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We consider an exponential queueing system with multiple stat@ath of which

has an infinite number of servers and a dedicated arrival stream ofijodosdition

there is an arrival stream of jobs that choose a station based on the state of the
systemIn this paper we describe two heavy traffic approximations for the station-
ary joint probability mass function of the number of busy servers at each station
One of the approximations involves state-space collapse and is accurate for large
traffic loads The state-space in the second approximation does not callkpse
provides an accurate estimate of the stationary behavior of the system over a wide
range of traffic loads

1. INTRODUCTION

We consider a queueing system which kasgtations Each station has an infinite
number of servers and all jobs have independdettical exponentially distributed
service timesEach station has a dedicated Poisson arrival straathin addition to
these dedicated arrival streartigere is another Poisson arrival stream of jobs to the
system we call “smart” johsvhich are routed to stations based on the number of
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busy servers at each statidret the positive real numbeus, ..., o denote weights
and letQ; denote the number of busy servers at statidie smart jobs join station
iif @ Q < ;Q;,j #i,whenthey arrive and choosas a conventiorthe station with
the smallest index among the best if there is a(fidhe tie-breaking rule does not
matter in our analysisThe system is therefore a continuous-time Markov chain that
can be solved either numerically or by simulatiwve refer to the exact solution as
the Markov chain solution

Inthe casé =1, the model reduces to the N\l /oo systemand it is well known
that the stationary number of busy servers is a Poisson random valtiablalso
well known that the sample paths converge weakly to an Ornstein—Uhlenbeck pro-
cessU(t), under a suitable scalings the arrival rate increas@glehart[5]). More
preciselyletQ*(t) denote the number of busy servers at tirimean M/M /co system
with arrival rateA and service rate oné we define

A
xi) = T2
VA
thenX*(t) —4 U(t), where—4 denotes convergence in distributi¢urthermoreas
t — oo, U(t) converges in distribution to a standard Normal random varjghland
if we defineX* to be the stationary random variable associated ¥ittt), then as
A — oo, X* also converges in distribution tg. Thus the following diagram holds

U(t)
XA(t) X- (1.1)

XA

The heavy traffic analysis therefore implies that for sufficiently laigeie can
useA + JAy as an approximation to the stationary random varia@lé This
approximation is quite accurateven for relatively small values of. For exam-
ple, we obtain 1820, and 21 as the 95{98th and 99th percentilesespectively
whenA = 12, which are all exactAlthough this example is anecdat#lindicates
that this type of approximation may be useful when computing the capacity of
physical systems with quality constraints in an appropriate range

Using the above analysis of the/Ml /oo queueing system as a gujdleis paper
is concerned with the asymptotic behavior of the joint distribution of the number of
busy serversin the caseék > 1, as the overall arrival rate approaches infinitye
present two approximations for the transient and stationary joint distributions of the
number of busy servers at each statibinese approximations are based on diffusion
processes obtained by taking limits of drift and variance parameters of a sequence of
Markov chainsWe do not prove weak convergena® we view our diffusions as
“conjectured limits’ The conjectureshoweverare consistent with the known limits
of similar systems under similar scalingglehart[5], Borovkov[2], Whitt [10],
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Krichagina and Puhalskj6], Turner[8]), and our numerous simulations and nu-
merical experiments are entirely consistent with the implications of the conjectured
limits. A certain discontinuity in the infinitesimal drift function for the diffusion
(derived in Section Pprevents us from directly proving the weak convergence from
well-known theoremdAfter deriving the drift and variance for the limiting diffusion
process we solve the differential equation for the stationary density funetpra-
tion (2.22)). We then show how to use statistics fr¢@22) to estimate performance
measures associated with real systems by “reversing the s¢alingapproxima-
tions are very accurate over wide ranges of parameter settirgdsding systems
that are only “moderately” loaded

LetB be a parameter that we use to scale the arrival retgsonvenience in the
following discussion we set the arrival rate of customers dedicated to stédian=
B, and fixa; = 1, i = 1,2,...,k, so that smart customers join the station with the
fewest customerghis will be relaxed in Section)2Our two approximations cor-
respond to two ways to scale the arrival ragef the smart customeraith respect
to the arrival rate of the dedicated customéest p > 0 be a fixed constant and let

