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In this paper we study finite particle Reynolds number effects up to Rep = 50 on the
dynamics of small spherical bubbles and solid particles in an isotropic turbulent flow. We
consider direct numerical simulations of light pointwise particles with various expressions
of the drag force to account for finite Rep and the type of particle. Namely, we consider
the Stokes drag law, the Schiller and Neumann relation and the Mei law. We show that
an effective Stokes number, based on the mean value of the drag coefficient to account
for the inertial effects involved in the drag law, gives a quasi-self-similar evolution of
the variances of the bubble acceleration and of the forces exerted on the particle. This
allows us to provide a satisfactory prediction of these quantities using Tchen’s theory at
finite particle Reynolds number. Based on these relations, we can specify the conditions
under which the total inertial force (sum of the added mass and the Tchen contributions) is
negligible compared with the drag force. Thus, for particles of very small dimensions, the
fluid inertia force is negligible, provided the density ratio is of order 1 or larger. However,
when the particle inertia becomes consequential, the threshold value of the density ratio
increases significantly. Although this corresponds to the limit of the validity of the model,
this draws attention to the fact that, for large Stokes numbers, the added mass and fluid
inertia forces could play a more important role than is usually attributed to them.

Key words: bubble dynamics, particle/fluid flow, isotropic turbulence

1. Introduction

Predicting the dispersion of objects (particles, bubbles, droplets) in turbulent flows is very
important in many circumstances both for engineering and natural applications. To achieve
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this for small bodies, the pointwise particle approach (also called the Euler–Lagrange
approach) is often considered. In this approach, the continuous fluid phase and the
dispersed phase are computed separately and are coupled through momentum exchange.
To close this momentum balance, one needs to provide an expression to calculate the
hydrodynamic force acting on each dispersed object that both integrates the characteristics
of the carrying flow and the response of the particle.

For the very specific situation of an isolated spherical particle, much smaller than the
smallest spatial scale of the flow fluctuations, moving with a very small velocity relative
to the carrier fluid such that its Reynolds number is vanishing, an exact formulation of the
hydrodynamic force is known (Gatignol 1983; Maxey & Riley 1983). In the case of the
finite Reynolds number, extension of unsteady dynamic forces on a spherical particle was
proposed (Mei 1996; Magnaudet & Eames 2000). As in the creeping flow condition, the
hydrodynamic force is decomposed into several terms including the stationary drag force,
the history effects (or Basset–Boussinesq force), the lift force, the added mass effect and
the inertia forces of the fluid (or Tchen force). The last two forces are due to the fluid inertia
in non-stationary or non-uniform flow situations. Indeed, the added mass force results from
the inertia of the volume of fluid that is accelerated by the displacement of the particle,
while the Tchen force corresponds to the force that a volume of fluid would experience if
it were in place of the particle and can be interpreted as a generalized buoyancy. Being
purely inertial, these effects are independent of the particle Reynolds number (Rivero,
Magnaudet & Fabre 1991) and involve the material derivative following a fluid element
(Auton, Hunt & Prud’Homme 1988). The other hydrodynamic forces, namely the drag
and the lift forces, while being essentially viscous effects in the limit of small particle
Reynolds numbers, are nevertheless affected by the fluid inertia for intermediate Reynolds
numbers, as evidenced by the explicit Reynolds number dependence of their expressions.

The relative importance of those forces in turbulent flows, as well as the effects of finite
particle Reynolds number, remain mainly open questions. Usually one considers that,
for spherical particles, the lift force can be neglected when the change in the ambient
velocity field over the scale of the sphere is small compared with the velocity of the
body relative to the flow (Calzavarini et al. 2008; Zhang 2019). The history force, or
Basset force, which is expected to account for rapid transient effects in viscous flows,
is shown to be negligible compared with the drag force (see for example Rivero et al.
(1991) or Mei, Klausner & Lawrence (1994)) for clean bubbles and is usually neglected
for solid particles with the argument that the kernel involved in the integral definition of
this term quickly decays when the Reynolds number of the particle motion increases. The
results of Calzavarini et al. (2012) indeed confirm the small effect of the history force
on the dynamics of neutrally buoyant particles when using a short range kernel. Note,
nevertheless, that Olivieri et al. (2014) report some effect of the history force on the heavy
particles clustering in turbulent flow when using the slowly decaying kernel valid at zero
Reynolds number. Finally let us mention that Volk et al. (2008) present a comparison
between experiments and numerical simulations confirming that, considering the viscous
drag, the added mass and Tchen forces enable us to obtain a good accuracy for the particle
acceleration as long as the finite size can be ignored. Concerning the added mass and
Tchen forces, their effects are usually considered as dominant for bubbles (Maxey, Chang
& Wang 1994; Calzavarini et al. 2009; Prakash et al. 2012; Mathai et al. 2016; Zhang,
Legendre & Zamansky 2019) and neutrally buoyant particles (Calzavarini et al. 2012) but
it is generally supposed that, for heavy enough particles, they are negligible (Maxey &
Corrsin 1986; Wang & Maxey 1993; Armenio & Fiorotto 2001; Bagchi & Balachandar
2003; Bec et al. 2006).
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Fluid inertia effects on particle motion in turbulent flows

