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We consider an exponential queueing system with multiple stations, each of which
has an infinite number of servers and a dedicated arrival stream of jobs+ In addition,
there is an arrival stream of jobs that choose a station based on the state of the
system+ In this paper we describe two heavy traffic approximations for the station-
ary joint probability mass function of the number of busy servers at each station+
One of the approximations involves state-space collapse and is accurate for large
traffic loads+ The state-space in the second approximation does not collapse+ It
provides an accurate estimate of the stationary behavior of the system over a wide
range of traffic loads+

1. INTRODUCTION

We consider a queueing system which hask stations+ Each station has an infinite
number of servers and all jobs have independent, identical, exponentially distributed
service times+Each station has a dedicated Poisson arrival stream, and, in addition to
these dedicated arrival streams, there is another Poisson arrival stream of jobs to the
system we call “smart” jobs, which are routed to stations based on the number of
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busy servers at each station+ Let the positive real numbersa1, + + + ,ak denote weights,
and letQi denote the number of busy servers at stationi+ The smart jobs join station
i if ai Qi , aj Qj , j Þ i,when they arrive and choose~as a convention! the station with
the smallest index among the best if there is a tie+ ~The tie-breaking rule does not
matter in our analysis+! The system is therefore a continuous-time Markov chain that
can be solved either numerically or by simulation+We refer to the exact solution as
the Markov chain solution+

In the casek51, the model reduces to the M0M 0` system, and it is well known
that the stationary number of busy servers is a Poisson random variable+ It is also
well known that the sample paths converge weakly to an Ornstein–Uhlenbeck pro-
cess,U~t!, under a suitable scaling, as the arrival rate increases~Iglehart@5# !+More
precisely, letQl~t! denote the number of busy servers at timet in an M0M 0` system
with arrival ratel and service rate one+ If we define

Xl~t! 5
Ql~t! 2 l

#l
,

thenXl~t!rd U~t!,whererd denotes convergence in distribution+Furthermore, as
t r`,U~t! converges in distribution to a standard Normal random variable, x, and
if we defineXl to be the stationary random variable associated withXl~t!, then as
l r `, Xl also converges in distribution tox+ Thus, the following diagram holds:

U~t!

;d ' d

Xl~t! x +
' d ;d

Xl

(1.1)

The heavy traffic analysis therefore implies that for sufficiently largel we can
use l 1 #lx as an approximation to the stationary random variable, Ql+ This
approximation is quite accurate, even for relatively small values ofl+ For exam-
ple, we obtain 18, 20, and 21 as the 95th, 98th, and 99th percentiles, respectively,
whenl 5 12, which are all exact+ Although this example is anecdotal, it indicates
that this type of approximation may be useful when computing the capacity of
physical systems with quality constraints in an appropriate range+

Using the above analysis of the M0M 0` queueing system as a guide, this paper
is concerned with the asymptotic behavior of the joint distribution of the number of
busy servers, in the casek . 1, as the overall arrival rate approaches infinity+ We
present two approximations for the transient and stationary joint distributions of the
number of busy servers at each station+These approximations are based on diffusion
processes obtained by taking limits of drift and variance parameters of a sequence of
Markov chains+We do not prove weak convergence, so we view our diffusions as
“conjectured limits+” The conjectures, however, are consistent with the known limits
of similar systems under similar scalings~Iglehart@5# , Borovkov @2# ,Whitt @10# ,
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Krichagina and Puhalskii@6#, Turner@8# !, and our numerous simulations and nu-
merical experiments are entirely consistent with the implications of the conjectured
limits+ A certain discontinuity in the infinitesimal drift function for the diffusion
~derived in Section 2! prevents us from directly proving the weak convergence from
well-known theorems+After deriving the drift and variance for the limiting diffusion
process we solve the differential equation for the stationary density function~equa-
tion ~2+22!!+We then show how to use statistics from~2+22! to estimate performance
measures associated with real systems by “reversing the scaling+” Our approxima-
tions are very accurate over wide ranges of parameter settings, including systems
that are only “moderately” loaded+

Letb be a parameter that we use to scale the arrival rates+ For convenience in the
following discussion we set the arrival rate of customers dedicated to stationi tol i 5
b, and fix ai 5 1, i 5 1,2, + + + ,k, so that smart customers join the station with the
fewest customers~this will be relaxed in Section 2!+ Our two approximations cor-
respond to two ways to scale the arrival ratel0 of the smart customers, with respect
to the arrival rate of the dedicated customers+ Let p . 0 be a fixed constant and let

