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Plumes occur in many natural and industrial settings, such as chimney smoke, volcanic
eruptions and deep water oil spills. A plume function, Γ , is used to characterize
plumes and jets. The far-field behaviour of these flows has been studied in great detail
while the near-field behaviour has not quite received the same attention. We examine
near-field phenomena such as radial constriction, termed necking, and vortex structure
formations with new high resolution direct numerical simulations. Four lazy plumes
with increasing values of the source plume parameter, Γ0, are simulated. We study
the evolution of entrainment and the plume function. The original assumptions, that
Reynolds stresses dominate viscous shear stresses, do not hold for lazy plumes in the
near field. Due to this, a deviation from self-similarity occurs initially and is corrected
by a large entrainment coefficient caused by vortex stretching and compression. After
correcting for the virtual origin, comparison between theory and simulations shows
a monotonic decay of Γ towards pure plume behaviour. The entrainment coefficient
asymptotes to a widely accepted constant value for plumes.

Key words: convection, plumes/thermals, shear layers

1. Introduction

Turbulent plumes often arise in industrial applications and environmental studies.
Examples include smoke rising from a chimney, volcanic eruptions and deep water
oil spills.

Some of the earliest analytical work on turbulent plumes was presented in a series
of seminal papers by Morton, Taylor & Turner (1956), Morton (1959) and Morton
& Middleton (1973) who examined plumes in uniform and stratified environments. In
these studies the authors made the assumption that the entrainment of ambient fluid
is proportional to the axial velocity of the plume, ur = αuz, where α is the so called
entrainment coefficient. By making this assumption Morton et al. (1956) were able to
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Evolution of plume function and entrainment in lazy plumes 737

determine the axial velocity and width of a plume at a given axial distance from the
source. Morton (1959) introduced the non-dimensional plume source parameter, Γ0,
which relates the relative strengths of the mass, momentum and buoyancy fluxes at
the source of the plume. He compared the behaviour of pure plumes where Γ0= 1, to
forced plumes where, Γ0< 1. Morton & Middleton (1973) called plumes with a plume
function greater than one, hot lazy plumes or distributed plumes, as Γ0 > 1 indicates
that buoyancy dominates momentum at the source. More recently, such plumes have
been referred to simply as lazy plumes.

Later researchers such as Caulfield (1991) and Hunt & Kaye (2005) extended this
early work by examining how Γ evolves as a function of axial distance from the
source, where

Γ (z̃)=
5Q̃(z̃)2F̃(z̃)

4α(M̃(z̃))5/2
, (1.1)

and Q̃, F̃ and M̃ are the respective dimensional mass flux, buoyancy flux and
momentum flux. Unlike Γ0, Γ (z̃) is a function of z and here we will refer to Γ (z̃)
as the plume function and Γ0 as the plume source parameter. Here we follow Hunt
& Kaye (2005) and define the entrainment coefficient as

α =

d
dz̃

∫
∞

0
ũzr̃ dr̃

2
[∫

∞

0
ũ2

z r̃ dr̃
]1/2 , (1.2)

where integration is in the radial coordinate direction, r. Their definition is related
to the definition by Morton, Taylor and Turner, who assumed a top-hat profile, as
α = αMTT/

√
2. Mass, momentum and buoyancy fluxes are defined as,

J̃Q(z̃)= 2π

∫
∞

0
ũzr̃ dr̃, (1.3)

J̃M(z̃)= 2π

∫
∞

0
ũ2

z r̃ dr̃, (1.4)

and

J̃B(z̃)= 2π

∫
∞

0
ũzφ̃r̃ dr̃ (1.5)

respectively, where φ̃ is the dimensional buoyancy. Dimensional quantities are
represented with a tilde and dimensionless quantities without one. In this study,
as in Hunt & Kaye (2001), we will use the quantities F̃ = 2J̃B/π, M̃ = 2J̃M/π and
Q̃= J̃Q/π.

It is known that in extremely lazy plumes, where Γ0� 1, the axial velocity initially
accelerates and the plume width initially narrows near the plume source, before
decelerating and widening in the far field. Caulfield (1991) showed analytically that
this necking, or constricting of the plume radius, will occur when Γ (z̃) = 2.5 and
that the flow will reach its maximum axial velocity when Γ (z̃)= 1.25. Hunt & Kaye
(2005) reformulated the equations of Morton et al. (1956) (from here on referred to as
MTT) in terms of the plume function, Γ . Further, they derived approximate analytic
formulas for Γ as a function of non-dimensional axial distance. Their formulas are
valid for very lazy plumes where Γ0 is very large.

It is generally expected for Γ (z̃) to monotonically decrease to a value of 1 as
axial distance increases. However in a direct numerical simulation (DNS) of a purely
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convective plume, Γ0=∞, carried out by Taub et al. (2015) and a Reynolds-averaged
Navier–Stokes (RANS) simulation conducted by Hargreaves, Scase & Evans (2012), it
was found that Γ initially decreased to near zero then increased to a value greater than
one, before beginning to monotonically approach the value of 1. A possible source for
this behaviour is the assumption that the entrainment process is dependent on axial
velocity is not valid near the source (Pham et al. 2006; Taub et al. 2015).