In this paper, we present direct numerical simulation (DNS) of light particles subject
to added mass, Tchen and drag forces, transported by an isotropic and homogeneous
turbulent flow. In order to analyse the effects of the fluid inertia on the particle dynamics
for particle Reynolds numbers up to O(100), we consider two finite particle Reynolds
number corrections to the drag law relevant for solid particles and bubbles with diameter
smaller than the dissipative length scale. We propose prediction for the particle Reynolds
number, the drag force and for the fluid inertia forces (added mass effect and Tchen force)
for the dispersion of small spherical particles in turbulent flows. Based on these relations,
we clarify whether fluid inertia terms are negligible or not for a given density ratio and
particle size.

In § 2, we discuss the modelling used for the particles and summarize the details of the
numerical simulation. We present in § 3 our DNS results for various Stokes numbers and
drag laws, and introduce an effective Stokes number that accounts for the finite Reynolds
number effects on the particle response. In § 4 we recall the estimations for the variance
of the acceleration and the particles forces presented in Zhang et al. (2019) and show that
they can be combined with the effective Stokes number. In § 5 we discuss the importance
of the fluid inertia forces with respect to the drag forces as the density ratio or the size of
the particles is changed.

2. Modelling of particle dynamics

The objective is here to focus on finite Reynolds number effects on the small bubble or
solid particle response in a turbulent flow. For that purpose, the viscous transient correction
to the drag force and the lift force are neglected and the momentum balance equation for a
small sphere with diameter dp is then expressed as

mpdtup = 2πρf νdpφ(Rep)(uf − up) + mf Dtuf + CMmf (Dtuf − dtup), (2.1)

where mp = πρpd3
p/6, mf = πρf d3

p/6, ρp and ρf are the density of the particles and the
fluid respectively, ν is kinematic viscosity and CM = 0.5 is the added mass coefficient
for a sphere; dtup is the time derivative of the particle velocity and Dtuf is the material
derivative of the fluid velocity. Here, the fluid velocity and acceleration are evaluated at
the particle position uf = uf (x = xp, t) and Dtuf = Dtuf (x = xp, t).

In (2.1), the first term on the right-hand side stands for the drag force fD that remains
dominated by viscous effects up to Rep = O(100) where the particle Reynolds number
Rep = |uf − up|dp/ν is based on the slip velocity and the particle diameter. The correction
φ(Rep) accounts for finite Reynolds number effects but may also integrate other effects
such as the interface mobility or contamination, the viscosity of a fluid particle as well as
the particle shape. By definition, the case of a clean spherical bubble in the limit Rep → 0
(Hadamard 1911; Rybczynski 1911) will be in this paper the case of reference

φ(Rep) = 1. (2.2)

Considering the drag coefficient defined as f D = CDπd2
p ρf |uf − up| (uf − up)/8, any

kind of particle can then be considered with φ(Rep) = CD/CD,0, where CD,0 = 16/Rep
is the drag coefficient of a clean spherical bubble under the creeping flow condition
(Hadamard 1911; Rybczynski 1911). Note also that, as a consequence of its definition,
the Rep-correction satisfies φ(Rep) � 1.

In this paper, two types of Rep-corrections will be considered. The first one expresses
the behaviour of clean spherical bubbles or spheres with a perfect slip condition (zero
shear stress). For this type of particle, φ(Rep) is obtained from the Mei et al. (1994) drag
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Figure 1. Some correction functions φ(Rep) as a function of Rep. For the spherical bubble case: relation (2.3)
(continuous black line); the Stokes flow regime φ = 1, defined in this paper as the case of reference (relation
(2.2)) (black dashed line); the Taylor & Acrivos solution φ = 1 + Re/8 (lower left dotted grey line); the Moore
relation φ(Rep) = 3[1–2.211Re−1/2

p ] (right dotted grey line); and the Levich relation φ(Rep) = 3 (upper grey
dashed line). For the solid sphere case: the Stokes solution φ = 3/2 (lower grey dashed line); the Oseen solution
φ = 3/2(1 + 3Re/8) (upper left dotted grey line); and the Schiller and Naumann solution (2.4) (dash-dotted
line).

force expression able to describe the drag force of a spherical bubble for any value of the
Reynolds number

φ(Rep) = 1 +
(

8
Rep

+ 1
2

(
1 + 3.315

Re1/2
p

))−1

. (2.3)

This relation is based on DNSs and has been built in order to recover in the limit Rep → 0
both φ(Rep) = 1 and φ(Rep) = 1 + Rep/8 corresponding to the creeping flow solution
(Hadamard 1911; Rybczynski 1911) and the Oseen solution (Taylor & Acrivos 1964),
respectively. In the limit of large Reynolds number, relation (2.3) recovers both φ(Rep) = 3
and φ(Rep) = 3[1–2.211Re−1/2

p ] corresponding to the viscous potential solution of Levich
(1962) and the boundary layer correction of Moore (1963), respectively. In the following,
this type of Rep-correction will be referred to as the spherical bubble case.

