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Abstract We study several types of curves and higher-dimensional objects inside the moduli spaces of
curves, insisting on their arithmetic properties in the perspective of Grothendieck–Teichmüller theory.
On the way we explicitly identify those curves which were originally associated by W. Veech with certain
rational polygonal billiards.
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1. Introduction

In this paper we argue, using concrete examples, that Thurston’s viewpoint on the topol-
ogy of surfaces and its subsequent ramifications are quite relevant when trying to explore
the landscape delineated in Grothendieck’s Esquisse d’un programme. A salient fea-
ture of Thurston’s work and legacy in this area is the recognition of the importance
of Teichmüller space, an essentially analytic object, in these a priori topological matters;
one can take as a starting point the fact that the mapping class group, defined as the
group of isotopy classes of diffeomorphisms of a surface, coincides with the isometry group
of the corresponding Teichmüller space endowed with the Teichmüller metric. This clas-
sical result of Royden enables one to bridge the gap between topology and analysis. Here
we try and go one step further, moving into the arithmetic nature of certain objects (old
and new). Actually the intermediate step, namely from analytic to algebraic geometry,
will turn out to be a source of beautiful and difficult problems.

We will be mostly interested here in finding and studying curves which are immersed
in the moduli spaces of curves, are geodesic for the associated Teichmüller metric and
can be defined by algebraic equations with coefficients in number fields. Some higher-
dimensional loci will also naturally come in. In particular, we isolate two classes of curves
of rather different natures. The first kind we call origamis because they can be defined in
a purely topological and in fact combinatorial way by assembling squares of paper into
a closed topological surface. A particular form of origamis was defined by W. Thurston
in his famous announcement on his work on diffeomorphisms of surfaces [68] and they
were taken up by W. Veech in [69]. We show here that they carry amazing arithmetic
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information, which we are certainly not able to decode yet, by showing that they are
defined by equations with coefficients sitting in certain number fields. From now on we
will call an object ‘arithmetic’ if it can be defined over a number field. In some sense
that property makes origamis into a natural higher-dimensional analogue of the so-called
‘dessins d’enfants’. In order to prevent possible misunderstandings, we note that curves
sitting inside moduli spaces of curves generate an incredibly rich structure, with three
types of arithmetics at work which one might call modular (Riemann), period (Jacobi)
and hyperbolic (Fuchs) arithmetics. For elliptic curves they correspond respectively to
the j and τ functions and to the Fricke–Klein real parameters for the Teichmüller space
of the curve punctured at the origin (in order to make it hyperbolic; in general this
Fuchsian arithmetic is reflected in the traces of the elements of the uniformizing Fuchsian
group, which encode the Poincaré length spectrum of the underlying Riemann surface).
We emphasize that we are dealing here primarily with the first type of arithmetic, the
connection with the second type being notoriously mysterious.

In terms of the Thurston–Bers classification of diffeomorphisms (see [68] and [17]),
which in large part extends the classification for the torus, that is for the group SL2(Z),
origamis lie mostly on the parabolic and hyperbolic sides. The second class of objects
we consider lies more on the elliptic side and we call these eigencurves or more generally
eigenloci in the higher-dimensional case. Saying that they are of elliptic nature is the same
as saying that they are connected with the torsion elements in the mapping class groups,
or else with the automorphisms of curves. Here the situation is even more mysterious
than in the case of origamis, because one starts by constructing loci in Teichmüller space
and there is at present no criterion available ensuring algebraization, that is telling when
the projection to moduli space is algebraic. This is a fascinating and to all appearances
very deep problem which was first posed by Veech in a particular case connected with
the study of rational polygonal billiards. So the objects we consider here do have, at least
in a special case, a concrete incarnation in terms of dynamical systems. From a modular
viewpoint, eigencurves, of which only preciously few have been detected at present, arise
quite naturally, corresponding to discs in Teichmüller space which are globally but not
pointwise fixed under the action of torsion elements of the mapping class group. With
this viewpoint in mind we will show that the famous curves detected by Veech can in
fact be written down in a completely explicit and elementary fashion, which among other
things makes it plain that they too are arithmetic (defined over number fields). We hope
that leaving any other motivation aside, this result can be of interest to people working
in the area.

As mentioned at the very beginning the motivation behind this paper actually
comes from Grothendieck–Teichmüller theory and the study of the action of the arith-
metic Galois groups on the algebraic fundamental groups of certain geometric objects.
We believe that the topologico-analytic framework provided by the theory developed
by Thurston, H. Masur, Veech and many others can and perhaps should play an
important role in trying to implement certain suggestions contained in Grothendieck’s
Esquisse (reproduced in [63], with an English translation), and beyond. We remark that
Grothendieck alludes to the work of Thurston which was being developed at the same
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time that Grothendieck himself was journeying in his Longue marche à travers la théorie
de Galois and of which he knew only through rather distant hearsay. He terms it ‘chirurgie
hyperbolique’ (hyperbolic surgery), when it may be fair to say that he himself was after
an at present still very conjectural ‘chirurgie arithmétique’.

For the above reasons we have written this text having in mind a reader coming from an
algebraic geometric background, with perhaps little knowledge of some fairly ‘standard’
analytic and dynamical systems features. We believe, however, that some results might
be of interest to people coming from the latter areas, who should have no trouble skipping
the sketchy reminders we have included. We have also taken advantage of the existence
of efficient electronic reference databases: recalling a theme and the name of an author
nowadays enables one to easily retrieve the relevant paper(s). Finally, we have written
a conclusion in the form of an introduction in which we enlarge the landscape a bit,
trying to convey some of the intuitions which might subtend further exploration of this
truly fascinating mathematical stage. Needless to say that last section is highly not self-
contained and quite partial in both senses of the word, hardly dipping into deeper waters.

2. Teichmüller discs, flat structures and geodesic curves

We have assembled in this section most notions and results of topological or analytic
nature we will make use of. For background material on Teichmüller and moduli spaces
of curves from an analytic viewpoint, the reader can consult any of the several existing
textbooks, e.g. [37] (or see Chapter 1 of [7] for an introduction which meets our needs).
We deal with Riemann surfaces of finite type and cusps (or ‘punctures’ or ‘marked points’)
play an important role; they are often omitted in classical texts on Teichmüller theory
(with [14] being a notable exception) so that they have to be restored at the appropriate
places.

The standard textbooks on quadratic and Jenkins–Strebel differentials are [65] and
[19]. The Teichmüller geodesic discs were first studied in detail in [50] where the reader
can also find nice manageable versions of Teichmüller’s and Strebel’s main theorems.
Flat structures were emphasized in this context by Veech in [69], where they are called
F -structures. An account from a quasi-conformal viewpoint can be found in [13] and a
nice review with proofs appears in [52]. For a dense survey of results with references, see
the first section of [25]; one can also consult [24], [31], [39] and [49] as well as references
therein.

Our main goal in this section is to build up the picture described in Proposition 2.10,
which necessitates, however, the introduction of a fair amount of material.

2.1. Teichmüller space and its cotangent bundle

Let S be a differentiable surface of finite hyperbolic type (g, n); that is S = Sg,n is
obtained by removing n (n � 0) points from a closed surface of genus g (g � 0) and it is
assumed to have strictly negative Euler characteristic, i.e. 2g − 2 + n > 0. Let T (S) be
the associated Teichmüller space. A point t = (X, f) ∈ T is determined by a Riemann
surface X and a marking, that is a diffeomorphism f : S → X. Two pairs (X, f) and
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(X ′, f ′) are equivalent if f ′◦f−1 is homotopic to an isomorphism (that is a biholomorphic
map) from X to X ′; the elements of T are equivalence classes of such pairs. The marking
f may thus be regarded as defined only up to homotopy or equivalently up to isotopy.
We will often write T (S) = Tg,n as T (S) depends effectively only on the type of the
model surface S, although the isomorphism T (S) � T (S′) for two models S and S′

is not canonical. We will abbreviate Tg,n to T when the type (g, n) is unambiguous.
Distinguished points should be considered either as marked (marked points) or deleted
(punctures or cusps). We will sometimes rely on the reader for the choice when it is made
clear by the context, but for simplicity we will consistently use the following notation,
thinking of punctures: if X is of type (g, n), we let X̂ denote the associated projective
curve, obtained by completing X (or erasing the marked points thinking in those terms).
So X = X̂ \ {P1, . . . , Pn}, where the Pi are the punctures. Let PX = P1 + · · · + Pn denote
the corresponding divisor.

The cotangent space to T = Tg,n is described by the classical Kodaira–Spencer defor-
mation theory: viewing T as the space of complex structures on S modulo diffeomor-
phisms isotopic to the identity let ω = ωX̂ denote the sheaf of holomorphic differentials on
X̂, ω∗ its dual, namely the sheaf of holomorphic vector fields; deformation theory identi-
fies the tangent space TtT at t = (X, f) as the H1 of the holomorphic vector fields vanish-
ing on PX (see, for example, [37, § 7.2.4] for the case n = 0). So TtT � H1(X̂, ω∗(−PX));
dualizing one finds T ∗

t T � H0(X̂, ω⊗2(PX)). In other words, the cotangent space to T at
the point t can be identified with the vector space of quadratic differentials on X̂ which
are holomorphic on X and have at most simple poles. We denote this vector space by
Q(X) or just Q if X is unambiguously defined. The Riemann–Roch formula enables one
to compute or cross-check that dimC(Q(X)) = dimC(Tg,n) = 3g − 3 + n.

2.2. Local representation, foliations, Strebel differentials

Given X as above, any element q ∈ Q = Q(X) can be written locally on X as
q = φ(z) dz2, where z is a local coordinate and dz2 is short for (dz)⊗2. Looking near
z = 0 and after performing a locally biholomorphic change of variables, one can assume
that φ(z) = zk for some integer k � −1, since we are considering differentials with at
most simple poles. Next zk dz2 = c(d(zk/2+1))2 (c an unimportant constant). So if k is
even, and in particular if k = 0 (corresponding to a regular point of q), q is locally the
square of a 1-form, namely q = c dζ2 with ζ = zk/2+1. If k is odd, however, in particular
near a simple pole (k = −1), one needs to pass to a twofold cover in order to write q

(locally) as the square of a 1-form. It is easy to see that this construction can in fact
be globalized. Namely, given q there exists a twofold cover X̃ of X, say π : X̃ → X and
a 1-form ω̃ such that q̃ = π∗q = ω̃2. Moreover, because q has at most simple poles, the
form ω̃ can be extended (as well as q̃) to a holomorphic form on the completion of X̃.
This reduces to a local analysis and boils down to the fact that z−1(dz)2 = 2(dζ)2 with
z = ζ2.

A quadratic differential q ∈ Q defines a metric with line element ds2
q = |φ(z)| |dz|2

and a measure µq with dµq = |φ| dz ∧ dz̄; one easily checks that these expressions are
independent of the local coordinate. Because complex transformations are conformal,
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i.e. preserve angles, it makes sense to integrate a quadratic differential in a given direc-
tion θ. More precisely, this is well defined modulo π (not 2π; because d(eiθz)2 = e2iθ dz2).
So for any direction θ, i.e. any θ ∈ R/πZ, we have a foliation Fθ(q) whose leaves are
obtained by integrating q in the direction θ, that is for Arg(q) = θ (mod π). In partic-
ular, the horizontal (respectively, vertical) foliation corresponds to θ = 0 (respectively,
θ = π/2). We also note that Arg(eiθq) = θ + Arg(q), so that Fθ′(eiθq) = Fθ′−θ(q). In
particular, Fθ(q) is the horizontal foliation of the rotated form e−iθq. We have detailed
this rather obvious action of the rotations because we will need to consider all directions
simultaneously in what follows.

Looking again at the local expression q = zk dz2, one finds that q is integrable, that is
X has finite µq measure, if and only if q has at most simple poles. We thus record the
following classical and important proposition.

Proposition 2.1. If t = (X, f) ∈ Tg,n is a point in Teichmüller space, T ∗
t Tg,n � Q(X),

where Q(X) = H0(X̂, ω⊗2(PX)) is the (3g − 3 + n)-dimensional C-vector space of inte-
grable quadratic differentials on X.

The space Q(X) is endowed with the norm defined by ‖q‖ = µq(X). We also see
from the local expression that near a point P ∈ X which is a zero of order k of q, the
horizontal foliation F0(q) consists of k + 2 half-lines abutting at P and partitioning a
neighbourhood into k + 2 sectors. This extends verbatim to k = 0 (regular point) and
k = −1 (simple pole). And this is of course also true for the foliations Fθ(q), which are
obtained by rotating the horizontal foliation.

We note that a quadratic differential q can be written as the square of a 1-form, that
is q = ω⊗2 for some 1-form ω, if and only if the foliations Fθ(q) are orientable—all of
them or just one of them, which is equivalent. We then simply say that q is a square,
or is orientable. For this to happen, it is of course necessary that q be locally orientable,
that is only even values of k may occur. In particular, a differential with at least one
simple pole or one simple zero is not orientable.

We now introduce the so-called Jenkins–Strebel differentials (we will henceforth omit
the first name for the sake of brevity only), again paying attention to the poles and to the
fact that we will need to deal with all directions at once. Given q ∈ Q(X) and a direction
θ ∈ R/πZ, the critical graph Cθ(q) is, by definition, the union of the critical leaves of the
foliation Fθ(q), that is the trajectories starting from or ending at the zeros and simple
poles of q. Recall that there is only one trajectory starting from a simple pole of q, so
that Cθ(q) may have endpoints (‘loose ends’). Then we have the following definition.

Definition 2.2. The integrable quadratic differential q ∈ Q(X) is Strebel in the direction
θ if the critical graph Cθ(q) is compact. We then call θ a Strebel direction for q.

We say simply that q is Strebel if it is Strebel for θ = 0, that is if the horizontal
critical graph is compact. Of course q is Strebel in the direction θ if and only if e−iθq is
Strebel. If q is Strebel in the direction θ, the complement X \ Cθ(q) is a disjoint union
of topological cylinders, which from a conformal viewpoint are entirely characterized by
their respective moduli. We will see in § 2.6 that there is a fascinating interplay between
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the Strebel property and the description of the points at infinity of geodesic curves in
the moduli spaces of curves.

2.3. Examples

Here we give explicit expressions for bases of Q(X) in the case where X is either a
sphere with marked points (type (0, n)) or a hyperelliptic curve. Simple as they may
appear these examples are good to bear in mind, given that there are very few other
computable cases.

Let first X be of type (0, n), that is X = P1C \ {z1, . . . , zn}. Cover as usual P1C with
two charts with local coordinates z and w, such that z (respectively, w) omits the points
at infinity (respectively, the origin) and wz = 1. Assume first that none of the zi is at
infinity. Then any q ∈ Q(X) can be written as

q(z) =
( ∑

1�i�n

ai

z − zi

)
dz2, (2.1)

with n complex parameters ai. However, these are connected by three relations which
express that q must be regular at infinity, since this is assumed not to be a marked point.
More precisely, for small w we have

1
z − zi

=
∑
k�0

zk
i wk+1

(if one of the zi is 0, use the convention that 00 = 1) and dz2 = w−4 dw2. This yields the
expansion of q near infinity:

q(w) =
∑
k�0

(∑
i

aiz
k
i

)
wk−3 dw2.