If Γ (z̃) does not monotonically decrease as expected, then other behaviour such as
where necking and maximum axial velocity occur may also be called into question.
In this study we attempt to address such questions by performing a series of direct
numerical simulations of lazy plumes with varying values of Γ0. The evolution of
properties such as maximum axial velocity, plume width, entrainment coefficient and
Γ as functions of axial distance will be examined. The value of Γ at which the
various plumes achieve their maximum axial velocity and narrowest width is compared
to the theoretical values predicted by Caulfield (1991) and the evolution of Γ (z̃) is
compared to that of the analytic solution predicted by Hunt & Kaye (2005). Further,
the effect that plume laziness has on entrainment is explored. The simulation results
for the lazy plumes are used to examine the recent energy consistent entrainment
model of van Reeuwijk & Craske (2015).

We begin in section § 2 by describing our non-dimensionalization, numerical
technique and other assumptions we have made in this study. In section § 3 we will
present our results and compare them to those expected from analytical theory. In
our final section, § 4, we will discuss the repercussions of our findings.

2. Methodology
2.1. Flow model

We assume that the flow emanates either from a circular pipe or perhaps a heated
plate of diameter D̃. Fluid exiting the circular pipe or heated by the circular plate
entrains ambient fluid above. We have limited our analysis to consider only plumes
where variations in density are small compared to ambient density and thus use the
Boussinesq approximation. Fluid properties, such as kinematic viscosity, ν̃, thermal
diffusivity, k̃, far-field ambient fluid density, ρ̃a and gravitational acceleration, g̃ are
considered constant.

To non-dimensionalize the governing equations, the proper scaling of velocity in
the near-source region should be based on the dominant flux at the inlet. For a pure
jet, the dominant flux is momentum and the proper velocity scale is ŨI , which is
the average inlet velocity. For pure and lazy plumes, the dominant flux is buoyancy.
An infinitely lazy plume, by definition, has UI = 0, and hence must be scaled by√

g̃D̃(ρ̃a − ρ̃I)/ρ̃a, where ρ̃I is the average density of the source fluid at inlet. For
forced, pure and lazy plumes with ŨI not identically zero, either scaling can be used
but it is more practical to use the scaling that corresponds to the dominant flux.

We non-dimensionalize the governing equations with plume inlet diameter D̃ as the

length scale, the ambient density ρ̃a as the density scale and
√

g̃D̃(ρ̃a − ρ̃I)/ρ̃a as the
velocity scale. We define the non-dimensional density perturbation as φ= (ρ̃a− ρ̃)/ρ̃a.
With the above non-dimensionalization, we obtain the dimensionless Boussinesq
governing equations as,

∇ · u= 0, (2.1)
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∂u
∂t
+ u · ∇u=−∇p+

1
√

Gr
∇

2u+ φk̂, (2.2)

∂φ

∂t
+ u · ∇φ =

1
√

GrPr
∇

2φ, (2.3)

where k̂ is the unit vector in the vertical direction. The dimensionless parameters
appearing in the above equation are the Grashof number (Gr) and the Prandtl number
(Pr), defined as:

Gr=
(ρ̃a − ρ̃I) g̃D̃3

ρ̃aν̃2
, Pr=

ν̃

α̃
. (2.4a,b)

The computational domain is a rectangular region with non-dimensional length,
width and height of Lx, Ly and Lz respectively. The origin of the Cartesian coordinates,
x, y and z, is centred at the bottom of the rectangular box. The gravitational
acceleration acting on the fluid is directed in the negative z-direction.

2.2. Numerical simulations
Four different high resolution simulations were performed, starting with a slightly lazy
plume all the way to a highly lazy plume. A fifth simulation of an infinitely lazy
plume, Γ0 = ∞, from a previous study by Taub et al. (2015) was included as an
asymptotic case. Each simulation was run long enough until statistical convergence
was achieved. All simulations were run with a Prandtl number of 0.7 which is the
approximate value for air. For the infinitely lazy plume, a Grashof number of Gr =
4.0× 106 was used with a zero inlet velocity. The rest of the simulations also used a
Grashof number of Gr= 4.0× 106 and varying inlet velocities. The Grashof number
was chosen in order to be large enough for the related flows to exhibit turbulence but
small enough as to still be tractable by DNS. The inlet velocity was modified for each
simulation in order to obtain the desired value of Γ0. In this way the ‘laziness’ of the
simulated plume could be modified. These parameters are summarized in table 1. Note
that the parameter α0+ is the entrainment coefficient one grid point above the source,
since the entrainment coefficient at the actual source is zero.

The governing equations were solved numerically on a Cartesian grid. The number
of grid points in each direction are denoted as Nx, Ny and Nz in the horizontal and
vertical directions respectively. The grid points were clustered close to the source of
momentum and buoyancy. The domain size was chosen to minimize the confinement
effect in the lateral direction. Based on previous DNS studies where similar or larger
Reynolds numbers were examined (such as Boersma, Brethouwer & Nieuwstadt (1998)
and Aissia, Zaouali & El Salem (2002)) we determine the size of our computational
domain and grid resolution.