Yb~t! 5
Qb~t! 2 ~11 p0k!be

#b
,

whereQb~t! is the~row! vector of queue lengths at timet, ande5 ~1,1, + + + ,1!+When
l0 5 pb we argue thatYb~t! collapses to a one-dimensional diffusion process,
~#k 1 p0k!U~t!e asb r `+ In this case, the intensity ofl0 is high enough to keep
the queue lengths at the individual stations approximately equal+ Our second ap-
proximation setsl0 5 p#b, and we argue that, asb r `,

X b~t! 5
Qb~t! 2 be

#b

converges in distribution to ak-dimensional diffusion process, X~t!, with a “piece-
wise Normal” stationary density, given by

f ~x1, x2, + + + , xk! 5 C expS2
1

2 (
i51

k

xi
2 1 p min~x1, + + + , xk!D,

whereC is a normalizing constant+ The main focus of the paper is on the latter
scaling, which turns out to offer superior accuracy over most settings of the system
parameters+

Our model has applications in systems with “soft” capacity such as Code Divi-
sion MultipleAccess~CDMA! cellular systems~Viterbi @9# !, in which signal quality
degrades as users are added to the system+ In this case, the model represents a single
cell with multiple wideband radio channels in a multiple cell system+ The dedicated
jobs represent soft hand-off requests from neighboring cells and smart jobs repre-
sent new call requests+ The following is an explanation of the notion of soft handoff
in a CDMA system+ A station in the model represents a radio carrier that carries
many individual phone calls~or data sessions! on channels determined by individual
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codes+A mobile user stays on the same radio carrier as it moves through the various
cells in its path+ It can be communicating with many different cells simultaneously+
This is referred to as “being in soft handoff” with several cells+As it moves through
the system it adds and drops these links to cells+A soft hand-off request is performed
each time the mobile can benefit from adding a link in another cell+ The system does
not have the freedom to assign the soft hand-off request to any radio carrier because
of the large benefit of soft handoff~due to the gain in signal processing derived from
macrodiversity! and risk of dropping the call in an intercarrier~or hard! handoff+On
the other hand, requests for a channel from new calls can be assigned to any radio
carrier+ Although each carrier has a finite capacity~which may vary from carrier to
carrier!, its capacity is typically determined by interference, not a hard equipment
limit , as in classic blocking systems, making an indefinite number of servers per
radio carrier a realistic model+Reducing the variance in the number of links assigned
to each radio carrier reduces the time during which interference is high+When the
carriers have different capacities and0or different dedicated loads, the weighted least-
load algorithm would be used+

Other applications are given in Alanyali and Hajek@1# and Hariharan,Kulkarni,
and Stidham@4# + In these types of systems, a routing scheme that attempts to min-
imize the maximum number of users on a transmission device will improve each
user’s quality of service+ In general, the least-load algorithm can be used when one
is attempting to minimize a convex cost function of the number of busy servers at
each station+Our model can be applied to systems with hard blocking by the method
of truncation as in an Erlang-B type system+

In the next section we derive the asymptotics for the two scalings of our systems
just described and then for a more general~asymmetric! model, where the arrival
rates of the dedicated customers have the forml i 5 ai

21 b 1 gi#b, i 51,2, + + + ,k+ In
Section 3, we show how the stationary density of the diffusions can be used to
approximate the marginal means, variances, and quantiles, as well as joint statistics
for the Markov chain, Qb+ In Section 4, we present closed form expressions for our
approximations of the marginal mean, variance, and density in the casek5 2, and a
discussion of an efficient Monte-Carlo importance sampling technique for estimat-
ing quantities of interest whenk . 2+ In Section 5, we present numerical work
indicating the accuracy of the approximations+We summarize our results and con-
jectures in Section 6+

2. DERIVATION OF THE ASYMPTOTIC DISTRIBUTIONS

Consider the service system shown in Figure 1+We define a family of such service
systems indexed by an “arrival rate scaling parameter,” b+We assume for notational
convenience~and without loss of generality! that the service rate of each server in
the system is unity+ Let Qb~t! be the row vector of queue lengths at timet for thebth
system+ ClearlyQb~t! is a positive-recurrent, continuous-time Markov chain, so

Qb~t! rd Qb
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as t r `, whereQb is the stationary random vector+ The distribution ofQb can
be readily calculated from the infinitesimal generator whenb is small~with some
truncation error!+ As b grows, the exact solution becomes increasingly difficult to
compute, while at the same time, the asymptotic distributions asb r ` become
increasingly accurate+ If b is large enough, we expect the asymptotic distribution
to approximate the real system well+

We denote the system state by

x 5 ~x1, x2, + + + , xk! [ Rk,

whereRk is k-dimensional Euclidean space, xi is the~scaled! number of customers
at stationi, and for a fixed set of positive “weights”, a1,a2, + + + ,ak, we define