QF(t) — (1 + p/k)Be

\/ﬁ ’
whereQ¥#(t) is the(row) vector of queue lengths at timeande= (1,1,...,1). When
Ao = pB we argue thaty#(t) collapses to a one-dimensional diffusion progess
(\/k + p/k)U(t)easB — oo. In this casethe intensity ofAq is high enough to keep
the queue lengths at the individual stations approximately equal second ap-
proximation sets\, = pvV3, and we argue thaasg — oo,

QF(t) — pe
VB

converges in distribution toledimensional diffusion procesX(t), with a “piece-
wise Normal” stationary densitgiven by

YA(t) =

Xﬁ(t) =

i=1

1 k
f(Xq, Xpyeery Xp) = Cexp(—a > x2+ pmin(xl,...,xk)>,

whereC is a normalizing constanfThe main focus of the paper is on the latter
scaling which turns out to offer superior accuracy over most settings of the system
parameters

Our model has applications in systems with “soft” capacity such as Code Divi-
sion Multiple Acces$CDMA) cellular systemgViterbi [9]), in which signal quality
degrades as users are added to the sydtetiis casethe model represents a single
cell with multiple wideband radio channels in a multiple cell systéhe dedicated
jobs represent soft hand-off requests from neighboring cells and smart jobs repre-
sent new call request§he following is an explanation of the notion of soft handoff
in a CDMA system A station in the model represents a radio carrier that carries
many individual phone call®r data sessionsn channels determined by individual
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codesA mobile user stays on the same radio carrier as it moves through the various
cells in its pathIt can be communicating with many different cells simultaneausly
This is referred to as “being in soft handoff” with several cels it moves through
the system it adds and drops these links to cAlsoft hand-off request is performed
each time the mobile can benefit from adding a link in another thi system does
not have the freedom to assign the soft hand-off request to any radio carrier because
of the large benefit of soft handd(fiue to the gain in signal processing derived from
macrodiversityand risk of dropping the call in an intercarri@r hard handoff On
the other handrequests for a channel from new calls can be assigned to any radio
carrier Although each carrier has a finite capadityhich may vary from carrier to
carrien, its capacity is typically determined by interferencet a hard equipment
limit, as in classic blocking systemsiaking an indefinite number of servers per
radio carrier a realistic moddReducing the variance in the number of links assigned
to each radio carrier reduces the time during which interference is Yigken the
carriers have different capacities alod different dedicated loagthe weighted least-
load algorithm would be used

Other applications are given in Alanyali and Hajékand HariharajKulkarni,
and Stidhanj4]. In these types of systema routing scheme that attempts to min-
imize the maximum number of users on a transmission device will improve each
user’s quality of servicdn generalthe least-load algorithm can be used when one
is attempting to minimize a convex cost function of the number of busy servers at
each stationOur model can be applied to systems with hard blocking by the method
of truncation as in an Erlang-B type system

In the next section we derive the asymptotics for the two scalings of our systems
just described and then for a more gendeslymmetri¢ model where the arrival
rates of the dedicated customers have the fdrma; 18 + yiVB,i=12,...,k In
Section 3 we show how the stationary density of the diffusions can be used to
approximate the marginal meansiriancesand quantilesas well as joint statistics
for the Markov chainQ®”. In Section 4we present closed form expressions for our
approximations of the marginal mearariance and density in the case= 2, and a
discussion of an efficient Monte-Carlo importance sampling technique for estimat-
ing quantities of interest whek > 2. In Section 5 we present numerical work
indicating the accuracy of the approximatioki¢e summarize our results and con-
jectures in Section.6

2. DERIVATION OF THE ASYMPTOTIC DISTRIBUTIONS

Consider the service system shown in Figur&/& define a family of such service
systems indexed by an “arrival rate scaling paranjeiWe assume for notational
conveniencdéand without loss of generalitythat the service rate of each server in
the system is unity_et Q#(t) be the row vector of queue lengths at titder theSth
system Clearly Q#(t) is a positive-recurreptontinuous-time Markov chajiso