In the axial direction, the discrete function,

ξk =
1
2 tanh

(
1
2ψk · log(Az)

)
, (2.5)

was used to obtain a non-uniform distribution of points. Here ψk are Nz evenly spaced
discrete points ranging from zero to one and Az = 1.76 is the stretching parameter.
These values were then scaled to generate the cell centre locations in the axial
direction ranging from zero to Lz. Fifty of the Nx and Ny grid points in the x and
y directions are reserved for highly resolving the lazy plume core, which is defined
as a square region of size D in the x–y plane centred along the jet or plume axis.
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Within this core region, grid points are evenly spaced. Outside this core region
the size of each grid cell is progressively increased by a multiplicative factor of
Ax = Ay = 1.037:

1Xi+1 = Ax1Xi and 1Yi+1 = Ay1Yi. (2.6a,b)

The bottom boundary, at z= 0, where the radius, r> 1/2, we impose a no-slip wall.
We allow the fluid to freely enter or leave the lateral boundaries, x=±(1/2)Lx, y=
±(1/2)Ly, by applying Neumann boundary conditions. Neumann boundary conditions
were set at the z= Lz boundary of the simulations. The non-dimensional parameters,
domain size, grid size and outflow boundary conditions used for the five simulations
are summarized in table 1.

A second-order accurate central difference scheme is employed for the spatial
discretization of the governing equations on a non-staggered grid system. A fractional
step method is used for time advancement. In the advection–diffusion step, the
nonlinear terms are treated explicitly using a second-order Adams–Bashforth scheme
and the diffusion terms are treated implicitly with the Crank–Nicholson scheme.
The pressure Poisson equation is solved as a pressure correction step. A final
divergence-free velocity is obtained at each time step as part of the pressure correction
step. More information regarding verification and validation of the code can be found
in Taub et al. (2015).

2.3. Length scales
The various mass, momentum and buoyancy fluxes at the plume source are also
presented in table 1. From these source conditions the following length scales can be
derived. The source radius length scaling,

Lq =
5Q0

6αM1/2
0

, (2.7)

which also represents the distance from the source to the virtual origin of a pure
plume. The source momentum jet length,

Lm =

√
5M3/2

0

9αF0
, (2.8)

also known as the Morton length scale, which identifies the distance a forced plume
requires to adjust to pure plume behaviour, and an acceleration length scale,

La ≈ L3/5
q L2/5

m , (2.9)

which can be used to determine the length required for a lazy plume to take on pure
plume behaviour. These length scales are discussed in more detail by Caulfield &
Woods (1995) and Hunt & Kaye (2005). The values of these length scales found for
the various simulations, as well as the virtual origin, zv, are presented in table 1. In
order to solve for the asymptotic virtual origin of a lazy plume, the methodology from
Hunt & Kaye (2001) was utilized:

zv = z∗vLq = Γ
−1/5

0 (1− δ)
(

5Q0

6αM1/2
0

)
, (2.10)
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FIGURE 1. (Colour online) Comparison of iso-surfaces of λci= 0.5 of plumes with various
values for the initial plume function, Γ0, with a close up of the near-source region shown
in the bottom panels. Even the top panels do not show the entire computational domain.

where δ is a simple summation of the form δ = (3/35)ε + (9/425)ε2
+ (11/1125)ε3

+ · · · , ε= (Γ0− 1)/Γ0 and z∗v is the scaled asymptotic virtual origin of a pure plume.
The summation, δ, is approximately equal to 0.147 for large values of Γ0.

In discussing conditions at the source of the plume it is important to distinguish
between values of parameters at the true source of the plume and the value of
parameters at the virtual origin. In the results that follow in the next section, axial
distances are sometimes scaled by the virtual origin for lazy plumes instead of the
length scale used in the numerical simulations, D̃, to obtain ζ = z/zv.

3. Results
3.1. Vortical structures

Using the λci technique described by Zhou et al. (1999) and Chakraborty, Balachandar
& Adrian (2005), vortex structures were visualized. When the flow has any kind of
local vortical structure, the velocity gradient tensor will have one real eigenvalue and
two complex conjugate eigenvalues. The imaginary portion of the complex eigenvalues,
λci, measures the strength of the swirling rate inside the local vortices. As Zhou et al.
(1999) describes, the λci technique is advantageous over other methods because it is
independent of the frame of reference and, because of the nature of the eigenvalues,
eliminates regions where the flow has vorticity but is not spiralling. Fiedler (1988)
describes three different modes of coherent structures in turbulent jets. The zeroth
mode takes the form of rings, the 1st mode takes the form of helices and the second
mode takes the form of double helices. Figure 1 shows iso-surfaces for λci = 0.5 for
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the five different cases considered here. The value of 0.5 was chosen so that there
was little background noise and all the vortex structures could be easily visualized.

The least lazy plumes, Γ0 = 0.75
√

2 and Γ0 = 1.5
√

2, have vortices forming in
structured rings, near the origin, surrounding a laminar core. These zeroth mode
coherent structures are formed due to intense shear immediately above the orifice and
exist until z = 2.5 for the two cases. The velocity inherently decays and the shear
decreases, causing the vortex rings to break down and form first and second mode
coherent structures. As the plumes get lazier, these rings become less ordered and
shift to higher modes at z = 2. Additionally, the instabilities begin appearing more
along the centreline with a reduced laminar core. Pham, Plourde & Doan (2007) and
Taub et al. (2015) observed similar behaviour in their direct numerical and large eddy
simulations. It was shown that in very lazy plumes production and dissipation are
at their maximum values along the flow axis and hence instabilities formed in that
region first.