Li 5 $x : ai xi , aj xj , j Þ i %, i 5 1,2, + + + ,k+

Let

L* 5 Rk 2 ø
i51

k

Li

be thosex where there is no unique minimum to the set

S~x! 5 $a1 x1,a2 x2, + + + ,ak xk%,

Figure 1. Join the weighted least-loaded station+
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and letL be the line

L 5 $x : a1 x1 5 a2 x2 5 {{{ 5 ak xk%+ (2.1)

Finally, define

, [ ,~x! 5 H i if x [ Li

min$ j [ argminS~x!% if x [ L*
(2.2)

to be the index of the station smart jobs join when the system is in statex+ Let
g1,g2, + + + ,gk be fixed constants+ The arrival rate of dedicated customers to theith
station has the form

l i 5 ai
21 b 1 gi#b, i 5 1,2, + + + ,k+

The arrival rate of smart customers is also a function ofb+We will consider the cases
l0 5 p#b andl0 5 pb, wherep . 0 is a fixed constant+ Note that, for any “real
system” with arrival ratesl0 andl1, + + + ,lk and weightsa1, + + + ,ak, there are settings
of the constantsg1, + + + ,gk andp ~not unique! so that for someb . 0, thebth system
matches the real system+ ~In our numerical examples we use Eqs+ ~3+11!, ~3+12!, and
~3+13! as an assignment of the constants+!

We begin by considering the symmetric case, ai 5 1 andgi 5 0, i 5 1,2, + + + ,k,
with l0 5 p#b+ Define

X b~t! 5
Qb~t! 2 be

#b
, (2.3)

where

e [ ~1,1, + + + ,1!

is a row vector ofk ones+As a convention, we setQb~0! 5 {b}e+We conjecture that

X b~t! rd X~t! (2.4)

asb r `, whereX~t! is somek-dimensional diffusion process+ In view of results
proved by Iglehart@5# , Borovkov @2# , Whitt @10#, Krichagina and Puhalskii@6#,
and Turner@8#, the conjecture is not surprising+ The proof in our case is made
difficult , however, because the drift vector, which we derive next, is not continu-
ous on the setL*+

Consider the change inQb~{! in the small time interval~t, t 1 h! whenQb~t! 5
~n1,n2, + + + ,nk!+ The number of dedicated arrivals to stationi in that interval has a
Poisson distribution with meanbh+ Likewise, to o~h! ~whereo~h!0hr 0 ashr 0!,
the mean and variance of the number of departures from stationi in the interval will
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match those of a Poisson random variable with meanni h+ The covariance of the
change in the queue lengths at stationi andj will also beo~h! wheni Þ j+ Let

xi 5
ni 2 b

#b
, i 5 1,2, + + + ,k

be the scaled queue lengths+We therefore have

di
b~x! [ lim

hr0
h21E~Xi

b~t 1 h! 2 Xi
b~t!6Xi

b~t! 5 x!

5 p1~i5,! 2 xi (2.5)

and

Aij
b~x! [ lim

hr`
h21 Cov~Xi

b~t 1 h! 2 Xi
b~t!,Xj

b~t 1 h! 2 Xj
b~t!6X b~t! 5 x!

5 H2 1 b2102~ p1~i5,! 1 xi ! if i 5 j

0 if i Þ j
(2.6)

where, is the index of the station smart customers join, given by Eq+ ~2+2!, and 1~{!

is the indicator function+ It follows that, if X~t! is a diffusion process, then its infin-
itesimal drift and covariance functions are

d~x! 5 pd, 2 x (2.7)

and

A~x! [ A 5 2I, (2.8)

respectively, where

d, 5 ~0, + + + ,1, + + + ,0!

is the, th unit basis vector, andI is the identity matrix+ Furthermore, X~t! rd X as
t r `, and the density ofX satisfies the equation

(
i51

k ]

]xi

@di~x! f ~x!# 5
1

2 (
i51

k

(
j51

k ]2

]xi ]xj

@Aij~x! f ~x!#

5 (
i51

k ]2

]xi
2 f ~x!