QP (t) =4 Q°
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M

Q,

Ao

Ficure 1. Join the weighted least-loaded station

ast — oo, whereQ” is the stationary random vectdrhe distribution ofQ” can
be readily calculated from the infinitesimal generator wigeis small(with some
truncation error. As 8 grows the exact solution becomes increasingly difficult to
compute while at the same timeahe asymptotic distributions @ — oo become
increasingly accuratdf B is large enoughwe expect the asymptotic distribution
to approximate the real system well

We denote the system state by

X= (Xl’x2’-"’xk) € Rk,

whereR ¥ is k-dimensional Euclidean spaog is the(scaled number of customers
at stationi, and for a fixed set of positive “weights&, a,, ..., a, we define

Li={X:aiXi<aJXj,j¢i}, i=1,2,...,k.

Let
k
L =R— UL
i=1

be thosexwhere there is no unique minimum to the set

S(X) = {alxl’a2 Xoyeee ’akxk}’
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and letL be the line

L :{X:alxlzCYZxZ: R :aka}. (21)

Finally, define
(—¢ if Xx € L; -
=t= min{j € argminS(x)} if x € L* (2:2)

to be the index of the station smart jobs join when the system is in stdtet
v1,Y2, ..., Yk b€ fixed constantsThe arrival rate of dedicated customers to itie
station has the form

)\i=aiflﬁ+’yi\/ﬁ, |=1,2,,k

The arrival rate of smart customers is also a functiof.&f/e will consider the cases
Ao = pVB and A, = pB, wherep > 0 is a fixed constantNote thaf for any “real
system” with arrival rated g andAi4,..., A and weightsy,, ..., «y, there are settings
of the constantgy,. ..,y andp (not unique so that for som@ > 0, the Bth system
matches the real systefiin our numerical examples we use E(%11), (3.12), and
(3.13) as an assignment of the constants

We begin by considering the symmetric cage=1 andy; =0,i =12,...,Kk,
with A = pyB. Define

Q~A(t) — Be
B = —m— —™-
XE(t) 3 , (2.3)
where
e=(11...,1)

is a row vector ok onesAs a conventiopwe setQ?(0) = | 8e. We conjecture that
XE(t) =4 X(t) (2.4)

asfB — oo, whereX(t) is somek-dimensional diffusion procesk view of results
proved by Iglehar{5], Borovkov [2], Whitt [10], Krichagina and Puhalsk[i6],
and Turner[8], the conjecture is not surprisinghe proof in our case is made
difficult, however because the drift vectowhich we derive nextis not continu-
ous on the set*

Consider the change @#(-) in the small time intervalt, t + h) whenQ”(t) =
(ng, Ny, ...,Ny). The number of dedicated arrivals to statioim that interval has a
Poisson distribution with megsh. Likewise, to o(h) (whereo(h)/h — 0 ash — 0),
the mean and variance of the number of departures from statidhe interval will
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match those of a Poisson random variable with medm The covariance of the
change in the queue lengths at stati@mdj will also beo(h) wheni # |. Let

=B
Xi = B i=12,...,k

be the scaled queue length¥e therefore have

df(x) = LimohflE(XiB(t +h) = XP(OIXP(t) =x)

= Pli—e — Xi (2.5)

and

AG(X) = lim h~ Cov(XP(t + h) = XE(D), XF(t+ h) = XF(DIXA (1) =)

_ {2+Bl/2(p1(|() + Xi) |f | :J (2 6)

0 if | # |

where¢ is the index of the station smart customers jgjiiven by Eq(2.2), and %,
is the indicator functionit follows that if X(t) is a diffusion procesghen its infin-
itesimal drift and covariance functions are

d(x) = pd, — x (2.7)
and

A(x)=A=2l, (2.8)
respectivelywhere

8,=(0,...,1,...,0)

is the€th unit basis vectgrndl is the identity matrix FurthermoreX(t) —4 X as
t — oo, and the density oX satisfies the equation

k ) 1 k k 2
; x [d0f(0] = 5 ; g o [A; () f(x)]
k 2
= Z —2 f(x)
(Gardiner 3]), which has solution
1 k
f(x) = Cexp(—z Z + px(;> (2.9)
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whereC is a normalizing constanExploiting the symmetry in this caséhe nor-
malizing constant has the form

kf f f F(Xg, X2, .0, X)) AX AXi—q -

=k J exp(—— uz + pu) P(uktdu (2.10)