3.2. Velocity and buoyancy profiles
While Morton et al. (1956) developed the plume conservation equations assuming a
top-hat profile for velocity and buoyancy, plume and jet variables take on a Gaussian
profile in the far field when they reach self-similarity. The Gaussian profiles for a
plume take the form of

uz = BuzJ
1/3
B (z− zv)−1/3 exp

(
ln(0.5)β2

β2
1/2,uz

)
, (3.1)

φ = BφJ2/3
B (z− zv)−5/3 exp

(
ln(0.5)β2

β2
1/2,φ

)
, (3.2)

where uz is the axial velocity and φ is the buoyancy. Here β is the similarity
coordinate, defined as β = r/(z− zv), Buz and Bφ are the similarity solution constants,
while β1/2,uz and β1/2,φ are the half-widths of the Gaussian curves.

Figure 2 shows the velocity profiles at two different heights, z= 15 and z= 30, for
all five lazy plumes and experimental results from Rouse et al. (1952). Figure 3 shows
the same results for the buoyancy profiles. The figures were scaled in such a way so
that Buz and Bφ could be determined from the centreline values at β=0. At z=15, the
velocity and buoyancy profiles have not clearly collapsed on to one curve. By z= 30,
both profiles show a much better collapse near the tails but slightly varying centreline
values for large values of Γ0, especially when compared to the experimental data. This
could be an indication that the virtual origin is incorrect. Kaye & Hunt (2009) showed
that the entrainment model for the virtual origin failed at large values of Γ0. In the
present study, Buz is between 4.2 and 4.5 and Bφ between 13.5 and 15.8, while the
infinitely lazy case found Buz = 3.9 and Bφ = 13.7 and the experiments by Rouse et al.
(1952) found Buz = 4.7 and Bφ = 11. Further experiments (Turner 1973) indicate that
the values found by Rouse et al. (1952) best match most laboratory observations. For
the Gaussian half-widths, the present study yields β1/2,uz = 0.0895 and β1/2,φ = 0.092,
the infinitely lazy plume yielded β1/2,uz=0.095 and β1/2,φ=0.095 and the experimental
study found β1/2,uz = 0.084 and β1/2,φ = 0.095. Previous studies such as George, Alpert
& Tamanini (1977) and Chen & Rodi (1980) have found slightly lower values for Buz

and Bφ with a higher spread while Nakagome & Hirata (1977), Papanicolaou & List
(1987) and Papanicolaou & List (1988) found slightly higher values for Buz and Bφ
with a lower spread.
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Rouse et al. (1952)
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(a)

(b)

FIGURE 2. (Colour online) Velocity profiles at two different downstream locations for the
various lazy plumes. Experimental results by Rouse, Yih & Humphreys (1952) are also
shown.

The scaled centreline velocities seem to converge to the same value for both heights,
even before full self-similarity is reached, while the scaled centreline buoyancy values
seem to vary much more. However, further downstream at z = 30, this variation is
reduced. Buoyancy decays faster than axial velocity and hence better collapse is
expected for the downstream buoyancy profiles.

3.3. Necking
Taub et al. (2015) found that in lazy plumes, the source axial velocity is less than
what the similarity solution, derived by Morton et al. (1956), dictates. When the
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FIGURE 3. (Colour online) Buoyancy profiles at two different downstream locations for
the various lazy plumes. Experimental results by Rouse et al. (1952) are also shown.

initial condition deviates from self-similarity, the difference will decay above the
plume source and the solution will entrain back to self-similar behaviour. As Morton
& Middleton (1973) showed, a lazy plume will undergo an initial acceleration, which
is shown in figure 4. This acceleration happens because of the large buoyancy force
(relative to initial momentum), which in turn causes a narrowing of the plume radius,
or necking, and is shown in figure 5. Caulfield (1991) described this as occurring
in plumes with Γ0 > 2.5. It should be noted that, unlike the model by Morton et al.
(1956), the model by Priestley & Ball (1955) does not predict necking. The axial
velocity begins increasing as soon as the plume starts to neck and stops only when
the plume expands back out again, a distance between 4 and 6 inlet diameters from
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FIGURE 4. (Colour online) Centreline axial velocity behaviour. The DNS results are
compared against the theoretical predictions of Hunt & Kaye (2005).

the origin. The similarity solution of the axial centreline velocity as a function of the
downstream distance corrected by the virtual origin is given by

uzc(z)=
(

5
6α

)(
9α
10

)1/3 (F0

ρa

)1/3

(z− zv)−1/3 (3.3)

and it depends on the entrainment coefficient, α, buoyancy flux, F0, and ambient
density, ρa, which are taken to be constants.

Figure 4 shows that the similarity solution predicts the far-field behaviour very well.
The deficit in momentum, the defining feature of lazy plumes, can be seen in the
significantly lower source axial velocity compared to the prediction in (3.3). The rapid
increase in axial velocity above the source, followed by a peak and subsequent decay
are only seen in the simulations, as the theory only predicts monotonic decay.