~Gardiner@3# !, which has solution

f ~x! 5 C expS2
1

2 (
i51

k

xi
2 1 px,D, (2.9)

HEAVY TRAFFIC APPROXIMATIONS 257

https://doi.org/10.1017/S0269964899133011 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964899133011


whereC is a normalizing constant+ Exploiting the symmetry in this case, the nor-
malizing constant has the form

C21 5 kE
2`

` E
x1

`

{{{ E
x1

`

f ~x1, x2, + + + , xk! dxk dxk21 {{{ dx1

5 k E
2`

`

expS2
1

2
u2 1 puDC~u!k21 du (2.10)

where

C~u! [ E
u

`

expS2
1

2
z2D dz+

Let e' denote a column vector of ones+We know thatQb~t!e' is the number of
customers in an M0M 0` system with arrival ratekb 1 p#b at time t, so from
Eq+ ~1+1! we have

Qb~t!e' 2 ~kb 1 p#b!
%kb 1 p#b

rd U~t!

asb r `+ Thus,

X b~t!e' rd #kU~t! 1 p,

and by symmetry we expect the density ofX b~t! to be centered at~ p0k!easb r`+
Define

ZXp
b~t! 5 X b~t! 2

p

k
e+

Clearly, Eq+ ~2+4! implies that ZXp
b~t! rd ZXp~t! asb r`,where ZXp~t! has stationary

density

Zfp~x! 5 fSx 1
p

k
eD,

which is centered at the origin+ Let ZXp be the stationary random vector associated
with ZXp~t!+ Since ZXp andX differ by a constant vector, we can bound the distance
between ZXp and the linex1 5 x2 5 {{{ 5 xk ~which isL in the symmetric case! by

Dp 5 max
1#i#k

Xi 2 min
1#i#k

Xi +

Choosee . 0 and use Eqs+ ~2+9! and~2+10! to write

P~Dp . e! 5 k~k 2 1!E
2`

` E
x11e

` E
x1

x2

{{{ E
x1

x2

fp~x1, + + + , xk! dxk + + +dx1

,

~k 2 1!E
2`

`

expS2
1

2
u2 1 puDC~u 1 e!C~u!k22 du

E
2`

`

expS2
1

2
u2 1 puDC~u!k21 du

+ (2.11)
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We write Eq+ ~2+11! in the form

P~Dp . e! ,
a1~ p! 1 a2~ p!

b1~ p! 1 b2~ p!
, (2.12)

where

a1~ p! 5 ~k 2 1!E
2`

2p112e0k

exp~2u202!C~u 1 p 1 e!C~u 1 p!k22 du,

a2~ p! 5 ~k 2 1!E
2p112e0k

`

exp~2u202!C~u 1 p 1 e!C~u 1 p!k22 du,

b1~ p! 5E
2`

2p11

exp~2u202!C~u 1 p!k21 du,

and

b2~ p! 5E
2p11

`

exp~2u202!C~u 1 p!k21 du+

One can verify that for anyr . 0 we have

1

r
expS2

1

2
~r 1 r 21 !2D , C~r ! ,

1

r
expS2

1

2
r 2D,

so that forr . 1 and 0, s , r,

C~r 1 s!

C~r !
# c1 exp~2rs! (2.13)

and

C~r 2 s!

C~r !
# c2 exp~rs!, (2.14)

wherec1 andc2 are constants+ It follows from Eqs+ ~2+13! and ~2+14! that a1~ p!0
b1~ p! r 0 anda2~ p!0b2~ p! r 0 asp r `, and since all four terms in~2+12! are
positive we conclude that

P~Dp . e! r 0+ (2.15)

Combining Eqs+ ~1+1! and~2+15! yields

ZXp rd k2102xe (2.16)

aspr`+ In other words, if there are enough smart customers, thek queue lengths
will be essentially the same in steady state+ This phenomenon is known as “state-
space collapse”~Reiman@7# !+
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The limit ~2+16! suggests that if we letb andp go to infinity together we may
encounter space collapse+ In particular, if we define

Yb~t! [ ZXpb102
b ~t! 5

Qb~t! 2 S11
p

k
Dbe

#b
, (2.17)

then we conjecture thatYb~t! converges in distribution to a diffusion on the lineL+
SinceYb~t!e' is the number of customers in an M0M 0` queue with arrival rate~k1
p!b, we conclude from~1+1! that

Yb~t! rd

#k 1 p

k
U~t!e (2.18)

asb r `; therefore the stationary random variable is

Y 5
#k 1 p

k
xe+

Another heuristic explanation of the state space collapse~2+18! is to consider the
drift function~2+5! whenl05 pb+One finds that ifx is not onL then the drift toward
L has magnitudeO~#b!, so that the limiting process cannot leave the line+

We now consider the general model, specified by weightsai . 0, i 51,2, + + + ,k,
and constantsgi , i 51,2, + + + ,k+ The arrival rate of dedicated customers to stationi is
l i 5 ai

21 b 1 gi#b+ The factor ofai
21 is chosen so that, as b r `, the smart

customers will find the stations “comparable” in size, i+e+,P~,5 i ! . 0, i 51,2, + + + ,k+
We first consider the casel0 5 p#b+ For this scaling we define

Ja 5 ~a1
21,a2

21, + + + ,ak
21!,

and set

X b~t! 5
Qb~t! 2 Jab

#b
+ (2.19)