Y(u) = fw exp(—% 22> dz

Let e’ denote a column vector of onasle know thatQ”?(t)e’ is the number of
customers in an WM /co system with arrival rat&s + pyVB at timet, so from
Eqg. (1.1) we have

where

Qf(t)e’ — (kB + pVB)
VkB + pVB

—q U(t)

asB — oo. Thus
XE(t)e’ —4 VKU(t) + p,

and by symmetry we expect the densitydi(t) to be centered dtp/k)eass — co.
Define

Xp0 = XE(0) - Ce

Clearly Eq. (2.4) implies thatX#(t) —4 X,(t) asB — oo, whereX,(t) has stationary
density

fo(x) = f<x+ Ee),
which is centered at the origihet X be the stationary random vector associated

with Xp(t) Smcex andX differ by a constant vectpwe can bound the distance
betweenX and the linex; = x, = --- = X, (which isL in the symmetric cageby

Ap = max X; — m|n X;.
1=i=k =i=k

Choose: > 0 and use Eqg2.9) and(2.10) to write

P(Ap>e)=k(k—1)ff ff fo(Xay 2 Xi) X X
—oo Y Xt+e Y X X1

*® 1
(k— 1)] exp(—é u? + pu) Y(u+ e)¥(uk2du
< = . (2.11)

*° 1
f exp(—é u?+ pu)\lf(u)"l du
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We write Eq (2.11) in the form

a;(p) + ax(p)

P> < (Dt ba(p)’

(2.12)

where

—p+1—e/k
a,(p) = (k—l)ﬁ exp(—u%/2)¥(u+p+ e)¥(u+ p)<2duy,

[ee]

ax(p) = (k—=1) exp(—u%/2)¥(u+p+e)¥(u+ p*2dy,

—p+1—e/k

—p+1
bi(p) =f exp(—u%/2)¥(u+ p)*tdy,

and
b,(p) = f exp(—u%/2)¥(u+ p)<tdu
—p+1
One can verify that for any > 0 we have

1 X <—}(r+r‘1)2><\lf(r)<1' X (—:—Lr2>
exp 2 rep 5 )

r

sothat for >l1and 0<s<r,

W(r+s) _ 3 213
) = c,exp(—rs) (2.13)
and
¥ir—s) _ 2.14
) = cyexp(rs), (2.14)

wherec, andc, are constantdt follows from Eqs (2.13) and (2.14) thata,(p)/
b;(p) — 0 anda,(p)/b,(p) — 0 asp — oo, and since all four terms if2.12) are
positive we conclude that

P(A, > €) = 0. (2.15)
Combining Egs(1.1) and(2.15) yields
X, =k Y2ye (2.16)

asp — oo. In other wordsif there are enough smart custometek queue lengths
will be essentially the same in steady stathis phenomenon is known as “state-
space collapse(Reiman[7]).
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The limit (2.16) suggests that if we g andp go to infinity together we may
encounter space collapda particular if we define

QF(t) — (1+ E)ﬁe
\@ b

then we conjecture that?(t) converges in distribution to a diffusion on the lihe
SinceY#(t)e’ is the number of customers in aryM /oo queue with arrival raték +
p) B, we conclude from{1.1) that

YE(t) = )A(r/;;l/z(t) =

(2.17)

YE() 5 =P yt)e (2.18)

asp — oo; therefore the stationary random variable is

Jk+p
Y= X€.
k

Another heuristic explanation of the state space colld@ded) is to consider the
drift function (2.5) wheni, = pB. One finds that ik is not onL then the drift toward
L has magnitud®(+/B), so that the limiting process cannot leave the line

We now consider the general moggpecified by weights; > 0,i=1,2,...,Kk,
and constantg;, i =1,2,...,k The arrival rate of dedicated customers to statisn
Ai = ai B + v;JB. The factor ofa; * is chosen so thais 3 — oo, the smart
customers will find the stations “comparable” in size,, P({ =i)>0,i=12,...,k