The neck is more pronounced the lazier the plume gets, however, there is still slight
necking for Γ0 = 0.75

√
2, up to approximately 5 % of the initial radius. This is an

important fact that must be considered because the theory shows a higher threshold
for the source conditions at which a plume will undergo necking. Nevertheless,
this could also be a numerical artefact, caused by the no-slip floor that the plumes
are issuing from. For Γ0 = 150

√
2, we observe a neck that reduces up to 70 % of

the initial diameter at its minimum radius. For the infinitely lazy case, we see a
neck reduction up to 80 %. The minimum radius occurs between z = 0.5 and z = 6,
with lazier plumes having a longer region where the contraction occurs. The necks
occur at a lower height than the maximal velocity, which Caulfield (1991) showed
is the case for Boussinesq plumes. The actual contracted region can extend up to
z = 6 for the laziest plume. This is also the region where a shift from vortex rings
to vortex helices takes place. As the ordered vortex rings move through the neck,
they get compressed and stretched. They become longer and lose their coherency.
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FIGURE 5. (Colour online) The near-source plume width as a function of z.

As two-dimensional and three-dimensional instabilities take place, these structures
break up into smaller finger-like and helical vortices once the neck opens back up.
The larger initial vortex structures can engulf more fluid, and in fact entrain more,
than the smaller vortices occurring further downstream. This is one of the reasons
that the entrainment coefficient is larger in the neck, as will be seen in the next
section. Furthermore, the larger entrainment means more ambient, low momentum
fluid is pulled in, which could explain why the laziest plume sees a much sharper
deceleration phase.

3.4. Entrainment
In their calculations, Morton et al. (1956) and Morton & Middleton (1973) use a
constant value for the entrainment coefficient, αMTT , when determining the plume
source parameter, Γ0. Furthermore, because a lazy plume is not self-similar in the
near-source region and has to entrain to a self-similar solution, a larger value for the
entrainment coefficient is expected for that region. As was shown (Abraham 1965),
the entrainment coefficient cannot be a constant in the transition region between
similarity solutions. This coefficient can also vary greatly between jets, pure plumes
and lazy plumes (Matulka et al. 2014). In figure 6, this very same behaviour is
presented. Entrainment was calculated using (1.2), where the integrals were taken
across the entire horizontal domain for every height and then a vertical derivative
was computed. At z = 0, the coefficient of entrainment is relatively high for all
plumes. Immediately above the inlet, it quickly drops to a value close to zero and
then increases very rapidly to a value between 0.2 and 0.39 in the four different lazy
plume simulations as the neck forms and the plume accelerates. In the infinitely lazy
case, the entrainment coefficient at z = 0 is even higher, drops very close to zero
and then quickly asymptotes to the far-field value of 0.12. This behaviour was also
noted by van Reeuwijk et al. (2016) for their pure plume case. The entrainment in
the near field is dominated by the large, ordered ring structures and the long, helical
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FIGURE 6. (Colour online) Comparison of the entrainment coefficient, using the top-hat
definition of Morton et al. (1956), from the DNS of plumes with various initial values
for the plume source parameter, Γ0, plotted against the vertical coordinate, z. The inset
shows the variation in the region from z= 0 to z= 1.

structures in the neck (Liepmann & Gharib 1992; Citriniti & George 2000; McIlwain
& Pollard 2002). After the initial increase, the entrainment coefficient decreases, more
or less, monotonically. At about z= 20, the entrainment coefficient converges for all
five simulations to a value of 0.12. Many experimental researchers have found similar
values. Lee & Emmons (1961), Anwar (1969) and Harris (1999) have found values
of 0.13 for plane plumes while Schmidt (1941), Railston (1954), Kotsovinos (1975),
George et al. (1977) and Nakagome & Hirata (1977) found values of 0.12 for round
plumes. Rouse et al. (1952) found a value of α = 0.12 for a plume with Grashof
number of Gr= 19742, while the present study used a Grashof number of Gr= 20002.
For this reason, the present study used a constant value for the entrainment coefficient
when computing the plume source parameter, Γ0 (see table 1), in order to compare
with the constant entrainment coefficient derivations for the plume function from
Hunt & Kaye (2005).

In a recent paper, van Reeuwijk & Craske (2015) relate the theories of Priestley
& Ball (1955) and Morton et al. (1956) to derive an energy consistent unified
entrainment relation (see also Fox 1970; Kaminski, Tait & Carazzo 2005). The theory
by Morton et al. (1956) assumes a constant entrainment coefficient that is not a
function of the Richardson number while the other theory by Priestley & Ball (1955)
assumes constant turbulence production that is not a function of the Richardson
number. In order to apply the unified theory of van Reeuwijk & Craske (2015), first
we define the integral buoyancy, B, Richardson number, Ri, and the profile coefficients
for the energy flux, γm, buoyancy flux, θm, and turbulence production, δm, as

B= 2
∫
∞

0
φr dr, (3.4)
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Ri=
2
√

2BQ
M3/2

, (3.5)

γm =
8Q
M2

∫
∞

0
u3

z r dr, (3.6)