The second type of particle considered is a solid sphere with a no-slip surface or
spherical bubble with a fully immobilized or contaminated interface. For this type of
particle, the Rep-correction is deduced from the drag coefficient of Schiller & Naumann
(1933) valid for Rep < 800

φ(Rep) = 3
2(1 + 0.15Re0.687

p ). (2.4)

This relation is based on an empirical fit of experimental data and tends to the Stokes
solution for a solid sphere φ(Rep) = 3/2 in the limit Rep → 0 (Stokes 1851). In the
following, this type of Rep-correction will be referred to as the solid sphere case.

In figure 1, the above-listed functions φ(Rep) are reported against the particle Reynolds
number. As shown, the Rep-correction increases faster for the solid sphere case (relation
(2.4)) than for the spherical bubble case (relation (2.3)).

Rearranging (2.1), one obtains the momentum budget per unit of displaced/accelerated
mass (i.e. accounting for the added mass effect) as

dtup = 12ν

d2
p(ρp/ρf + CM)

φ(Re)(uf − up) + βDtuf , (2.5)
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with β = (1 + CM)/(ρp/ρf + CM) that compares the mass subject to the total fluid
acceleration to the accelerated mass (Calzavarini et al. 2008; Toschi & Bodenschatz 2009;
Mathai, Lohse & Sun 2020). In the following, the first and second terms on the left-hand
side representing the drag and fluid inertia forces per unit of accelerated mass will be
denoted by F D (F D = f D/(mp + CMmf )) and F I , respectively.

Based on (2.5), the characteristic particle relaxation time is defined as

τp = 1
12

(
ρp

ρf
+ CM

) d2
p

ν
. (2.6)

The Stokes number is then defined as the ratio between τp and the dissipative time scale
of the flow τη

St = τp

τη

= 1
12

(
ρp

ρf
+ CM

)(
dp

η

)2

, (2.7)

with η the dissipative length scale of the turbulence. Note that the factor 1/12 in (2.6)
and (2.7) is common for clean spherical bubbles in the limit Rep → 0, whereas, for solid
particles, one usually has 1/18. Indeed, the change of stress condition at the interface is
trivially accounted for by rescaling the Stokes number St as St → 2/3St when changing
from a free-slip to a no-slip condition keeping the same flow conditions unchanged.

Accordingly, the non-dimensionalizing of the particle equation of motion by a reference
velocity and the time scale τη reads

dtup = φ(Rep)
uf − up

St
+ βDtuf . (2.8)

As indicated by this equation, as φ(Rep) � 1, we expect to observe a faster response of the
particles when considering finite Reynolds number effects.

In order for the above equation of motion to be valid, it is essential to consider that
the flow around the particle is uniform at the particle scale. Therefore, in the context
of homogeneous turbulence as considered in this study, we assume that the diameter of
the particle remains sufficiently small compared with the scale of the smallest eddies. In
practice, according to Calzavarini et al. (2009), it is sufficient to have dp/η < 10.

The details of the numerical methods have been presented in Zhang et al. (2019). For the
carrier phase, the homogeneous and isotropic turbulence is solved using a pseudo-spectral
method with the large-scale forcing proposed by Kumar, Schumacher & Shaw (2014)
given a Taylor scale Reynolds number of Reλ = 100. A Lagrangian one-way coupling
point-particle approach is considered for the particles with a Hermite interpolation scheme
of the Eulerian field at the particle position. The flow conditions reported in table 1
are identical for the simulations of each type of particle considered. In the following,
we analyse the effect of the finite Reynolds number for light spherical particles (bubble
or solid particle) imposing ρp/ρf = 0 and CM = 0.5, giving β = 3. For each set of
simulations, we consider seven classes of particles with Stokes number ranging from 0.02
to 2, as listed in table 2.

In § 3, we investigate the finite Reynolds number effects on the dynamics of particles.
For this, we consider for φ(Rep) the expressions (2.2) (the case of reference with φ(Rep) =
1), (2.3) (the spherical bubble case) and (2.4) (the solid sphere case).