We first consider the caskg, = py 8. For this scaling we define

a=(a;tazl,...,ach),
and set
B\ _ ~
XA(t) = L\/ﬁaﬁ" (2.19)
Similar to(2.7) and(2.8) we obtain a drift function
d(x) = pd, +y — X (2.20)
and covariance function
2a;1t
AX)=A= . (2.21)
2ot

We therefore conjecture thxt?(t) —4 X(t) as — oo, whereX(t) is the diffusion
specified by Eqs(2.20) and(2.21). The stationary density of(t) satisfies

2250

k

DEACCIOE

i () f(X)]

2

.9
Qi _2 f(X)

- w

i=1
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FIGURE 2. The two-dimensional joint density with= 1, « = 0.5, andy = 1.5.

which has the solution

1 k
f(x) = Cexp(—é >e(x—y)?+ pagx,g). (2.22)
=1

The densityf (x) in Eq. (2.22) is “piecewise Normal” in the sense thah each.; C
RXi=12,...,k itis proportional to a Normal density functiofihe density is not
differentiable orL* (see Fig2) but is continuous and solves the stationary Fokker-
Planck equationin the symmetric cas€2.22) reduces tq2.9).

We next consider the scalimg, = pgB in the general modeln the absence of
smart customersstationi typically hasa; 8 + O(VB) customersso by redoing
(2.5) we find that the drift toward. is O(v8) and as beforewe conjecture that the
smart customers cause the system state to collagsemoich, this time is the line
through the origin in the direction of the vect@®r From Eq (1.1) we see that

B r__ ~ A/
YA(t)e = Qe \/(;Jr )b —gVp+ ae'u(t),

and the state space collapse.tonplies that

QP(t) — (ae’) Y (p+ ae’)Ba Jp+ ae’

YA(t) = u(t)a. 2.23
() i e —uUa  (2.23)
The stationary random variable is therefore
p+ae
Y = p~—e“ Ya. (2.24)
o

3. APPROXIMATIONS FOR THE MOMENTS AND QUANTILES OF @#

In this section we show how the heavy traffic limits can be used to derive approx-
imations for the general queueing modey “reversing the scalin We are in-
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terested in statistics associated with the stationary random vé&¥toof the
continuous-time Markov chai@?(t), whenB < co. It is important to see that
there are an infinite number of scalings of the parameters that yield the same
limiting processesand different scalings typically yield different approximations
Thus any approximation for a quantity associated wW@h based solely oiX or Y
is necessarily heuristidMe argue that the following approximations are in some
sense “natural” choiceslthough in some cases the natural choice was not obvi-
ous until numerical experiments were performed

We begin by using Eq(2.24) to approximate the queueing modéh that
case due to the state space collap#iee Y's are always in the same ratiolset
A=3KoA = (p + @')B + ye'B denote the total arrival rate to the system
Using Egs (2.23) and (2.24) and the observation th&_, QF is a Poisson ran-
dom variable with mean, the resulting approximation is

QF ~ ((ae') A + (ae') WAy &, (3.1)
so that
E(Q”) ~ (ae')*Aa, (3.2)
and
Var(QF) ~ (ae’) 2Aa; 2, i=12,....k (3.3)

It turns out that this approximation f@* is accurate when,is large Howeverthe
approximation based on E@.22) is typically more accurate than that for £§.1),
even for large values of, and far more accurate for small values\gf so we turn
our attention to that case

Let X# be the stationary random vector associated with(t) given by
Eqg (2.19). Thus

QF = ap + X*PB.
This formula suggests the approximation
E(QF) ~ p”, (3.4)
where
pe = ap + s, (3.5)
and
= E(X).