So the three relations read ∑
1�i�n

aiz
k
i = 0, k = 0, 1, 2, (2.2)

and we find that Q(X) is indeed of dimension n − 3, noting that the relations are linear
in the parameters ai. If one of the zi is at infinity, say zn = ∞, the above has to be
modified only slightly: in (2.1) the sum runs over the values i = 1, . . . , n − 1, whereas in
(2.2) the value k = 2 is omitted because q may have a simple pole at infinity. In other
words, one gets n − 1 parameters ai and two relations.

Another basis of Q(X) shows itself to be useful. We assume here for simplicity that none
of the zi lies at the origin (if not, just translate) and in fact, as a first step, that zi �= 0,∞
(all i). Note that everything we do is actually PGL2(C) invariant and these assumptions
are simply for the sake of writing down closed formulae. We set P (z) =

∏
i(z − zi) and

define

qj = zj dz2

P (z)
, j = 0, 1, . . . , n − 4, (2.3)
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so that qj is regular at infinity. If zn = ∞ we omit it in the definition of P , which is thus
of degree n − 1 and still get the same expression for the qj with the same values of j;
the last elements qn−4 then has a simple pole at zn = ∞. Of course these two bases are
related by decomposing rational functions on X into their simple elements.

Let now X be given as the hyperelliptic curve with equation in the affine plane (x, y):

y2 =
n∏

i=1

(x − xi) = P (x). (2.4)

We assume for simplicity that n is odd, that is the completion of X has only one point at
infinity. The case of even n requires minor changes only. We write n = 2g+1 where g � 1
is the genus of X and let X0 denote the quotient of X by the hyperelliptic involution ι.
So X0 is of type (0, n + 1), because ∞ is a ramified point for the involution. The marked
points on the sphere X0 are the xi and ∞.

Now Q(X) can be spanned by the union of two types of differentials:

Q(X) = 〈{qj ; j = 0, . . . , n − 3} ∪ {q̃k; k = 0, . . . , g − 3}〉. (2.5)

The qj are lifted from the ones with the qj on X0 (see (2.3)) and we give them the same
name (rather than ι∗qj) for simplicity. So qj = xj dx2/y2 and the index runs to n − 3
because there are effectively n + 1 marked points. The q̃k in turn do not descend to X0

and are given by q̃k = xk dx2/y. That the index k runs to k = g − 3 comes again from
an easy analysis at infinity (where there is a uniformizing parameter t with x = t−2,
y ∼ t−(2g+1)). One checks that the dimension of Q is d = (n − 2) + (g − 2) = 3g − 3 as
it should be.

We finally remark that the qj are not orientable in the genus 0 situation because they
have at least one simple pole. Their holomorphic lifts qj are indeed orientable exactly for
j even, that is if the only zero, which lies at the origin, has even order. As for the q̃k,
they are not orientable.

2.4. Geodesic discs and flat structures

Let again t = (X, f) ∈ T = Tg,n be a point in Teichmüller space, q ∈ Q = Q(X) an
integrable quadratic differential on X. For ease of notation we will sometimes identify
the tangent and cotangent spaces of Teichmüller and moduli spaces.

Definition 2.3. The Teichmüller disc (or just ‘disc’) D(t, q) ⊂ T with centre t in the
direction q is the complex geodesic ray for the Teichmüller distance emanating from t

along q.

In real rather than complex terms, D = D(t, q) is thus the union of the real geodesic
rays originating from t along the tangent vectors eiθq as θ varies in R/πZ. Of course
D(t, λq) = D(t, q) for any λ ∈ C∗; if one assumes that q is normalized by ‖q‖ = 1, there
remains the choice of a phase λ ∈ S1 � R/2πZ.

A concrete description of such a disc is essentially implied by Teichmüller main theo-
rem, as made precise and revisited by Ahlfors, Bers, etc. (see, for example, [37] and [50]).
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Fortunately for the non-analyst these deep analytic results actually lead to a clear geo-
metric and algebraic picture. Let U be the open unit disc equipped with the Poincaré
metric; we also use the upper half-plane model H. The respective automorphism groups
are PSU(1, 1) and PSL2(R) and using the classical Cayley isomorphism we pass freely
from one model to the other. The first important piece of information is that the disc
D = D(t, q) is given as an isometric embedding U ↪→ T of U (or H) into T . This is
a consequence of the extremality properties of such mappings (see, for example, [37]
or [19]). In other words, we have the following proposition.

Proposition 2.4. The Poincaré and Teichmüller metrics coincide on a Teichmüller
geodesic disc.

In order to make the correspondence more explicit, one can introduce the so-called
flat structures. Let S be a genus g closed differentiable surface with a set Σ of r marked
points. A flat structure on (S, Σ) is determined by an atlas (V, φ): the V = (Vi)i∈I define
an open covering of S\Σ; the charts φi : Vi → R2 are such that on the intersection Vi∩Vj

the transition map φij = φj ◦ φ−1
i : R2 → R2 is of the form φij(zi) = ±zj + cij . Here we

use complex notation, zi (respectively, zj), being defined by the chart φi (respectively,
φj). The cij are constants. A flat structure is an equivalent class of such objects for
obvious equivalence relations; for instance one can enlarge the atlas by adding redundant
charts, etc. The point is that the transition maps are restricted to be translations, possibly
composed with reflections. We denote such a structure by u or more precisely by (S, Σ, u).

Using complex notation was not an abuse because a flat structure defines in particular
a complex structure on S \Σ: indeed the transition maps are holomorphic. Moreover, one
can endow S \ Σ with a metric obtained by locally pulling back the ordinary Euclidean
metric from the plane R2: indeed the transition maps are isometries of that metric.
The surface S then acquires a Euclidean structure with cone-type singularities; the sin-
gularities occur at the points of Σ (see below for more). In particular, the Gaussian
curvature is zero except at the singular points, hence the name ‘flat structures’. Finally,
again because of the form of the transition maps, lines or directions θ ∈ R/πZ are well
defined on (S, Σ, u). These three properties are the main ingredients, together with the
correspondence between flat structures and quadratic differentials. Indeed, we have the
following proposition.

Proposition 2.5. Flat structures are in one-to-one correspondence with quadratic dif-
ferentials.

Let us describe this simple but fundamental correspondence. First, starting from
(S, Σ, φ), the expression dz2 is well defined away from the singularities, precisely because
of the form of the transition maps: z → ±z + c. So one can glue these local expressions
(dz2

i = dz2
j ) into a quadratic differential q(u) on S \ Σ. Then at a cone point P ∈ Σ, the

total cone angle has to be a multiple of π as otherwise the notion of direction would not
be defined. This of course also results from the form of the transition maps. Denoting
this angle by 2cπ for some half-integer c, one finds that the quadratic differential q(u) has
order k = 2(c−1) at P , this k being as at the beginning of § 2.2. This is a consequence of

https://doi.org/10.1017/S1474748005000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000101


On arithmetic curves in the moduli spaces of curves 451

the local behaviour at P ; it includes the cases k = −1 (c = 1
2 , a simple pole) and k = 0

(c = 1, an apparent singularity).
One can compute the genus g(S) of S using the Gauss–Bonnet or Euler formula. Each

P ∈ Σ contributes a quantity κP = 2π − 2cP π = −kP π to the curvature, where 2cP π

is the cone angle at P and kP is the order of q(u). Only simple poles produce positive
curvature. By Gauss–Bonnet the local contributions add up to 2πχ(S) = 2π(2 − 2g(S)).
Hence the useful formula:

2g(S) − 2 = ΣP∈Σ(cP − 1) = 1
2ΣP∈ΣkP . (2.6)

Of course the equality of the first and last terms simply says that the divisor of q has
degree 4g(S) − 4, as it should since this is twice the degree of the canonical bundle.

In the opposite direction, start from X of type (g, n) with a quadratic differential q

having at most simple poles at the n marked points. Let Σq ⊂ X̂ be the union of the
divisor of q together with the marked points, i.e. the divisor PX . Generically with respect
to q the set Σq is just the divisor of q but we prefer to include the marked points by
convention, at the expense of possible apparent singularities. We let Xq = X̂ \ Σq. If m

is the number of zeros of q, not counting multiplicities, the surface Xq is thus of type
(g, r) with r = m + n.

On Xq the differential q can be locally written as q = dz2 and the local coordinate z is
defined exactly up to a sign and an additional constant. So these local coordinates glue
into a flat structure u(q) on Xq. So given q and X we find a flat structure (X̂, Σq, u(q)).
The constructions sketched above are clearly inverse of each other.

One more word about orientability. Define a flat structure to be orientable if and only
if there exists an atlas such that all the transition maps are translations, i.e. one can get
rid of the signs ±. It is clear from the discussion above that q and u(q) (respectively, u

and q(u)) are simultaneously orientable or non-orientable.
We may now return to the concrete description of the Teichmüller discs. The main

point is to define an action of PSL2(R) on flat structures as follows. Given (S, Σ, u) a
flat structure determined via an atlas as above and A ∈ PSL2(R), the flat structure
(S, Σ, u′ = Au) is defined by postcomposing charts with A. Warning: this operation does
modify the complex structure and this is actually the whole point. We will nonetheless use
the customary complex notation: the symbol Az actually denotes the 2-vector obtained
by applying A to z = (x, y). Moreover, Az is defined only up to sign since A is. These
ambiguities cancel in what follows. So if the zi (respectively, z′

i) are local coordinates
for u (respectively, u′) with charts φi : Vi → R2 (respectively, φ′

i and the same Vi) one
has φ′

i = A ◦ φi, that is z′
i = Azi. Then over Vi ∩ Vj , where zj = ±zi + cij , this gives

z′
j = ±z′

i + Acij .
When is it that u′ = Au defines the same flat structure as u? Clearly, this happens

if and only if A is complex analytic, that is if and only if A is a rotation: A = (±)eiθ

in complex notation. Then the local change of coordinates is just z′ = eiθz. Now start
from a (co)tangent vector in the Teichmüller space Tg,n of type (g, n), so from a triplet
(X, f, q) where X is of type (g, n), f is a marking from a model surface and q is an
integrable quadratic differential on X. We get a flat structure u(q) on Xq as above and
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we can consider its orbit under the action of PSL2(R). This orbit naturally lives in the
(co)tangent space T (∗)Tg,r and we may project it down to Tg,r. By the remark above the
action actually factors and we get an action of H = PSL2(R)/PSO2(R). Teichmüller’s
fundamental theorem implies the following proposition.

Proposition 2.6. The orbit H · u(q) coincides with the Teichmüller disc D(t, q).

Together with Propositions 2.4 and 2.5, this provides the desired description of
Teichmüller discs. In particular, D(t, q) can be viewed as the set of complex structures
which underlie the flat structures Au(q), as A runs through PSL2(R), the stabilizer of X

being PSO2(R) � R/πZ. Note that if A = eiθ, we get z′ = eiθz, hence (dz′)2 = e2iθ dz2,
that is q′ = e2iθq. So θ ∈ R/πZ fixes the complex structure and acts on q via q → e2iθq.
There is also an action of the rotation group on the disc D(t, q) (just as on the unit disc
U or on H) defined simply by q → eiθq for the rotation of angle θ.

We add one more word in order to make the above procedure quite precise. In effect
the flat structure u(q) has been constructed on Xq, which is of type (g, r) with r = m+n,
m being the number of zeros of q. We already have a marking f for the surface X of type
(g, n); it can be transformed into a marking of Xq, by modifying the marking f so as to
fix the additional marked points. This operation is not canonical but this ambiguity will
play no role here. By doing so we have picked a point in Tg,r; consider then the orbit of
u(q) in that space, then map it to Tg,n using the forgetful map Tg,r → Tg,n which erases
the last m points. This map is not an isometry but it is indeed an isometry between
these two discs, because the PSL2(R) action fixes the zeros of q. So the flat structure
u(q) does describe a geodesic disc in Tg,n. We will return to this in some more detail
in § 2.7 below.

2.5. From Teichmüller to moduli space

We now want to descend the situation from Teichmüller to moduli space. Let us first fix
notation; S = Sg,n is a model surface of type (g, n), Γ (S) = π0(Diff+(S)) is the associated
mapping class group or Teichmüller modular group (modular group for short), namely
the group of isotopy classes of diffeomorphisms of S fixing the marked points or punctures
pointwise; that is we consider here the pure modular group (see § 2.7 for variants). We
also write Γ (S) = Γg,n or just Γ , although this is a story with too many traditional Γ and
we will try to avoid confusion. This group acts on T (S) as follows: if t = (X, f) ∈ T (S)
and g ∈ Γ (S), then g · t = (X, f ◦ g−1). The action is proper and discontinuous and
the moduli space M(S) is the quotient Γ (S)\T (S), which in this section is viewed as a
complex orbifold. We write M(S) = Mg,n = M and denote by π : T → M the canonical
projection.

The modular groups also act naturally on flat structures. Namely, let (S, Σ, u) be a flat
structure, where now S = Sg is compact of genus g and Σ is a set of r distinct points.
Let Γ (S, Σ) be the group of isotopy classes preserving the elements of Σ pointwise:
Γ (S, Σ) � Γg,r. Suppose the flat structure is given as in § 2.4 by an atlas (V, φ); then if
g ∈ Γ (S, Σ), the flat structure g ·u on (S, Σ) is defined by the atlas (g(V ), φ◦g−1). That
is if φi : Vi → R2 is a chart for u, φi ◦ g−1 : g(Vi) → R2 is a chart for g · u. We isolate the
following obvious but important proposition.
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Proposition 2.7. The (left) action of the modular group on flat structures commutes
with the (right) action of PSL2(R).

Consider now a Teichmüller disc D(t, q) ⊂ T with X = π(t) ∈ M. Here we consider
that T = Tg,r, adding the m zeros of q to the n original marked points; again see § 2.7
about erasing the m additional points. The modular group Γg,r acts on Tg,r and we can
look at the stabilizer S(D) = StabΓ (D) ⊂ Γg,r, where stabilizer means global stabilizer,
not pointwise. There may actually be a non-trivial normal subgroup H ⊂ S(D) which
fixes D pointwise, and H is finite because it is contained in the finite automorphism
group of the hyperbolic Riemann surface X (for more on this, see § 4). We let Γ (D) =
StabΓ (D)/H. So we have an exact sequence:

1 → H → S(D) → Γ (D) → 1, (2.7)

which in general is not split. As for H ⊂ Γg,r, it is the group of the common automor-
phisms to all the Riemann surfaces underlying the elements of D, i.e. all points of π(D);
here H should be regarded only up to conjugacy in Γ and π(D) ⊂ M(H), anticipating
notation of § 4. That is, π(D) is contained in the special locus defined by the conjugacy
class of H as a finite subgroup of Γg,r.

The next step consists of observing that there is a canonical embedding µ : Γ (D) ↪→
PSL2(R), namely the monodromy representation or map, which in the present terms
is obtained as follows. Given g ∈ Γ (D), we can let it act on the flat structure u(q), as
explained above. The description of D in terms of an action of PSL2(R) given in § 2.4
shows that D is globally fixed under the action of g if and only if there exists an element
A = A(g) ∈ PSL2(R) such that g · u(q) = A(g)u. Locally on a chart (V, φ), this means
that φ ◦ g−1 = A ◦ φ; in other words, g acts in an affine way on the Riemann surface
X considered as a Euclidean surface with singularities. More exactly there must be a
diffeomorphism representing the isotopy class g which effects this and which we still
denote by g. Because of the form of the transition maps for a flat structure, A is clearly
independent of the chart. So one can define µ by µ(g) = A(g) ∈ PSL2(R) and this map
is into by the very definition of Γ (D).

