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ON OPTIMAL INVERTERS

YIJIA CHEN AND JÖRG FLUM

Abstract. Leonid Levin showed that every algorithm computing a function has an optimal
inverter. Recently, we applied his result in various contexts: existence of optimal acceptors,
existence of hard sequences for algorithms and proof systems, proofs of Gödel’s incomplete-
ness theorems, analysis of the complexity of the clique problem assuming the nonuniform
Exponential Time Hypothesis. We present all these applications here. Even though a simple
diagonalization yields Levin’s result, we believe that it is worthwhile to be aware of the explicit
result. The purpose of this survey is to convince the reader of our view.

§1. Introduction. Let F be an algorithm computing a partial function,
which we denote by F, too. An inverter I of F is an algorithm that for all y
in the range of F computes a preimage I(y) of y, i.e., F(I(y)) = y. Leonid
Levin [17] observed that there is an optimal inverter O of F; optimal with
respect to the sum of the running times of the computation of the inverse
O(y) and of the verification of F(O(y)) = y (see Theorem 3.2 for the precise
statement). For y not in the range of F, the algorithm O does not halt.
Let Q denote the range of F. Closely related to an inverter I of F is an
algorithm Iacc accepting Q: it checks whether F(I(y)) = y by successively
running I and F. For an optimal inverter O, does Oacc inherit some kind of
optimality from O? And if so, optimality in what sense?
Verbitsky and Gurevich applied Levin’s result to the algorithm F = FSat:
on input (α, S), the algorithm FSat checks whether S is an assignment
satisfying the propositional formula α; if so, it outputs α. Hence, the set Sat
of satisfiable propositional formulas is the range of FSat. Verbitsky [27] (see
Proposition 3.7) proved for any optimal inverter O of FSat that

the algorithmOacc is an algorithm accepting Sat that is length-optimal
on satisfiable propositional formulas.

Gurevich [10] (see Theorem 3.8) showed the following result, which is
sometimes attributed to Levin himself:

ifO (or, equivalently,Oacc) does not run in polynomial time on satisfiable
propositional formulas, then P �= NP.

Recently, we applied Levin’s optimal inverters in apparently quite unrelated
contexts: existence of optimal acceptors [2, 3], existence of hard sequences
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for algorithms and proof systems [6], proofs of Gödel’s incompleteness
theorems [5], analysis of the complexity of the clique problem assuming the
nonuniform exponential hypothesis [1].
A typical scenario may be described as follows: for a given problem (for
which we can verify that a string is a solution of a positive instance) there
exists an infinite class A of algorithms solving it; however, the algorithms
inA are not given in an effective way. Levin’s argument provides a method to
combine all of them into one single algorithm thereby obtaining, concerning
the running time, an optimality with respect to the algorithms in A. Thus,
Levin carefully generalizes the idea that a family of algorithms for an NP-
problem (where a solution can easily be verified) can be made uniform, at
least for the positive instances, by running all algorithms in parallel.
As Levin’s result is obtained by a straightforward diagonalization, in all
applications one can give a direct proof. In some cases, this may even have
the benefit of making it easier to grasp the intuition behind the argument in
the concrete application. However, in some contexts it is advantageous to
be familiar with Levin’s result and its terminology: whenever one deals with
problems searching for an optimal algorithm, one should check whether the
algorithm F in Levin’s result can be defined in such a way that an optimal
inverter O (or the associated Oacc) is the object sought. Furthermore, often
it is easier to understand the overall structure of the corresponding proofs
by directly applying Levin’s result, thus avoiding an explicit diagonalization
and the verification of the optimality properties of its outcome. Having this
perspective in mind, we believe that Levin’s optimal inverters are a valuable
tool. The purpose of this survey is to convince the reader of this view.
The content of the different sections is the following. After fixing our nota-
tion in Section 2, in Section 3 we prove Levin’s result and derive Verbitsky’s
and Gurevich’s applications mentioned above. In Section 4, we show that,
under plausible assumptions, for every optimal inverter O of FSat, the algo-
rithmOacc is not an optimal acceptor of Sat (that is,Oacc is not an algorithm
accepting Sat with optimal running time on satisfiable formulas). Further-
more, we prove a result due to Stockmeyer [25] that there exists a problem
Q0 solvable in exponential time without optimal acceptors. This result plays
a central role in Section 7 in our proofs of Gödel’s incompleteness theorems:
let T be a first-order theory as considered in Gödel’s theorems. For every
recursively enumerable set Q we introduce an algorithm FT,Q with range Q.
As already remarked, for every optimal inverterO of FT,Q the algorithmOacc

accepts Q. The theory T proves the equivalence of (the formalizations of)
the statements “Oacc accepts Q” and “T is consistent.” For Stockmeyer’s
Q0 we can show that T does not prove “Oacc accepts Q0” and hence, does
not prove its consistency. The reader only interested in this application of
Levin’s result may skip Section 5 and Section 6 (and even Proposition 4.5 in
Section 4).
The relationship between (optimal) acceptors of a problem Q and (poly-
nomially optimal) proof systems for Q has been addressed in various
articles [4,16,20,24]. In Section 5, we show that an optimal inverter of a poly-
nomially optimal proof system for a problemQ is an optimal acceptor ofQ.
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The existence of a hard sequence for an algorithmA acceptingQ witnesses
that A is not an optimal acceptor; similarly, a hard sequence for a proof
system P for Q witnesses that P is not polynomially optimal. In Section 6,
we show how hard sequences for algorithms acceptingQ translate into hard
sequences of proof systems for Q.
In Section 8, for a suitable F we prove that the algorithm O

acc is an
algorithm accepting the class of graphs G = (V (G), E(G)) having a clique
of a given size k in time 2o(|V (G)|); for this, we assume that the nonuniform
Exponential Time Hypothesis fails.
Finally, in Section 9 we present a space version of Levin’s result.

§2. Preliminaries. For a partial function g from N to N we let O(g) be
the set of partial functions f from N to N such that
– dom(f) ⊆ dom(g) (where dom(h) denotes the domain of the
function h);
– there are c, k ∈ N such that f(n) ≤ c · g(n) for all n ∈ dom(f) with
n ≥ k.

As is common, we often write “f(n) ≤ O(g(n)),” or “for all n ∈ dom(f),
f(n) ≤ O(g(n))” instead of “f ∈ O(g).” If we writeO(1), we view 1 as the
function with constant value 1. In particular, nO(1) denotes the class of all
polynomially bounded functions on the natural numbers.
We let Σ be the alphabet {0, 1} and denote the length of a string x ∈ Σ∗
by |x|. We identify decision problems with subsets Q of Σ∗.
Algorithms take strings in Σ∗ as inputs. If an algorithmA on input x ∈ Σ∗
eventually halts, its output A(x) is the string written on the output device.
Hence, every algorithm A computes a partial function from Σ∗ to Σ∗, which
we denote by A, too. The equality A(x) = B(x) for algorithms A and B

and the string x means that either A and B halt on input x with the same
output or that neither A nor B halts on x. Often we introduce an algorithm
implicitly by defining the corresponding function; then this definition will
suggest an algorithm.
If A is an algorithm, x ∈ Σ∗, and A(x) = 1 (A(x) = 0), then we say that

A accepts x (A rejects x). The algorithm A accepts the problem Q if

A accepts x ⇐⇒ x ∈ Q
for all x ∈ Σ∗. We also say that A is an acceptor of Q.
If A is an algorithm and x ∈ Σ∗, we let tA(x) be the number of steps of
the run of A on input x. We set tA(x) :=∞ if A does not halt on input x.