The approximation is exact in the symmetric mqdéeivhich casgi= (p/k)e. Inthe
general modeld must be evaluated from the density functi@?22). This can be
done explicitly wherk = 2, or by an efficient numerical technique wh&n> 2.
These calculations are discussed in the next sectiompproximate the marginal
variance let
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o?(B) = Var(Qf)
and
62 = Var(X).
Again, ;> must be evaluated from E(.22). From our scaling we see that
a?(B) = c(B) 6P, (3.6)

for somec;(B) satisfyingci(8)/8 — 1 asg — oo. Whenp = 0 we haves3(B) =
E(Qf) because the stationary queue length distributions are Poi€sminuing
with the case = 0, it follows from Eq (2.22) that62 = o; 1. Thus we haveg(8) =
o, E(QF). Using Egs (3.5) and(3.6) and thep = 0 case as a guideve have the
approximation

0'i2(,3) = a IJiB&i2~ (3.7)

To obtain quantiles we need to approximBt&’ < n). We seeké” > 0 and/# such
that

n+1/2
P =m~ [ eterxr iox (3.8)

wheref; (x) is the marginal density of;. (Becaus&? > 0, the integrand in approx-
imation (3.8) is a density function We therefore have

E(QF) ~ f XEPR(EPx+ (P dx= (€F) (s — &P)

and

Var(QF) ~ J“’ (X = EP72(W — {P))2EP R (EP x + {F) dx = (£F) 262
Using(3.5) and(3.7), we choose
P = ()2 (3.9)

and

F=p—-pmel. (3.10)

The joint distribution can be approximated in the same way by

P(Q*=n,i=12,...,k

k n;+1/2 ne+1/2
“(e) [ [T e b tn gt o

[oe]
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Given a general model specified by, A4,...,A, anday,...,a, the value of
the parameterns, 3,7y, ..., Y« are not completely determingad our numerical work
we have chosen the following scheme based on sejtirg0.

B = aily, (3.11)
A — o tag g .
Vi = W’ i=12,....k (3.12)
Ao
p= N (3.13)

Of course other schema are possibfor exampleif one requires>y; = 0, some
algebraic manipulations are easiEnere does not seem to be a compelling reason to
choose one over anothéowever

4. CALCULATING STATISTICS FROM f(x)

The approximations based &rin the previous section requige = E(X;) andg? =
Var(X;), i =12,...,k, which must be obtained frofi{x). Whenk = 2, most quan-
tities of interest can be computed in closed form in terms of

1 (* t?
qD(Z)E\/TTT exp Y dt.

For notational convenience we 36t= 0, y, = v, a; = 1, anda, = «. In this case
the joint density is given by

) = Colexp(—3((x1 — P2+ a(Xo — y)2ap(p + 2y)) if X, = ax,
o Co texp(—3(xf + a(x; —y = p)? + p?)) if X, > ax,
(4.2)

We present expressions for the normalizing constaaind the first and second
moments ofX; andX, and their marginal densitieBefine

L Poye _alpty)
YVlva P JVita

A straightforward integration of Ed4.1) yields

2
C, = v_g (exp(—ap(p + 2y)/2)@(—r;) + exp(—p?/2)D(—ry)). (4.2)

One can derive Eq4.2) by noticing that(4.1) is “piecewise normal{Fig. 2). On
the setl; = {(X1, Xo)| X, < aXy}, Eq. (4.1) is the normal densityup to a constant
multiple) centered at the poirftp,y) with a diagonal covariance matrix where the
diagonal is@ = (La™1). Similarly, on L, = {(Xq, X2)| X; = aX,}, Eq. (4.1) is the
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normal density centered €3, p + ) with the same covariance matrikhe quan-
titiesr, andr, are the respective distances from the centers of these normals to
the linex; = ax,.

The expected values of; andX, are given by

VaC,E(X;) = 2mpexp(—ap(p + 2y)/2)P(—r1)

2
+ 4/ v a (exp(—(p? +r3)/2) — exp(—(ap(p + 2y) +1%)/2))

(4.3)
and

VaC,E(Xp) = 2 (y exp(—ap(p + 2y)/2)®(=r1) + (y + p) exp(—p?/2)P(—r5))

2
- \/Z (exp(—(p? + 19/2) — exp(—(ap(p + 2y) + 1})/2).

(4.4)
The second moments of; and X, can be obtained similarlyFor the symmetric
mode] the formula for the marginal variance reduces to
P’ pe >/
4 avEo(—p/N2)

so that Va¢X;) = 1 whenp = 0 and lim,_,, Var(X;) = 1.
The marginal densities of; andX, are

Var(X) = 1+ =12,

fi(x) = c;lJTcrl(eXp(—(ap(p +2y) + (x— p)z)/Z)CP(— - ;;7>

(02 42 _w»
+ exp(—(p +x)/2)<1>< = (4.5)
and

fo(x) = Co W2 (exp(—(p? + a(x — y — P)?)/2D(—ax)

+ exp(—(ap(p + 2y) + (X — ¥)?)/2)®(ax — p)).

