.075 (where the Strouhal number is defined as St= fH/UH , following Lim et al.
(2007)), which represents the dominant frequency of the quasi-periodic fluctuation of
AA, and a subdominant peak at a higher frequency around St= 0.141. It is interesting
to observe that fφBB also possesses a subdominant peak at St = 0.075 and its global
peak is at a much lower frequency (St= 0.03). It is worth mentioning that St= 0.075
corresponds to f = 0.71 Hz in the experiments. With our 32 000 snapshots of images
taken at 1000 Hz, approximately 23 periods were captured, which is deemed sufficient
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FIGURE 9. Time sequences of the areas of reverse flow in TSBA and TSBB, denoted as
AA and AB, respectively.
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FIGURE 10. (a) Temporal autocorrelations of A′A and A′B (denoted as RAA and RBB,
respectively). (b) Premultiplied frequency spectra of AA and AB (denoted as φAA and φBB,
respectively).

to accurately determine the dominance of the corresponding low frequency. However,
for the global peak of fφBB at St= 0.03, only 9 periods were captured, therefore, its
exact value may not be as accurate as the peak frequency of fφAA.

The dominant frequency of TSBB at St = 0.03 corresponds to fH/U∞ = 0.02.
This value is comparable to fH/U∞ = 0.02 and 0.014 reported by Eaton & Johnston
(1982) and Lee & Sung (2002), respectively, for flows behind a BFS. Considering the
significant differences between our flow configuration and those studied by Eaton &
Johnston (1982) and Lee & Sung (2002) (such as Reynolds number and aspect ratio
of the step), we conclude that H and U∞ are, respectively, the appropriate length and
velocity scales for TSBB. In other words, TSBB does not scale on UH .

To investigate the modulation of TSBB by TSBA, the temporal cross-correlation of
AA and AB (RAB(1t)) is plotted in figure 11(a). It is interesting to see that the value
of RAB(0) is as low as 0.05. This is indicative of a poor synchronization of AA and
AB, and is consistent with the observation in figure 9. This may be counter-intuitive
because larger AA could lead to a stronger momentum deficit over the step, causing
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FIGURE 11. (a) Temporal cross-correlation of AA and AB (RAB(1t)). (b) Premultiplied
phase-shifted co-spectrum φ

ps
AB( f , 1t= 7.6H/UH).

a larger TSBB downstream of TSBA. It is interesting to see in figure 11(a) that the
value of RAB(1t) increases up to 0.38 as 1tUH/H increases to approximately 7.6. This
is consistent with the better synchronization between AA(tUH/H) with AB(tUH/H +
7.6) compared to AB(tUH/H) as shown in figure 9. This important observation is a
clear indication that it takes a considerable time for TSBB to react to the variation of
upstream condition induced by TSBA.

In order to further investigate contributions to RAB(1t) from different frequencies, a
phase-shifted co-spectrum is defined as follows:

φ
ps
AB( f , 1t)= ÂA( f )[ÂB( f ) exp(2πif1t)]∗ + ÂA

∗

( f )ÂB( f ) exp(2πif1t), (3.1)

where i≡
√
−1, and the top-hat (̂·) and superscript (·)∗ denote the Fourier transformed

coefficient and complex conjugate, respectively. As such, RAB(1t) =
∫
φ

ps
A ( f , 1t) df

holds. Apparently, the peak of RAB(1t) is of the most importance. Therefore,
φ

ps
AB( f , 1t) with 1t= 7.6H/Uh is plotted in figure 11(b). It is observed that contents

of AA and AB at high frequencies (say fH/UH > 100) are de-correlated (indicated
by the trivial magnitudes of fφps

AB), whereas significant coherency appears at lower
frequencies. In particular, fφps

AB possesses a sharp peak at St = 0.075. This peak
frequency exactly coincides with the peak frequencies observed in figure 10(b). Thus,
the peak value of RAB(1t) at 1tUH/H=7.6 shown in figure 11(a) is primarily induced
by the dominant low-frequency oscillation of TSBA. It is also worth mentioning here
that the value of φps

AB( f = 0.075UH/H, 1t = 0) is trivial (not shown here), reflecting
the trivial value of RAB(1t= 0) observed in figure 11(a). Based on these observations,
it is concluded that TSBA experiences a low-frequency oscillation at a frequency of
St=0.075, and TSBB mirrors the same oscillation with a time delay of 1tUH/H=7.6.
In other words, there exists an oscillation between TSBA and TSBB at a frequency
of St = 0.075, and the phase difference between these two separation bubbles is
2πf1t≈ 1.1π.

3.4. Structures in the streamwise–spanwise plane
Pearson et al. (2013) measured the turbulent separation in front of an FFS. With their
measurement data in the x–y plane, they deduced that the dominant mechanism on the
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FIGURE 12. (Colour online) Instantaneous velocity fields at y/H = (a) 0.5 and (b) 1.1.
The dashed white line indicates the streamwise location of the leading edge of the step.
For clarity, every eighth vector is plotted.

separation is the transverse (spanwise) flow motion along the step, which is affected
by the coherent structures in the upstream flow. This deduction is examined with
our measurement in the streamwise–spanwise (x–z) planes at two different elevations
(planes S∗xz,j with j= 1, 2 and 3 in table 1).