§3. Levin’s result and first applications. In this section we prove Levin’s
result on optimal inverters and present the applications due to Verbitsky [27]
and Gurevich [10] already mentioned in Section 1. We start by introducing
the concept of an inverter.
Definition 3.1. Let F be an algorithm. An inverter of F is an algorithm I

that, given as input y in the range of the function computed by F, halts and
its output I(y) is a preimage of y under F (that is, F(I(y)) = y). Nothing is
required for y not in the range of F.
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We often denote the range of the function computed by F by rng(F). The
following result, Levin’s Optimal Inverter Theorem, states that there is an
optimal inverter O of F; that means, O is an inverter that for y ∈ rng(F) is
optimal (up to polynomial) with respect to the combined time complexity
for the computation of the inverseO(y) and the verification of F(O(y)) = y
(by computation of the function F). If F runs in polynomial time on its
domain, then the running time of every optimal inverter is polynomially
bounded in the running time of any inverter.

Theorem 3.2 (Levin’s Optimal Inverter Theorem). Let F be an algorithm.
Then there is an optimal inverter, that is, an inverter O of F such that:

– For every inverter I of F we have for y ∈ rng(F),
tO(y) + tF(O(y)) ≤

(
tI(y) + tF(I(y))

)O(1)
. (1)

In particular, if F runs in polynomial time on its domain, then for all
y ∈ rng(F),

tO(y) + tF(O(y)) ≤
(
tI(y)

)O(1)
. (2)

– The algorithmO does not halt on inputs y �∈ rng(F).
Proof. For an algorithm A define the algorithm [F : A] by:1

[F : A] // y ∈ Σ∗
1. simulate A on y
2. simulate F on A(y)
3. if F(A(y)) = y then halt with outputA(y) else run forever.

Note that:

(a) If [F : A](y) is defined, then y ∈ rng(F) and [F : A](y) is a preimage
of y (with respect to F), that is, F([F : A](y)) = y.

(b) If [F : A](y) is defined, then tA(y)+tF(A(y)) ≤ t[F:A](y) ≤ O(tA(y)+
tF(A(y))).

We fix an effective enumeration

A1,A2, . . . .

of all algorithms. We obtain the desired optimal inverter by simulating, for
any y ∈ Σ∗, all [F : Ai ]’s on input y in a diagonal fashion till we get an
output:

the first step of [F : A1];
the second step of [F : A1], the first step of [F : A2];
. . . . . .
the ith step of [F : A1], the (i − 1)th step of [F : A2], . . . ,
the first step of [F : Ai ];
. . . . . . . . .

1The first line of the box contains the abbreviation for the algorithm (in this case [F : A])
and, after the double slash, the inputs we consider (in this case an arbitrary y ∈ Σ∗).
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Let us explainmore precisely how this inverter accesses [F : A1], [F : A2], . . . .
For this purpose, we let A be an “enumeration” algorithm that (once having
been started) eventually prints out all algorithms. For i ≥ 1 we denote by
Ai the last algorithm printed out by A in the first i steps; in particular, Ai is
undefined if A hasn’t printed any algorithm in the first i steps. Then we let
O be the algorithm:

O // y ∈ Σ∗
1. � ← 1
2. simulate the �th step of A
3. for i = 1 to �
4. if Ai is defined then simulate the � − (i − 1))th step of

[F : Ai ] on y
5. if the simulation halts then halt with output [F : Ai ](y)
6. � ← � + 1
7. goto 2.

The algorithm O is an inverter: if O halts on input y, then (see Line 5)
O(y) = [F : Ai ](y) for some i ≥ 1. Thus, by (a), F(O(y)) = y.
The algorithm O is optimal: let I be an inverter of F. We choose the least
j ≥ 1 such that I = Aj . Then, on input y, the algorithm O will halt if it
reaches Line 4 for � := t[F:I ](y) + (j − 1) and i := j (perhaps, O already
halted earlier). Thus, (t[F:I ](y)+(j−1))2 is an upper bound for the number
of those steps of O simulating one of the [F : Ai ]’s. As j only depends on I,
the inequality in (1) follows from (b).
If F runs in polynomial time on its domain, then, for y ∈ rng(F), we have
tF(I(y)) ≤ |I(y)|O(1) and thus, tF(I(y)) ≤ tI(y)O(1). So we get the inequality
(2) from (1). �
In Section 1, we described the typical scenario underlying most applica-
tions of Levin’s result and Levin’s result itself. The following remark should
help the reader to recognize this scenario in the previous proof, of which we
use the terminology.

Remark 3.3. For y ∈ rng(F) (a “positive instance”) we can verify that a
string x is a solution of the equation F(x) = y ( just run F on x). The class A
(mentioned in the description of the scenario in Section 1) of algorithms solving
the problem is the class of inverters of F. It is not decidable, nor even recursively
enumerable. The diagonalizationover the algorithms [F : Ai ] carried out above,
where Ai runs over all algorithms, yields an element of A with optimal running
time on instances y ∈ rng(F).
Remark 3.4. Suppose we take multitape Turing machines with input tape
and output tape as the computational model for algorithms. Then, in (1),
we may replace

(
tI(y) + tF(I(y))

)O(1)
by a quadratic polynomial in (tI(y) +

tF(I(y)) (the quadratic polynomial depending on I).
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Remark 3.5. In [17] Levin states the result with the term O
(
tI(y) +

tF(I(y))
)
instead of

(
tI(y)+ tF(I(y))

)O(1)
in (1). This better bound is achieved

by considering the algorithm that for any y ∈ Σ∗ simulates all [F : Ai ] in the
following way:
20 step of [F : A1] is simulated ;
21 steps of [F : A1] are simulated, 20 step of [F : A2] is simulated ;
22 steps of [F : A1] are simulated, 21 steps of [F : A2] are simulated,
20 step of [F : A3] is simulated ;

. . . . . .
2i th steps of [F : A1] are simulated, 2i−1 steps of [F : A2] are simulated,

. . . , 20 step of [F : Ai+1] is simulated ;
. . . . . . . . .
We learned this proof idea from [7].
Again let F be an algorithm and denote by Q its range. For every inverter

I there is an algorithm I
acc, canonically linked to I, which accepts Q. In the

following proposition we introduce the algorithm Iacc and relate its running
time to that of I. We will use this result again and again.
Proposition 3.6. Let F be an algorithm with range Q. For every inverter I
of F we define the algorithm Iacc by:

Iacc // y ∈ Σ∗
1. simulate I on y
2. simulate F on I(y)
3. if F(I(y)) = y then accept else run forever.