We also note (see [69, Proposition 2.7]) that µ(Γ (D)) is a discrete subgroup of
PSL2(R). In the sequel we will often identify Γ (D) and µ(Γ (D)) calling it the affine
group of the disc D; up to an extension by a finite group it coincides with the stabilizer
of D under the action of the Teichmüller modular group. We summarize the above for
clarity in the following proposition.

Proposition 2.8. The following are naturally associated with a Teichmüller disc D =
D(t, q) ⊂ T = Tg,r.

(i) Two subgroups S(D) and H of the Teichmüller modular group Γ = Γg,r, the group
H being finite.

(ii) An injective map µ : Γ (D) ↪→ PSL2(R) of their quotient Γ (D) = H\S(D) (called
the affine group of D); the image of µ is discrete and not cocompact.
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This natural interplay between surface groups sitting inside the Teichmüller modular
groups and discrete subgroups of PSL2(R) provided by the monodromy representation
looks to us to be relevant and indeed fascinating from the viewpoint of Grothendieck–
Teichmüller theory.

Generically with respect to Lebesgue measure on the unit cotangent bundle of
Teichmüller space the stabilizer S(D) is in fact the trivial group, so are a fortiori H and
Γ (D). We will be interested in the cases, which are highly exceptional from the measure-
theoretic viewpoint and have been highlighted by Veech, where Γ (D) is as ‘as large as
possible’, namely is a lattice, meaning that it has finite covolume in PSL2(R). The canon-
ical projection π(D) to moduli space is given as C = C(X, q) = Γ (D)\D � Γ (D)\H and
the point is that of course C is a curve if and only if Γ (D) is a lattice. Note that Γ (D)
may contain elliptic elements, so that C should be regarded as an orbifold. Actually it is
better to keep track of H by viewing C as the quotient S(D)\H, where the action of H

is, however, not effective. This generalizes the case of the moduli of elliptic curves: one
has Γ1,1 � SL2(Z), rather than PSL2(Z), with the non-split exact sequence (2.7), where
H = Z/2Z has the elliptic involution as its only non-trivial element. It also generalizes
to special loci (see § 4 below). In fact it is always best to think in terms of orbifolds (and
their algebraic counterparts, namely stacks) which keep track of the automorphisms of
the various objects, which here carry very significant information.

Before turning to the study of these curves or orbifolds C, we note that this situa-
tion of a disc with a large stabilizer represents a small and rather exceptional part of
the flat structures, corresponding to a countable dense set of the cotangent bundle of
Teichmüller space [70]. There is at present a vast literature on these matters, falling
naturally into two categories: the first one pertains more to ergodic theory, exploring the
generic translation surface and studying in particular the geodesic flow on the cotangent
bundle of Teichmüller space (for recent progress and references, see [16]); the second type
of study explores precisely the situation we are interested in, of discs projecting to curves
in moduli space. The problem of detecting these algebraic, and a fortiori arithmetic
leaves inside the Teichmüller geodesic foliation looks very interesting and difficult. It also
seems to require new ideas and techniques, going beyond the ones existing at present,
even under the geometric and general form developed in [6] (see also [9] for a summary).
An important point is that we are not working with algebraic foliations and certainly
not algebraically integrable ones; we are trying to detect certain algebraic leaves among
highly non-algebraic and in fact uniquely ergodic ones.

2.6. Geodesic curves and Strebel directions

In this section, we use the constructions introduced above in order to give a modular
description of results which are in essence due to Veech with hints in Thurston’s famous
delayed announcement (see [68, p. 430]). We have cast them in a form which should be
more to the liking of algebraic geometers and especially practitioners of Grothendieck–
Teichmüller theory than the usual phrasing in topological and dynamical systems par-
lance. Arithmetic properties will be added later on.
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Let us first briefly repeat the set-up for convenience. We start from a Riemann surface
X of type (g, n) and q ∈ Q = Q(X) an integrable quadratic form. Let Xq be the
associated curve of type (g, r) adding in as marked points the zero set of q. Let u(q)
denote the corresponding flat structure. We get a point on Mg,r; we choose a marking
f : S = Sg,r → Xq and lift it to a point t = (Xq, f) ∈ Tg,r. The arbitrariness of f does
not play a serious role in what follows. We thus construct a disc D = D(t, q) ⊂ Tg,r, with
associated affine group Γ (D) ⊂ Γg,r; there is also a natural injective map µ : Γ (D) ↪→
PSL2(R), whose image is discrete. Let again π(D) = C = C(X, q) = Γ (D)\H be the
image of D in Mg,r via the canonical projection. For the time being we do not use the
natural orbifold structure of C.

Let a ∈ Γ (D) be such that µ(a) = A ∈ PSL2(R) is a non-trivial idempotent, i.e. the
eigenvalues of A are ±1 and A �= ±1 (everything is up to sign). Then A acting on H has
exactly one fixed point at infinity or, to put it differently, there is a non-zero v ∈ R2,
unique up to scalar multiplication, such that Av = ±v. Let θ ∈ R/πZ be the direction
of v, where R/πZ is viewed as the space of lines in R2 passing through the origin. Then
we have the following proposition, whose second part will be elucidated further after the
statement.

Proposition 2.9. Under the above assumptions, θ is a Strebel direction for q. Moreover,
there is a power of a which is a product of powers of Dehn twists along the cylinders
determined by the critical graph Cθ(q).

For the proof, which is actually not difficult, we refer to [69, Proposition 2.4]; this
proposition appears already in [68, p. 430] and in a paper by I. Kra (see reference
in [69]). It is one of the key facts of the theory, and it does not depend on the global
structure of Γ (D), in particular whether its image via µ is a lattice or not.

Recall from § 2.2 that a critical trajectory in the direction θ is a leaf of the foliation
Fθ(q) which contains a zero or a pole of q in its closure. A connection is a critical
trajectory which joins two such points. The first part of the proposition thus asserts
that any critical trajectory in the direction θ is a connection and in fact any leaf of
Fθ(q) is either closed or a connection. The element a preserves the foliation, permuting
connections. Since there are finitely many of them, there is a power of a which fixes the
connections and this is the one which is considered in the second part of the lemma.

Let us detail this second part, introducing notation which will be used in the sequel.
The complement Xq \ Cθ(q) is a disjoint union of cylinders c1, . . . , ct. Pull back the ci

to the surface S via the marking f so that the preimage si = f−1(ci) is a topological
cylinder on S. Its fundamental group is generated by an isotopy class αi of simple loops,
defining the core of si. The collection α

¯
= (α1, . . . , αt) is called a multicurve on S.

Generally speaking, a multicurve is a collection of non-intersecting simple loops which
are mutually non-isotopic and are not isotopic to the trivial loop or to loops surrounding
the punctures. They are always considered up to isotopy; so non-intersecting means that
there are representatives which are non-intersecting, not mutually isotopic means they are
not equal as isotopy classes, etc. Below we usually skip these distinctions and sometimes
also identify the situation on Xq and on S; this effectively amounts to considering the
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situation up to conjugacy in Γg,r, which is the defining difference between Teichmüller
and moduli spaces, namely the forgetting of the marking.

Returning to the multicurve α
¯

⊂ S, we let τi ∈ Γg,r denote the Dehn twist along αi,
diffeomorphisms being also regarded up to isotopy. Since the αi are disjoint, the τi com-
mute. The second assertion of the proposition says that in Γg,r = Γ (S) one has

a� =
i=t∏
i=1

τ �i
i , (2.8)

for some positive numbers � and �i (i = 1, . . . , t).
Because of the importance of that proposition, we sketch the appealing and simple

image it provides in terms of flat structures. Let u(q) be the flat structure on Xq, which
can now be viewed as a Euclidean surface with conic singularities. Directions are well
defined on Xq and for any θ ∈ R/πZ the leaves of the foliation Fθ(q) are mapped
into straight lines. Following Thurston (see [24] for details) one defines a developing
map Dev : X̃q → R2, where X̃q is the universal cover of Xq equipped with the pulled-
back flat structure. The map ‘Dev’, which is defined up to a translation, is obtained
by continuation along straight lines starting from point in X̃q. It can be completed by
adding in the singularities Σq ⊂ Xq and their preimages Σ̃q ⊂ X̃q. Critical trajectories
now appear as open half-lines or half-segments originating at points of Σq; they can also
be lifted to X̃q and developed via the map ‘Dev’ on the plane R2. Connections are open
segments joining two points of Σq or Σ̃q; they can of course return to the same point on
Xq, not so on X̃q because they are homotopically non-trivial on Xq. On the plane R2, the
first half of the proposition says that starting from any point in Dev(Σ̃q) in the direction
θ, one eventually encounters another such point. The set Str(q) ⊂ S1 = R/πZ of the
Strebel directions of q coincides with the set defined by the directions of the eigenvectors
of the non-trivial unipotent elements in Γ (D). This is a subset of the directions of the
connections of q, which in turn is a certain subset of the directions of the lines connecting
the array of points Dev(Σ̃(q)) ⊂ R2.

Let us now see how this and further information can be viewed in terms of curves in the
moduli space, introducing the further assumption that Γ (D) (D = D(X, q)) is a lattice.
For simplicity we write M = Mg,r and we let M̄ denote the stable (Deligne–Mumford)
completion of M, constructed here if one wants in an analytic way, as in the work of
L. Bers, by adding Riemann surfaces with nodes to M. Then we have the following
proposition.

Proposition 2.10. Assume that C is a curve, i.e. assume that µ(Γ (D)) ⊂ PSL2(R) is
a lattice. Then the following hold.

(i) The curve C = π(D) is not complete; let C̄ denote its completion. The set of cusps
C̄ \ C ⊂ M̄ \ M consists of a finite number k � 1 of points on the divisor at infinity
D = M̄ \ M.

(ii) The only singularities of C, if there are any, are transverse self-intersections.
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(iii) For any direction θ ∈ R/πZ � S1, either θ is a Strebel direction or the foliation
Fθ(q) on X is uniquely ergodic. The set Str(q) of Strebel directions coincides with
the set of directions of the connections of q. It is countably infinite and dense on
the circle S1 � R/πZ.

(iv) Γ (D) acts naturally on Str(q) and there are k orbits under this action, correspond-
ing to the cusps of C.

(v) Let θ ∈ Str(q) be a Strebel direction and α
¯

(θ) be the multicurve on X defined by
the cores of the cylinders in the decomposition induced by the critical graph Cθ(q).
Then θ determines a cusp P ∈ C̄ \ C and P lies on the stratum of the divisor at
infinity M̄ \ M, which is labelled by α

¯
(θ).

(vi) The cyclic parabolic subgroup of µ(Γ (D)) ⊂ PSL2(R) determined by P is gen-
erated by a unipotent element A. Setting a = µ−1(A) ∈ Γg,r, there is an integer
� such that a� is a product of powers of the commuting Dehn twists along the
elements of the multicurve α

¯
= α

¯
(θ).

(vii) The moduli of the cylinders determined by Cθ(q) are mutually commensurable.

Remark. The first part of (iii) is the so-called ‘Veech dichotomy’ (cf. [69, Proposi-
tion 2.11]). Comparing with Proposition 2.9 above and its rephrasing before the state-
ment of the present proposition, we see that under the assumption that Γ (D) is a lattice,
the set Str(q) of Strebel directions now coincides with the set of directions of the con-
nections for q: as soon as one critical leaf of the foliation Fθ(q) has compact closure, the
whole critical graph Cθ(q) enjoys the same property.

With the amount of information introduced above, a large part of the assertions of
the proposition are easy. Specifically, part (i) has been mentioned already; that is Γ (D)
is discrete but not cocompact. It is also a consequence of (iii) since there always exists
at least one connection (think, for example, in terms of flat structures). As for (ii), the
only singularities of C, as an immersed curve, come from self-intersections, and these are
transverse because C is geodesic. We have already mentioned the first assertion in (iii)
as being classical. Again the main point with respect to to the lemma consists of showing
that if Γ (D) is a lattice, any connection is associated with a parabolic element of Γ (D).
Recall that a foliation is uniquely ergodic if it has exactly one transverse invariant mea-
sure. See, for instance, [52] for a historical survey of this material.

The group Γ (D) acts on the set of lines through the origin, as a subgroup of PSL2(R).
It also acts via Möbius transformations on the points at infinity of H. The last part of (iii)
and assertion (iv) are classical in the second setting because Γ (D) has finite covolume
(is Fuchsian of the first kind). Comparing the two actions, one gets these assertions for
the first action too.

Assertion (v) should be clear from the discussion following Proposition 2.9. Let us
denote by Ag,r the set of multicurves on S = Sg,r. It can be made into a finite-dimensional,
but not locally finite, CW-complex. Its role was first emphasized by W. Harvey and it
has played, together with several variants, a prominent role in the topological study
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of mapping class groups, Teichmüller spaces, etc. (see, for instance, [51]; see also § 3.2
below). There is a natural action of the modular group Γg,r on Ag,r where for h ∈ Γg,r

and α
¯

∈ Ag,r, the element h · α
¯

∈ Ag,r is obtained by considering h as a diffeomorphism
up to isotopy and letting it act on the components of α

¯
. We now recall that M̄g,r has

a natural stratification, which may be called the stable stratification, whose strata are
labelled by the multicurves modulo action of the modular group, that is by Γg,r\Ag,r.
The stratum labelled by the orbit of a multicurve α

¯
corresponds to the Riemann surfaces

pinched along the loops of α
¯
, which are replaced with nodes. The open stratum Mg,r of

smooth curves corresponds to α
¯

= ∅. Now (v) results from the fact that going to infinity
in a Strebel direction, θ consists of pinching the geodesics uniquely associated with the
multicurve α

¯
(θ) (see, for example, [50] for details). Again in the moduli space Mg,r the

direction θ ∈ Str(q) is actually defined only up to the action of Γ (D) on Str(q) and
the multicurve α

¯
(θ) up to action of the modular group, both being well defined only in

Teichmüller space.
Assertion (vi) is a restatement of the second part of Proposition 2.9, which we have

included for completeness. Finally, assertion (vii) is a consequence of (vi) (see [69, § 9]),
more precisely of the existence of the parabolic element a�. Indeed the powers τ �i

i (cf. (2.8)
above) of the twists on the cylinders have to be induced by one and the same affine
map A� ∈ PSL2(R) and this implies that the ratios of the moduli are rational (see
also [72, § 4.2]). This last assertion (vii) gives a powerful necessary condition for Γ (D)
to be a lattice; indeed for any Strebel direction, the moduli of the cylinders of the
associated decomposition must have commensurable ratios. This is the ‘Veech criterion’,
which seems to be the only general tool at present for determining whether or not Γ (D)
is a lattice. It rules out many possible candidates but making sure that the ones which
passed the test do give rise to lattices is quite difficult and has been done only in a few
cases which more or less all follow the same pattern (see § 5 below).

Proposition 2.10 illustrates the interplay between the behaviour of a quadratic differ-
ential q on X and the associated curve C(X, q) in the moduli space of X (with added
marked points at the zeros of q), when the latter curve indeed exists, i.e. when the
geodesic disc D(t, q) (for any t in the fibre π−1(X) ⊂ T ) projects to a curve. This is only
part of the story. In particular, it focuses essentially on what happens at infinity so that
it explores only part of the parabolic aspects of the situation. We will have occasions to
present glimpses of the elliptic and hyperbolic aspects later.