Figure 12 shows instantaneous velocity fields at two different x–z plane
measurements. It needs to be pointed out that the streamwise mean velocity (U)
is always positive at these measurement planes. In other words, the instantaneous
reverse flows observed in figure 12 are due to the enlargement of separation bubbles
in front of the step. In the vicinity of regions of reverse flow, spanwise flow motions
are apparent. Particularly, vertical counter-rotating vortices are observed, and regions
of reverse flow are connected with upstream low-velocity regions.

To better reveal the coherent structures associated with the reverse flow, the LSE
approach is utilized. The reference point of LSE is chosen at x/H=−0.2, a position
slightly upstream of the leading edge to capture the spillover of separation. The
condition event used in LSE is a local maximum of reverse flow, i.e. u|x/H=−0.2 < 0
and u at the reference point is smaller than the surrounding eight points. This selected
condition event is inspired by Tomkins & Adrian (2003), who used a local minimum
u to detect the spanwise centre of low-velocity streaks in a turbulent boundary layer.

Figure 13 shows the LSE velocity fluctuation fields associated with reverse flows.
Evidently, the conditioned reverse flow occurs at the centre of two counter-rotating
vortices, and connects with a streamwise-elongated area of negatively valued u′. This
is similar to the structure of near-wall low-velocity streaks in a turbulent boundary
layer (Zhou et al. 1999; Tomkins & Adrian 2003; Hambleton et al. 2006). It is
also interesting to see in figure 13 that, as the step is approached, the spanwise
width of the area of negatively valued u′ becomes narrower. Consequently, the closer
counter-rotating vortices also become more efficient in pumping flow in the centre
backwards, where reverse flows eventually occur. The above analysis is consistent
with the conclusion by Pearson et al. (2013) that low-velocity streak structure gets
stronger as it approaches the step.

In view of the strong low-velocity structure near the leading edge, it is worthwhile
to further investigate the streamwise variation of length scales. To this end, two-point
autocorrelations of streamwise-fluctuating velocity (Ruu) are calculated with different
reference points, as shown in figure 14. As seen in figure 14(a,c), the plotted isopleths
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FIGURE 13. LSE velocity fluctuations based on the condition of local maximum reverse
flow at x/H=−0.2: (a) in the x–z plane at y/H= 0.5 and (b) in the x–z plane at y/H=
1.1. All vectors are normalized to be of unity length. For clarity, every eighth vector is
plotted.

of Ruu are well extended in the streamwise direction, and exhibit negative values with
sufficient displacement from the reference point in the spanwise direction. This pattern
is similar to that in TBL, indicating streamwise-elongated alternating low- and high-
velocity streak structures (Volina et al. 2009). By comparing figures 14(b) with 14(a),
and 14(d) with 14(c), it appears that, as the step is approached, the isopleths of Ruu
tend to be more clustered together in the spanwise direction. This is consistent with
the narrower low-velocity streaks near the leading edge observed in figure 13.

In figure 14(e, f ), the reference points are intentionally chosen slightly upstream and
downstream of the leading edge, respectively, to show the variation of structures in
the vicinity of the leading edge. It is evident that the structures passing the reference
point slightly upstream of the leading edge are mostly related to those in the upstream
locations. In contrast, the structures slightly behind the leading edge possess a trivial
correlation with the upstream locations. It appears that, at the leading edge, there
exists a strong destruction mechanism of the upstream coherent structures.

The temporal scales of the velocity fields are further examined in figure 15 using
the energy spectrum of streamwise-fluctuating velocity (Euu( f )) at different locations.
From figure 15(a), the energy held by the highest and lowest frequencies differs
by more than three orders of magnitude. This indicates that the current PIV system
well captures the entire frequency spectrum, and is indeed time-resolved. The energy
spectra in the upstream locations of the step exhibit a wide inertial subrange (featuring
the famous −5/3 slope, see Pope (2000)). This is consistent with the conventional
understanding that turbulence tends to be universally isotropic for small scales. As
for the energy spectrum directly above the leading edge, the −5/3 slope is absent
and the energy contents at high frequencies are apparently enhanced. This can be
attributed to the strong perturbation exerted by the leading edge that breaks the
small-scale isotropy. For the position downstream of the leading edge, the −5/3
slope quickly recovers, a further indication that the leading edge indeed induces
small-scale anisotropy.