Similar to~2+7! and~2+8! we obtain a drift function

d~x! 5 pd, 1 g 2 x (2.20)

and covariance function

A~x! [ A 5 3
2a1

21

L

2ak
214 + (2.21)

We therefore conjecture thatX b~t! rd X~t! asb r `, whereX~t! is the diffusion
specified by Eqs+ ~2+20! and~2+21!+ The stationary density ofX~t! satisfies

(
i51

k ]

]xi

@di~x! f ~x!# 5
1

2 (
i51

k

(
j51

k ]2

]xi ]xj

@Aij~x! f ~x!#

5 (
i51

k

ai
21

]2

]xi
2 f ~x!,
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which has the solution

f ~x! 5 C expS2
1

2 (
j51

k

aj ~xj 2 gj !
2 1 pa, x,D+ (2.22)

The densityf ~x! in Eq+ ~2+22! is “piecewise Normal” in the sense that, on eachLi ,
Rk, i 51,2, + + + ,k, it is proportional to a Normal density function+ The density is not
differentiable onL* ~see Fig+ 2! but is continuous and solves the stationary Fokker-
Planck equation+ In the symmetric case, ~2+22! reduces to~2+9!+

We next consider the scalingl0 5 pb in the general model+ In the absence of
smart customers, stationi typically hasai

21 b 1 O~#b! customers, so by redoing
~2+5! we find that the drift towardL isO~#b! and, as before, we conjecture that the
smart customers cause the system state to collapse toL, which, this time, is the line
through the origin in the direction of the vectorJa+ From Eq+ ~1+1! we see that

Yb~t!e' 5
Qb~t!e' 2 ~ p 1 Jae' !b

#b
rd %p 1 Jae'U~t!,

and the state space collapse toL implies that

Yb~t! [
Qb~t! 2 ~ Jae' !21~ p 1 Jae' !b Ja

#b
rd

%p 1 Jae'

Jae'
U~t! Ja+ (2.23)

The stationary random variable is therefore

Y 5
%p 1 Jae'

Jae'
x Ja+ (2.24)

3. APPROXIMATIONS FOR THE MOMENTS AND QUANTILES OF Q b

In this section we show how the heavy traffic limits can be used to derive approx-
imations for the general queueing model, by “reversing the scaling+” We are in-

Figure 2. The two-dimensional joint density withp 5 1, a 5 0+5, andg 5 1+5+
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terested in statistics associated with the stationary random vectorQb of the
continuous-time Markov chainQb~t!, when b , `+ It is important to see that
there are an infinite number of scalings of the parameters that yield the same
limiting processes, and different scalings typically yield different approximations+
Thus, any approximation for a quantity associated withQb based solely onX or Y
is necessarily heuristic+ We argue that the following approximations are in some
sense “natural” choices, although in some cases the natural choice was not obvi-
ous until numerical experiments were performed+

We begin by using Eq+ ~2+24! to approximate the queueing model+ In that
case, due to the state space collapse, the Yi ’s are always in the same ratios+ Let
l 5 (i50

k l i 5 ~ p 1 Jae' !b 1 ge'#b denote the total arrival rate to the system+
Using Eqs+ ~2+23! and ~2+24! and the observation that(i51

k Qi
b is a Poisson ran-

dom variable with meanl, the resulting approximation is

Qb ' ~~ Jae' !21l 1 ~ Jae' !21#lx! Ja, (3.1)

so that

E~Qb ! ' ~ Jae' !21l Ja, (3.2)

and

Var~Qi
b! ' ~ Jae' !22lai

22, i 5 1,2, + + + ,k+ (3.3)

It turns out that this approximation forQb is accurate whenl0 is large+However, the
approximation based on Eq+ ~2+22! is typically more accurate than that for Eq+ ~3+1!,
even for large values ofl0 and far more accurate for small values ofl0, so we turn
our attention to that case+

Let X b be the stationary random vector associated withX b~t ! given by
Eq+ ~2+19!+ Thus,

Qb 5 Jab 1 X b#b+

This formula suggests the approximation

E~Qb ! ' Iµb, (3.4)

where

Iµb 5 Jab 1 [µ#b, (3.5)

and

[µ 5 E~X !+

The approximation is exact in the symmetric model, in which case [µ5 ~ p0k!e+ In the
general model, [µ must be evaluated from the density function~2+22!+ This can be
done explicitly whenk 5 2, or by an efficient numerical technique whenk . 2+
These calculations are discussed in the next section+ To approximate the marginal
variance, let
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si
2~b! 5 Var~Qi

b!