Then:
– The algorithm Iacc accepts Q and for all y ∈ Q,

tI(y) + tF(I(y)) ≤ tIacc(y) ≤ O(tI(y) + tF(I(y))). (3)

If F runs in polynomial time on its domain, then for all y ∈ Q,
tI(y) ≤ tIacc(y) ≤ (tI(y))O(1). (4)

– The algorithm Iacc does not halt on inputs y /∈ Q.
Proof. All claims immediately follow from the definition of Iacc. �
As first examples we present applications of Levin’s optimal inverters
to Sat, the satisfiability problem for formulas of propositional logic. We
consider the algorithm FSat with

FSat(x) := α, if x = (α, S) and the assignment S (5)
satisfies the propositional formula α.

On other inputs the algorithmFSat does not halt. The range ofFSat is Sat. As
one can verify in linear time whether an assignment S satisfies α, the algo-
rithmFSat runs in polynomial time (even in linear time) on its domain. By the
previous proposition, every inverter I of FSat yields the acceptor Iacc of Sat,
which essentially runs in the same time as I on satisfiable formulas (see (4)).
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Now let O be an optimal inverter of FSat. Is Oacc an acceptor of Sat
optimal in some sense? In Section 1, we have called the kind of optimality
shown in the next proposition “length-optimality”, in [22] it was called
“Levin optimality.”
Proposition 3.7 ([27]). Let O be an optimal inverter of FSat. For every
algorithm B accepting Sat we have for all α ∈ Sat,

tOacc(α) ≤
(|α| ·max{tB(α′) | α′ ∈ Sat and |α′| ≤ |α|})O(1). 2

Proof. For a propositional formula α and a propositional variable X
of α we denote by α[X ← true] and by α[X ← false] the propositional
formulas obtained from α by replacingX by true and by false, respectively.
We may assume that the lengths of α[X ← true] and of α[X ← false] are
at most |α|.
Clearly, the formula α is satisfiable if and only if α[X ← true] or α[X ←
false] is satisfiable. Using this self-reducibility of Sat we turn any algorithm
B accepting Sat into an inverter B′ of FSat:

B
′ // α a propositional formula with variablesX1, . . . , Xn
1. simulate B on α
2. if the simulation rejects then reject
3. α′ ← α and S ← ∅
4. for i = 1 to n do
5. α1 ← α′[Xi ← true]
6. α2 ← α′[Xi ← false]
7. in parallel simulate B on α1 and α2
8. if the simulation accepts α1 first

then α′ ← α1 and S ← S ∪ {(Xi, true)},
else α′ ← α2 and S ← S ∪ {(Xi, false)}

9. Output (α, S).

As the number n of variables of the formula α is at most |α|, we get for
α ∈ Sat,
tB′(α) ≤ O((|α|+ 1) ·max{tB(α′) | α′ ∈ Sat and |α′| ≤ |α|}). (6)

Thus, for an optimal inverter O of FSat and α ∈ Sat, we have:
tOacc (α) ≤ (tO(α)))O(1) (by (4) as FSat runs in polynomial time on its domain)

≤ (tB′ (α))O(1) (by (2) as FSat runs in polynomial time on its domain)

≤ (|α| ·max{tB(α′) | α′ ∈ Sat and |α′| ≤ |α|})O(1) (by (6)).

�
As Sat is NP-complete, we know that P = NP if and only if there is a
polynomial time algorithmdeciding Sat. Or (see the proof of the implication
(iii)⇒ (i) below), P = NP if and only if there is a polynomial time algorithm
2
FSat is a linear time algorithm. Using Remark 3.4 or Remark 3.5 one gets bounds on the

degree of the corresponding polynomial. However, in this survey paper we do not address
this aspect any more.
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accepting Sat and running in polynomial time on satisfiable formulas. We
show that P = NP if and only if the algorithm Oacc (where O is an optimal
inverter of FSat) is such an algorithm:

Theorem 3.8 ([10]). For an optimal inverter O of FSat the following
statements are equivalent:

(i) P = NP.
(ii) O runs in polynomial time on satisfiable formulas.
(iii) Oacc runs in polynomial time on satisfiable formulas.
Proof. (i) ⇒ (ii): Assume first P = NP. Then there is a polynomial
time algorithm B deciding Sat. The corresponding inverter B′ defined in
the previous proof runs in polynomial time on satisfiable formulas by (6).
Hence, the optimal inverterO runs inpolynomial timeon satisfiable formulas
(by (2) as FSat runs in polynomial time on its domain).
The implication (ii)⇒ (iii) follows from (4).We turn to (iii)⇒ (i): Assume
that Oacc runs in polynomial time on satisfiable formulas. Let p ∈ N[X ] be
a corresponding polynomial. Then we can decide Sat in polynomial time
(and hence, P = NP) by running Oacc on every propositional formula α at
most p(|α|) steps and rejecting if Oacc does not halt during these steps. �
We close this section with a general remark. Let F be an algorithm. We
assume that its range Q is decidable and fix an algorithm A deciding Q. For
every inverter I of F we get an algorithm Idec deciding Q by running Iacc and
A in parallel:

Idec // y ∈ Σ∗
1. in parallel simulate Iacc and A on y
2. if Iacc accepts, then accept
3. if A rejects, then reject.

Then for y ∈ Q,
tIacc(y) ≤ tIdec(y) ≤ O(tIacc (y)).

These inequalities allow to translate most of our results concerning the
acceptors Iacc into corresponding statements on the decision algorithms Idec.
For example, the statement corresponding to Proposition 3.7 would read:

Let O be an optimal inverter of FSat. For every algorithm B deciding
Sat we have for all α ∈ Sat,
tOdec (α) ≤

(|α| ·max{tB(α′) | α′ ∈ Sat and |α′| ≤ |α|})O(1)
(note that Odec is an algorithm deciding Sat).

§4. Optimal acceptors. An optimal acceptor is an algorithm accepting a
problemwith optimal running time on the yes-instances (positive instances).
In this section we study whether the algorithm Oacc accepting Sat and
considered in Theorem 3.8 is an optimal acceptor. Furthermore, we present
a problem decidable in exponential time (with a linear exponent), which has
no optimal acceptor.
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Definition 4.1. Let Q ⊆ Σ∗ be a problem.
– Let A and B be algorithms accepting Q. The algorithm A is as fast as B
on yes-instances, written A ≤yes B, if for every x ∈ Q,

tA(x) ≤ (|x| + tB(x))O(1).
Note that nothing is required for x �∈ Q.
– An algorithm A acceptingQ is optimal if A ≤yes B for every algorithm B

accepting Q. We then say that A is an optimal acceptor of Q.