The dominant frequencies of energy spectra are quantified in figure 15(b) using a
premultiplied scale. It is noted that the peak frequencies downstream of the leading
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FIGURE 14. Two-point autocorrelations of streamwise-fluctuating velocities with the
reference points chosen at (x/H, y/H) = (a) (−2.8, 0.5), (b) (−0.8, 0.5), (c) (−2.3, 1.1)
(d) (−0.3, 1.1), (e) (−0.15, 1.1) and ( f ) (0.3, 1.1). The dashed lines mark the position
of the leading edge of the step. Isopleths from 0.9 to −0.1 are plotted, and the interval
of adjacent isopleths is 0.1.

edge are higher than those upstream of the step. This is in good agreement with the
smaller length scales observed in figure 14 over the step. The peak frequency in the
upstream turbulent boundary layer is around St = 0.06–0.08, which is the frequency
commonly associated with streamwise-elongated alternating high- and low-velocity
streaks. If we assume a convective velocity as 0.8U∞ = 0.33 m s−1, St = 0.06–0.08
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FIGURE 15. Frequency spectra of streamwise velocity fluctuations at different locations.
For clarity, in (b), the premultiplied spectra of points at (x/H, y/H) = (−2.3, 1.1) and
(−2.8, 0.5) use the scale on the right, and the marked dashed line is at St= 0.075.

corresponds to structures with streamwise lengths of 430–580 mm ≈ 3–4δ. Monty
et al. (2009) showed that at y/δ > 0.265 (corresponding to y/H = 1.27 in our case)
the premultiplied energy spectra of u fluctuations in TBL peak around a wavelength
of 3δ. This particular wavelength is also close to the so-called large-scale motion
(Adrian et al. 2000), with a characteristic wavelength of 2–3δ. Overall, the dominant
frequency of St = 0.06–0.08, observed in figure 15(b) for the upstream condition, is
consistent with that in a canonical TBL.

3.5. Turbulent separation bubble breakup events
In § 3.3, we analyse the unsteady characteristics of reverse flows without consideration
of their discontinuity in space. In this section, we further investigate TSBA from the
perspective of separation bubble breakup (SBBU) events. Figure 16 shows a cluster
of reverse flows at a different time from figure 8. Figure 16 reveals a flow pattern
that is in sharp contrast to figure 8(a). Specifically, in figure 8(a), most of the reverse
flow above the step is clearly clustered in a continuous region, whereas figure 16
exhibits a noticeable gap around x/H = 1.6 separating two concentrated areas (see
coloured areas) of reverse flow. In other words, two separation bubbles occur at
the particular instant shown in figure 16. To the best knowledge of the authors,
the unsteady characteristics and the underlying physical mechanisms associated with
SBBU events have not been reported in the existing literature.

In order to further study the SBBU events, a definitive/quantitative detection of
multiple separation bubbles is needed. To this end, the following steps are performed
for each snapshot:

Step 1. Grids of negative streamwise velocity u are marked.
Step 2. Preliminary separation bubbles are identified by grouping all the connected

(adjacent) grids of negative u.
Step 3. Find the minimal distance of every two separation bubbles. If this distance

is smaller than a predefined length db, combine these two separation bubbles
into one separation bubble.

Step 4. Repeat Step 3 until the number of separation bubbles does not change.
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FIGURE 16. (Colour online) Instantaneous areas of reverse flow. Solid isopleth is at u= 0.
Areas in blue and red colours are two detected separation bubbles above the step, with the
x coordinates of centroids marked as Cx1 and Cx2, respectively. The pre-defined minimal
distance of different separation bubbles is marked as db for reference.

In figures 8(a) and 16, small areas of reverse flow can exist near the relatively
larger concentrated areas of reverse flow. This can be caused by two-dimensional
slicing (due to the planar PIV used in the present study) of irregular surfaces of
three-dimensional volumes of reverse flow. The value of db in Step 3 should not
be too small or too large. Too small a value of db (say db = 0) would exclude
the possibility of capturing the irregular surfaces of three-dimensional volumes of
reverse flow, while too large a value of db would include too much distortion of
small-scale randomness. An extremely large db (say db = 2.3H) would group all
areas of reverse flow above the step into one bubble and ignore the existence of
multiple separation bubbles, which is equivalent to the approach used by Pearson
et al. (2013). Here, we choose db = 0.065H (6 vector spacing), because it shows a
reasonable balance between noise and genuine SBBU. We performed a sensitivity
analysis by trying different values of db: slightly earlier or delayed time of SBBU
was predicted, however, minor differences in the conditionally averaged results were
observed. We also choose to discard bubbles of reverse flow with less than 20 % of
the maximum area. This is to further avoid the distortion from small bubbles. We
have tried to use 10 % as the threshold but the results were not significantly altered,
which would indicate that the small random bubbles of reverse flow are typically
much smaller than the ‘genuine’ large-scale separation bubbles. With the procedures
described above, the two areas of reverse flow are detected and marked in figure 16.

With the procedure described above to detect multiple separation bubbles, it is
observed that the probabilities of one and two separation bubble(s) are 81.5 % and
15.2 %, respectively. It is only for 3.3 % of the time that more than two bubbles are
detected, which could be caused by the imperfection of our detection approach or
instances when the separation bubbles actually break into more than two pieces. In
this paper, we choose to limit our attention to the cases with one or two separation
bubbles. For convenience, the separation bubble closer to the leading edge is named
as TSBA1, and that closer to the trailing edge is represented as TSBA2. Properties
of TSBA1 and TSBA2 are denoted using subscripts of (·)1 and (·)2, respectively.
For example, AA1 and AA2 denote the areas of continuous reverse flow closer to the
leading edge and trailing edge, respectively.