3. Finite Reynolds number effects and effective Stokes number

For the set of numerical simulations described in tables 1 and 2, we first report the
statistics of the particle Reynolds number. Figure 2 shows the evolution of the mean
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N ReH Reλ TL/τη

〈ε〉H
K3/2 L/η Re0 η/Δ 
t/τη

5123 2475 100 26 1.97 133 64 1.06 0.002

Table 1. The simulation parameters for the turbulent flow field. The number of grid points in each direction
is N, H = 2π the size of numerical domain, TL = (2/3K)/ε the eddy turnover time, L = (2/3K)3/2/ε the
scale of the large eddies, K the average turbulent kinetic energy and ε the average dissipation rate; ReH =
H

√
(2/3K)/ν is the Reynolds number based on the size of the computational domain, Reλ is the Reynolds

number based on the Taylor length scale, η and τη are the Kolmogorov length and time scales; Re0 = (τL/τη)
2

is the square of the ratio of the Lagrangian integral time scale to the Kolmogorov time scale; Δ and 
t are the
grid size and the time step of the simulation.

dp/η 0.70 1.33 2.19 3.29 4.93 6.10 7.04

St 0.021 0.074 0.20 0.45 1.01 1.55 2.07

Table 2. The non-dimensional diameter of the particles dp/η and their Stokes number St.
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Figure 2. (a) Evolution of the mean particle Reynolds number with the Stokes number, for the three drag
law considered here. Symbols represent the DNS, (◦) the reference case φ(Rep) = 1, (�) spherical bubble
case φ(Rep) given by relation (2.3), (∗) solid sphere case φ(Rep) given by relation (2.4). The grey dashed line
corresponds to the prediction of the Reynolds number proposed in (4.9). Inset: ratio of the standard deviation
of the particle Reynolds number to its average. (b) The p.d.f. of Rep for different St normalized by its standard
deviation. For the case of the drag from Mei (2.3). Curves from black to orange correspond to an increase of the
Stokes number. The dashed line is the log-normal distribution with parameters σ 2 = ln 2, μ = −σ 2/2, such
that the mean and root-mean-square values are both unity.

and root-mean-square of the particle Reynolds number Rep with St. As expected, for
the three φ(Rep) relations considered, the average value of the Reynolds number 〈Rep〉
increases with the Stokes number. For St > 1, it appears that the average Reynolds
number can be significantly larger than 1, which indicates that finite Reynolds number
effects have a significant impact and should be accounted for. Indeed, we remark that
the differences between the use of relation (2.2) or (2.3) are sizable at sufficiently large
Stokes numbers, with a reduction of the relative velocity due to the Reynolds number
effect. For the maximum Stokes number considered here, 〈Rep〉 ≈ 30, when considering
no Rep-correction while 〈Rep〉 ≈ 20 and 〈Rep〉 ≈ 10 for spherical bubble (Rep-correction
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Figure 3. Variance of the drag force normalized by the variance of the particle acceleration (a) and variance
of the acceleration normalized by the acceleration variance of fluid particles (b) as a function of the Stokes
number St; (◦) obtained for a clean bubble in the Stokes flow regime (2.2), (
) for clean bubbles (2.3) and (∗)
for solid particles (2.4). The dashed lines correspond to expressions (4.5) and (4.7).

(2.3)) and solid sphere (Rep-correction (2.4)) cases, respectively. As well, the relative
velocity of a solid sphere is significantly reduced compared with a spherical bubble under
the same flow conditions. We also remark in the inset of figure 2(a) that the standard
deviation of the Reynolds number is of the order of its average value.

In figure 2(b), we report the probability distribution function (p.d.f.) of the Reynolds
number when considering the Rep-correction for the spherical bubble case (relation (2.3)).
It is observed that the normalized p.d.f. is quite close to a log-normal distribution, and
that the instantaneous Reynolds number can present deviations significantly larger than
its root-mean-square. For St → 0, the drag force and fluid inertia force are proportional
(Zhang et al. 2019), leading the particle Reynolds number to be proportional to the norm
of the fluid acceleration at the particle position: Rep = (d/ν)τp|1 − β||Dtuf |. Therefore,
the log-normal distribution of Rep is expected since the fluid acceleration norm is well
described by this distribution (Yeung et al. 2006; Toschi & Bodenschatz 2009). It is further
observed that the normalized p.d.f. of Rep depends slightly on the Stokes number, with a
reduced probability of observing large Rep fluctuations with increasing St. Note also that,
for the two other considered cases, the behaviour (not presented in figure 2 for clarity) is
very similar.