2.7. On permuting, adding and erasing marked points

Up to now we have used pure (or coloured) Teichmüller modular groups (or mapping
class groups) only, and have also added marked points (punctures) to the curves (sur-
faces). We now say a few words about these operations, which are sometimes far from
being innocuous, or even well understood.

Let us first say a word about allowing permutations of marked points. This is for
instance unavoidable in genus 0, because then permutations of the marked points are
the only possible automorphisms. It is also useful to bear in mind in general because
many constructions have natural amplifications in that direction. Allowing permutations
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means that the marked points are considered only setwise. Namely, if X is of type (g, n),
the data now consist in the complete curve X̂ together with the divisor PX . This gives
rise to the moduli space we denote by Mg,[n], the notation being intended to suggest that
points are considered as a set. The space Mg,[n] is again considered here as a complex
orbifold and there is a natural orbifold Galois cover Mg,n → Mg,[n] with covering group
Sn, the permutation group on n objects. We denote by Γg,[n] the orbifold fundamental
group of Mg,[n]: Γg,[n] = πorb

1 (Mg,[n]). The above cover then gives rise to the short exact
sequence

1 → Γg,n → Γg,[n] → Sn → 1. (2.9)

We note that the notion of colour disappears at the level of Teichmüller spaces, or rather
the points can be considered as coloured ipso facto. In other words, there is just one
Teichmüller space Tg,n: Tg,[n] � Tg,n. This isomorphism is not unique; it is realized by
choosing a labelling of the marked points at a given point t = (X, f) ∈ Tg,n, so that
the choices are parametrized again by Sn, and then follow it via the marking, which
is possible since everything is defined up to isotopy. We note finally that there are of
course partially coloured versions, obtained as the preimage of subgroups of Sn in (2.9).
In particular, one can consider groups of the form S1 × S2 × · · · × Sp, where Si is the
group of permutation on ni objects and n1 + · · · + np = n. It amounts to allowing only
permutations among points of a certain type. For instance, if k is again the order of q

at a marked point, one allows only permutations of points with the same order. This
completes our short reminder about permutations.

Adding and erasing marked points is another natural, more mysterious operation. One
useful remark to start with: adding marked points can be used in order to rigidify the
situation, as an alternative to using level structures. Precisely, by using the Riemann–
Hurwitz formula, it is easy to see that a non-trivial automorphism of a smooth projective
curve of genus g over a field of characteristic 0 fixes at most 2g + 2 points. This translates
into the fact that Mg,n is a smooth variety for n > 2g + 2. In other words, it is an
orbifold with trivial orbifold structure because objects have no automorphisms. In terms
of algebraic geometry Mg,n can be viewed as a smooth Q-scheme (a stack with trivial
stack structure) for n > 2g+2. This can be extended to Z, but with a bigger lower bound
on n.

We now come to the question of the connection between marked points and geodesics,
which is quite relevant for our purpose. There is a natural fibration p : Tg,n+1 → Tg,n

defined by ‘erasing the last point’. That is, given a marked curve of type (g, n + 1),
one gets a marked curve of type (g, n) by erasing the last point and keeping the
same diffeomorphism as marking. This ‘forgetful functor’ induces the fibration p. The
main point here is that p is not geodesic for the respective Teichmüller metrics on
Tg,n+1 and Tg,n. This is easy to explain (and prove): Teichmüller’s theorem describes
the geodesics as locally affine maps and there is no reason why such a map should
respect an added marked point. Concretely speaking, think of an elliptic curve Eτ ,
i.e. for our purpose a parallelogram defined by 1 and τ ∈ H. Deforming Eτ into Eτ ′

in a geodesic way consists of applying a linear change of coordinates L(τ, τ ′) mapping
the parallelogram (1, τ) into (1, τ ′). Now add marked points Pτ and Pτ ′ , thus working
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effectively in T1,2: the origin of the curves is marked by assumption and working with
parallelograms provides marking diffeomorphisms for the respective tori. Since Pτ ′ is
arbitrary, there is clearly no reason why L should respect the marking, i.e. in general
L(τ, τ ′)(Pτ ) �= P ′

τ .
This strongly suggests that the forgetful map p decreases distances; that this is actually

the case is an immediate consequence of the fact that the Teichmüller and the Kobayashi
distances coincide (see, for example, [37, § 6.4] for the closed case).

The map p is clearly equivariant, so descends to a map p : Mg,n+1 → Mg,n, using the
same name for simplicity. Note that it does not descend to Mg,[n+1] because there is
no notion of ‘last point’ down there. In fact it can clearly be defined on the quotient
of Mg,n+1 by the stabilizer of the last object in the permutation group Sn+1, which is
actually sometimes useful. Now recall that Mg,n+1 is nothing but the universal curve
sitting over Mg,n. In other words, being careful to consider Mg,n as a complex orbifold
(or a Q-stack for future purposes), i.e. as a fine moduli space, there is a tautological
fibration p : Cg,n → Mg,n where the fibre at a point consists of the curve it represents.
And there is indeed a canonical isomorphism Cg,n � Mg,n+1 which can be visualized by
considering that for X ∈ Mg,n the (n+1)st marked point in p−1(X) is running over the
curve X, where the n marked points are to be avoided. All this can be constructed in an
algebraic way and is defined over Q (indeed over Z).

We now go back to geodesic discs and our usual setting, that is t = (X, f) ∈ Tg,n

and q ∈ Q(X). These data define a geodesic disc D = D(t, q) ⊂ Tg,r, adding the zeros
of q as marked points (see the end of § 2.4). Adding these points is useful and indeed
indispensable when discussing the Strebel properties, because one then needs to consider
the critical graph of q. But we also have the following useful assertion: the image in Tg,n

of the disc D under the point-erasing map p : Tg,r → Tg,n is geodesic. That is the disc D

does indeed map to a geodesic disc when erasing the zeros of q. In fact, putting it the other
way round, the image p(D) is the geodesic disc defined in the first place by the cotangent
vector (t, q) ∈ T ∗Tg,n and it lifts to D ⊂ Tg,r because one respects the additional marked
points by definition: at any point (t′, q′) of D, considered in the cotangent space T ∗Tg,r,
the m additional marked points are the zeros of q′. Another way to put it is to say that
p(D) is geodesic, and so is D, because the map p is distance decreasing and the distance
on D does not exceed that on p(D), so they must coincide. From now on we will usually
notationally confuse p(D) ⊂ Tg,n and D ⊂ Tg,r.

3. Arithmetic origamis

The class of objects we consider in this section is derived from a dynamical construction
due to Thurston (in [68, § 6]) which was subsequently generalized by Veech (in [69, § 9]).
Here we add the fact that these objects also carry arithmetic information, emphasizing
that we mean ‘modular arithmetic’, in the terminology of the introduction. They were
already known to have analytic and ‘hyperbolic arithmetic’ content (see, for example,
[68], [69], [24] and [39]).
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3.1. Origamis: definition, arithmeticity and first consequences

We give a constructive and combinatorial definition of origamis, which just as for
‘dessins d’enfants’ can easily be formalized using the language of elementary topology.
Here is the cut-and-paste version.

Definition 3.1. An origami O is an assemblage of identical squares of paper satisfying
the following two conditions:

(i) the squares are glued along their edges, shaping a connected surface without bound-
ary; and

(ii) at any vertex there abut an even number of squares.

An origami is thus nothing but a closed (i.e. compact without boundary) topological
surface divided into squares. Here ‘square’ is to be taken topologically; it can for instance
be defined as a 2-cell bounded by a topological circle with four distinct marked points
on it. We simply want to insist that the definition is indeed topological or combinatorial.
The only singularities are of conical type and occur at the vertices where the number of
abutting squares is not equal to four. The main point of this section is that we have the
following proposition.

Proposition 3.2. An origami O uniquely determines the following objects.

(i) A type (g, n); a family of geodesic discs D in the Teichmüller space Tg,n which
are equivalent modulo the action of the Teichmüller modular group; finally a well-
defined geodesic disc in Tg(= Tg,0).

(ii) A smooth arithmetic curve B = B(O).

(iii) An arithmetic immersion φ : B → Mg,n such that C = C(O) = φ(B) = π(D) is
the canonical projection of D ⊂ Tg,n to Mg,n.

(iv) A distinguished point c ∈ C = φ(B) ⊂ Mg,n corresponding to an arithmetic curve
of type (g, n).

So the curve B and the immersion φ are arithmetic, and this is the novelty here. We
will mention some consequences below, but they should be seen as just a beginning. We
use the letter B partly because the alphabet is restricted and partly for ‘base’, since
we get a stable arithmetic fibration φ∗(Cg,n) → B with Cg,n the universal curve sitting
over Mg,n.

Let us here denote by S the topological surface shaped by the origami; g is the genus
of S. It also determines the integer r � 0, namely the number of singularities, or else the
number of vertices such that the number of abutting squares is not four. These numbers
and the total angle at each singular point are connected by the Gauss–Bonnet formula
in the form of (2.6) in § 2.4; we take up the notation which is used there, noting that by
condition (ii) in Definition 3.1 the angle at a singularity is a multiple of π. The number
n (� r) is then the number of singularities at which the angle is equal to π, that is the
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number of vertices at which exactly two squares abut. One can then work either with
(g, r) or with (g, n) (see the end of § 2.7). We assume for simplicity that (g, n), and so
a fortiori (g, r), is hyperbolic (2g − 2 + n > 0); minor changes would be requested in the
few exceptional and not especially interesting cases where this is not the case.

Next the construction determines a flat structure u on S by declaring each square to
be indeed conformally the standard unit square, then lifting the quadratic differential
q0 = dz2 to a differential q on S and setting u = u(q). Proceeding as in § 2.4 we get
a geodesic disc D, which we may view in Tg,r or Tg,n. This proves the first part of (i)
of the proposition, which expresses that we ignore the marking here, so work modulo
action of the modular group. But we actually have a more precise information than
in § 2.4, where there was no canonical marking: an origami actually comes equipped
with a partial marking, more precisely enough information to determine a point in the
Teichmüller space Tg. Hence the second part of item (i). This relatively fine and not so
crucial point should become clearer after we have rephrased the construction in terms
of multicurves in § 3.2 below. We thereafter freely write T and M without further ado,
bearing in mind the discussion in § 2.7.

Next we prove that D ⊂ T , or rather any disc in the family which we now fix once
and for all, descends to a curve C ⊂ M, to which end we have to show that the cor-
responding affine group Γ (D), or more precisely µ(Γ (D)), in the notation of § 2.5, is a
lattice in PSL2(R). This comes directly from [68] and is explained in detail in [24], where
more information on the geometry of this construction can be found. It goes roughly as
follows: let Ť be the once punctured topological torus and V the set of vertices (singular
of not) of the origami O. The punctured surface Š = S \ V is a finite unramified cover
of Ť . This covering can be considered as a covering of surfaces with flat structures, since
that on S has been constructed precisely by lifting the standard structure on T . Given
such a covering it is relatively easy to show that the affine groups of the top and bottom
surfaces are commensurable, here in fact commensurate. The crux of the matter is the
interpretation of Γ (D) in terms of affine diffeomorphisms as in § 2.5. We refer to [24] for
a full proof, specifically to Theorem 4.9 therein (see also their Remark 2.2). As a result,
we find that Γ (D) is not only a lattice but indeed is also commensurable with PSL2(Z),
the latter group being the affine group of the punctured torus. We will denote Γ (D) by
Γ (O) as this group effectively depends on O only.

One can actually say much more, as exemplified by Theorem 5.5 in [24] which in part
summarizes known results. In particular, origamis are in one-to-one correspondence with
the geodesic discs in Teichmüller space whose affine groups are arithmetic, that is com-
mensurable with PSL2(Z); this use of ‘arithmetic’ has to do of course with hyperbolic,
not modular arithmetic.

Next, and most relevant for us, we want to add the (modular) arithmetic information.
We just saw that the projection C = π(D) ⊂ M is a curve; it has at most transverse
intersections (ordinary double points) because D is geodesic. We let B = C̃ denote its nor-
malization and φ : B → M be the corresponding immersion: φ(B) = C. Now B = C̃(O)
can be written as the quotient Γ (O)\H, with Γ (O) commensurable with PSL2(Z) (for-
getting about the interesting orbifold structure encoded in the group H). The action is
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proper and discontinuous, not necessarily free. This shows that B is defined over a num-
ber field, proving (ii). Here we are using the following theorem, which is a hyperbolic and
slightly non-standard version of arithmeticity criteria which in essence are due to Weil
and nowadays are part of Grothendieck’s descent theory. The following theorem obtains.

Theorem 3.3. Let X be a smooth complex curve which can be written as a quotient
X � G\H, where G ⊂ PSL2(R) is commensurable with a Fuchsian triangular group.
Then X can be defined over a number field.

We refer especially to [3] for this kind of statements using triangle groups. It may
be useful to add that the celebrated Belyi theorem, which caused real astonishment to
Grothendieck when it appeared in 1978 (see, for example, [59] for its usual statement
and proof) has to do with the converse of the above statement. We will not need it but
still state for clarity the corresponding hyperbolic version.

Theorem 3.4 (hyperbolic unramified version of Belyi’s theorem). A smooth
complex curve X can be defined over a number field if and only if there exists a finite
set Z ⊂ X such that the affine curve X̌ = X \ Z is uniformized by a Fuchsian group
G ⊂ PSL2(R) with G commensurable to PSL2(Z).

Note that we used Theorem 3.3 in order to confirm that B is defined over a num-
ber field, because in Theorem 3.4 the group G does act freely on H. Theorem 3.3 is like a
ramified version of the direct part of Theorem 3.4. It may also be useful to bear in mind
that the fundamental groups of C and B = C̃ are easily related: π1(C) is an extension
of π1(B) by Zt, where t is the number of ordinary double points of C. This is still valid
over C or Q̄ from the algebraic viewpoint, replacing the groups by their respective profi-
nite completions: see the discussion in [22, § I.11]. Here one should rather use orbifold
(respectively, stack) fundamental groups, so that π1(B) � Γ (O); for the algebraic theory
see [57] and [45], which, however, can be cut short under the present, relatively simple
circumstances.

Next we show that the immersion φ is arithmetic, to which end we use specialization
which concretely tells us that it is enough to show that the graph of φ has infinitely
many Q̄-points. But since φ is the modular map, this amounts to showing that the image
curve C = C(O) ⊂ M itself has infinitely many Q̄-points. It is plain that this is indeed
the case. In order to confirm this point, return to the concrete description of D at the
end of § 2.4. Running along D corresponds to deforming the initial unit square into a
rectangle, which we can assume has sides 1 and τ ∈ H; the latter provides a parameter
for D. Given τ , one finds a point Pτ ∈ C which can be described explicitly: namely
let again Š/Ť be the topological covering determined by O; give T the structure of the
elliptic curve Eτ with modular invariant j = j(τ); Ěτ is Eτ with the origin deleted.
Then Pτ ∈ C parametrizes the curve Xτ such that Xτ/Ěτ is the unramified covering
with underlying topological covering Š/Ť . Now Xτ is arithmetic, i.e. defined over Q̄,
if and only if Eτ is; this happens exactly when j(τ) ∈ Q̄, so indeed infinitely often, for
instance when τ is imaginary quadratic. We remark that the phrasing above is not quite
correct, as one should pay attention to the differences between coarse and fine moduli,
and between residue fields and residue gerbes; but for our concerns here these differences
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are irrelevant (for a more correct formulation see the discussion after Corollary 3.5 below).
This completes the proof of (iii).