Figure 17 shows the sample time variation of streamwise centroids and areas of
reverse flow. From the figures, the turbulent separation bubbles alternate between
the single- and dual-bubble phases and show a quasi-periodic pattern. As shown
in figure 18, the premultiplied spectrum of the number of bubbles of reverse flow
possesses a sharp peak at the frequency St= 0.17.
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FIGURE 17. Time variation of (a) streamwise centroids and (b) areas of bubbles of reverse
flow. Solid circles are for the single-bubble phase. Hollow squares and hollow triangles
denote centroids or areas of reverse flow in TSBA1 and TSBA2, respectively. For clarity,
every tenth measurement point is plotted here.

10110010-1

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

St = 0.17
f = 1.6 Hz

fH/UH

fƒ
(f

)

FIGURE 18. Premultiplied spectra of number of separation bubbles over the step.

To provide further insight into the quasi-periodic breakup of the separation bubbles,
we calculate the conditionally averaged areas and streamwise centroids of separation
bubbles of reverse flow near SBBU events, and the results are shown in figure 19.
For this analysis, the breakup event is fixed at t= tb, and the parameters (here Cxi and
AAi) of separation bubbles in the adjacent time intervals are averaged until the last
or next breakup event is reached (similar to (2.8) for the VITA approach). As such,
figure 19 can be understood as an averaged evolution path of bubbles of reverse flow
within a period of SBBU. In accordance with figure 18, the duration of each cycle of
alternating single- and dual-bubble phases is tUH/H = 1/0.17≈ 5.9. From figure 19,
for the majority of the period of SBBU, the turbulent separation on top of the step
is retained in the single-bubble phase, and the dual-bubble phase only occupies a
very short time interval of the entire period. As seen in figure 19(b), right before
the breakup events occur ((t − tb)UH/H ∈ [−1, 0]), the area with a single bubble of
reverse flow shrinks drastically. Furthermore, after the SBBU event, the area of the
bubble of reverse flow closer to the leading edge (marked as hollow squares) clearly
grows to that of the single bubble around (t − tb)UH/H = −5.5. In figure 19(a),
the centroids of the bubbles of reverse flow closer to the trailing edge (marked as
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FIGURE 19. Conditional averaged (a) streamwise centroids 〈Cxi〉 and (b) areas of reverse
flow 〈AAi〉 during one period of SBBU. The single separation bubble breaks up at time
t= tb. For clarity, every fourth point is plotted here. Refer to figure 17 for the legend.

hollow triangles) vary linearly with time and the slope is almost exactly unity. With
the observations in figures 19(a,b), we are able to describe the process within one
period of SBBU event as follows. A large single turbulent separation bubble exists
above the step, but somehow (as will be further explored in the next section) it
shrinks rapidly in size, and eventually breaks up into two separation bubbles. After
that, the separation bubble closer to the leading edge enlarges in size while the
separation bubble closer to the trailing edge is convected downstream at a speed of
UH . Eventually, the downstream separation bubble is convected farther away from
the step, so that the separation bubble closer to the leading edge becomes the only
separation bubble over the step, and the above cycle repeats.

3.6. POD analysis
In this section, POD is employed to extract the dominant coherent structures pertinent
to the unsteadiness of TSBA. To this end, we choose to conduct the POD analysis
in the region of x/H × y/H ∈ [0.04, 2.24] × [1.02, 1.90]. The implementation and
some necessary concepts/notations of POD have been introduced in § 2.3.3. Although
not shown here, POD has been conducted with different sample sizes to perform a
convergence test. The results indicate that a total of 32 000 samples is sufficient to
ensure that the POD results are fully converged. Energy distributions amongst the
first eighty modes and velocity fields of the first four modes are plotted in figures 20
and 21, respectively. The first four modes contribute 28.3 %, 9.4 %, 5.9 % and 3.7 %
(47.3 % in total), respectively, to the total TKE, indicating the dominance of these
four modes, particularly the first two modes. The first four modes seem to exhibit a
universal behaviour. Thacker et al. (2013) performed POD for separation flow induced
by an Ahmed body. Their first four modes contributed 28.0 %, 9.5 %, 6.0 % and 3.5 %,
respectively, to the total TKE. Mohammed-Taifour & Weiss (2016) also conducted
POD analysis for an adverse-pressure-gradient-induced turbulent separation flow. The
percentages of the first four modes to the total TKE are 31 %, 9 %, 6 % and 4 %,
respectively. In spite of significant differences in geometries and upstream conditions,
Thacker et al. (2013) and Mohammed-Taifour & Weiss (2016) showed similar energy
convergence of the first four POD modes to ours. Furthermore, the four modes plotted
in figure 21 are qualitatively similar to those in Thacker et al. (2013) and Iftekhar &
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FIGURE 20. Energy distributions among the first 80 POD modes.
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FIGURE 21. (Colour online) The first four POD modes for the rectangular region of x/H∈
[0.04,2.24] and y/H ∈[1.02,1.90]. The superimposed solid and dashed isopleths are Ψ =0
and γ = 0.5, respectively. For clarity, every tenth vector is plotted.

Agelin-Chaab (2016) for different turbulent separations. The similarity between our
POD modes and those of different geometries and upstream conditions indicates that
POD is capable of capturing some universal features of turbulent separation bubbles.