We present in figure 3 the variance of the drag forces per unit of accelerated mass F D
for the three different drag laws considered. Despite the increase of the relative velocity
reported above, we observe that F D is reduced when the Stokes number increases. We
notice further that considering the Rep-correction (2.3) gives a slower reduction compared
with the case of reference φ(Rep) = 1. From the definition of the Reynolds number and of
the Stokes number, F 2

D normalized by the square of the Kolmogorov acceleration a2
η can

be expressed as

F 2
D

a2
η

= φ2(Rep)Re2
p
ρp/ρf + CM

12
St−3. (3.1)

As indicated by this expression, if the quantity 〈φ2(Rep)Re2
p〉 grows with St less rapidly

than St3, then the variance of F 2
D/a2

η decreases as the Stokes number increases, as observed
in figure 3. When considering the solid sphere case, which presents the strongest increase
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of the correction function φ with Rep, this imposes that 〈Rep〉 grows approximately slower
than linearly, as already observed in figure 2.

In figure 3 we also report the particle acceleration variance 〈a2
p〉. It is observed that,

for the three drag laws considered, the acceleration variance normalized by the fluid
acceleration variance 〈a2

f 〉 increases with the Stokes number, essentially due to the
progressive fading of the drag force as well as its decorrelation with the fluid inertia force,
as explained by Zhang et al. (2019). Note that further increase of the Stokes number would
lead to a saturation of the normalized acceleration variance to β2, as shown by Calzavarini
et al. (2009) and Zhang et al. (2019), but in this case the particle diameter would be too
large for the pointwise particle approach to remain valid. The case of reference φ(Rep) = 1
gives to a faster increase of the acceleration variance and for the case of spherical bubbles
it increases faster than for the solid sphere case.

To characterize the inertia effects on the particle response time through the drag
force correction φ(Rep), we decompose the particle Reynolds number into its mean
and fluctuating parts, Rep = 〈Rep〉 + Re′

p and approximate the drag force per unit of
accelerated mass using a Taylor expansion of the function φ around φ(〈Rep〉)

F D = φ(〈Rep〉)uf − up

τp
+ Re′

pφ
′(〈Rep〉)uf − up

τp
+ . . . , (3.2)

with φ′ the derivative of φ with respect to Rep. This relation leads to the introduction of
an effective relaxation time τ ∗

p , as already proposed by Février, Simonin & Squires (2005)
and Bergougnoux, Bouchet & Lopez (2014), that accounts for the Reynolds number effects

τ ∗
p = τp/φ(〈Rep〉). (3.3)

We further introduce the effective Stokes number as

St∗ = St/φ(〈Rep〉). (3.4)

Despite the particle Reynolds number presenting large fluctuations, the Taylor expansion
can be truncated at first order as far as one is concerned with low-order statistics. To justify
this assertion, we compare the magnitude of the second-order and the first-order terms in
(3.2). We plot in figure 4 the ratio 〈Rep〉φ′(〈Rep〉)/φ(〈Rep〉) against 〈Rep〉 for the two
Rep-corrections considered here (2.3)–(2.4). Note that this amounts to considering that
the order of magnitude of the fluctuations of Rep as O(Re′

p) = 〈Rep〉, consistently with the
observation of figure 2. We remark that for the case of reference φ′(〈Rep〉) = 0. We found
that, in the simulation for spherical bubbles, the largest value of this ratio is approximately
0.2 for St ≈ 1.55 and in the simulation for a solid sphere, the ratio increases monotonically
up to its asymptotic value of 0.687 at large St. For moderate values of Reynolds number,
the second term on the right-hand side of (3.2) remains smaller than the first term.

In order to discuss the relevance of St∗, we show in figure 5 the evolution of the variance
of the drag force and of the particle acceleration for the various simulations as a function of
St∗. When plotted against St∗, these quantities now collapse onto a single curve, compared
with what is reported in figure 3 where the evolution is reported against St. We recover
here the expected effect of the Rep-correction on the drag force: the particle response time
to the flow is decreased, thus decreasing the effective Stokes number. We show that the
effective Stokes number given by (3.4) is the relevant parameter to describe the inertial
flow effect on the particle response to the turbulent flow.
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Figure 4. Evolution of (〈Rep〉/φ(〈Rep〉))φ′(〈Rep〉) as a function of 〈Rep〉. Symbols correspond to the results
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4. Prediction for the forces applied to the particle and the Reynolds number

Following the approach of Tchen (1947) (see also Hinze 1975; Mei 1996; Alipchenkov &
Zaichik 2010), Zhang et al. (2019) estimate the variance of the drag forces, the fluid inertia
force and the particle acceleration variance as functions of St, β and a Reynolds number
Re0 = (τL/τη)

2 defined as the square of the ratio of the Lagrangian integral time scale τL
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to the Kolmogorov time scale, as

〈F 2
D〉

a2
η

≈ c0
(1 − β)2

1 − St2/Re0

[
tan−1(c1St)

c1St
− tan−1(c1Re1/2

0 )

c1Re1/2
0

]
= ΓD(St, β, Re0), (4.1)