and

[si
2 5 Var~Xi !+

Again, [si
2 must be evaluated from Eq+ ~2+22!+ From our scaling we see that

si
2~b! 5 ci ~b! [si

2, (3.6)

for someci ~b! satisfyingci ~b!0b r 1 asb r `+ Whenp 5 0 we havesi
2~b! 5

E~Qi
b! because the stationary queue length distributions are Poisson+ Continuing

with the casep5 0, it follows from Eq+ ~2+22! that [si
25 ai

21+ Thus,we haveci ~b! 5
ai E~Qi

b!+ Using Eqs+ ~3+5! and ~3+6! and thep 5 0 case as a guide, we have the
approximation

si
2~b! ' ai Iµi

b [si
2+ (3.7)

To obtain quantiles we need to approximateP~Qi
b # n!+We seekji

b . 0 andzi
b such

that

P~Qi
b # n! ' E

2`

n1102

ji
b fi ~ji

b x 1 zi
b! dx, (3.8)

wherefi ~x! is the marginal density ofXi + ~Becauseji
b . 0, the integrand in approx-

imation~3+8! is a density function+! We therefore have

E~Qi
b! ' E

2`

`

xji
b fi ~ji

b x 1 zi
b! dx5 ~ji

b!21~ [µi 2 zi
b!

and

Var~Qi
b! ' E

2`

`

~x 2 ji
b21~ [µi 2 zi

b!!2ji
b fi ~ji

b x 1 zi
b! dx5 ~ji

b!22 [si
2+

Using~3+5! and~3+7!, we choose

ji
b 5 ~ai Iµi !

2102 (3.9)

and

zi
b 5 [µi 2 Iµi ji

b + (3.10)

The joint distribution can be approximated in the same way by

P~Qi
b # ni , i 5 1,2, + + + ,k!

'S)
i51

k

ji
bDE

2`

n11102

{{{ E
2`

nk1102

f ~j1
b x1 1 z1

b , + + + ,jk
b xk 1 zk

b! dx+
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Given a general model specified byl0,l1, + + + ,lk, anda1, + + + ,ak, the value of
the parametersp,b,g1, + + + ,gk, are not completely determined+ In our numerical work
we have chosen the following scheme based on settingg1 5 0+

b 5 a1l1, (3.11)

gi 5
l i 2 ai

21a1l1

#a1l1

, i 5 1,2, + + + ,k, (3.12)

p 5
l0

#a1l1

+ (3.13)

Of course, other schema are possible+ For example, if one requires(gi 5 0, some
algebraic manipulations are easier+There does not seem to be a compelling reason to
choose one over another, however+

4. CALCULATING STATISTICS FROM f (x )

The approximations based onX in the previous section require[µi 5 E~Xi ! and [si
25

Var~Xi !, i 51,2, + + + ,k, which must be obtained fromf ~x!+Whenk5 2, most quan-
tities of interest can be computed in closed form in terms of

F~z! [
1

#2p
E

2`

z

expS2
t 2

2
D dt+

For notational convenience we setg1 5 0, g2 5 g, a1 5 1, anda2 5 a+ In this case,
the joint density is given by

f ~x1, x2! 5 HC2
21 exp~2 2

12~~x1 2 p!2 1 a~x2 2 g!2 ap~ p 1 2g!!! if x1 # ax2

C2
21 exp~2 2

12~x1
2 1 a~x2 2 g 2 p!2 1 p2 !! if x1 . ax2

+

(4.1)

We present expressions for the normalizing constantC2 and the first and second
moments ofX1 andX2 and their marginal densities+ Define

r1 5
p 2 ga

#11 a
, r2 5

a~ p 1 g!

#11 a
+

A straightforward integration of Eq+ ~4+1! yields

C2 5
2p

!a
~exp~2ap~ p 1 2g!02!F~2r1! 1 exp~2p202!F~2r2!!+ (4.2)

One can derive Eq+ ~4+2! by noticing that~4+1! is “piecewise normal”~Fig+ 2!+ On
the setL1 5 $~x1, x2!6x1 , ax2%, Eq+ ~4+1! is the normal density~up to a constant
multiple! centered at the point~ p,g! with a diagonal covariance matrix where the
diagonal is Ja 5 ~1,a21!+ Similarly, on L2 5 $~x1, x2!6x1 $ ax2%, Eq+ ~4+1! is the
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normal density centered at~0, p 1 g! with the same covariance matrix+ The quan-
tities r1 andr2 are the respective distances from the centers of these normals toL,
the linex1 5 ax2+

The expected values ofX1 andX2 are given by

!aC2E~X1! 5 2pp exp~2ap~ p 1 2g!02!F~2r1!

1 ! 2p

11 a
~exp~2~ p2 1 r2

2!02! 2 exp~2~ap~ p 1 2g! 1 r1
2!02!!