3.6.1. The first POD mode
In the literature, the first POD mode has been attributed to the low-frequency

flapping motion of separations induced by a shock wave (Humble, Scarano & van
Oudheusden 2009), geometry (Thacker et al. 2013) and adverse pressure gradient
(Mohammed-Taifour & Weiss 2016). This interesting observation is further examined
in our test case. Figure 22 compares the time sequences of the area of TSBA (AA)
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FIGURE 23. Premultiplied frequency spectra ( fφ( j)( f ) with j= 1 or 2) of coefficients of
the first two POD modes.

and the coefficients of the first mode (a(1)). The synchronization between these two
temporal signals is remarkable. Furthermore, figure 23 shows that the premultiplied
frequency spectrum of a(1) possesses a sharp peak at St = 0.070, almost identical to
the dominant frequency (St = 0.075) of AA observed in figure 10(b). Based on the
above observations, the dominant frequency of TSBA at St= 0.070 is closely related
to the first POD mode. Furthermore, as seen in figure 21(a), streamwise fluctuation
of the first POD mode (u(1)) is of uniform sign over the entire mean separation
bubble. Consequently, depending on the signs of its coefficient, the first POD mode
represents a structure that can effectively enlarge or shrink the TBSA. Therefore, the
dominant unsteady characteristic of TSBA revealed in figure 10(b) is a quasi-periodic
enlargement/shrinkage flapping motion of turbulent separation at a low frequency of
St= 0.075.

In addition to the analysis based on the first POD mode, we also investigate
structures associated with different sized TSBA from a different perspective. Figure 24
shows the probability density function (PDF) and cumulative density function (CDF)
of AA. It is interesting to see that the PDF of AA does not decay to zero at AA = 0.
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FIGURE 25. (Colour online) Conditionally averaged streamlines (shown as green
streamlines) and velocity fluctuations (shown as vectors) based on different sizes of AA:
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∈ [0.037, 0.074] and (b) AA/H2
∈ [0.482, 0.519]. Note that the contour levels

are different in these two panels. For clarity, every tenth vector is plotted.

This raises the possibility that turbulent flow over the step is completely (at least
to the measurement accuracy) attached to the top surface. Furthermore, as indicated
by the right tail of the PDF, AA can be even larger than 2AA. Figure 25 shows
the conditionally averaged streamlines and velocity fluctuation fields, based on the
conditions of specified ranges of AA. As such, figure 25(a,b) represents the scenarios
of shrinkage and enlargement of TSBA, respectively. The patterns of the conditionally
averaged fluctuating velocity fields (represented by vectors) in figure 25(a,b) are
qualitatively similar to the first POD mode shown in figure 21(a), albeit different
in sign. This is consistent with our previous discussion that low-frequency flapping
motion of TSBA reflects periodic enlargement/shrinkage of the separation bubble, and
is intimately associated with the first POD mode.

As seen in figure 21(a), negatively valued a(1) (coefficient of the first POD mode)
most likely occurs in instances when the TSBA shrinks, and pronounced sweep
(Q4 featuring u′ > 0 and v′ < 0) events in the region above and upstream (see
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the top-left corner area) of the mean separation bubble. This is consistent with the
conditionally averaged fluctuating velocity field shown in figure 25(a). With the same
logic, positively valued a(1) leads to Q2 events in the upstream location of TSBA,
which is also consistent with observation in figure 25(b). Overall, the shrinkage
and enlargement of TSBA are also accompanied by upstream Q4 and Q2 events,
respectively. This important conclusion is also consistent with the observation that
the flapping motion of the TSBA occurs at a frequency (St= 0.075) very close to the
dominant frequency of the upstream streamwise velocity fluctuation (see figures 15b
and 10b).

In the literature, there is a debate on the mechanism of the flapping motion of TSB.
Ganapathisubramani, Longmire & Marusic (2003), Ganapathisubramani, Clemens &
Dolling (2007, 2009) attributed the low-frequency unsteadiness of a shock-induced
TSB to the oncoming elongated superstructures, which feature alternating positive
and negative u′ (Adrian et al. 2000). Similarly, Pearson et al. (2013) linked the
enlargement of TSB in front of an FFS to oncoming low-velocity regions elongated
in the streamwise direction by 2δ to 12δ. For their adverse-pressure-gradient-induced
TSB, Mohammed-Taifour & Weiss (2016) remarked that their observed characteristic
frequencies are ‘smaller than the high-frequency turbulent fluctuation’, and therefore
void the possibility of oncoming elongated superstructure causing the flapping motion
of TSB. They proposed two possible mechanisms to explain the low-frequency
flapping motion: side wall effects and inherent unsteadiness of the TSB. These
two mechanisms are not applicable in our case. The aspect ratio of the TSB (ratio
between spanwise width and TSB height) in Mohammed-Taifour & Weiss (2016) was
approximately 6, whereas that in our case is more than 100 (our TSB height is lower
than 0.2H in figure 4, and the spanwise width of the step is 20H). Therefore, it is
highly unlikely that our x–y plane measurement in the channel centre is affected by
side walls.