We write A <yes B if A ≤yes B but B �≤yes A.
Remark 4.2. The concept of optimality just defined was first considered
in [16] for algorithms deciding the setTaut of tautologies of propositional logic.
The name “optimal acceptor” was introduced in [19]. Let Q be a decidable
problem and A0 any algorithm deciding Q. If A is an optimal acceptor of
Q, we get an algorithm deciding Q, which is still optimal, by running A0 and
A in parallel in the obvious way. In connection with decision algorithms the
optimality notion of Definition 4.1 has sometimes (e.g., in [4]) been called
almost optimality in order to emphasize that it only refers to yes-instances.

Example 4.3. Let F be an algorithm with range Q. Then, we have
Oacc ≤yes Iacc for every inverter I of F and every optimal inverter O of
F. In fact, for y ∈ Q,

tOacc(y) ≤ O(tO(y) + tF(O(y))) (by (3))

≤ (tI(y) + tF(I(y)))O(1) (by (1))

≤ (tIacc (y))O(1) (by (3)).

Hence, Oacc is an algorithm accepting Q “optimal in the class of all Iacc.”

Often we will apply the following simple observation.

Lemma 4.4. IfM is a subset of Q decidable in polynomial time, then every
optimal acceptor of Q runs in polynomial time onM .

Proof. Let M be an algorithm deciding M in polynomial time and A

an optimal acceptor of Q. We define the algorithm B, which accepts Q by
runningM and A in parallel as follows:

B // x ∈ Σ∗
1. in parallel simulateM and A on x
2. if M accepts, then accept
3. if A accepts, then accept.

Clearly, B runs in polynomial time onM . By the optimality of A we know
that tA(x) ≤ (|x|+ tB(x))O(1) holds for all x ∈ Q (and thus for all x ∈M ).
Therefore, the algorithm A also runs in polynomial time onM . �
Every problem Q in P (polynomial time) has an optimal acceptor. Indeed
every polynomial time algorithm deciding Q is an optimal acceptor of Q.
As shown in [19] there are problems in E \ P with optimal acceptors (where
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E := Dtime(2O(n))).3 To the best of our knowledge it is still not known
whether there is a problem in NP \ P having an optimal acceptor (even
assuming P �= NP). In view of Theorem 3.8 one could expect that the
algorithm Oacc, where O is an optimal inverter of FSat, is such an algorithm
for the problem Sat. However, we can show:

Proposition 4.5. Assume NP ∩ coNP �= P.4 Then, for every optimal
inverter O of FSat the algorithm Oacc is not an optimal acceptor of Sat.

Proof. The proof uses some standard results and techniques from com-
plexity theory. The result of the proposition will not be used again, so the
reader not familiar with these techniques may skip this proof.
LetQ be a problem in

(
NP∩ coNP) \P. Then there exist two polynomial

time decidable relationsR1 andR2 and two polynomials p1, p2 ∈ N[X ] such
that for every x ∈ Σ∗,
(i) x ∈ Q if and only if there exists a y ∈ Σ∗ with |y| ≤ p1(|x|) and
(x, y) ∈ R1;

(ii) x /∈ Q if and only if there exists a y ∈ Σ∗ with |y| ≤ p2(|x|) and
(x, y) ∈ R2.

Using standard polynomial time reductions of the statements on the right
hand sides of (i) and (ii) to Sat, we can compute, for x ∈ Σ∗, propositional
formulas �x and �x in polynomial time which express the right hand sides
of (i) and (ii), respectively. Moreover,

from a satisfying assignment of �x := (�x ∨ �x) we obtain
in polynomial time a y as required in (i) or (ii). (7)

By (i) and (ii), �x is satisfiable for all x ∈ Σ∗. Finally, we can assume that
from �x we can recover x in polynomial time: for this purpose one uses a
“fresh” propositional variable X and passes, say, for x = 10011, from �x to

(X ∧ ¬X ∧ ¬X ∧ X ∧ X ∧ �x).
Thus,

M := {�x | x ∈ Σ∗}
is a polynomial time decidable subset of Sat. Now let O be an optimal
inverter of FSat. By Lemma 4.4, Oacc must run in polynomial time onM if
it is an optimal acceptor of Sat. We show that this is not the case. By (4)
it suffices to show that O (instead of Oacc) does not run in polynomial time
onM . We consider the following algorithm:

B // x ∈ Σ∗
1. α ← �x
2. simulate O on α and let (α, S) be its output
3. compute from S the string y according to (7)
4. if (x, y) ∈ R1 then accept else reject.

3Here, as usual, given a class F of total functions from N to N we denote byDtime(F ) the
class of problems decidable by an algorithm A with tA ∈ O(f) for some f ∈ F .
4The complexity class coNP consists of the complements of problems in NP.
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Assume that O runs in polynomial time on M . Then B decides Q in
polynomial time, contradicting Q /∈ P. �
In the proof of Gödel’s incompleteness theorems we will apply the
following result.

Theorem 4.6 (Stockmeyer’s Theorem [25]). There is a decidable problem
Q0 in E := Dtime(2O(n)) without optimal acceptor. Furthermore, there is a
computable function S which assigns to every algorithm B accepting Q0 an
algorithm S(B) also acepting Q0 such that

S(B) <yes B.

Proof. For an algorithm A let cA be a string in Σ∗ coding A. We set

Q0 :=
{
cA

∣∣ A an algorithm such that (A does not
accept cA or tA(cA) > 2|cA|

)}
.

Claim. If B accepts Q0, then cB ∈ Q0 and tB(cB) > 2|cB|.
Proof of Claim. Suppose that cB /∈ Q0. Then, B does not accept cB (as

B accepts Q0) and thus, cB ∈ Q0 by definition of Q0. So we know that
cB ∈ Q0 and thus, B accepts cB. Hence, again by definition of Q0, we have
tB(cB) > 2|cB|. This finishes the proof of the Claim.
Let B accept Q0. We show that B is not optimal. For n ∈ N we obtain
the algorithm Bn by adding n useless instructions to B in a standard fashion
such that

for all n ∈ N and x ∈ Σ∗, B(x) = Bn(x) and tB(x) = tBn(x),

and such that
C :=

{
cBn

∣∣ n ∈ N
} ∈ P.

As each Bn also accepts Q0, by Claim we have

C ⊆ Q0 and tB(cBn ) = tBn(cBn) > 2
|cBn | for all n ∈ N.

That is, B does not run in polynomial time on C and hence is not optimal
by Lemma 4.4.
We let S(B) be the following algorithm: on input x, it first checks whether
x ∈ C ; if so, it accepts; otherwise, it simulates B on input x and answers
accordingly. Clearly, S(B) accepts Q0 and for all x ∈ Q0 we have tS(B)(x) ≤
(|x| + tB(x))O(1), i.e., S(B) ≤yes B. As S(B) runs in polynomial time on C ,
we have S(B) <yes B. �

§5. Polynomially optimal proof systems. We recall the concept of poly-
nomially optimal proof system and use Levin’s optimal inverters to derive
a relationship between these proof systems and optimal acceptors. In this
section Q will always denote a nonempty subset of Σ∗.