Whenk > 2 numerical methods are required to evaluate quantities of interest
from f(x). For the symmetric model most quantities of interest can be computed
easily from(single integrals in terms ofb (x). For exampleintegrating Eq(2.10)
by parts the normalizing constan€,, for the density as given in E¢2.9) can be
written

Ct= p(m)kf ePd(—x)*dx,
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and similarly, the second moment of;, i = 1,...,k, can be written
C.E[X?] = E (\/277)kf (k+ 1+ px)eP*®d(—x) < dx, i=1,....k

These quantities can be readily obtained by numerical integt&ionilar quan-
tities of interestfor the general modetan also be reduced to single integralls
though the expressions are more complicatedcompute quantities associated with
the general model we suggest a Monte Carlo importance sampling procedure based
on sequence ofiid. k-dimensional Normal random variates with density

k

k 1/2 1
g(x) = <(27T)_k1:[ai> exp<—§ X ai(x =y~ p/k)2>. (4.7)

1

The computational burden is approximately lineak tue to the need to compuite
psuedorandom numbers per samphee sample variance does not appear to be sen-

sitive tok).
For exampleto evaluate the normalizing constadtn Eq. (2.22), we define
f(x) by
f(x) = Cf(x),
and define
(g = 09 (4.8)
X) = —. .
g(x)
Then
Ct =E(h(2)),

whereZ is a random variate with densig(x). One can construct Normal densities
that seem to match(x) more closely thaig(x), but we have foundj(x) to be quite
satisfactory for calculating moments and quantiles for reasonable systems

5. VALIDATION

In this section we compare the results obtained from the heavy traffic approxima-
tions X (referred to as DARandY (referred to as DAL to those obtained from
simulations of the Markov chain modgkferred to as MCS In generalthe MCS
results have arelative standard deviation of at m@xk @ he tie-breaking rule in the
MCS s to choose a station randomly among those whes&ghted load is the same
level. The approximations based dmwere obtained analytically he results fronX

were also obtained analytically whén= 2, and were obtained using the Monte
Carlo technique described in the previous section when?2. The Monte Carlo
calculations also have a relative standard deviation of at m0&t 0
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Scaled Variance

0.4

FIGURE 3. Scaled variance = 2.

The first set of chart§Figs 3—8) focuses on the symmetric mode| =1, y; =
0,i=12,...,k Note that in this case the means of the marginal queue length dis-
tributions are known to bg/k, whereA = Eik:o A is the total arrival rate of custom-
ers to the systentigures 34, and 5 show a comparison of the marginal variance
estimate$3.3) and(3.7) with the simulation fok = 2, 4, and 8 We have scaled the
marginal variances by a factor 6i/k)~* so that they are comparablEhe figures

0.9
0.8 +
0.7 +
0.6

Scaled Variance

04 |

0.3 1

g g g

0.2

FIGURE 4. Scaled variance = 4.
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1.0
0.9 +
0.8 +
0.7 +
0.6 +
05 1

Scaled Variance

03t
0.2
0.1

FIGURE 5. Scaled variance = 8.

each show several curvéhe three curves with the largest value are obtained from
the simulation(MCS) with 8 = 4, 16, and 64 and are shown in descending order
(e.g., the scaled variance for systems witk 4 is greater than that fg@ = 16). Note
that as expectedhe largerB, the more accurate i8.7), and the largep, the more
accurate i43.3). It is also worth noting that ag gets large(3.7) approache$3.3).