It should be noted that although superstructures populated in the log region of the
TBL can extend up to 20δ in the streamwise direction, their strong meandering nature
significantly shortens their characteristic length scales inferred from premultiplied
energy spectra or two-point correlations (Hutchins & Marusic 2007). Since PIV
measurement in the streamwise–vertical plane cannot capture the spanwise-meandering
nature of superstructures, it is more reasonable to reference the characteristic length
scales of TBL deduced from energy spectra or two-point correlations in the literature
for comparison. Adrian et al. (2000), Ganapathisubramani et al. (2003), Tomkins &
Adrian (2003), Ganapathisubramani et al. (2005) and Monty et al. (2009) concluded
that streamwise-elongated low-velocity regions are surrounded by packets of vortical
structures, and can extend between 2δ and 3δ in length. Assuming the convective
velocity in the TBL is approximately 0.8U∞, the associated frequency of these
streamwise-elongated structure is estimated to be St = 0.08–0.12. This estimation is
consistent with the observation from figure 15(b) that the streamwise fluctuation in the
upstream TBL possesses a peak frequency around St= 0.075 (see the dotted vertical
line). Moreover, this dominant frequency (St = 0.075) is also close to the frequency
of flapping motion observed in figures 10(b) and 23, i.e. St = 0.070–0.075. It is
further noted that the frequency of the flapping motion of TSBA is quite different to
the separation over a blunt body with a laminar upstream condition. With a uniform
upstream condition, Kiya & Sasaki (1983) measured the enlargement/shrinkage of
a bubble over a blunt body to be at a frequency of 0.2U∞/xR (where xR denotes
the reattachment length). In contrast, the frequency of flapping motion observed
in the present study (St = 0.075) corresponds to a much (more than 30 times)
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mode 1 (a(1)) and upstream u′ at (x/H, y/H)= (−2.3, 1.1). Note that VITA of A′A and a(1)
are inverted to facilitate the comparison with VITA of u′. Also note that all signals are pre-
filtered to remove insignificant (trivial energy levels) fluctuations at very high frequencies.

larger value of 6.1U∞/xR. This indicates that the upstream perturbation overcomes
the intrinsic frequency of TSBA. Furthermore, by using the POD analysis and
conditional averaging, it is observed that the enlarged and shrunken TSBA is related
to low- and high-velocity regions covering the entire area of the mean separation
bubble. Thus, we concluded that the low-frequency flapping motion of TSBA is
due to oncoming streamwise-elongated regions of alternating positive and negative
streamwise-fluctuating velocity.

With the above analysis, it is intuitive to imagine the step as a ‘probe’ in a TBL
and the size of TBSA is a direct measurement of the oncoming turbulence structures.
Specifically, an enlarged and shrunken TBSA would indicate upstream Q2 and Q4
events, respectively. Inspired by this analogy, it is of interest to further examine
TBSA in terms of probe-like characteristics. A straightforward and (probably the
most) appropriate examination is one based on the VITA events of TBL. VITA was
originally proposed by Blackwelder & Kaplan (1976) as a conditional averaging
technique for temporal signals acquired using hot-wires in TBL. Since then, VITA
has been primarily used to detect the sudden switching between Q2 and Q4 events
(or turbulent burst events), which is now commonly termed a VITA event (Adrian
et al. 2000). It is now generally accepted that a VITA event occurs when a hairpin
vortex structure passes a probe, a Q2 event suddenly switches to a Q4 event near the
stagnation line below the hairpin head (Adrian et al. 2000) (also see figure 3).

The VITA technique is applied to three temporal signals: −A′A, −a(1) and upstream
u′ at (x/H, y/H) = (−2.3, 1.1), and the results are shown in figure 26. In the
figure, note the negative signs for −A′A and −a(1); this is because d(−A′A)/dt > 0
and d(−a(1))/dt > 0 are associated with the switching from Q2 to Q4 events,
and so is du′/dt > 0. A low-pass filter is pre-applied to the signals to remove
spurious fluctuations associated with St > 1.5 because only the low-frequency signal
around St = 0.075 is of primary interest. In figure 26, the signal is averaged over
1tUH/H ∈ [−7, 7], a time interval associated with the period of St = 0.075, to
visualize the variation during the period of the dominant frequency. The parameter T
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FIGURE 27. (Colour online) Conditionally averaged streamlines and streamwise-fluctuating
velocity based on the condition of Cx2/H ∈ [1.47, 1.56]. Time is shifted by 1tUH/H= (a)
−0.38, (b) −0.19, (c) 0.00 and (d) +0.19, respectively.

in (2.7) was varied from 3.5H/UH to 0.7H/UH , and the results were not significantly
affected. The results shown in figure 26 are from T = 0.7H/UH in (2.7).