(4.3)

and

!aC2E~X2! 5 2p~g exp~2ap~ p 1 2g!02!F~2r1! 1 ~g 1 p! exp~2p202!F~2r2!!

2 ! 2p

11 a
~exp~2~ p2 1 r2

2!02! 2 exp~2~ap~ p 1 2g! 1 r1
2!02!!+

(4.4)

The second moments ofX1 andX2 can be obtained similarly+ For the symmetric
model, the formula for the marginal variance reduces to

Var~Xi ! 5 11
p2

4
2

pe2p204

4!pF~2p0#2!
, i 5 1,2,

so that Var~Xi ! 5 1 whenp 5 0 and limpr` Var~Xi ! 5 1
2
_ +

The marginal densities ofX1 andX2 are

f1~x! 5 C2
21%2pa21Sexp~2~ap~ p 1 2g! 1 ~x 2 p!2!02!FS2

x 2 ag

!a
D

1 exp~2~ p2 1 x2!02!FS2
x 2 a~g 1 p!

!a
DD (4.5)

and

f2~x! 5 C2
21#2p~exp~2~ p2 1 a~x 2 g 2 p!2!02!F~2ax!

1 exp~2~ap~ p 1 2g! 1 ~x 2 g!2!02!F~ax 2 p!!+

Whenk . 2 numerical methods are required to evaluate quantities of interest
from f ~x!+ For the symmetric model most quantities of interest can be computed
easily from~single! integrals in terms ofF~x!+ For example, integrating Eq+ ~2+10!
by parts, the normalizing constant, Ck, for the density as given in Eq+ ~2+9! can be
written

Ck
21 5 p~#2p!kE

2`

`

epxF~2x!k dx,
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and, similarly, the second moment ofXi , i 5 1, + + + ,k, can be written

CkE @Xi
2# 5

p

k
~#2p!kE

2`

`

~k 1 1 1 px!epxF~2x!k dx, i 5 1, + + + ,k+

These quantities can be readily obtained by numerical integration+Similar quan-
tities of interest, for the general model, can also be reduced to single integrals, al-
though the expressions are more complicated+To compute quantities associated with
the general model we suggest a Monte Carlo importance sampling procedure based
on sequence of i+i+d+ k-dimensional Normal random variates with density

g~x! 5 S~2p!2k )
1

k

aiD102

expS2
1

2 (
1

k

ai ~xi 2 gi 2 p0k!2D+ (4.7)

The computational burden is approximately linear ink due to the need to computek
psuedorandom numbers per sample~the sample variance does not appear to be sen-
sitive tok!+

For example, to evaluate the normalizing constantC in Eq+ ~2+22!, we define
Df ~x! by

f ~x! 5 C Df ~x!,

and define

h~x! 5
Df ~x!

g~x!
+ (4.8)

Then

C21 5 E~h~Z!!,

whereZ is a random variate with densityg~x!+ One can construct Normal densities
that seem to matchf ~x! more closely thang~x!, but we have foundg~x! to be quite
satisfactory for calculating moments and quantiles for reasonable systems+

5. VALIDATION

In this section we compare the results obtained from the heavy traffic approxima-
tions X ~referred to as DA2! and Y ~referred to as DA1! to those obtained from
simulations of the Markov chain model~referred to as MCS!+ In general, the MCS
results have a relative standard deviation of at most 0+01+The tie-breaking rule in the
MCS is to choose a station randomly among those whose~weighted! load is the same
level+The approximations based onYwere obtained analytically+The results fromX
were also obtained analytically whenk 5 2, and were obtained using the Monte
Carlo technique described in the previous section whenk . 2+ The Monte Carlo
calculations also have a relative standard deviation of at most 0+01+
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The first set of charts~Figs+ 3–8! focuses on the symmetric model, ai 51, gi 5
0, i 5 1,2, + + + ,k+ Note that in this case the means of the marginal queue length dis-
tributions are known to bel0k, wherel 5 (i50

k l i is the total arrival rate of custom-
ers to the system+ Figures 3, 4, and 5 show a comparison of the marginal variance
estimates~3+3! and~3+7! with the simulation fork5 2, 4, and 8+We have scaled the
marginal variances by a factor of~l0k!21 so that they are comparable+ The figures

p
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al

ed
 V

ar
ia

nc
e

Figure 3. Scaled variance: k 5 2+

p

Sc
al

ed
 V

ar
ia

nc
e

Figure 4. Scaled variance: k 5 4+
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each show several curves+ The three curves with the largest value are obtained from
the simulation~MCS! with b 5 4, 16, and 64, and are shown in descending order
~e+g+, the scaled variance for systems withb54 is greater than that forb516!+Note
that, as expected, the largerb, the more accurate is~3+7!, and the largerp, the more
accurate is~3+3!+ It is also worth noting that asp gets large, ~3+7! approaches~3+3!+
The accuracy of~3+7! for both small values ofb and large values ofp was un-