θm =
FQ
BM

, (3.7)

and

δm =
16
√

2Q2

M5/2

∫
∞

0
u′zu
′

r
duz

dr
r dr. (3.8)

Primed quantities represent fluctuating components of the total flow. The rigorous
derivation of van Reeuwijk & Craske (2015), after some simplifying assumptions for
a mean, self-similar plume, leads to

αMS =−
δm

2γm
+

(
1−

θm

γm

)
Ri. (3.9)

Different analyses led other researchers (Fischer et al. 1979; Wang & Law 2002; Kaye
2008) to the same conclusions. The two terms in (3.9) represent the contributions
from turbulent kinetic energy production and the influence of the Richardson number.
For top-hat profiles, the Richardson number is directly proportional to Γ . This
relation holds very well for pure jets, buoyant jets and pure plumes but has not
been extensively scrutinized for lazy plumes, especially in the near-source region.
Equations (3.5)–(3.7) and (3.9) are plotted in figure 7. The Richardson number, in
figure 7(a), has a value of 0.15 and 0.5 at z = 0 for Γ0 = 0.75

√
2 and Γ0 = 1.5

√
2

respectively. It quickly decays to a far-field value of 0.05 in both instances. For the
laziest two cases, initially the Richardson number is extremely large because the
velocity and the resulting shear are very low relative to the buoyancy. For Γ0= 15

√
2,

the initial Richardson number is equal to 50.6, two orders of magnitude larger from
the previous two cases, and decays nearly monotonically, reaching the same far-field
value of 0.05 after approximately 20 plume source diameters. The Γ0 = 150

√
2 case

starts at a Richardson value of 5201.8, another two orders of magnitude larger than
the value for Γ0= 15

√
2, and decays until z= 4, after which it increases slightly over

an axial distance of two source diameters and then decreases again monotonically,
reaching far-field values of 0.05 at z = 30. The profile coefficients for energy flux
and buoyancy flux, figure 7(b,c), behave in a similar manner to one another. For all
four cases, the initial values at z = 0 are about 1 due to the specified inlet profiles
and immediately increase above the source, reaching peak values at z = 4.5 for the
laziest case and at z = 3.5 for all others. At z = 20, a self-similar state is reached
and the curves show great collapse, with far-field values of γm = 1.7 and θm = 1.3.
These values are slightly higher than experimental results for pure and forced plumes.
In figure 7(d) we plot αMS, defined in (3.9), from z = 15 to z = 45 to highlight the
far-field values for the entrainment coefficient, where the assumption of a self-similar
state holds. The coefficient in the near field, computed using (3.9), is severely over
predicted and not shown. van Reeuwijk et al. (2016) showed that this model holds
very well in the region z > 20, but over prediction by conventional models has
been addressed by Kaye & Hunt (2009) as noted in Carlotti & Hunt (2017). In the
far field, however, the coefficient for entrainment reaches values between 0.06 and
0.08, which are the approximate values for Gaussian plumes. For a lazy plume, it
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FIGURE 7. (Colour online) The Richardson number, Ri, profile coefficients for the energy
flux, γm, and buoyancy flux, θm, and the entrainment coefficient, αMS, for a mean self-
similar plume, defined in van Reeuwijk & Craske (2015), and plotted as a function of
plume height. Panel (d) is plotted from z = 15 to z = 45 to highlight the downstream
values for the entrainment coefficient, where the plumes reach a self-similar state.

is known that in the near field, velocity and buoyancy profiles are changing shape
and turbulence levels are fluctuating significantly. This might very well be one reason
for the over prediction by (3.9). Furthermore, certain assumptions break down near
the source. van Reeuwijk & Craske (2015), in describing turbulent kinetic energy
production, make a boundary layer assumption which asserts that the gradient of the
axial velocity in the radial direction is dominant. Taub et al. (2015) showed that this
boundary layer approximation does not hold near the source region. Additionally, van
Reeuwijk et al. (2016) concluded that the greatest contributions to entrainment comes
from the production term. In figure 8, we plot the turbulent kinetic energy production
as given by (3.8) as well as the full production term given in (3.10), evaluated from
the DNS, where u′θ is the azimuthally fluctuating velocity component:

δtotal = u′zu
′

r

(
∂uz

∂r
+
∂ur

∂z

)
+ u′zu

′

z
∂uz

∂z
+ u′ru

′

r
∂ur

∂r
+ u′θu

′

θ

ur

r
. (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

62
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.622


Evolution of plume function and entrainment in lazy plumes 751

0–10 –5 0–0.10–0.15 –0.05 0.05

5

 0

10

15

20

25

30(a)

5

 0

10

15

20

25

30(b)

z

FIGURE 8. (Colour online) The turbulent kinetic energy production plotted as a function
of plume height (a) as predicted by van Reeuwijk & Craske (2015) and (b) as seen in
the present DNS.
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FIGURE 9. (Colour online) The entrainment coefficient, as predicted by theory from
Carlotti & Hunt (2017), plotted against the vertical coordinate, z.