Definition 5.1. (1) A proof system forQ is a polynomial time algorithm
P computing a function with domain Σ∗ (that is, a total function on
Σ∗) and range Q. If P(x) = y, we say that x is a P-proof of y.
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(2) A proof system P for Q is polynomially optimal or p-optimal if for
every proof system P′ for Q there is a polynomial time algorithm T

that translates P′-proofs into equivalent P-proofs, i.e., for all x′ ∈ Σ∗
we have

P(T(x′)) = P
′(x′).

For example, every standard complete deductive system D for first-order
logic (for propositional logic) can be viewed as a proof system PD for the
set Q := Valid of valid first-order sentences (for the set Q := Taut, of
propositional tautologies):

PD(x) :=

⎧⎪⎨
⎪⎩
ϕ, if x = (ϕ, d ) and d is a deduction in D of the formula

ϕ of first-order logic
ϕ0, else,

where ϕ0 is a fixed valid formula of first-order logic (we leave the definition
of the proof system for Taut to the reader).
The following total extension PSat of the algorithm FSat (see (5)) is a proof
system for Sat:

PSat(x) :=

⎧⎪⎨
⎪⎩
α, if x = (α, S) and the assignment S satisfies

the propositional formula α
true, else.

Every Q ∈ P has a p-optimal proof system: let A be a polynomial time
algorithm deciding Q and fix y0 ∈ Q. Then the following algorithm P is a
p-optimal proof system for Q: on input x it simulates A on x, then outputs
x if A accepts and outputs y0 otherwise.
It is not hard to show that Q has a p-optimal proof system if it is polyno-
mial time reducible to a problemQ′ with a p-optimal proof system (see [14]).
It is not known whether there are problems outside P with a p-optimal proof
system. Valid has no p-optimal proof system (see [2]). For Taut and Sat
it is still open.
The following result shows that a problem Q has an optimal acceptor
if it has a p-optimal proof system. This was first proved for Q = Taut
in [16]. Hidden in that proof, as in the proof of the extension of this result to
Q := Sat in [22], is a diagonal argument similar to the one used to obtain
Levin’s theorem. We apply this theorem directly; using its terminology, we
get a more informative statement:

Theorem 5.2. Let Q ⊆ Σ∗. Every optimal inverter of a p-optimal proof
system for Q is an optimal acceptor of Q, more precisely:
Let P be any p-optimal proof system for Q and let O be an optimal inverter
of P. Then Oacc is an optimal acceptor of Q ( for the definition of Oacc see
Proposition 3.6).
In particular, if Q has a p-optimal proof system, then Q has an optimal
acceptor.
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Proof. LetP be a p-optimal proof system forQ andO an optimal inverter
ofP.We show thatOacc is an optimal acceptor ofQ. So letB be any algorithm
accepting Q. We have to show that Oacc ≤yes B. The algorithm B induces a
proof system PB for Q,

PB(y, d ) :=

{
y, if B accepts y by the computation d
y0, otherwise,

where y0 is a fixed element of Q. By the p-optimality of P there is a
polynomial time algorithm T such that

P(T(y, d )) = PB(y, d ) = y

if y ∈ Q and d is the computation of B on y. Therefore, we get an inverter
I of P setting

I(y) := T(y, d ), if B accepts y and d is the computation of B on y.

The algorithm I does not halt for y �∈ Q. For y ∈ Q we get the computation
d of B on y in time O(tB(y)); therefore,

tI(y) ≤ O(tB(y)) +
(|y|+ |d |)O(1) ≤ (|y|+ tB(y))O(1).

As O is an optimal inverter of P and P runs in polynomial time, we get for
y ∈ Q from (2),

tO(y) ≤
(
tI(y)

)O(1) ≤ (|y|+ tB(y))O(1).
Now (4) yields for y ∈ Q,

tOacc(y) ≤
(|y|+ tB(y))O(1).

Thus, Oacc ≤yes B. �
For Q with a padding function,5 the following converse of the previous
theorem is also known: if Q �= ∅ has an optimal acceptor, then Q has a
p-optimal proof system (see [19,23]). It is not known whether the result still
holds for Q without padding.

§6. Hard sequences for algorithms and proof systems. Stockmeyer’s Theo-
rem presents a problemQ0 without optimal acceptor. The basic idea behind
the proof is to exhibit for every algorithm B accepting Q0 a polynomial
time definable sequence (cBs )s∈N of elements of Q0 such that B does not run
in polynomial time on it; this allows to superpolynomially speed up B on
{cBs | s ∈ N}. Such hard sequences for algorithms and proof systems have
turned out to be a useful tool in the study of the existence of optimal accep-
tors and p-optimal proof systems [6, 15]. Here, applying Levin’s optimal
inverters, we show how hard sequences for acceptors of a given problem Q
translate into hard sequences for proof systems for Q.
We start with a precise definition of the notion of hard sequence:

5We do not introduce the notion of padding function as we are not going to use it. We
refer the interested reader to [21, Definition 14.2].
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Definition 6.1. Let Q ⊆ Σ∗ be recursively enumerable.
1. LetA be an algorithm acceptingQ. A sequence (xs)s∈N is hard forA if

– {xs | s ∈ N} ⊆ Q;
– the function 1s �→ xs is computable in polynomial time (here,

1s =

s︷ ︸︸ ︷
11 . . . 1);

– tA(xs) is not polynomially bounded in s (that is, for no polynomial
p ∈ N[X ] we have tA(xs) ≤ p(s) for all s ∈ N).

2. The problem Q has hard sequences for acceptors if every acceptor of Q
has a hard sequence.

3. Let P be a proof systems for Q. A sequence (xs)s∈N is hard for P if
– {xs | s ∈ N} ⊆ Q;
– the function 1s �→ xs is computable in polynomial time;
– there is no polynomial time algorithmW with P(W(1s)) = xs for all
s ∈ N.

4. The problem Q has hard sequences for proof systems if every proof
system for Q has a hard sequence.

One easily verifies that (see [6]):

(a) No acceptor with a hard sequence is optimal, and similarly no proof
system with a hard sequence is p-optimal.

(b) If Q is polynomial time reducible to a problem Q′ and has hard
sequences for acceptors, then so does Q′.

We have seen that the problem Q0 of Stockmeyer’s Theorem has hard
sequences for acceptors (as alreadymentioned, for every algorithmB accept-
ing Q0 the sequence (cBs )s∈N defined in the proof of that theorem is a
hard sequence for B). As Q0 ∈ E (see Stockmeyer’s Theorem), we have
Q0 ∈ Exp = Dtime(2nO(1)) (exponential time).6 Thus, by (a) and (b):
Corollary 6.2. If Q is Exp-hard under polynomial reductions, thenQ has
no optimal acceptors.