Finally, (iv) has been added only to point out that the curve C has a convenient
distinguished Q̄-point. Namely, one can take τ = i =

√
−1, which is indeed defined over

Q̄ and corresponds to considering actual squares of paper in Definition 3.1. We actually
used that point above when defining the flat structure u(O) associated with O.

It is plain that Proposition 3.2 should be considered as the beginning rather than
the end of the game. Below and in the next subsection we will list a few consequences
and remarks. We refer to [53] for further investigation. We will use the language of
arithmetic Galois actions and Grothendieck–Teichmüller theory rather freely, with very
short reminders; the interested reader should be able to trace the necessary references
from these and from § 6 below.

Let O be an origami, Š/Ť the corresponding unramified topological covering of the
punctured unit square. Let C = C(O) ⊂ M be as above and let K = K(O) be the field
of definition of C. Let τ ∈ H such that j(τ) ∈ K. We get as above a point Pτ ∈ C

corresponding to an arithmetic étale covering Xτ/Ěτ . Under these assumptions we get
the following corollary.

Corollary 3.5. The field of moduli of the covering Xτ/Ěτ is contained in K.

In fact let GK = Gal(K̄/K) denote as usual the absolute Galois group of K. For
σ ∈ GK , we find that the transform σPτ is a point of C and moreover σEτ = Eτ . So σPτ

corresponds to a covering σXτ/Ěτ with the same topological type O as Xτ/Ěτ . Hence
the two coverings are isomorphic, proving the corollary.

We defined K as the field of definition of C; let us make this point a little more
precise. The moduli space M is here considered as a Deligne–Mumford stack over Q,
i.e. we consider the generic fibre of the stack constructed in [11]. Formally (see, for
example, [40, Chapter 11]), one then looks at the generic point of C and the corresponding
gerbe; the latter has a coarse moduli space, necessarily the spectrum of a field, and this
defines K. It may be a good exercise to unravel this definition in down-to-earth terms.
In particular, if C is not contained in a special locus (see § 4 below) that is if the group
H of § 2.5 is trivial, the generic point of C is schematic and K(O) is just its residue
field. We remark that the finite group H = H(O) of generic automorphisms can be read
off the topological origami O: it corresponds to the combinatorial automorphisms of O
preserving orientation as well as the horizontal and vertical directions.

Corollary 3.5 should be considered only as a sample statement, illustrating the fact that
the very existence of K enables one to make statements which are uniform with respect
to the isomorphism type of the base elliptic curve. In other words, the arithmeticity of
the curve C(O) organizes covers of elliptic curves with given topological type in a fashion
which deserves more detailed investigation. Now what about the action of that quotient
of GQ which does not fix C? A first answer is given by the following statement, which is
a slightly weakened form of Theorem 5.4 in [53].

Proposition 3.6 (M. Möller). The absolute Galois group GQ acts on the set of
origamis and the action is faithful in the following sense: for any non-trivial σ ∈ GQ
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there exists an origami O with associated immersed curve C = C(O) such that the
action of σ maps C to an origami curve distinct from C.

More explicitly let O be an origami, with associated data B, φ and C as in Proposi-
tion 3.2; the first part of the proposition asserts in particular that σC is an origami curve,
that is there exists an origami, denoted σO such that σC = C(σO). This may look rather
surprising from the present viewpoint as for instance C is a geodesic curve and there is
a priori just no connection between the action of the arithmetic Galois group and the
highly transcendental fact of being geodesic for the Teichmüller metric. At any rate that
GQ permutes origamis is certainly much less ‘obvious’ than the fact that it permutes
dessins d’enfant, since the latter simply amounts to the fact that GQ permutes the finite
unramified coverings of P1 \ {0, 1,∞}. The second statement of the proposition says that
for any σ ∈ GQ, σ �= 1, there exists an origami O such that C(σO) �= C(O), which is a
stronger assertion than σO �= O.

Corollary 3.5 and Proposition 3.6 can also be thought of in terms of Hurwitz curves,
as an origami appears as such a curve together with a natural immersion and some extra
data coming from the canonical Strebel differential and directions. From this viewpoint
it is rather their geodesic character which may be unexpected, that is they carry a lot of
analytic information tightly woven with arithmetic information.

We note a preliminary connection with dessins (I am indebted to L. Zapponi for these
and more specific remarks, to be developed elsewhere). Let C = C(O) as above, Ĉ

its completion and P ∈ Ĉ a cusp of C. It corresponds to a stable curve which is a
covering of the degenerate elliptic curve with invariant j = ∞. This is nothing but a, not
necessarily connected, dessin d’enfant identifying this degenerate elliptic curve with the
thrice-punctured projective line. Moreover, the Galois action on the curves C(O) induces
an action on the cusps which is compatible with the Galois action on the corresponding
dessins. In fact it seems that the Galois action on origamis contains that on dessins,
looking at infinity in the moduli spaces of curves. We hope these matters will be further
investigated.

It may be useful to put such assertions as Corollary 3.5 and Proposition 3.6 in per-
spective, underlining the contrast with anabelian geometry, which asserts that the outer
Galois action is highly sensitive to, in fact recognizes the isomorphism class of, the
curve (for a starting point on anabelian geometry, we refer to the pioneering letter of
Grothendieck reproduced in [63] and to the introductory paper by F. Pop in the same
volume). Let us spell out such a statement under the present circumstances. Let E be an
arithmetic elliptic curve and let us assume for the purpose of simplicity and illustration
that j(E) ∈ Q. Let again Ě = E \ {0}. Distinguishing more carefully between the various
fundamental groups, we have πtop

1 (Ť ) � F2, where πtop
1 is the topological fundamental

group and F2 = Z∗Z is the free group on two generators (we do not need to worry about
basepoints here). We then have

πgeom
1 (Ě) = πalg

1 (Ě ⊗ Q̄) � F̂2,

where πalg
1 is the algebraic fundamental group and πgeom

1 is the geometric fundamen-
tal group, i.e. obtained after extending scalars to a separably closed field. Finally, F̂2
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is the profinite completion of F2. This being said we get an outer Galois representa-
tion ρE : GQ → Out(πgeom

1 (Ě)) � Out(F̂2). Anabelian geometry then asserts the follow-
ing theorem.

Theorem 3.7. With the above assumptions and notation, if ρE and ρE′ are isomorphic
as outer representations, the curves E and E′ are isomorphic.

In other words, the representation ρE recognizes the isomorphism type j(E) ∈ Q
of the curve E. The above theorem is a deep result, originally due to A. Tamagawa
under the above assumptions, that is for hyperbolic affine curves over number fields. It
is now also (amply) covered by later results of S. Mochizuki. We refer to [56] for a nice
historical account with references. Here we also used the fact that F̂2 is centrefree, an
expected but actually far from trivial statement (see for instance the original paper by
G. Belyi containing his famous result for a proof): it implies that the outer Galois action
determines πalg

1 (E) as an extension of GQ by πgeom
1 (E).

In apparent contrast with Theorem 3.7, Proposition 3.6 asserts for example that if one
consider coverings of Ě and Ě′ which are isomorphic as topological coverings, any element
σ of the Galois group will map them to topologically isomorphic coverings: given O, in
order to compute σO, one can use any point of C(O) such that the modular invariant of
the underlying elliptic curve is fixed under the action of σ.

Let us close this subsection with a few simple but useful remarks. First one can restate
Definition 3.1 as follows: in order to define an origami, take a chequered notepad, cut
out a connected but not necessarily simply connected region bounded by horizontal and
vertical sides and perform identifications on the boundary. Condition (i) in Definition 3.1
says that the result should be a closed surface; condition (ii) amounts to requiring that
one pairs horizontal (respectively, vertical) sides with horizontal (respectively, vertical)
sides. One can also give a purely combinatorial version of this construction, using per-
mutation groups, much as for dessins. That is one describes via labelling of the squares
and permutations the unramified topological coverings of the punctured torus, just as
for dessins one describes the coverings of the thrice-punctured sphere.

Very little is known about origamis in terms of explicit computations concerning their
geometric structure, and nothing at all about the attached (modular) arithmetic, Galois
action, etc. For instance, a simple class of examples can be defined as follows: an L-shaped
origami of type (m, n) (m and n are integers greater than 1 and the pair is unordered)
is given by a row of m squares and a column of n squares with one square in common
at the bottom left corner. The identifications are the obvious ones, that is, except for
the single common square the m and n strips are made into tori. One thus gets a closed
surface of genus 2. Let Γ (m, n) ⊂ PSL2(R) be the affine group of L(m, n), the L-shaped
origami of type (m, n). Here we are in an orientable situation, so we could be more
precise and work with SL2(R). All we know a priori is that Γ (m, n) is commensurable
with PSL2(Z). It is not difficult to see that Γ (2, 2) ⊂ PSL2(Z) is the index 3 subgroup
generated by PΓ (2) (the free subgroup of matrices congruent to the identity modulo 2)
and the involution z → −1/z (letting PSL2(R) act on H via Möbius transformations
as usual) which corresponds to the symmetry with respect to the diagonal occurring
when m = n. It seems, however, that the group Γ (m, n) is not known for general values
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of (m, n). There are obviously interesting open questions in that spirit such as: what are
the groups which actually occur as the affine groups of origamis? Does one get a cofinal
family in PSL2(Z)? Not to mention the hoard of arithmetic questions which the above
suggests.

Finally, we note that one can work over integers and reduce the result modulo almost
all primes (i.e. all but finitely many), getting curves in positive characteristics. This is
done using a well-known general procedure for ‘clearing denominators’ which we describe
briefly and not in full generality. The same considerations apply to the objects we will
meet in later sections and we will not repeat them. Let X be a smooth integral projective
scheme over Z; one can think of the stable compactification of MZ, the moduli space of
curves, as constructed in [11]. Here we ignore the difference between schemes and stacks
(manifolds and orbifolds), as it can be easily dealt with for our purpose, especially in the
case of the moduli stacks of curves. Let X = X ⊗ Q be the generic fibre. Let Y ⊂ X

be a closed (integral) subscheme defined over some number field K (e.g. the curve C(O)
attached to an origami). Then one can ‘spread out’ Y over Z, that is there exists a flat
model Y ⊂ X defined over the ring of integers OK of K, obtained by taking the schematic
closure of Y in X , which is automatically flat over Z. Practically speaking, one can write
down equations for Y with coefficients in K, eliminate denominators by multiplying out
by integers and then make sure that the coefficients of each of the resulting equations
(with coefficients in OK) are globally coprime, that is they do not belong to any common
prime ideal of OK . The last condition is equivalent to flatness. One may now reduce
Y modulo primes p ∈ Spec(OK), which also amounts to considering the intersections
Yp = Y ∩ Xp where Xp = X ⊗ Z/pZ is the fibre of X at p (p ∈ Z a prime number) and
p ∈ OK lies over p. The reduction is ‘good’ for almost all primes.

More precisely, for the curve C attached to an origami we avoid the following phenom-
ena:

(i) the normalization B = C̃ has bad reduction;

(ii) the possible marked points coalesce;

(iii) the possible transverse intersections degenerate—since they are transverse in char-
acteristic 0, this amounts to avoiding the primes dividing the discriminants of the
finitely many quadratic forms describing these intersections.

All in all we get for almost all primes a curve Cp = Cp(O) ⊂ MZ ⊗ Fp with distinct
marked points and transverse self-intersections, which is defined over a finite extension of
the field Fp. Among the many questions which come to mind is: is the geodesic character
of the original characteristic 0 object reflected in its reductions?

3.2. Origamis and multicurves

Here we reformulate the construction in terms of multicurves, which is actually the
original language in which Thurston presented his construction. We especially wish to
point out the tantalizing similarity of the situation with the one exploited in [30] and [55],
again as a possible bridge between topology and arithmetic. We will briefly explain the
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connection with Grothendieck–Teichmüller theory at the end of this subsection but these
admittedly cryptic indications should possibly be skipped at first reading and taken up
after getting acquainted with § 6 and part of the related material.

Start from an origami as in Definition 3.1. It defines the surface S and cuts it into
squares. The set V of vertices has cardinality s � 1, the set Σ ⊂ V of singularities (ver-
tices with a number of abutting squares not equal to four) has cardinality r � s and the
set of marked points (vertices with two abutting squares) has cardinality n � r. Because
the number of squares abutting at any vertex is even, one can distinguish between hori-
zontal and vertical sides of the squares (of course one can permute the names ‘horizontal’
and ‘vertical’ in what follows). Let γ

¯
h (respectively, γ

¯
v) be the union of the horizontal

(respectively, vertical) sides. These are considered as piecewise smooth curves on S and
are defined only up to isotopy. One can then take the respective duals α

¯h and α
¯v of γ

¯
v

and γ
¯
h (beware of the inversion of horizontal and vertical here): take one point in each

square and join them by traversing exactly once the vertical (respectively, horizontal)
sides of each square, so as to get α

¯h (respectively, α
¯v). Note that the construction still

makes sense for the n squares corresponding to the marked points, where the horizontal
(respectively, vertical) sides are identified. It is in fact easy to check that α

¯h and α
¯v are

indeed multicurves on the surface S with s special points, that is we get two elements of
Ag,s, the set of multicurves on a surface of type g, s (see § 2.6).

Let us spell out part of the dictionary, which should be clear by now. The origami
was constructed by lifting the quadratic differential q0 = dz2 on the unit square to a
differential q. The horizontal and vertical directions are Strebel directions for q and after
possibly changing q into −q one has that γh (respectively, γv) is the critical graph in the
horizontal (respectively, vertical) direction (up to a homotopy fixing V ). The differential
q has s − r removable singularities, r − n zeros and n simple poles. Now α

¯h and α
¯v are

(homotopic to) unions of horizontal (respectively, vertical) non-critical trajectories. They
are the α

¯
(θ) which occur in Proposition 2.10 for θ = 0 and θ = 1

2π, respectively. Again
we can erase points as in § 2.7, going in particular from Mg,s to Mg,r, then to Mg,n

and Mg; each time one has to identify the curves in α
¯h and α

¯v which become homotopic
after erasure. We will not elaborate further on this point here.

One can go the other way, starting from two multicurves α
¯

and α
¯

′ which fill up S,
that is are such that the complement of the union α

¯
∪ α

¯
′ is a disjoint union of cells. One

then takes the dual to recover the graphs γ
¯

and γ
¯

′. Because the complement of α
¯

∪ α
¯

′

is homotopically trivial, one gets the last part of (i) in Proposition 3.2. Note that there
may be (topological) automorphisms of the structure defined by (S, α

¯
, α
¯

′), corresponding
to ramification of the projection Tg → Mg, but that does not prevent the corresponding
geodesic disc D to be well defined in Tg.