The accuracy of3.7) for both small values of8 and large values op was un-

1.0 - = g B
0.8 | o
= 06 2
VI
o
T 04 | t
+MCS
ODA2
0.2 & DAL
&
00 @ 8

01 2 3 4 5 6 7 8 9 10 11 12

FIGURE 6. Distribution k=2, A =12
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i
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0.8 0
fi
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0.6
&

0.5
40 41 42 43 44 45 46 47 48 49 50

n

FI1GURE 7. Distributiort k =4, A = 160.

expectedIn addition the accuracy does not seem to degrade as the number of sta-
tions gets large

Figures 67, and 8 show a comparison between the approximate marginal dis-
tributions derived from approximatiori8.1) and(3.8) and the simulation fok = 2,
4, and 8 These results show a very close correspondence bet(@®nand the

1.0 T
®
0.8 +
O
$
= 06+
Vi
124
o 04 ¢
0 ®
0]
0.2

v
0.0 B—a— U
2 3

0 1 4 5 6 7 8 9

n

FI1GURE 8. Distributiont k = 8, A = 40.
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20
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B —A—E(Q1) DA2
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—e—E(Q2) DAI
0
05 1.0 1.5 2.0
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FIGURE 9. Marginal mean vsa2 stationsig=12, A1 =9, A, = 9.
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Ficure 10. Marginal variance vsa2 stationsAg =12, A1 =9, A, = 9.
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0.5 1.0 1.5 2.0

o
FIGURE 11. Marginal mean vsa?2 stationsAg =12, A1 =6, A, =12

20 i

Margina Variance

0

0.5 1.0 1.5 2.0
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Ficure 12. Marginal variance vsa2 stationsAg =12, A; =6, A, = 12,
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simulation even for small values of (Figs 6 and 8. For larger values o, (3.1)
has improved accuracgut (3.8) is still superior(e.g., Fig. 7).

The next set of chartéigs 9-12 focus on the general model in the cése
2. We believe these are representative of the results for higher valuesToie
legend for Figure 9 applies to Figure 11 as wahd the legend for Figure 10 also
applies to Figure 12Figures 9 and 10 show a comparison of marginal mean and
marginal variancerespectivelyfor each station as a function efand in a model
in which Ag = 12 andA; = A, = 9. Figures 11 and 12 show a comparison of
marginal mean and marginal variancespectivelyfor each station as a function
of a in a model in whichAy = 12, A; = 6, and A, = 12. These charts show that
approximationg4.3)—(4.6) for these statistics derived from E@.22) can be very
accurate The state-space collapse approximatié®®) and(3.3) are also shown
for reference

In our (unpublished numerical investigations we have observed that the mar-
ginal densities obtained from E(.22) are well approximated by a Normal density
with the same mean and variandéis could be convenient when usi(@22) in
applications

The validation results shown here are representative of many test cases the
authors have investigateds in the case of the classic heavy traffic/M /oo ap-
proximation(1.1), these results suggest that.E8.22) is more than adequate for
most engineering purposes

6. SUMMARY OF TECHNICAL RESULTS

We have scaled the vector of queue leng@5(t), in two ways obtainingX#(t)
given by Eq(2.3) andY#(t) given by Eq (2.17). We have argue@n analogy with
(1.1)) that the following diagram holds

X(1)
Ad N d

XP(t) X, (6.1)
Nid Ad

XA

whereX(t) is ak-dimensional diffusion process specified by E@20) and(2.21),

X£ is the stationary random vector associated with the continuous time Markov
chain X#(t), andX is a random vector with densifyx) given by Eq(2.22). In the
symmetric casef (x) is centered at p/k)e. In that casgif we define Xp =X-
(p/k)e, then agp — oo,

X, —q K ¥2xe, (6.2)

wherey is a standard NormaThis is a “collapse” from a proper density & to a
density onlL (the one-dimensional subspaceRf given by(2.1)). State space col-
lapse also occurs forA(t), i.e.,
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JKFT
PUte
K
d \ud
JKFT
YA(t) —Fxe (6.3)

Nd 7‘d

Yﬂ

whereU (t) is an Ornstein—Uhlenbeck processd Y# is the stationary random
vector associated withf#(t).

The four southeast pointing limits in diagrarf@&1) and(6.3) all follow from

elementary considerationBhe four northeast pointing limits are conjecturad is
the fact that the upper and lower paths come togédtterthe order of the limit$ —
oo andB — oo can be interchangedThe convergence in diagra(6.2) was proved
in Section 2 in Eqs(2.11)—(2.16).
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