We turn to the result announced in the first paragraph of this section.

Theorem 6.3 ([6]). LetQ ⊆ Σ∗ and letP be a proof system forQ. Then, for
every optimal inverter O of P, every hard sequence for Oacc is a hard sequence
for P.
In particular, if Q has hard sequences for algorithms, then Q has hard
sequences for proof systems.

Proof. Let O be an optimal inverter of P and let (xs)s∈N be a hard
sequence for Oacc. We show that (xs)s∈N is a hard sequence for P.
By the hardness of (xs)s∈N for Oacc there is a polynomial time algorithm

G that on input 1s outputs xs ∈ Q such that
tOacc(xs) is not polynomially bounded in s . (8)

LetG′ be the following algorithm that halts on inputs x ∈ {xs | s ∈ N} and
then outputs 1s for the (least) s with x = xs :

6It is easy to show that Q0 is even complete for Exp under polynomial reductions.
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G′ // x ∈ Σ∗
1. � ← 1
2. for s = 1 to �
3. simulate the (� − (s − 1))th step of G on 1s
4. if this simulation outputs y andy = x, then haltwith output 1s

5. � ← � + 1
6. goto 2.

As G is a polynomial time algorithm, we have:

tG′(xs) is polynomial in s . (9)

Suppose that (xs)s∈N is not a hard sequence for P. Then there is a polynomial
time algorithmW with

P(W(1s)) = xs (10)
for all s ∈ N. We consider the following algorithm I:

I // x ∈ Σ∗
1. in parallel simulate O and G′ on x
2. if O halts, then halt with output O(x)
3. if G′ halts, then simulateW on G′(x) and halt with outputW(G′(x)).

This algorithm is an inverter of P: ifO halts first, then x ∈ Q and P(I(x)) =
P(O(x)) = x (by Theorem 3.2); ifG′ halts first, then G′(x) = 1s for some s
with x = xs . Thus P(I(x)) = P(W(G′(x))) = P(W(1s)) = xs = x by (10).
By (9) and as W runs in polynomial time, tI(xs) is polynomial in s .
Therefore, tO(xs) is polynomial in s , too (by (2) as P is a polynomial time
algorithm). But then, by (4), the same holds for the acceptor Oacc, i.e.,
tOacc (xs) is polynomial in s ; this contradicts (8). �
It is not known whether the following converse of the preceding theorem
holds: ifQ has hard sequences for proof systems, thenQ has hard sequences
for acceptors.
By a result of [6] we know that the equivalence

Q has hard sequences for acceptors ⇐⇒ Q has no optimal acceptor
(11)

holds for every problem Q complete for one of the classes Πpt with t ≥ 1
(the tth class of the polynomial hierarchy) or complete for the class Exp.
In particular, the equivalence holds for the coNP-complete problem Taut
(recall that coNP = Πp1 ). There are some limitations when trying to derive
(11) for all decidable problems Q, since it was shown in [6]:

If theMeasureHypothesis holds, then there is a decidable problemwhich
has no optimal acceptor but is accepted by an algorithm without hard
sequences.

TheMeasure Hypothesis [11], a hypothesis sometimes used in the theory of
resource bounded measures, is the assumption “NP does not have measure
0 in E.” For the corresponding notion of measure we refer the reader to [18].
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§7. Gödel’s incompleteness theorems. Turing was the first to realize that
a proof of at least Gödel’s First Incompleteness Theorem can be obtained
in terms of computability theory. In his seminal paper [26], referring to
Gödel’s publication [9], he writes: “By the correct application of one of
these arguments, conclusions are reached which are superficially similar to
those of Gödel.” In [26], Turing showed that the halting problem for Turing
machines is not decidable and hence, the set

Forever :=
{
M

∣∣ M is a Turing machine that,
with the empty string as input, runs forever

}
is not recursively enumerable. Using this result one easily gets Gödel’s First
Incompleteness Theorem as follows:
Let T be a decidable, true,7 and sufficiently strong first-order theory so
that for every Turing machineM we can formalize the statement

the Turing machineM, with the empty string as input, runs forever.

Assume that T � “M with the empty string as input runs forever” (that is,
T proves the formalization of the statement ‘M with the empty string as
input runs forever’). Since T is a true theory, thenM with the empty string
as input runs forever. Thus,{

M
∣∣ T � “M with the empty string as input runs forever”} ⊆ Forever.

As the set on the left hand side but not Forever is recursively enumerable,
the sentence “M with the empty string as input runs forever” is true but not
provable in T for some Turing machineM.
In our approach the true but not provable statements have the form

the algorithm O
acc accepts the problem Q, (12)

where the algorithmO is any optimal inverter of some algorithm (depending
on T ) with range Q, a recursively enumerable subset of Σ∗. Recall that
the algorithm Oacc was defined in Proposition 3.6. Furthermore, for these
optimal invertersO the provability of the statement in (12) is even equivalent
to the provability of the consistency of T (see (16) in Theorem 7.2, where it
is assumed that Q is not decidable in polynomial time).
Already Hutter [12] considered ‘provable’ algorithms, where ‘provable’
refers to a recursively enumerable, more or less specified true theory T . He
constructed an algorithm “which is the fastest and the shortest” deciding
a given problem. As Hutter said, Peter van Emde Boas pointed out to him
that it is not provable that his algorithm decides the given problem and that
his proof is a “meta-proof which cannot be formalized within the considered
proof system.” He added that “a formal proof of its correctness would prove
the consistency of the proof system, which is impossible by Gödel’s Second
Incompleteness Theorem.”

7By “T is true” we mean that T consists of formalizations of statements true in the
metatheory. We assume the consistency of the metatheory.
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We turn to our proofs. Let us fix:
– a recursively enumerable subset Q of Σ∗;
– an effective enumeration A1,A2, . . . of all algorithms;
– a decidable, true, and sufficiently strong first-order theory T .
In first-order logic we can formalize the statement

Ai accepts Q.