The basic point here is that the two multicurves correspond to two independent Strebel
directions (i.e. not in the same orbit for the action of the modular group) and are enough
to recover the whole structure. We remark that in general, it is not enough to find two
such directions in order to make sure that a disc in Teichmüller space descends to a curve
in moduli space (see Corollary 4 of [25] in the language of dynamical systems and § 5
below).

https://doi.org/10.1017/S1474748005000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000101


On arithmetic curves in the moduli spaces of curves 469

Let us rephrase the above more formally for possible future use. Let M be the moduli
space of curves. We do not make the type explicit; it is (g, m) for m = s, r, n or 0 and we
do not discuss the passage (point erasing) from one type to another. Let M̄ be the stable
completion, A the set of multicurves, Γ the modular group. The elements of the quotient
Γ\A parametrize the strata of the stable stratification of M̄ (see § 2.6). An origami O,
hence the arithmetic immersion φ : B → M it defines, can equally be determined as an
element of Γ\(A × A), where the action of Γ is diagonal and the only condition is that
the two multicurves fill up the surface, that is cut it into cells. We remark in order to
prevent possible confusion that pairs of strata of M̄ are parametrized by the product
Γ\A × Γ\A.

It seems quite striking that such combinatorial information near infinity on M uniquely
determines immersed curves where both the curve and the immersion are defined over
number fields. Let us compare this situation with what already exists in the same vein.
First the local situation near the points of maximal degeneracy (dimension zero strata
of the stable stratification) is well understood in characteristic 0. It amounts to studying
Mumford curves in equicharacteristic 0 (without assuming that the residue field is alge-
braically closed), in other words one has to study the deformation of graphs of projective
lines over, say, Q[[t]]. This has been done in [35] and other papers by the same authors,
with recent additions and improvements by T. Ichikawa. One starts from combinatorial
data, describing a maximal multicurve (‘pants decomposition’), or equivalently a graph
of projective lines with three distinguished points on each of them.

The global viewpoint (still at infinity though!) is implicit in [12], in genus 0. Briefly,
MacLane coherence relations for quasi-tensor categories describe the structure at infinity
of the genus 0 moduli spaces. This is explained in detail in [7]. Much more topology is
needed in order to go to higher genera: complexes of curves describe the structure at
infinity of the moduli spaces of curves of any finite type. A concise exposition can be
found in [27] (see also, for example, [18]). In [30], one uses a two-dimensional complex
introduced (but not studied) in the appendix of [29]. The fact that one can find such
a finite-dimensional connected, simply connected, finitely presented complex governing
the automorphisms of the profinite Teichmüller tower (see § 6.1 below) is in essence
the content of the phrase: there exists a lego at infinity, etc. Again in genus 0, this is
embodied more simply in the MacLane coherence relations and their consequences, like
the Yang–Baxter equations.

The Grothendieck–Teichmüller lego at infinity for all finite types (g, n) is now essen-
tially understood. Now what about moving inward? The above discussion of origamis
suggests the following problem: consider bimulticurves, that is pairs of multicurves which
fill up the given topological surface. In particular, one of the multicurves can be maximal,
defining a maximally degenerate point. Then build these bimulticurves into a complex, by
introducing the usual moves for complexes of curves, namely associativity moves (alias
Whitney or fusion moves) and simple moves (see any paper on complexes of curves,
starting with [29]; see in particular [30] in this context), or perhaps different types of
moves. The question is: can one build a finite, perhaps just two-dimensional but not
locally finite complex which is connected, simply connected and finitely presented and
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has bimulticurves as vertices? This and related questions would represent a deeper incur-
sion into the arithmetic of the problem, given that contrary to what happened at infinity
not everything is defined over Q.

4. Special loci and algebraic eigenloci

Origamis were constructed starting from parabolic elements of the modular groups,
namely products of commuting Dehn twists corresponding to a pair of multicurves
(see §§ 2.6 and 3.2). Another salient feature is that there is no algebraization problem,
that is any disc constructed in that way in Teichmüller space descends to a curve in
moduli space. We now come to another type of curves immersed in the moduli spaces of
curves, and in fact more generally to loci of higher dimensions in these spaces, which do
not seem to have been investigated yet. They are elliptic by nature, inasmuch as they are
built starting from torsion elements of the modular groups, and there is a very serious
and interesting algebraization problem attached to the construction.

The sequence of events in this and the next section is organized roughly as follows. Fix
a hyperbolic type (g, n) and the attending objects T , M, Γ . The group Γ acts isometri-
cally on T ; the fixed-point set descends to M where it breaks into totally geodesic and
algebraic varieties which we call special loci for short. We review a few useful facts about
special loci in § 4.1, including some results having to do with their relevance to Galois and
Grothendieck–Teichmüller actions. Then we move to eigenloci which we define first in
Teichmüller space as loci which are globally preserved but not necessarily pointwise fixed
by finite subgroups of Γ . Most of these loci are not algebraic and one comes across the
same algebraization problem that was evidenced by Veech (see the end of § 2.5 above).
However, we show in § 4.2 that it is easy in genus 0 and in the hyperelliptic case to write
down many algebraic and in fact rational eigenloci explicitly. We come in § 5 to geodesic
eigenloci. We first explain the connection with representation theory (hence the name
‘eigenlocus’), computing the dimensions of such loci in general by means of the classi-
cal Chevalley–Weil formula. Finally, we go back to the one-dimensional case and to the
geodesic eigencurves which appear in the study or rational polygonal billiards. These are
geodesic by definition and Veech was the first to prove algebraicity in some very special
cases. In § 5.3 we show how to identify the curves he studied with the explicit arithmetic
eigencurves computed in § 4.2, using the rigidity of the monodromy representation for
hyperbolic stable fibrations.

4.1. A few facts about special loci

We fix a finite hyperbolic type (g, n), so the Teichmüller space T = Tg,n the moduli
spaces Mg,n and Mg,[n] (see § 2.7) and the modular groups Γg,n and Γg,[n]. Permuting
the points is a non-trivial issue here; it is in fact the only issue in the genus 0 case, which
is precious because it contains all the information about braid groups and is essentially
the only one where things can be made explicit. We recall that permutations do not exist
at the level of Teichmüller space: Tg,n = Tg,[n].

Let us start in an analytic context and point out some important geometric facts
which it actually took quite some time to elucidate (see in particular [47] and [20] and
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references therein, especially by the last-named author); we will then briefly discuss some
more algebraic and arithmetic issues. Accordingly, until further notice, the objects are
regarded analytically; in particular all groups are discrete by default.

Let H ⊂ Γg,[n] = Γ be a non-trivial finite subgroup. The group H acts on T and we
let T (H) denote the fixed-point set. Then T (H) is biholomorphically equivalent to the
Teichmüller space Tγ,ν , where (γ, ν) is the type of the quotient of any marked Riemann
surface in T under the action of H. More precisely, consider t = (X, f) ∈ T ; by definition
there is a subgroup of Aut(X) which is isomorphic to H and such that the action on X

is topologically that of H. We write Y = X/H for the quotient; Y is equipped with an
orbifold structure because the action of H may not be free and this gives a type (γ, ν)
where ν is the sum of the number of marked points and orbifold points. So the first
important piece of information is as follows.

Fact 4.1. T (H) � Tγ,ν . In words: deforming a marked Riemann surface with symmetries
is the same as unconditionally deforming the quotient marked surface.

The above isomorphism is not so difficult to prove if one knows that T (H) is not
empty. That this is the case follows from the positive answer to the Nielsen realization
problem, given in all generality by S. Kerckhoff and whose beautiful proof also features
an offshoot of Thurston’s program or vision. In other words, for any finite subgroup H

of the modular group, there exists at least one Riemann surface which has a subgroup
of its automorphism group topologically acting like H.

The next step consists of projecting T (H) down to the moduli space M, getting
M(H) = π(T (H)). Here one takes M to be either the pure moduli space Mg,n or the
space Mg,[n], or any space in between those two, obtained by allowing certain permuta-
tions only. Essentially by definition the special loci M(H) ⊂ M for varying H constitute
the branch locus of the infinite Galois covering π : T → M. Using level structures, one
can build a finite Galois covering so that this still holds true for that covering: in other
words, the discrete modular groups are virtually torsion free. Now comes the following
fact.

Fact 4.2. M(H) is an irreducible quasi-projective variety.

In contrast with the eigenloci to be introduced below, we see that T (H) always
descends to an algebraic variety, whose dimension is easily computable; namely

dim(M(H)) = dim(T (H)) = 3γ − 3 + ν,

where γ and ν have a clear purely topological meaning. Let us note that M(H) actually
depends only on the conjugacy class of H in the suitable modular group Γ (i.e. such
that M = Γ\T ). The special loci M(H) are totally geodesic for the Teichmüller metric,
being the projections of the fixed-point sets of the action of Γ on T , which is isometric.
We note two interesting special cases. First, dim(M(H)) = 0, that is M(H) is a point
if and only if the quotient Y = X/H is a sphere with three orbifold or deleted points.
These are the so-called ‘curves with many automorphisms’, which play an important role
in structuring the moduli spaces and bring us back to the topics surrounding Belyi’s

https://doi.org/10.1017/S1474748005000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000101


472 P. Lochak

theorem (see Theorems 3.3 and 3.4 above). Second, and more generally, assuming that
the quotient Y has genus 0, M(H) is essentially isomorphic to an irreducible component
of one of the so-called Hurwitz spaces. One can thus recover much of the geometry of
the Hurwitz spaces by looking inside the moduli spaces of curves, something which is
quite satisfying, in particular in terms of a purported ‘universality’ of Grothendieck–
Teichmüller theory.

Now let H0 be an abstract finite group and consider M[H0], defined to be the union
of the M(H) such that H ⊂ Γ is isomorphic to H0. Then we have the following fact.

Fact 4.3. M[H0] is a quasi-projective variety defined over Q; the M(H) are defined
over number fields.

Here and above in Fact 4.2, we were again not quite correct, phrasing things in terms of
coarse rather than fine moduli. One should really see M as a Q-stack; the closed substack
M[H0] is defined over Q by its very definition. Its finitely many components, namely
the M(H), are thus defined over number fields. We refer to the discussion following
Corollary 3.5 above for some more detail and to [45] for a broader and more algebraic
perspective.

The loci M(H) are in general singular, not necessarily normal, but the fact that they
are totally geodesic implies that their singularities are not too complicated, in partic-
ular all (self-)intersections are proper. Let M̃(H) denote the normalization of M(H);
the algebraic and analytic meanings of ‘normalization’ coincide by standard comparison
results. The normal variety M̃(H) has a nice description in terms of covers, very similar
to what we have seen for discs. Indeed, let Γ (H) ⊂ Γ denote the normalizer of H inside
Γ , which geometrically can be described as the global stabilizer of T (H) under the action
of Γ . We then have the following fact [20,47].

Fact 4.4. The normalization M̃(H) of M(H) is isomorphic to the quotient Γ (H)\T (H).

The group Γ (H) does not act effectively on T (H), as by definition the elements of
H fix T (H) pointwise and the normalization M̃(H) should be considered as an orbifold,
including the non-effective action of H: this gives πorb

1 (M̃(H)) � Γ (H) and displays the
geometric meaning of the tautological exact sequence

1 → H → Γ (H) → ∆(H) → 1. (4.1)

This sequence is very reminiscent of (2.7) in § 2.5 but we changed notation a bit, perhaps
not so wisely. Here Γ is the full stabilizer and ∆ is the quotient which acts effectively. It is
actually best to think in terms of orbifolds and stacks and the groups which act trivially,
representing generic inertia, play a prominent role (see [45] for the general algebraic
picture). In § 2.5 the group H was not the main focus and in fact it was generically
trivial. Here it moved to the front stage; the two sequences coincide for one-dimensional
special loci. Note the elliptic case: g = n = 1, H = Z/2Z generated by the elliptic
involution, M̃(H) = M(H) = M, Γ (H) = πorb

1 (M) = SL2(Z) and ∆(H) = PSL2(Z).
We can now state a partial analogue of Fact 4.1 at the level of moduli spaces. By

Fact 4.1 we have ∆(H) = Γ (H)/H ⊂ Γγ,ν , the modular group of the quotient surface.
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Moreover, it is not difficult to show that ∆(H) has finite index in Γγ,ν (see [47], [20] as
well as [62] for explicit examples in genus 0). As a result we get the following fact.

Fact 4.5. The normalization M̃(H) of M(H) is isomorphic to a finite orbifold unramified
cover of the moduli space Mγ,ν of the quotient surface.

The special loci, or loci of curves with non-trivial automorphisms, arise naturally and
have attracted the attention of geometers since long ago and there is a vast literature
on the subject. In particular, the strata of maximal dimensions in Mg, corresponding
to cyclic groups of prime order have been analysed in [10]. They can be enumerated for
any given g with their respective dimensions but much remains to be understood in this
domain. There also exist quite a few case studies: in particular, we have a complete chart
of the special loci of M3, which is already quite intricate. Note that in genus 0, it is easy
to describe all the possible automorphisms (see also § 4.2 below). One gets in principle a
full picture of the arrangement of the special loci in M0,[n], which is interesting in the
perspective of Grothendieck–Teichmüller theory (see [61,62]).

On the other hand, special loci had not been investigated in terms of arithmetics until
very recently, perhaps in part because to this end, it is really desirable to take a stacky
perspective. One main geometric point is that the special loci determine a stratification
of M, namely a decomposition into finitely many algebraic locally closed sets such that
the Zariski closure of a stratum is a union of strata. This is made precise by H. Popp
[58] in the framework of complex algebraic geometry. This kind of stratification can
actually be defined and studied for any separated locally Noetherian Deligne–Mumford
stack (see [40, Theorem 11.5] and [45]), which serves to highlight the generality and
naturality of the phenomena. We would like to underline, partly again in the perspective
of Galois and Grothendieck–Teichmüller theories, the thought-provoking parallel between
the stable stratification and the stratification defined by the special loci, the latter being
almost never of codimension 1. At the group-theoretic level, this is connected with the
parallel and contrast between Dehn twists, generating free procyclic groups and finite-
order elements of the modular groups (see [41] and [21] for a first approach). At the
geometrical level, let us go a little further into the meaning of the exact sequence (4.1).
Let H ⊂ Γ be again a finite subgroup of the modular group Γ , defined up to conjugacy.
If X is a Riemann surface corresponding to a point of M(H), we get a possibly ramified
Galois covering π : X → Y = X/H, which is entirely determined by the sheaf π∗(OX)
on Y . Going to the universal curve C over M we find that the special locus M(H) carries
a natural sheaf, which records the action of the automorphism group at any point.

Problem: study the class of the extension defined by (4.1) in terms of that sheaf on
M(H), in particular for H cyclic of prime order. This is investigated further in [45]. The
problem of whether or not sequence (4.1) splits was especially pointed out in [62], where
it is shown by explicit methods that it does split for cyclic subgroups in genus 0. Note
that already in the elliptic case (see after Fact 4.4), the extension SL2(Z) → PSL2(Z)
is central non-split. Finally, we point out that for H cyclic, this all has to do with higher
spin curves, which were studied in a series of recent papers by T. J. Jarvis.