Production, because it is a sink term in the equation for mean kinetic energy, is
negative in this instance. However, in the DNS, production becomes positive directly
above the inlet, implying it first acts as a source term for mean kinetic energy
before becoming negative approximately 3 plume inlet diameters downstream. It is
evident from figure 8 that production behaves similarly in both instances. Nonetheless
the magnitudes vary by two orders. Clearly the influence of radial and azimuthal
fluctuations as well as other gradients of mean velocity are too significant to neglect.
In essence the boundary layer theory is inapplicable in the near-source region and
this will also diminish the role of the Richardson number in correctly predicting
near-field entrainment.

Building on this work, Carlotti & Hunt (2017) derived an empirical entrainment
model for lazy plumes that would encompass Boussinesq and non-Boussinesq flow
regimes. Their theory is based on a power-law formulation of the form α=αp(Γ/Γp)

ω,
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where the subscript p denotes pure plume values and the parameter 0 6 ω < 1 is
the power-law exponent. Further, they defined a new plume acceleration length scale,
similar to the definitions by Caulfield & Woods (1995) and Hunt & Kaye (2005), as

L=
27/10

5Γ 4/5
p

2−3ω/(10(1−ω))

1−ω
G3/5

0

ρ
3/5
a F1/5

. (3.11)

Here, the Boussinesq-limit mass flux, Q0, has been replaced with a generalized mass
flux, G0, in order to allow for non-Boussinesq limits. Ultimately, they arrive at the
following functional form for the entrainment coefficient,

αCH = αp

(
(3z/8L+ 23/8)8/3

(3z/8L+ 23/8)8/3 − 2

)1/4

. (3.12)

We plot (3.12) in figure 9, using a value of ω= 0.62. The theory predicts very rapid
decay to far-field behaviour (less than 5 plume source diameters) while in the DNS
we observe this behaviour only after 20 plume diameters. All of the plumes are in
the Boussinesq limit and hence density does not vary significantly. This as well as
the fact that the input fluxes do not differ considerably are possible reasons for the
nearly indistinguishable difference between the curves. Nevertheless the above model
is able to partially capture the rapid increase in α seen in the simulation results (see
figure 6). The drastic differences between the model and simulations can be attributed
to the shortcomings of a purely empirical model.

3.5. Plume function
The original plume conservation equations derived by Morton et al. (1956) were for
ideal, long thin self-similar plumes. Lazy plumes do not fall into this category near
the source. Hence the inapplicability of the self-similar conservation equations is
to be expected (Kaye & Hunt 2009). The plume function initially increases before
decreasing monotonically towards an asymptotic value of 1. Morton & Middleton
(1973) and Hunt & Kaye (2005) predicted a strictly monotonic decrease but, just
like Hargreaves et al. (2012) and Taub et al. (2015) have shown, the present study
observed this not to be the case for a lazy plume, as shown in figure 10(a). The
aforementioned researchers considered a constant entrainment coefficient while the
present study found it to be variable, particularly in the near-source region where
the lazy plume entrains towards self-similarity. Initially, the plume function decreases
for all plumes to a value below 2 before increasing, reaching maximum values of
Γ = 2.1, 2.6, 3.2 and 7.5 at ζ = 1, respectively, before monotonically decaying to the
pure plume behaviour. It has been argued that a lazy plume can be thought of as a
forced plume with a virtual origin above the physical source, where the momentum
flux is acting against the flow, hence slowing the plume down and causing it to
be lazy. Furthermore, Chen & Rodi (1980) found that the virtual origin can exist
anywhere between three diameters below the orifice and three diameters above the
orifice. However, a more consistent definition of virtual origin was provided by Hunt
& Kaye (2001, 2005) with expression (2.10) for the location of the virtual origin
below the source. In figure 10(b) we plot the plume function against the shifted
coordinate, ζ ′ = ζ − 1. Using the value Γ ′ = Γ (ζ = 1) as the new reference we use
the analytical result from Hunt & Kaye (2005) to obtain the corresponding theoretical
prediction,

Γ = 1+
(

4
5Ωζ

′
+ (Γ ′ − 1)−4/5

)−5/4
(3.13)
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FIGURE 10. (Colour online) The plume function plotted against scaled height ζ = z/z0.
Panel (b) shows a plot of plume function plotted against the shifted ζ ′ and the DNS results
are compared against theory from Hunt & Kaye (2005).

and plot it alongside the DNS result, where Ω = (10/3)Γ ′1/2/(Γ ′ − 1)3/10. The
agreement is quite good, particularly in the far field. The slight discrepancy, which
is more pronounced for lower values of Γ ′, can be attributed to the fact that (3.13)
was derived for large values of Γ , where the assumption Γ ≈ Γ − 1 was made.
Hence, for smaller values of Γ some discrepancy can be expected. All of the lazy
plumes asymptote to pure plumes with a value of Γ = 1 around ζ ′ ' 5, as observed
by Shabbir & George (1994). The laziest plume actually decays to pure plume
behaviour at a faster rate than the less lazy plumes. This behaviour is due to the
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FIGURE 11. (Colour online) Variation of mass flux and momentum flux with axial
distance, corrected by virtual origin, for the DNS and theory.

larger entrainment coefficient in the laziest plume throughout the neck and transitional
region as it evolves to a self-similar state. Figure 11(a,b) shows the variation of mass
flux and momentum flux with axial distance compared to the theoretical predictions
by Hunt & Kaye (2005), which are given below. The simulation results have been
corrected by the virtual origin for each case:

Q(z)=
(

5F0

4α

)1/3 (6α(z− zv)
5

)5/3

, (3.14)
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FIGURE 12. (Colour online) Total, mean and fluctuating buoyancy flux as a function of
plume height for the five cases scaled by the total flux.