〈F 2
I 〉

a2
η

≈ c0β
2

[
1 − tan−1(c1Re1/2

0 )

c1Re1/2
0

]
= ΓI(St, β, Re0), (4.2)

〈a2
p〉

a2
η

≈ c0

[
β2 + 1 − β2

1 − St2/Re0

tan−1(c1St)
c1St

− 1 − β2St2/Re0

1 − St2/Re0

tan−1(c1Re1/2
0 )

c1Re1/2
0

]

= Γa(St, β, Re0), (4.3)

with the parameter c1 found to be c1 = 2.1; c0 can be interpreted as the ratio of the
fluid particle acceleration variance to the square of the Kolmogorov acceleration, and
is therefore dependent on the flow Reynolds number, as reported for example by La
Porta et al. (2001) and Sawford et al. (2003). Note that Re0 can be approximated as
Re0 ≈ (0.08Reλ)2 (Sawford & Yeung 2011; Zhang et al. 2019). In (4.1), (4.2) and (4.3) we
introduce ΓD, ΓI and Γa as the estimations for 〈F 2

D〉/a2
η, 〈F 2

I 〉/a2
η and 〈a2

p〉/a2
η, respectively.

These expressions are valid for Rep � 1 as they are based on a linear response of the
particle velocity to the fluid velocity. Further, in the derivation of these expressions, two
main assumptions are considered. Firstly, we assume that the Lagrangian fluid velocity
spectra along the trajectory can be modelled as (Hinze 1975; Mordant, Metz & Michel
2001)

Ef (ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k0τ
2
L 〈ε〉

(τLω)2 + 1
for ω < k1

2π

τη

,

0 for ω � k1
2π

τη

,

(4.4)

which presents saturation for ω � τ−1
L . The coefficients k1 and k0 are such that c0 =

2πk1k0 and c1 = 2πk1. The second assumption amounts to substituting the material
derivative of the fluid velocity at the particle position by the Lagrangian time derivative
along the particle trajectory, in order to obtain a close expression depending only on the
value of the fluid velocity at the particle position. Zhang et al. (2019) checked that these
assumptions are valid in the case of bubbles with a sufficiently small Reynolds number.
In particular, it was shown that the first assumption gives a quite accurate acceleration
variance although it misses any effect of preferential concentration while the second one
requires the Stokes number to be sufficiently small to be valid.

We propose to generalize the relations (4.1)–(4.3) to the cases of particles with a finite
Reynolds number. For this, we take into account their nonlinear drag law (Rep-correction)
by relying on the effective particle response time introduced in the previous section.
Indeed, in view of the similarity of the evolution of the variance of the force and the
acceleration as a function of St∗, presented in figure 5, we simply propose to replace St by
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St∗ = St/φ(〈Re〉) in (4.1)–(4.3)

〈F 2
D〉

a2
η

≈ ΓD(St∗, β, Re0), (4.5)

〈F 2
I 〉

a2
η

≈ ΓI(St∗, β, Re0), (4.6)

〈a2
p〉

a2
η

≈ Γa(St∗, β, Re0). (4.7)

Note that (4.6) is left unchanged, since in our basic approximation the fluid particle
acceleration at the particle position does not depend on the Stokes number as preferential
concentration effects are discarded, ΓI(St∗, β, Re0) = ΓI(β, Re0).

The issue, for the use of these relations, is now to have a prediction for St∗, as it requires
us to know the average particle Reynolds number 〈Rep〉. First of all, we observe in figure 2
that the standard deviation of the Reynolds number is nearly equal to its average, and as
a consequence one can write 〈Rep〉 ≈

√
〈Re2

p〉/2. On the other hand, it follows from the

previous section that the variance of the drag force can be estimated, at first order, as
〈F 2

D〉 ≈ 〈(up − uf )
2〉/τ ∗ 2

p . Substituting in the estimation of the average Reynolds number,
we obtain

〈Rep〉 ≈ St∗
dp

η

√
1
2

〈F 2
D〉

a2
η

. (4.8)

Further, using the estimate of the drag force variance (4.5) and substituting with the
definition of St∗ from relation (3.4), we obtain an implicit relation that makes possible
the calculation of 〈Rep〉

〈Rep〉 ≈ St
φ(〈Rep〉)

dp

η

[
1
2
ΓD
(
St/φ(〈Rep〉), β, Re0

)]1/2

. (4.9)

This expression can easily be solved iteratively by taking for example as initial guess
〈Rep〉 = 0. We present in figure 2 the comparison between the calculation of 〈Rep〉 from
(4.9) and the values obtained by DNS. It is observed that, for the three drag laws considered
here, the estimation of the average particle Reynolds number is close to the DNS value. We
also show in figures 3 and 5 the comparison to the DNS for the variances of the drag force
and of the particle acceleration for the three drag laws. We can conclude that the relations
(4.5)–(4.9) provide overall a good prediction of the variance of the considered quantities.
Note that, for St∗ ≈ 1, (4.7) underestimates the acceleration variance but if St∗ is further
increased we find the saturation of the acceleration variance as presented in Zhang et al.
(2019) and Calzavarini et al. (2009).