The corresponding picture ‘at infinity’ is provided by the stable stratification. In par-
ticular, take H � Z generated by a Dehn twist h; then we have an exact sequence as
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in (4.1), where Γ (H) is now the centralizer of h in Γ and ∆(h) is the fundamental group
of the irreducible component M′ of the divisor at infinity defined by h. The divisor
M′ ⊂ M carries a natural invertible sheaf, namely its conormal line bundle, and the
extension class defined by (4.1) is given by the Chern class of that line bundle. Can
we get a similar description for special loci and their attached sheaves? The connecting
concept between the two situations, namely Dehn twists (parabolic elements) on the one
hand and automorphisms of curves (elliptic elements) on the other, is that of inertia. In
the algebraic situation Dehn twists generate the procyclic inertia groups attached to the
rank one valuations corresponding to the components of the divisor at infinity. Moreover,
they are copies of Ẑ(1) as Galois modules and one can even describe the Galois action:
it is cyclotomic up to conjugacy. Although this is in essence folklore, it takes quite some
work to put it on a firm basis. The starting point is [23] which uses formal schemes, so
that one has to modify the strategy when dealing with stacks (parts of the results of [23]
have been rediscovered again and again in the 1980s, under the general heading ‘branch
cycle argument’ but in a less general framework). What happens with automorphisms
and special loci also has to do with inertia. Only this is inertia for stacks, which is con-
nected with the automorphism groups of the objects. One gets for instance the following
proposition, as an application of more general results.

Proposition 4.6 (see [45]). Let M = Mg,[n] be viewed as a Q-stack, and Γ = Γg,[n]

be the corresponding profinite modular group, the geometric stack fundamental group
of M. Let h be a finite-order element in the natural discretization of Γ , that is a mapping
class of finite oder. Consider the natural outer action of GQ on Γ ; then there is an open
subgroup GK ⊂ GQ such that for any σ ∈ GK , σ(H) ∼ H, where H = 〈h〉 is the finite
cyclic group generated by h and ‘∼’ denotes conjugacy in Γ . Moreover, the number field
K can be taken to be the field of definition of the irreducible closed substack M(H).
Finally, this determines an actual action of GK on H (via some character).

This result features a close analogue of what happens for inertia attached to a divisor
with strict normal crossings. It is, however, less precise than the main result of [23] which
says something about the full decomposition group, the analogue of which we did not
even define.

Next and last: what about the Grothendieck–Teichmüller group? More precisely, the
existing group IΓ is defined using only the geometry at infinity (see § 6 below and refer-
ences therein). In particular, it acts like the Galois group on Dehn twists, alias inertia
at infinity. What about its action on the torsion elements of the modular groups, alias
stack inertia, for which the action of the Galois group is given as in the theorem above?
Here we do have a result, but only in the case of genus 0, namely the following theorem.

Theorem 4.7 (see [61]). Let M = M0,[n] be the moduli space of unordered pointed
sphere (n � 3), viewed as a Q-stack, and Γ = Γ0,[n] its geometric fundamental group. Let
h be an element of finite order in Γ and F ∈ IΓ with λ(F ) = 1. Then F (h) is conjugate
to h.

Here λ is the Grothendieck–Teichmüller analogue of the cyclotomic character: if σ ∈
GQ ⊂ IΓ, λ(σ) = χ(σ). In genus 0, all special loci are easily seen to be defined over Qab, the
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maximal abelian extension of Q, so that with the notation of Proposition 4.6, K ⊂ Qab.
The upshot is of course that Theorem 4.7 almost extends Proposition 4.6 from GQ to IΓ in
genus 0. ‘Almost’, because it uses Qab instead of the finite extension K ⊂ Qab on which
M(H) is defined; there exists at present only a primitive embryo of Galois correspondence
in Grothendieck–Teichmüller theory, so that open subgroups cannot often be defined in
terms of the available coordinates, even those corresponding to abelian number fields.

In any case Theorem 4.7 does represent a first step towards displaying how the infor-
mation at infinity propagates inward. Its proof uses typical tools from Grothendieck–
Teichmüller theory, dealing directly with profinite groups and their automorphisms
(see [44] for related techniques). It would be extremely interesting to extend it to higher
genera, which seems hard for several reasons which we skip here. To summarize, Propo-
sition 4.6 gives an infinite set of conditions which the Galois group fulfils by nature,
whereas Theorem 4.7 says that some of them are indeed fulfilled by IΓ, although the lat-
ter group was defined by conditions living at infinity. So we get more and more conditions
to be fulfilled by the ideal Grothendieck–Teichmüller group: some come from embedding
curves, e.g. origamis, others from special loci and the attending stratification, still others
will arise from the algebraic eigenloci defined below. Moreover, as explained above in
Fact 4.5 the special loci, or rather their normalizations, are themselves coverings of mod-
uli spaces which again parallels what happens for the stable stratification. This naturally
gives rise to another set of conditions defined and partly explored in [61]. The geometric
and arithmetic plot keeps thickening.

4.2. Algebraic eigenloci: definition and explicit examples

As in § 4.1 above we select a type (g, n) and a (possibly trivial) subgroup of the
permutation group Sn, giving rise to a triplet (T ,M, Γ ), with canonical projection π :
T → M, so that M � Γ\T . The group Γ acts on T via γ · (X, f) = (X, f ◦ γ−1) for
γ ∈ Γ and t = (X, f) ∈ T (cf. § 2.5). Let H ⊂ Γ be a non-trivial finite group, and let
T (H) and M(H) be as in § 4.1 above. Note that γ · T (H) = T (γHγ−1) for any γ ∈ Γ ;
in particular, as mentioned already, M(H) depends only on the conjugacy class of H

and the same will be true of the loci we are about to define. We now make the following
general definition.

Definition 4.8. An (algebraic) eigenlocus E ⊂ M associated with the conjugacy class
of a finite subgroup H ⊂ Γ of the modular group is an algebraic variety in M such that
one (or equivalently, any) lift of E to T is stable under the action of the corresponding
conjugate of H.

Let us insist that special loci, which are the fixed-point sets of the action of the modular
group Γ are simultaneously algebraic, arithmetic and totally geodesic. This is not the
case anymore here. In particular, there are many geodesic (in a sense to be made precise
in the next section) eigenloci which are not algebraic, a fortiori not arithmetic. Note
also that being algebraic is the same as being analytic or also just locally closed in the
ordinary (analytic) topology.

The main idea is that we are looking for algebraic and indeed arithmetic loci, that is
closed Q̄-substacks of M which generalize the special loci of the last subsection in that
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they correspond to subvarieties in Teichmüller space which are stable but not necessarily
pointwise fixed under the action of finite subgroups of Γ : special loci appear as rather
special cases of eigenloci. This generalization looks quite natural from a geometric view-
point as well as from the standpoint of Galois and Grothendieck–Teichmüller theory: any
such eigenlocus will contain H in its geometric stack fundamental group and one may
hope to learn something about the Galois action; any such piece of information in turn
becomes a condition which the Grothendieck–Teichmüller group has to satisfy if it is to
coincide with the Galois group. Moreover, we are on the elliptic side and so aiming at
an elliptic lego, more subtle than the existing parabolic lego (or lego at infinity). Con-
crete glimpses of these questions will appear below and an example of how to use such
information can be found in [46].

The name ‘eigenlocus’ will become clearer after we discuss the geodesicity condition
in § 5 below, together with the, at first encounter, surprising connection with rational
polygonal billiards. A main point here consists again in trying to put together the alge-
braicity and the geodesicity conditions. Origamis feature a kind of, understandable, mir-
acle: they provide geodesic discs in Teichmüller space which project to algebraic curves
in moduli space which in turn are recognized to be arithmetic. Not so here. We do not
know how abundant and easy to find algebraic eigenloci are in general, that is for general
type (g, n) and we will say nothing more of the general algebraic case. Instead we will
presently show how to write down in an explicit and elementary fashion many such loci
in genus 0 and inside hyperelliptic loci. It will evolve in § 5 that some of these loci are
also geodesic.

Let us first review the situation with special loci in genus 0. We take a geometric route
referring to [47] for a more algebraic path, and to [62] for very explicit examples in small
dimensions. Background material can be found in [5]. The elementary character of the
analysis below should not lead the reader to undervalue the richness and complexity of
the situation. Just as (almost) all modular groups are, Γ0,n is virtually torsion free and
generated by its torsion elements (see [41] and [21] for detailed results and references). By
analysing special loci we are also, among other things, studying a set of elliptic generators
for all the braid groups and their profinite completions. Dehn twists, that is inertia at
infinity, do not tell the full story; this motto is already present in the Esquisse.

So let us take up the genus 0 objects, namely T0,n, M0,n and M0,[n], as well as
the intermediate objects in the ramified (but unramified as orbifold covering) Sn-Galois
covering p : M0,n → M0,[n]. Since the covering T0,n → M0,n is unramified (M0,n is a
scheme—labelled n-pointed spheres have no automorphisms), special loci can be read
off from the ramification of p, hence from subgroups of Sn. Let us pause in order to
fix notation. Write x

¯
= (xi)i (i = 1, . . . , n) for a point in M0,n. Then any s ∈ Sn acts

on M0,n by permuting the entries; explicitly it maps x
¯

to sx
¯

such that (sx
¯
)i = xs−1(i).

Returning to the classification of automorphisms in genus 0, the only non-trivial fact we
will use is that all conformal structures on the sphere are equivalent, which is the elliptic
part of the uniformization theorem. In other words, T0 is a point. Now any automorphism
of an n-pointed sphere must preserve the underlying conformal structure, hence can be
realized as an element of PGL2(C), and being of finite order, it is a Euclidean rotation.
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By the platonic classification, it is thus cyclic, dihedral or isomorphic to the symmetry
group of a platonic solid.

Given the topological n-pointed sphere S = S0,[n], let us say that a subgroup H ⊂ Γ0,[n]

is maximal if the corresponding locus is a point, that is if S/H is a sphere with three
marked points. An element h ∈ Γ0,[n] is maximal if it generates a maximal cyclic group
H = 〈h〉. It is easy to find all maximal elements: such an h is a rotation with two ram-
ification points (the endpoints of the axis) and ramification values, so that the quotient
surface S/H has at least two marked points. These points may or may not have been
marked before and the rest of the n points have to form a single orbit. We record these
simple but useful finds in the following proposition.

Proposition 4.9. Any finite subgroup H ⊂ Γ0,[n] is either cyclic, or dihedral or iso-
morphic to the symmetry group of a platonic solid. A maximal element h ∈ Γ0,[n] is a
rotation of order r = n, n − 1 or n − 2.

Of course one can mark as many points as one wishes, provided one marks the whole
orbit under the action of the given group. Take for instance an icosahedron, divide the
edges in three equal parts and mark all the dividing points but not the vertices. This
produces a special locus in M0,[60] via an injection A5 ↪→ S60. One gets copies of the
groups mentioned in the proposition inside Sn.

Henceforth we will confine attention to cyclic and dihedral groups for simplicity and
because maximal such subgroups will naturally arise in the next section. It would be
helpful though to have a detailed picture of the full situation. After normalization, a
cyclic group is generated by R acting on P1 via R(z) = ζ−1z where ζ is an rth root of
unity (the reason for writing ζ−1 instead of ζ will appear below). A dihedral group is
generated by such an R and the involution I such that either I(z) = −z, I(z) = 1/z or
I(z) = −1/z, according to whether it fixes or permutes the ramification points of the
rotation and to what it does on the tangent spaces at these points.

Even in this genus 0 situation we are only able to produce rational eigenloci;
the prototypical example is as follows. Consider M0,n with elements parametrized as
(0, x1, . . . , xr,∞) = (0, x

¯
,∞), n = r + 2. Having pinpointed 0 and ∞ leaves only a scal-

ing as automorphism group, that is this representation is up to multiplication of the xi

by a common constant. Let c = cr ∈ Sn be the r-cycle (r, . . . , 1) (c(i) = i − 1 modulo r)
which we here use to permute the points xi: (cx

¯
)i = xi+1 modulo r. Finally, let ζ ∈ µ∗

r be
a primitive rth root of unity. The cycle c lifts to a maximal element γ of order r = n − 2
in Γ0,[n] which we do not need to write down explicitly (see, however, after Proposi-
tion 4.11 below for more detail). The point Pc = (0, 1, ζ, . . . , ζr−1,∞) in M0,n, i.e. the
rth roots of unity together with 0 and ∞, projects to the special locus corresponding
to c in M0,[n]. The action of c ∈ Sn on the point Pc ∈ M0,n is equivalent to that of
the automorphism R with R(z) = ζ−1z as above. The special locus is reduced to the
point Pc, or equivalently the quotient of the marked sphere represented by Pc by the
group generated by R is a sphere with three distinguished points, namely 0, ∞ and the
rth roots of unity which are just one orbit. Now consider the rational curve in M0,n
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parametrized as

(0, ϕ(t), ζϕ(λt), ζ2ϕ(λ2t), . . . , ζkϕ(λkt), . . . , ζr−1ϕ(λr−1t),∞), (4.2)

where the notation is as follows. The parameter t runs over the projective line, λ is an rth
root of unity and ϕ is an algebraic function which, using a scaling and automorphisms
of the t-line we may and do normalize by requiring that ϕ(∞) = ∞, ϕ(0) = ϕ′(0) = 1;
in other words, ϕ(t) = 1 + t + O(t2) near t = 0.

We have thus defined a rational algebraic curve Ec = Ec(λ, ϕ) ⊂ M0,n, with the
following properties. For t = 0, the point Ec(t = 0), or rather its projection to M0,[n]

is a point with automorphism c ∈ Sn; more generally we get the transformation law
(cx

¯
)i(t) = xi+1(t) = ζxi(λt). In other words, after dividing out by ζ as we may, we find

that Ec is stable under the action of c, which induces on the t-line the rotation Λ of order
dividing r defined by t′ = Λ(t) = λt, with fixed points t = 0,∞. That was to be expected;
indeed since Ec is rational and stable under the action of c, the latter has to induce a
finite-order element of PGL2(C), so again a rotation of the t-line which moreover must
have 0 as a fixed point. The locus Ec is a projective line with a certain number of points
removed corresponding to the collisions xi = xj , i �= j, and xi = 0,∞. These depend
on the algebraic function ϕ and especially its degree. Now the image of p(Ec) in M0,[n]

is the quotient of Ec by Λ, assuming that γ generates the stabilizer of Ec in Γ0,[n] (we
will see below a case where that stabilizer is actually larger). When is it that p(Ec) is a
projective line with exactly three distinguished (i.e. marked or removed) points? Partial
answer: it does happen when ϕ is affine. We do not know for sure but strongly suspect
that it is the only case and it would actually be interesting to prove such a statement,
for reasons that will appear more clearly in the sequel.