We denote the formalization by “Ai accepts Q.” Moreover we can ascertain
that a string � is a proof of this formalization from T , written

� : T � “Ai accepts Q.”
As T is a true theory, we know that Ai accepts Q if � : T � “Ai accepts Q”
for some �. We assume that there is an i0 ≥ 1 and a �0 such that

�0 : T � “Ai0 accepts Q.” (13)

We consider the algorithm FT,Q with

FT,Q(i, �, x) := x, if � : T � “Ai accepts Q” and Ai accepts x. (14)
On other inputs the algorithm FT,Q does not halt. On inputs (i, �, x) as
above, we have

tFT,Q (i, �, x) ≤ f(i) · |�| · tAi (x) (15)

for some computable function f : N→ N. By (13), the range of FT,Q is Q.
By the previous remarks, the following claims is immediate.
Claim. Let j ≥ 1 and � be such that � : T � “Aj accepts Q.” Then the
algorithm Ij,� with

Ij,�(x) := (j, �, x)

for x ∈ Σ∗ is an inverter of FT,Q with tIj,� (x) ≤ O(|x|). Furthermore, for all
x ∈ Q,

tFT,Q (Ij,�(x)) = tFT,Q (j, �, x) ≤ O(tAj (x))
(the inequality holds by (15)).
For every optimal inverter O of FT,Q we show, using Claim 7.1, that the
algorithmOacc acceptsQ as fast as any Aj acceptingQ provably in T . More
precisely:

Claim. Let O be an optimal inverter of FT,Q . Assume j ≥ 1 and let � be
such that � : T � “Aj accepts Q.” Then Oacc ≤yes Aj .
Proof. LetO, j ≥ 1, and � be as in the statement of the claim. For x ∈ Q
we have:

tOacc (x) ≤ O
(
tO(x) + tFT,Q (O(x))

)
(by (3))

≤ (
tIj,� (x) + tFT,Q (Ij,�(x))

)O(1)
(Claim 7.1 and (1))

≤ (|x| + tAj (x))O(1) (Claim 7.1).

.

�
Theorem 7.1 (Gödel’s First Incompleteness Theorem). For every decid-
able, true, and sufficiently strong first-order theory T there exists a true
sentence ϕ such that T �� ϕ.
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Proof. Let the problemQ0 and the functionS have the properties stated in
Stockmeyer’s Theorem (Theorem 4.6). For an optimal inverterO ofFT,Q0 we
know that Oacc accepts Q0 (by Proposition 3.6) and that S(Oacc) <yes Oacc

(by Stockmeyer’s Theorem). But S(Oacc) is one of the algorithms of the
enumeration A1,A2, . . ., say, Aj . Thus, Aj <yes O

acc. Hence, T �� “Aj
accepts Q0” by Claim 7.2. �
As we gave an explicit definition of Q0 and S in Theorem 4.6, we can
construct a true sentence ϕ such that T �� ϕ explicitly.
We see that a decidable problem may be solvable by an algorithm whose
proof of correctness needs tools not available in the given theory T . More-
over, stronger theories may know of faster algorithms solving the problem.
In a discussion with the authors of [5], Sy-David Friedman posed the ques-
tion whether T ∪ {ConT} can be characterized as a minimal extension of T
in this complexity-theoretic context (here ConT denotes a sentence formal-
izing the consistency of T in a standard way). Theorem 7.2 contains such a
characterization.

Theorem 7.2 ([5]). Assume that T is a decidable, true, and sufficiently
strong first-order theory. Let Q be a decidable problem, which is not decidable
in polynomial time. Furthermore let O be an optimal inverter of the algorithm
FT,Q (cf. (14)). Then, for every theory T ′ ⊇ T we have

T ′ � “Oacc accepts Q” ⇐⇒ T ′ � ConT .
In particular,

T � “Oacc accepts Q” ⇐⇒ T � ConT . (16)

We use this result to show:

Theorem 7.3 (Gödel’s Second Incompleteness Theorem). Every decid-
able, true, and sufficiently strong first-order theory T does not prove its own
consistency, i.e., T �� ConT .
Proof. Again we consider the problem Q0 and the function S defined in
the proof of Stockmeyer’s Theorem. By (16) we know that for an optimal
inverter O of FT,Q0 ,

T � “Oacc accepts Q0” ⇐⇒ T � ConT .
Thus, it suffices to show that T �� “Oacc accepts Q0.” Suppose, for a
contradiction, that

T � “Oacc accepts Q0.” (17)

For the algorithm S(Oacc) we know, by Stockmeyer’s Theorem, that

S(Oacc) <yes Oacc. (18)

On the other hand, as we assumed T to be sufficiently strong, the simple
part of the proof of Stockmeyer’s Theorem showing that S(Oacc) acceptsQ0
(as Oacc accepts Q0) can be carried out in T . Hence, by (17),

T � “S(Oacc) accepts Q0.”
But then Oacc ≤yes S(Oacc) by Claim 7.2, which contradicts (18). �
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§8. The Exponential Time Hypothesis and the clique problem. The Expo-
nential Time Hypothesis (ETH) is a computational hardness assumption.
It states that the problem 3Sat cannot be solved in subexponential time
(see [13]). In [8], under the assumption (ETH) it has been shown that the
parameterized clique problem is not uniformly fixed-parameter tractable;
thus (ETH) implies that FPT �= W[1] (for the classes FPT and W[1]
of parameterized complexity).8 In [1] the nonuniform Exponential Time
Hypothesis (ETHnu) was considered and similar results were proven in the
world of nonuniform parameterized complexity. Using an optimal inverter
we derive one of the results of [1]; by the way, we originally obtained this
result using inverters.
By Clique we denote the problem

Clique

Instance: A graph G =
(
V (G), E(G)

)
with vertex

set V (G) and edge set E(G), and k ∈ N.
Question: Is there a k-clique in G , i.e., is there a C ⊆

V (G) with |C | = k such that all distinct
u, v ∈ C are adjacent in G?

The problem Clique is NP-complete, thus unlikely to be solvable in polyno-
mial time. The algorithm, which decides Clique by systematically checking,
on input (G, k), all subsets of vertices of G of size k, has running time
O(2|V (G)|). The best known algorithm for Clique has running time

O
(
2ε·|V (G)|

)
for some ε with 0 < ε < 1.
By a result derived in [13] the following definition of the Exponential
Time Hypothesis (ETH) in terms of Clique is equivalent to the original
definition.

Definition 8.1. (1) The nonuniform Exponential Time Hypothesis
(ETHnu) is the statement

Clique /∈
⋂
ε>0

Dtime(2ε·|V (G)|).

(2) The Exponential Time Hypothesis (ETH) is the statement

Clique /∈ Dtime(2o(|V (G)|)).9

We believe that both, (ETHnu) and (ETH), are true. However, it is
known [1] that the underlying complexity classes are distinct. More pre-
cisely, the strict inclusion Dtime(2o(n)) ⊂ ⋂

ε>0Dtime(2
ε·n) holds. Clearly,

8We do not repeat the definitions of these complexity classes as we do not use them here.
9Recall that f ∈ o(g) for functions f, g : N → N if there are c, k ∈ N such that

f(n) ≤ 1
c
· g(n) for all n ∈ dom(f) with n ≥ k. We use similar notations as in the context

of the big-O notation.
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(ETHnu) implies (ETH). Using optimal inverters, we prove a partial
converse:

Theorem 8.2 ([1]). The following statements are equivalent:

(i) (ETHnu) fails, i.e., Clique ∈
⋂
ε>0Dtime(2

ε·|V (G)|).
(ii) There is an algorithm A accepting Clique with

tA(G, k) ≤ 2o(|V (G)|)

for every yes-instance (G, k) of Clique, i.e., for every (G, k) ∈ Clique.
Proof. The implication (ii) ⇒ (i) is easy: let A be an algorithm as in
(ii). Furthermore, let ε > 0. We present an algorithm B that witnesses
Clique ∈ Dtime(2ε·|V (G)|). By (ii), there is an n0 ∈ N such that for yes-
instances (G, k) of Clique with |V (G)| > n0 we have tA(G, k) ≤ 2ε·|V (G)|.
The algorithmB, for instances (G, k) ofCliquewith |V (G)| > n0, simulates
A for at most 2ε·|V (G)| steps and rejects if A does not accept within this time
bound. For smaller graphs, the algorithm B checks all sets of vertices of size
k and answers accordingly.
(i)⇒ (ii): let F be the algorithm with
F(x) := (G, k), if x = (G,C ) and C is a k-clique of the graph G . (19)

For other inputs F does not halt. Clearly, F runs in linear time on its domain
and rng(F) = Clique, that is, the range of F is the class of yes-instances of
the problemClique. LetO be an optimal inverter of F andOacc the acceptor
of Clique defined in Proposition 3.6. Assuming (i) we want to show that

tOacc(G, k) ≤ 2o(|V (G)|)

for yes-instances (G, k). Thus, for every 
 > 0 we have to show that

tOacc(G, k) ≤ 2
·|V (G)|

for sufficiently large graphs G with a k-clique.
Let ε > 0 (later we will fix the value of ε). By (i), there is an algorithm

Aε deciding Clique in time O(2ε·|V (G)|). The following algorithm Iε is an
inverter of F:

Iε // G = (V (G), E(G)) a graph and k ∈ N

1. simulate Aε on (G, k)
2. if the simulation rejects then reject
3. S ← V (G)
4. for i = 1 to |V (G)| do
5. v ← the ith vertex of V (G)
6. simulate Aε on G [S \ {v}]10
7. if the simulation accepts then S ← S \ {v}
8. output (G,S).

10As usual, for a subsetM of the vertex set V (G) of a graph G we denote by G [M ] the
subgraph of G induced onM .
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For every vertex of the input graph there is at most one simulation of Aε
(Line 6). Thus, if G has a k-clique, i.e., if (G, k) ∈ Clique = rng(F), then

tIε (G, k) ≤ O
(
|V (G)| · 2ε·|V (G)|

)
. (20)

Therefore, for some d ∈ N we have for all (G, k) ∈ rng(F),
tO(G, k) ≤

(
tIε (G, k) + tF(Iε(G, k))

)d
(by (1))

≤ O((|V (G)| · 2ε·|V (G)| + |V (G)| · 2ε·|V (G)|)d) (by (20) and as F
runs in linear time)

≤ O
(
|V (G)|d · 2ε·d ·|V (G)|

)
.

The algorithm F runs in linear time, hence, by (3),

tOacc(G, k) ≤ O
(
|V (G)|d · 2ε·d ·|V (G)|

)
holds for (G, k) ∈ rng(F). Thus, for ε := 
/d − 1, we have

tOacc(G, k) ≤ 2
·|V (G)|
for sufficiently large yes-instances (G, k) of Clique. �
We already mentioned the following result:

Theorem 8.3 ([8]). Assume (ETH). Then there is no algorithm deciding
Clique in time

f(k) · |G |O(1),
where f : N → N is an arbitrary function. Equivalently, the parameterized
clique problem (parameterized by k) is not uniformly fixed-parameter
tractable.
Note that this result does not rule out that for some fixed d ∈ N every slice
of the problem Clique is inDtime(nd ); that is, that for every fixed k there is
an algorithm deciding whether a graph G has a k-clique in timeO(|G |d ). If
(ETHnu) holds, this cannot be the case. Indeed using Levin’s result one gets:

Theorem 8.4 ([1]). Assume (ETHnu). Then for every d ∈ N there is a
k0 ∈ N such that for all k ≥ k0 the problem to decide whether a graph has a
k-clique is not inDtime(nd ).

§9. A space version of Levin’s result. Recently [3] we proved a space ver-
sion of Levin’s result and put it to good use [3, 4]. For example, given a
problem Q we introduced the notion of a space optimal proof system for Q
and relate it to space optimal acceptors of Q. Among others, we obtained
results, which correspond to those in Section 5.
Here we just mention this space version. More or less, it can be proved
along the lines of Theorem 3.2. For an algorithmA and a string x we denote
by sA(x) the space required by A on input x; if it is unbounded, we set
sO(y) =∞.
Theorem 9.1. Let F be an algorithm computing a (partial ) function from
Σ∗ to Σ∗. Then there is a space-optimal inverter, that is, an inverter O of F
such that:
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– For every inverter I of F and all y ∈ rng(F) we have
sO(y) ≤

(
sI(y) + log |I(y)|+ sF(I(y))

)O(1)
.

– sO(y) =∞ for y �∈ rng(F) (in particular,O does not stop on such inputs).

REFERENCES

[1] Y. Chen, K. Eickmeyer, and J. Flum, The exponential time hypothesis and the parameterized
clique problem, Proceedings of the 7th International Symposium on Parameterized and Exact Computation
(IPEC’12), Lecture Notes in Computer Science, Springer, 2012, pp. 13–24.
[2] Y. Chen and J. Flum, On p-optimal proof systems and logics for PTIME, Proceedings of the 37th

International Colloquium on Automata, Languages and Programming (ICALP’10, Track B), Lecture
Notes in Computer Science, vol. 6199, Springer, 2010, pp. 321–332.
[3] ,Listings and logics, Proceedings of the 26thAnnual IEEESymposiumonLogic inComputer

Science (LICS’11), IEEE Computer Society, 2011, pp. 165–174.
[4] , From almost optimal algorithms to logics for complexity classes via listings and a halting

problem. Journal of the ACM, vol. 59 (2012), no. 4, article 17.
[5] Y. Chen, J. Flum, andM.Müller,Consistency and optimality, Proceedings of the 7th Computabil-

ity in Europe, Mathematical Theory and Computational Practice (CiE’11), Lecture Notes in Computer
Science, vol. 6735, 2011, pp. 61–70.
[6] , Hard instances of algorithms and proof systems, Proceedings of How the World Com-

putes - Turing Centenary Conference and the 8th Computability in Europe, Mathematical Theory and
Computational Practice (CiE’12), Lecture Notes in Computer Science, vol. 7318, 2012, pp. 118–128.
[7] N. Christennsen, Levin’s optimal search theorem and Blum’s speedup theorem. Master Thesis,

University of Copenhagen, 1999.
[8] R. Downey and M. Fellows, Fixed-parameter tractability and completeness III: Some structural

aspects of the W-hierarchy, Complexity Theory (K. Ambos-Spies, S. Homer, and U. Schöning, editors),
Cambridge University Press, Cambridge, UK, 1993, pp. 166–191.
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