From figure 26, the variations of −〈A′A〉 and −〈a(1)〉 with 1t are similar (e.g. they
both peak around the same 1t and possess similar slopes around event points). This
again suggests a direct connection between areas of TSBA and the first POD mode.
Furthermore, the localized strong events (quantified by the variance of (2.7)) of TSBA
is evidently associated with a swift shrinkage of the separation bubble, as indicated
by the observation that −〈A′A〉 changes from negative (corresponding to larger TSBA)
to positive (corresponding to smaller TSBA) values very quickly around VITA events
(1t = 0). As indicated by −〈a(1)〉, the swift shrinkage of TSB is associated with a
sudden switching from Q2 to Q4 events in the upstream condition. It is also seen that
the slope of 〈u′〉 around event point (1t= 0) is apparently steeper than that of −〈A′A〉
and −〈a(1)〉. This can be explained as follows: 〈u′〉 is a point-wise measurement and
can respond (switch from Q2 to Q4 events) immediately as the stagnation line shown
figure 3 passes the reference point. In contrast, both −〈A′A〉 and −〈a(1)〉 represent
measurements over a finite area, therefore, it takes a relatively longer time for the
flow in the conditioned area to respond. Overall, TSBA indeed shows a probe-like
behaviour: its enlargement and shrinkage are intimately related to the upstream Q2
and Q4 events, respectively, albeit with a lag during switching.

3.6.2. The second POD mode
From figure 23, the second POD mode possesses a dominant frequency at

St = 0.155. This frequency is close to the subdominant frequency (St = 0.141) of
TSBA observed in figure 10(b) and the dominant frequency (St = 0.17) of SBBU
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observed in figure 18. This interesting observation prompts us to further examine
the possibility of intimate connections between SBBU events and the second POD
mode. To this end, conditionally averaged flow fields are calculated based on the
condition of Cx2/H ∈ [1.47, 1.56], as shown in figure 27(c). This particular range
of Cx2/H is chosen here because it is close to the averaged position of the second
separation bubble near the breakup event (see figure 19a). The samples for the
conditional average in figure 27(c) are further shifted by different time intervals,
and plotted in figure 27 to illustrate a typical evolution of an SBBU event. From the
conditionally averaged streamlines shown in figure 27(c), it is clear that two separation
bubbles exist, as imposed by the averaging condition. This also demonstrates the
effectiveness of the proposed procedure to identify multiple separation bubbles
in § 3.5. In figure 27(a), a single separation bubble is evident, and is apparently
squeezed by an area of positive u′ around separating streamlines. This is consistent
with the observation in figure 19(b) that prior to the SBBU event, the area of a single
separation bubble shrinks. As time shifts to figure 27(b), two separation bubbles are
detached from each other, and the positive u′ along separating streamlines is enhanced.
As time further evolves from figures 27(b) to 27(d), the second separation bubble
is convected towards the trailing edge. This is consistent with the observation in
figure 19(a) that the second separation bubble moves towards the trailing edge after
formation.

It is also interesting to see in figure 27 that the sudden appearance of strong positive
u′ over the step is associated with negative u′ in the upstream location. This pattern
is qualitatively similar to the second POD mode shown in figure 21(b). Furthermore,
in accordance with the observation that the second POD mode (figure 23) and SBBU
(figure 18) both possess a dominant frequency around the subdominant peak of TSBA
(figure 10b) around St= 0.14–0.17, we conclude that the second POD mode is indeed
linked to the SBBU events.

From figure 21(a), the largest magnitudes of u′ in the first POD mode occur in an
area emanating from the leading edge. This pattern is consistent with the distribution
of Reynolds stress u′u′ shown in figure 6(a), reflecting the dominance of the first POD
mode. In contrast, the second POD mode possesses weak u′ closer to the leading
edge, but exhibits strong u′ in an area along separating streamlines in the rear part
of TSBA. This pattern is very similar to the distribution of u′u′ over an FFS with
an upstream laminar flow (Kiya & Sasaki 1983; Djilali & Gartshore 1991), and the
most unstable mode of a separation bubble over an FFS predicted by linear stability
analysis (Alam & Sandham 2000; Lanzerstorfer & Kuhlmann 2012). Yang & Voke
(2001) studied the transition of separation bubble over a blunt body with an upstream
uniform flow, and also showed that large (comparable to the mean separation bubble)
circular bubbles may form and shed downstream, which is similar to the observation
in figure 27. Based on these analyses, we further conclude that the second POD mode
and SBBU events indeed reflect the intrinsic instability of TSBA itself.

Lanzerstorfer & Kuhlmann (2012) shows that production of TKE in the region
along separating streamlines in the rear part of separation bubble is mostly due to
the classical lift-up process by streamwise-elongated counter-rotating vortices (SCV)
(Zhou et al. 1999). On the other hand, it is commonly accepted that low-velocity
region in TBL is induced by packets of hairpin structures, also featuring SCV in the
near-wall region (Adrian et al. 2000). For the current deep TBL, it is expected that
SCV from the oncoming TBL at an elevation higher than the step height is quite
popular. As such, SCV from the oncoming TBL can easily trigger SCV associated
with the unstable mode of separation bubble over the step. This analysis is also

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

96
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.962


1026 X. Fang and M. F. Tachie

compatible with the idealized model of hairpin packets (Zhou et al. 1999; Adrian
et al. 2000), as explained in the following. In hairpin packets, multiple hairpin
structures align in the streamwise direction and generate elongated zones of nearly
uniform low streamwise velocity. As hairpin packets pass the step, the separation
bubble becomes larger due to a momentum deficit induced by low-velocity streaks,
and breaks up as discrete hairpin structure triggers the inherent unstable mode. This
also explains the reason why the flapping motion occurs at a lower frequency than
the separation bubble breakup.