Sc
al

ed
 V

ar
ia

nc
e

p

Figure 5. Scaled variance: k 5 8+

n

P
[Q

 ≤
 n

]

Figure 6. Distribution: k 5 2, l 5 12+

268 P. J. Fleming and B. Simon

https://doi.org/10.1017/S0269964899133011 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964899133011


expected+ In addition, the accuracy does not seem to degrade as the number of sta-
tions gets large+

Figures 6, 7, and 8 show a comparison between the approximate marginal dis-
tributions derived from approximations~3+1! and~3+8! and the simulation fork5 2,
4, and 8+ These results show a very close correspondence between~3+8! and the

n

P
[Q

 ≤
 n

]

Figure 7. Distribution: k 5 4, l 5 160+

n

P
[Q

 ≤
 n

]

Figure 8. Distribution: k 5 8, l 5 40+
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Figure 9. Marginal mean vs+ a2 stations, l0 5 12, l1 5 9, l2 5 9+
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Figure 10. Marginal variance vs+ a2 stations, l0 5 12, l1 5 9, l2 5 9+
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Figure 11. Marginal mean vs+ a2 stations, l0 5 12, l1 5 6, l2 5 12+
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Figure 12. Marginal variance vs+ a2 stations, l0 5 12, l1 5 6, l2 5 12+
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simulation, even for small values ofl ~Figs+ 6 and 8!+ For larger values ofl, ~3+1!
has improved accuracy, but ~3+8! is still superior~e+g+, Fig+ 7!+

The next set of charts~Figs+ 9–12! focus on the general model in the casek 5
2+ We believe these are representative of the results for higher values ofk+ The
legend for Figure 9 applies to Figure 11 as well, and the legend for Figure 10 also
applies to Figure 12+ Figures 9 and 10 show a comparison of marginal mean and
marginal variance, respectively, for each station as a function ofa and in a model
in which l0 5 12 andl1 5 l2 5 9+ Figures 11 and 12 show a comparison of
marginal mean and marginal variance, respectively, for each station as a function
of a in a model in whichl0 5 12, l1 5 6, andl2 5 12+ These charts show that
approximations~4+3!–~4+6! for these statistics derived from Eq+ ~2+22! can be very
accurate+ The state-space collapse approximations~3+2! and ~3+3! are also shown
for reference+

In our ~unpublished! numerical investigations we have observed that the mar-
ginal densities obtained from Eq+ ~2+22! are well approximated by a Normal density
with the same mean and variance+ This could be convenient when using~2+22! in
applications+

The validation results shown here are representative of many test cases the
authors have investigated+ As in the case of the classic heavy traffic M0M 0` ap-
proximation~1+1!, these results suggest that Eq+ ~2+22! is more than adequate for
most engineering purposes+

6. SUMMARY OF TECHNICAL RESULTS

We have scaled the vector of queue lengths, Qb~t!, in two ways, obtainingX b~t!
given by Eq+ ~2+3! andYb~t! given by Eq+ ~2+17!+We have argued~in analogy with
~1+1!! that the following diagram holds,

X~t!

;d ' d

X b~t! X,
' d ;d

X b

(6.1)

whereX~t! is ak-dimensional diffusion process specified by Eqs+ ~2+20! and~2+21!,
X b is the stationary random vector associated with the continuous time Markov
chain, X b~t!, andX is a random vector with densityf ~x! given by Eq+ ~2+22!+ In the
symmetric case, f ~x! is centered at~ p0k!e+ In that case, if we define ZXp 5 X 2
~ p0k!e, then asp r `,

ZXp rd k2102xe, (6.2)

wherex is a standard Normal+ This is a “collapse” from a proper density onRk to a
density onL ~the one-dimensional subspace ofRk given by~2+1!!+ State space col-
lapse also occurs forYb~t!, i+e+,
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#k 1 p

k
U~t!e

;d ' d

Yb~t!
#k 1 p

k
xe,

' d ;d

Yb

(6.3)

whereU~t! is an Ornstein–Uhlenbeck process, and Yb is the stationary random
vector associated withYb~t!+

The four southeast pointing limits in diagrams~6+1! and~6+3! all follow from
elementary considerations+ The four northeast pointing limits are conjectured, as is
the fact that the upper and lower paths come together~i+e+, the order of the limitst r
` andb r ` can be interchanged!+ The convergence in diagram~6+2! was proved
in Section 2 in Eqs+ ~2+11!–~2+16!+
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