5. Relevance of fluid inertia force for small particles in turbulent flows

The fluid inertia force is dominant in the dynamics of light particles (ρp/ρf � 1). On
the other hand, it is usually accepted that, for very dense particles (ρp/ρf � 1), the
fluid inertia force is unimportant. This suggests that only the density ratio matters to
justify neglecting the role of the inertia force in the momentum balance of a particle.
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Figure 6. (a) Temporal spectra of the fluid velocity along the particle trajectory, for heavy particles only
subject to the drag forces with the Stokes drag (i.e. φ(Rep) = 3/2), for Reλ = 400 and St = 0.24, 0.9, 1.5,
3., 4.5, 7.5, 15, 30, 45, 60, 75, 105, from black to orange respectively from the DNS dataset of Bec et al. (2010)
and Lanotte et al. (2011) in comparison with the power law ω−2 in grey dashed line and with the model spectra
(4.4) in green dashed line. (b) Evolution with St of the variance of the material derivative of the fluid velocity
at the particle position Dtuf (in black) compared to the Lagrangian derivative of the fluid along the particle
trajectory dtuf (in blue) for heavy particles (same dataset as a). Comparison with the prediction of (4.6) for
β2 = 1 in grey dashed line. Inset: variance of Dtuf − dtuf and comparison to St2∗〈F 2

D〉 computed from relation
(4.5).

Using estimates (4.5) and (4.6) for the drag force and the inertia force, we show in the
following that this condition could be more subtle and also depends on the particle size.

Before using these relations, we first verify that the underlying assumptions, recalled
previously and validated for ρp/ρf → 0 by Zhang et al. (2019), remain relevant for large
density ratios. For this, we show in figure 6 the temporal spectrum of the fluid velocity
along the trajectories of solid particles with a high density ratio. To plot this figure we
have used data from the DNS of homogeneous isotropic turbulence of Bec et al. (2010)
and Lanotte et al. (2011) obtained for twelve Stokes numbers between St = 0.24 and 105
(with St defined as (2.7)) for a homogeneous and isotropic turbulent flow at Reλ = 400.
For these simulations the solid particles are only subjected to the Stokes drag force (i.e.
φ(Rep) = 3/2). We see in this figure that, even for the largest Stokes numbers, the velocity
spectrum is well described by relation (4.4). The effect of the Stokes number is only visible
at high frequencies.

The second assumption made to derive equations (4.5) and (4.6) neglects the term
(up − uf ) · ∇uf , in order to identify the material derivative of the fluid velocity Dtuf with
its derivative along particle trajectories dtuf , Dtuf = dtuf − (up − uf ) · ∇uf . We show in
figure 6 that this assumption becomes more and more inaccurate as the Stokes number
increases since the particles trajectory diverges from the trajectory of a fluid particle.
The difference between Dtuf and dtuf can be estimated by assuming that (up − uf )
and ∇uf are independent, the first being estimated using relations (3.2) and (4.5) and
the second being of the order of 1/τη, which gives 〈(Dtuf − dtuf )

2〉 ≈ St2∗〈F 2
D〉. In the

inset of figure 6 we see that this estimate is relatively accurate, except for the smallest
Stokes numbers for which (up − uf ) and ∇uf are not independent. From this estimate,
we conclude that the difference between Dtuf and dtuf remains bounded even for very
large Stokes numbers, since 〈F 2

D〉 decreases as St−2∗ for St∗ � Re1/2
0 . Moreover, it worth

remarking that the variance of the material derivative of the fluid velocity at the particle
position remains roughly constant when St varies (its variations remain in a ±30 % range).
Therefore relation (4.6), which predicts F I as independent of St, appears to be in agreement
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Figure 7. Diagram reporting the evolution of 〈F 2
I 〉/〈F 2

D〉. Iso-values 0.01, 0.1 and 1. of the ratio estimated by
(4.5) and (4.6) for Reλ = 100 (continuous black lines) and Reλ = 400 (dashed lines) as a function of ρp/ρf
and St (a) and as a function of ρp/ρf and dp/η (b). The red lines indicate iso-values of the particles Reynolds
number from (4.9) for Reλ = 100. Green lines give iso-values of dp/η (a) and of St (b). The region of the map
where 〈F 2

I 〉/〈F 2
D〉 > 0.1 is shaded.

with the DNS. This indicates that the two approximations discussed previously tend to
compensate each other. Finally, let us mention that in Zhang et al. (2019) it can be checked
that relation (4.5) makes a good estimate of the variance of the drag forces for heavy
particles.