M(z)=
(

5F0

4α

)2/3 (6α(z− zv)
5

)4/3

. (3.15)

It is clear that these fluxes grow monotonically. Furthermore, buoyancy flux is
constant for all plumes. Hence, the rapid variation in Γ can be explained by the
rapid change in the entrainment coefficient and variation in mass flux and momentum
flux. As the plume propagates from the inlet into the ambient, the entrainment
coefficient grows much faster than the momentum and buoyancy flux, causing Γ to
decrease rapidly. Once the plumes start accelerating and entraining more fluid, the
mass and momentum flux grow while the entrainment coefficient decreases, which is
seen as an increase in Γ . Eventually, this coefficient asymptotes to a value of 0.12
and the plume function starts decaying monotonically. The theoretical predictions for
mass and momentum flux have roughly the same slope as the simulation results, with
some variation occurring for mass flux in the far field.

We plot the contributions of the mean, Fm = 4
∫
∞

0 uzφr dr, and fluctuating,
Ff = 4

∫
∞

0 u′zφ
′r dr, components of the total buoyancy flux, Ftot=Fm+Ff , in figure 12.

For Γ0 = 0.75
√

2 and Γ0 = 1.5
√

2, contributions from the fluctuating component
are negligible until z = 2.5, which corresponds to the minimum radius location. At
z = 4.5, the fluctuations reach their peak (and far field) contributions of 13 % and
15 %, respectively. This location also corresponds to the end of the plume neck,
after which the plume spreads out radially. The two laziest cases, Γ0 = 150

√
2 and

Γ0 = ∞, behaved in a different manner. Right above the source, the contributions
from the fluctuating components are between 12 % and 17 %. At the minimum radius,
z= 3, the fluctuations drop to 8 % and then rapidly increase to peak values of 33 %,
corresponding to the end of the plume neck. Three diameter lengths after the neck,
the fluctuations decay to their far-field values. The intermediate case, Γ0 = 15

√
2,

behaved in yet another way. The buoyancy fluctuations increase immediately above
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FIGURE 13. (Colour online) Centreline axial buoyancy evolution as a function of plume
height for the different cases considered.

the source, reaching their peak of 20 % at the minimum radius, z= 3. The fluctuations
then decay until the end of the neck at z= 4.5, reaching their constant far-field value
of 13 %.

Figure 13 shows the behaviour of centreline buoyancy, φ(r = 0) = φc. Buoyancy
begins decaying almost immediately above the source for the laziest two cases. As
the flow passes through the neck, mixing decreases slightly until the end of the neck.
For Γ0 = 15

√
2, buoyancy begins decaying monotonically as soon as the neck forms.

However, in the case of Γ0 = 0.75
√

2 and Γ0 = 1.5
√

2, buoyancy remains constant
until the fluid passes through the minimum radius at z = 3, after which it decays
monotonically.

4. Conclusion

The non-dimensional plume function, Γ , is a combination of the mass, momentum
and buoyancy fluxes and is a way to characterize plume and jet flows. Pure jets,
buoyant jets and pure plumes have received a great deal of attention in the past. A
flow in which buoyancy dominates momentum is termed as a lazy plume. These
types of flows have not received nearly as much attention and surely not through
high resolution direct numerical simulations. Four lazy plumes with varying inlet
velocities corresponding to different values of the plume function were simulated
to study the evolution of the entrainment coefficient and coherent structures in
the near-field region. The model by Morton et al. (1956) assumes that turbulent
Reynolds stresses are more dominant than viscous shear stresses in a plume. In the
immediate near-field non-turbulent stresses dominate and cause vortex rings to form.
These rings can engulf ambient fluid and promote mixing, causing plumes to decay
faster. Because the axial velocity at the source in lazy plumes is less than what the
self-similar solution predicts, a neck forms to accelerate the flow. In the neck region,
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the coherent ring structures are deformed and stretched, resulting in larger helical
structures. The presence of buoyancy in lazy plumes promotes the formation of these
larger coherent structures while also accelerating the plumes. Hence it is one of
the possible reasons plumes have a greater entrainment coefficient than jets. In the
near-source region it was shown that this coefficient is not a constant, but rather varies
along the downstream direction. This is a direct result of the lazy plume needing
to entrain more fluid in order to evolve to a self-similar state (Carazzo, Kaminski
& Tait 2006). Because of this, the plume function does not decay monotonically as
theorized (Hunt & Kaye 2005). If, however, the data are plotted against a new axial
coordinate, ζ ′, a monotonic decay that matches very well with theory is observed.
The lazy plumes all converge on a far-field value of Γ = 1, corresponding to pure
plume behaviour, after five non-dimensional lengths. The most important take away
is that the entrainment coefficient, velocity and Γ increases in the neck region and
are functions of the plume source parameter, Γ0.
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