With the above analyses, the SBBU event is a manifestation of the intrinsic
instability near the rear part of TSBA, even with the upstream turbulent flow condition.
This is not surprising. Marquillie, Laval & Dolganov (2008) performed a DNS
investigation for a turbulent plane channel flow with a smooth bump on the bottom
wall. They observed that vortical structures were more clustered in the rear part of
the separation bubble. In their follow-up research using a linear stability analysis,
Marquillie, Ehrenstein & Laval (2011) further showed that streamwise-elongated
streaky structures could induce hairpin-type structures in the rear part of the separation
bubble. The current observed SBBU event can be a manifestation of energetic vortical
structures generated near the reattachment point moving downstream. This is similar
to the observation by Na & Moin (1998) in a TBL separated due to an adverse
pressure gradient that in the shear layer bounding the separation bubble, vortical
structures grew, agglomerated and then convected downstream.

The superposition of low-frequency flapping motion and high-frequency unstable
mode of TSBA described above may also explain the destruction mechanism of
streamwise coherence near the leading edge deduced from figure 14(e, f ). The
first POD mode (equivalently, the flapping motion) tends to correlate (quantified
by positively valued Ruu) u′ over the step with that in front of the leading edge.
However, the SBBU event (see figures 21(b) and 27) of TSBA features a pattern
where u′ switches signs along a boundary emanating from the leading edge of the
step. This pattern tends to cause negatively valued Ruu over the step with the reference
point fixed in front of the leading edge, and vice versa. Therefore, the superposition
of the first two POD modes can lead to a very weak correlation (Ruu) between
structures upstream and downstream of the leading edge, as shown in figure 14(e, f ).

4. Conclusions

Turbulent separations over a forward–backward-facing step were investigated using
a time-resolved particle image velocimetry system. The thickness of the upstream
turbulent boundary layer is significantly larger than the step height. This induces
strong interactions between upstream vortical structures with the step. The streamwise
extent of the step was chosen to be large enough to allow reattachment of the
mean flow over the step, yet small enough to permit interactions between turbulent
separation bubble on top of the step and that behind the step, which are denoted as
TSBA and TSBB, respectively.

The shear layers emanating from the leading and trailing edges of the step merge
into a single shear layer at a distance sufficiently behind the step (x/H > 3.5).
The strongest turbulent levels appear near the leading edge of the step, and decay
in the downstream direction. This observation is in sharp contrast to previous
experimental investigations of a separation bubble with laminar upstream conditions,
where transition to turbulence occurs only in the rear part of the separation bubble.
Furthermore, due to misalignment between the predefined streamwise direction and
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local mean streamlines, a strong positively valued Reynolds shear stress (i.e. u′v′> 0)
appears near the leading edge, which is at variance with the Boussinesq eddy-viscosity
assumption. However, with the curvilinear coordinate system along mean streamlines,
there exist regions inside or above the mean separation bubble within which the
signs of the transformed Reynolds shear stress and mean strain rate are the same and
therefore exhibit inconsistency with the Prandtl’s mixing-length hypothesis.

Through a spectral analysis, it is revealed that TSBA exhibits a low-frequency
flapping motion at St = 0.075, featuring a quasi-periodic enlargement/shrinkage of
separation bubble. Moreover, the dominant frequency of TSBB is at an even lower
frequency of St ≈ 0.03, and a subdominant frequency of TSBB is induced by the
interaction between TSBA and TSBB. Essentially, TSBB mirrors the same flapping
motion of TSBA at the same frequency (St = 0.075), but with a distinct time delay
of 7.6H/UH .

Measurements in the streamwise–spanwise planes indicate that the spillover (vertical
enlargement of separation bubble in front of the step) of reverse flow from the front
of the step is typically associated with a pair of vertical counter-rotating vortices, and
a streamwise-elongated low-velocity streak extending in the upstream direction. This
confirms and clarifies the speculation by Pearson et al. (2013) that the enlargement
and shrinkage of a separation bubble in front of an FFS is related to the transverse
flow motion, which is influenced by upstream turbulence structures. Furthermore, there
exists a strong destruction mechanism near the leading edge which in turn severely
reduces the upstream streamwise coherence (quantified by two-point autocorrelation)
to be extended over the step. This destruction mechanism is identified as the intrinsic
unstable mode of TSBA.

The dominant structures underlying the unsteady characteristics of TSBA are
further studied using proper orthogonal decomposition (POD) and various conditional
averaging techniques. The results indicate that the first and second POD modes
are associated with low-frequency flapping motion and higher-frequency inherent
instability of TSBA, respectively. Meanwhile, the flapping motion of TSBA is
associated with the enlargement and shrinkage of the separation bubble induced
by oncoming elongated regions with a negative and positive streamwise-fluctuating
velocity, respectively. The inherent instability of TSBA is accompanied by the sudden
occurrence of an area of strong positive streamwise-fluctuating velocity over the
step, and leads to separation bubble breakup. As two separation bubbles appear over
the step, the separation bubble closer to the trailing edge of the step is convected
downstream at a velocity of UH .
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