In figure 7, the ratio of 〈F 2
I 〉/〈F 2

D〉 estimated from (4.5) and (4.6) is plotted for a range
of density ratios and particle sizes. For this figure we have selected the Rep-correction
(2.4) corresponding to the drag force of a solid sphere given by the relation of Schiller and
Neuman. We plot 3 levels of the force ratio 〈F 2

I 〉/〈F 2
D〉 = 1 %, 10 % and 100 % vs ρp/ρf

and St in figure 7(a). In this plot, the region of the parameter map for which it is important
to account for the fluid inertia forces is shaded in grey. This region is arbitrarily delimited
by the curve corresponding to 〈F 2

I 〉/〈F 2
D〉 = 10 %. It should be noted that the intermittency

is not taken into account, and since the fluid acceleration fluctuations can be much greater
than its standard deviation, it tends to further strengthen the effect of the fluid inertia
force. Additionally, we plot some levels of the particle Reynolds number as calculated
using relation (4.9). As expected, it is observed that, for light particles (ρp/ρf < 1), the
fluid inertia force is dominant, whereas, for heavy particles, ρp/ρf > 1, we observe that
the fluid inertia force can be neglected for ρp/ρf > 10 and small enough particle diameter,
typically St < 1. However, when the particle Stokes number is increased, the density ratio
also needs to be increased in order to neglect the effect of the fluid inertia force. Typically,
one needs ρp/ρf > 100 for St = 100. The non-vanishing effect of the fluid inertia force
for very heavy but large particles can be simply explained by the observation that, at first
order, the fluid inertia force (per unit of displaced mass) is independent of the particles
size, as long as the finite size effects can be ignored, while the magnitude of the drag force
(per unit of displaced mass) decreases with the particle size, as shown in figure 3.

Furthermore, considering the plot against ρp/ρf and dp/η given in figure 7(b), we
can remark that, at Reλ = 100 for particles of size dp/η ≈ 3, the inertia force remains
important even for very large density ratios. This observation depends on the Reynolds
number of the flow. Indeed, for Reλ = 400, the fluid inertia force should not be neglected
for a particle larger than dp/η ≈ 7. Since it was proposed by Calzavarini et al. (2009) that
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the finite size effect can be disregarded for particles smaller than dp/η ≈ 10, the results
presented in this section points out that the added mass force can turn out to be of the
order of magnitude of the drag force, when the particle inertia becomes important, even
for high density ratios. It is interesting to note that the occurrence of this range of size
for which the fluid inertia force might be important is also the limit of the validity of the
pointwise particle approach. Indeed, for larger particles (dp/η > 10) one should account
for the finite size effect, probably by considering the filtering at the scale of the particles
of the fluid inertia force as proposed by Calzavarini et al. (2009), as well as the additional
agitation caused by the turbulent structure of the flow around the particles by introducing
a random drag coefficient (Gorokhovski & Zamansky 2018), which leads both variances
of the drag force and of the inertia force to scale as a2

η(d/η)−2/3 (without accounting for
the intermittency correction) as shown from the experimental results presented by Voth
et al. (2002), Qureshi et al. (2008) and Volk et al. (2011).

6. Conclusion

We have analysed by DNS with the Euler–Lagrange framework, the effect of finite
Reynolds number on the motion of small particles in a homogeneous and isotropic
turbulent flow by considering two types of particles (spherical bubble and solid sphere),
characterized by different Rep-corrections in the drag force. We observe that the finite
Reynolds number effects can be accounted for at first order by introducing an effective
Stokes number based on the average particle Reynolds number. This rescaling of the
particles time scale gives a quasi-self-similar evolution of the variances of the particle
acceleration and of the forces exerted on it which can be satisfactorily estimated using
Tchen’s theory. On the basis of these new expressions of the forces and acceleration of
the particles, we confirm that the fluid inertia force is negligible compared with the drag
force for particles of very small dimensions when the density ratio is of order 1 or larger.
However, we show that, for significant particle inertia, the fluid inertia force is important
unless the density ratio is increased significantly. Although this corresponds to the limit
of the validity of the pointwise approach, this points out that, for large particles, the added
mass and fluid inertia forces can be relevant.

It should also be noted that, as the particle size increases, forces other than the fluid
inertia forces can also become important. In particular, gravity must often be considered
for particles with large inertia. Indeed Mathai et al. (2016) have shown that for St/Fr > 1,
with Fr = aη/g the Froude number, gravity g influences the trajectory of the particles. In
this case, the particle Reynolds number can become significantly larger than 1, because
of the large relative velocity experienced by the particles. The finite Reynolds number
effect of the drag force is expected to reduce the average rising velocity by increasing the
mean drag force. Finally, we can use the effective relaxation time introduced in this paper
to take into account finite Reynolds number effects in estimating the terminal velocity of
particles.
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