For the time being let us detail what happens for ϕ affine, namely ϕ(t) = 1 + t, with
the normalization we have adopted. Setting ξ = λζ, the expression (4.2) of Ec now reads

(0, 1 + t, ζ + ξt, ζ2 + ξ2t, . . . , ζk + ξkt, . . . , ζr−1 + ξr−1t, ∞). (4.3)

We may take for ζ any primitive rth root of unity (primitivity is for convenience only);
for ξ we may take any rth root of unity, except for ξ = ζ which is excluded; in that case,
corresponding to λ = 1, the expression (4.3) does not parametrize a line but only the
special point Pc for any value of t. Checking dimensions, we find that for fixed ζ, that
is for fixed special locus, there are r − 1 = n − 3 one-dimensional eigenloci (call them
eigencurves) of the form (4.3); it is no coincidence that this is also the dimension of the
space M0,n, as will appear more clearly in the next section. Here we just remark the
following: erase the point 0 from (4.3), that is apply a point-erasing map e : M0,n →
M0,n−1. The dimension drops by 1 and indeed the number of associated affine eigencurves
drops by 1 too: the value ξ = 1 (λ = ζ−1) is not permissible anymore, because erasing
the point 0 restores translational symmetry. We will see below that it may also happen
for certain values of λ that the eigencurve (4.3) acquires a self-intersection upon taking
its image by the map e. We drop this example for the time being but will shortly return
to it in order to explicitly compute its monodromy.
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The rational curve (4.2) can serve as a prototype for constructing higher-dimensional
rational eigenloci attached to any finite-order element of the modular group. We give
a rough sketch of this easy generalization. Changing notation slightly, let now n = rs,
where r will still be the order of the automorphism R (R(z) = ζ−1z) corresponding to
the r-cycle c ∈ Sn, and its lift γ ∈ Γ0,[n]. One can of course change n to n + 1 or n + 2
by adding in the points 0 and/or ∞. Let t = (ti)i ∈ As, λ = (λi)i ∈ (µr)s and ϕ = (ϕi)i

an s-tuple of algebraic functions. Consider the rational locus Ec ⊂ M0,n parametrized by
As minus a certain number of hyperplanes (collisions) as

(ϕ1(t1), ζϕ1(λ1t1), . . . , ζr−1ϕ1(λr−1
1 t1), . . . , ϕ2(t2), ζϕ2(λ2t2), . . . ,

ζr−1ϕ2(λr−1
2 t2), . . . , ϕs(ts), ζϕs(λsts), . . . , ζr−1ϕs(λr−1

s ts)). (4.4)

This is a fairly obvious analogue of the eigencurve (4.2) and yet it gives a first feeling of
the perfectly explicit and very rich structure that these rational eigenloci organize in the
genus 0 moduli spaces. We are not going to dwell on the subject but will rather make
a few remarks and ask a few questions which may or may not convince the reader that
this geometric structure deserves further study.

(1) The representation (4.4) gives many rational eigenloci for cyclic groups. Does it
describe them ‘all’? The answer is, basically, ‘yes’. Indeed, sticking to curves and maximal
elements for simplicity, we have the following easy lemma.

Lemma 4.10. As λ and ϕ vary, formula (4.2) describes all the rational eigencurves
associated with the maximal r-cycle c.

For the proof of the lemma, denoting such a curve by Ec as usual, one first notices
that the cycle c, represented by the rotation R, induces on Ec an algebraic automorphism
of order r, that is a rotation; taking the fixed points to be 0 and ∞, it can be written
as Λ(t) = λt for a certain rth root of unity λ. Now if x(t) = (xi(t)), i = 1, . . . , r,
parametrizes a point of Ec, applying the cycle c we find that xi+1 = ζxi(λt) with the
proper normalization and this implies that there exists an algebraic function ϕ such that
Ec is of the form (4.2).

One then expects that taking proper care of the PGL2(C) action the lemma can
essentially be extended to the higher-dimensional case embodied in (4.4).

(2) What about writing down rational eigenloci for all the possible automorphism
groups, as described in Proposition 4.9? And do there exist algebraic eigenloci in genus 0
that are not rational? This question is prompted by the fact that the special loci in
genus 0 are essentially copies of genus 0 moduli spaces (see [62] on this point). The
much more abundant eigenloci of the form (4.4) look like genus 0 configuration spaces,
especially for affine ϕ (see below). Do they ‘essentially’ exhaust the possibilities?

(3) Can one find all (rational) eigencurves which project in M0,[n] to the projective
line P1 with three distinguished points, i.e. a hyperbolic orbifold which is uniformized
by a Fuchsian triangle group? The relevance of this question will hopefully appear more
clearly below. As mentioned already, it is tempting to guess that formula (4.3) gives the
‘general’ solution.
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(4) Much more difficult and obscure: can one build a genus 0 cyclotomic ‘lego’ using in
particular the geometric structure in the moduli spaces M0,n determined by the arith-
metic eigenloci? The meaning of this question, which is in line with Grothendieck’s
Esquisse, should appear more clearly after reading § 6 below. We note that the affine
eigenloci of type (4.3) are indeed defined over Qab and that they can be helpful in terms
of Galois and Grothendieck–Teichmüller theory (see [46] for a first approach), especially
those which fulfil the condition of question (3) above.

We now return to the computation of the monodromy in the simplest case, embodied
by formula (4.3). In view of further use we modify the problem and notation in an
inessential way, namely we erase the point 0 and write n instead of r for the order of the
cycle. So we now have a curve Ec ⊂ M0,n+1 with parametrization

(1 + t, ζ + ξt, ζ2 + ξ2t, . . . , ζk + ξkt, . . . , ζn−1 + ξn−1t, ∞), (4.5)

where ζ is a fixed primitive nth root of unity and ξ is an nth root of unity with ξ �= 1, ζ;
so there are n − 2 choices, which is also the dimension of M0,n+1. We write Ec(ξ) for the
curve defined by (4.5).

We will narrow down our scope still further. The fact is that the curves Ec(ξ) are not
all on an equal footing, for at least two reasons. First let Sn be the stabilizer of the last
object in S0,n+1; we let it act on M0,n+1 and look at the images of the various Ec(ξ)
in the quotient M0,n+1/Sn. Then it may and does happen that some of these curves
coincide in that quotient. This is for instance the case of Ec(ζ2) and Ec(ζ3) for n = 5.
A second discriminating factor between the various Ec(ξ) comes from the size of their
respective stabilizers. Let C = Cn denote the cyclic group of order n generated by the
cycle c. By construction C stabilizes Ec(ξ) ⊂ M0,n+1 for any ξ and the generator c ∈ C

induces the rotation Λ with Λ(t) = λt, λ = ζ−1ξ. But it may and does happen that
the stabilizer is bigger, namely dihedral. Let I be the involution given by I(t) = 1/t

and D = D2n = 〈Λ, I〉 the group generated by Λ and I. For certain choices of n, ζ,
ξ, the involution I and thus the group D stabilizes the curve Ec(ξ). This is the case in
particular for any n and ξ = ζ−1, a case to which we will henceforth restrict attention.
Before focusing on that case, however, we would like to point out that the two phenomena
noticed above are probably worthy of attention. Understanding the geometry of the
Ec(ξ) may be interesting by itself and, anticipating § 5.3 below, it could well be directly
connected with billiards in isosceles triangles with rational angles, more specifically the
fact that isosceles billiards with apex angle kπ/n give rise to ‘Veech curves’ if and only
if k = 1 (see [39]). Another way to put it is the specificity of the quadratic differential
ω(1, n) among the ω(k, n); here we use the notation of [69, Introduction], to which we
refer the reader.

We are now ready to compute the monodromy of certain algebraic eigencurves. Recall-
ing the case at hand we consider the curve (4.5) with ξ = ζ−1 and we further assume
that n is odd. The latter is a completely inessential restriction, designed only to clarify
notation. The case n even could be dealt with analogously but in view of applications we
would have to erase the point ∞ and dealing with the two cases simultaneously makes
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life notationally quite difficult (cf. [69]). We can now give a precise statement; the last
piece of notation appearing in it will be explained below.

Proposition 4.11. Let n = 2g + 1 be an odd number, n > 3. The expression (4.5)
with ξ = ζ−1 defines an eigencurve Ec = Ec(ζ−1) ⊂ M0,n+1, associated with (the cyclic
group generated by) γ = γn ∈ Γ0,[n+1] of order n. The image of Ec in M0,[n+1] is an
orbifold of type P1

(2,n,∞), with orbifold fundamental group a Fuchsian triangular group
∆(2, n,∞). The image of this group via the monodromy map is generated by γ and the
braid σ2,nσ3,n−1 · · ·σg+1,g+2, viewed as an element of Γ0,[n+1].

We already know that Ec is an eigencurve for γ which is a maximal automorphism,
i.e. the corresponding special loci is reduced to a point. We also know that γ (or rather
its image c ∈ Sn ⊂ Sn+1) induces the rotation Λ on Ec. As mentioned already Ec is
also stable under the involution I. In fact changing t to 1/t in (4.5) and multiplying
out by t, we find that I acts like the involution i �→ n + 2 − i, 2 � i � n, that is the
permutation (2n)(3n−1) · · · (g+1g+2) ∈ Sn. We also note that if t ∈ R, this amounts to
complex conjugation. In other words, Ec sits in the real locus of the quotient M0,n+1/I

(and a fortiori of M0,[n+1]). Speaking of coverings, we have the successive quotients
M0,n+1 → M0,n+1/C, M0,n+1/C → M0,n+1/D as well as M0,n+1/D → M0,[n+1], the
latter being unramified when restricted to the image of Ec. It is thus enough to study
Ec/D.

In the statement of the proposition we used the notation P1
(p,q,r) to denote the one-

dimensional orbifold defined as P1 with three points of ramification of order p, q, r,
respectively (2 � p, q, r � ∞); it will always be of hyperbolic type (1/p+1/q +1/r < 1).
Its orbifold fundamental group is a triangle group ∆(p, q, r) generated by three elements
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x, y, z with relations xp = yq = zr = xyz = 1. All this can easily be translated into the
more algebraic language of stacks if and when it needs to be, that is when dealing with
the arithmetic Galois action, as in [46].

Returning to the quotient Ec/D, a little contemplation of formula (4.5) will confirm
that it is indeed of type P1

(2,n,∞). In the parametrization we use, the three distinguished
points (which could be put anywhere since P1

(p,q,r) is rigid) lie at t = 0 (ramification of
order n), t = 1 (puncture, that is infinite ramification order) and t = −1 (order 2). Here
we actually mean the D-orbits of these values, that is, respectively, t = {0,∞}, µn,−µn.

There remains to make explicit and prove the last assertion of the proposition, which
requires some concrete background and notation on braid groups. However, a cinemato-
graphical understanding of the essence of the matter may be gained by staring at Figure 1.
We have drawn the case n = 5; the generalization to any odd (or also even for that mat-
ter) n is straightforward. It will be instructive to compare this picture with Figure 3
appearing in § 5 below.

We have sketched the motion of the points xi(t) as parametrized in (4.5). For t = 0
we get xi(0) = ζi, i = 1, . . . , n, and the points sit at the vertices of the regular n-gon.
When t runs along the segment (0, 1) the points move with speed 1 along the thicker
lines until at t = 1 a stable collision occurs, the xi meeting in the circles with the xn−i

(i = 2, . . . , g+1). On the other hand, as t runs along the segment (0,−1) the points xi(t)
follow the dashed lines and find themselves at t = −1 in the bullets on the imaginary
axis; the point t = −1 is ramified for I and the configuration at t = −1 is stable under I,
i.e. complex conjugation since t is real.

The computation of the monodromy necessitates introducing standard notation for the
braid groups. We recall a bare minimum, referring essentially to Figure 2. Background
material can be found, for example, in [5], including the detailed correspondence between
braids and Dehn twists, etc.

First recall that the plane or Artin braid group on n strands Bn is generated by the
σi, i = 1, . . . , n − 1, with simple relations; namely, σi and σj commute for |j − i| > 1
and σiσi+1σi = σi+1σiσi+1. The braid group of the sphere on n strands Hn has just one
added relation, namely yn = 0; it is easy to see pictorially that this relation does hold
for braids on the sphere. The yi commute and the centre of Bn is free cyclic generated
by zn = y2y3 · · · yn (the ‘barber shop braid’). Its image in Hn is of order 2 and generates
the centre of that group. Finally, the full modular group Γ0,[n] is the quotient of Hn by
its centre. It is thus generated by the σi with the relations above and yn = zn = 1. Now
the pure braid group of the plane on n strands is generated by the xi,j , 1 � i < j � n;
see for instance the references quoted above for the relations these elements satisfy. The
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pure braid group of the sphere is obtained again by adding the relation yn = 1 and the
pure mapping class group Γ0,n by imposing zn = 1 on top of it.

We also need to recall the meaning of the σi,j appearing in the statement of the
proposition. They are introduced and used in [43] (see the appendix of that paper for
detail; or see [46]). In fact σij is defined just as σi, only intertwining strands i and j

rather than i and i + 1, as on the first picture of Figure 2; so σi = σi,i+1. It is actually
more natural to imagine the strings of a braid hanging from a ring and attached at
equally spaced points. The strings i and j are then intertwined along a chord, when
viewed from above. The σi,j can be used to study the groups as above, yielding more
symmetric relations because all pairs of indices are treated on an equal footing. We also
note that xij = σ2

ij .
Let us return to the statement of Proposition 4.11. We have to choose a basepoint

for the monodromy and we naturally pick the point on M0,[n+1] corresponding to the
curve with automorphism γ of order n, that is the point with parameter t = 0. This is an
orbifold point and we should actually use tangential basepoints here, but the indetermi-
nation is only a global conjugacy by a power of γ, which is of no importance here. This
point also corresponds to the definition of the σij (among which the σi) recalled above.
So we may first take γ of order n, namely γ = σn−1σn−2 · · ·σ1, reading from right to
left. Second, and going back to Figure 1, we see that at t = 1 the points with labels k

and n − k collide. Consider the loop in M0,[n+1] which on Ec is parametrized as follows:
first let t vary between 0 and 1− ε on the real axis (ε > 0 small; one could use tangential
basepoints on Ec to the same effect); then perform a half-loop counterclockwise around
t = 1, reaching the point t = (1−ε)−1; finally, let t run back to 0 along the real axis again.
Here we recall that the group D contains the involution I which leaves t = 1 fixed. The
above described loop in moduli space corresponds to the braid σ2,nσ3,n−1 · · ·σg+1,g+2 or
rather its image in the modular group Γ0,[n+1]. It can be seen as usual from at least three
closely related viewpoints:

(i) the points k and n − k travel around each other and exchange places;

(ii) one effects a product of Dehn twists around loops on the marked sphere containing
k and n − k and no other point (these twists obviously commute)—this viewpoint
will be especially relevant in proving Proposition 5.8;

(iii) the point in moduli space goes around the stratum of the divisor at infinity corre-
sponding to this stable multicollision k = n − k (k = 1, . . . , g + 1).

This braid has infinite order; note that its square is pure, equal to x2,nx3,n−1 · · ·
xg+1,g+2 and together with γ they generate the monodromy group because they are
images via the monodromy map of generators of π1(Ec). This completes the proof of
Proposition 4.11. One then confirms that the monodromy map is injective so that the
monodromy group is itself isomorphic to π1(Ec) � ∆(2, n,∞). To this end it is enough to
write down explicit generators x, y, z in Γ0,[n+1] which satisfy the relations of a triangular
group of type (2, n,∞) as recalled above; details are given in [46] (which contains more
than is needed here).
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There remains to say but a few words on the corresponding hyperelliptic case, for
future use. Let g � 2 and the moduli space or rather orbifold Mg; let Hg ⊂ Mg be
the hyperelliptic locus. There is a natural forgetful morphism Hg → M0,[2g+2] mapping
a hyperelliptic curve to its quotient by the hyperelliptic involution and marking the
ramification points. It is a homeomorphism, giving rise to the following non-split exact
sequence of orbifold fundamental groups:

1 → Z/2Z → πorb
1 (Hg) → Γ0,[2g+2] → 1, (4.6)

where the kernel is of course generated by the hyperelliptic involution. Note that the
above is equally valid if one considers the Q-stack Mg and uses the geometric stack
fundamental group, which amounts to replacing the intervening groups by their profinite
completions.

Now the above can be repeated with the rational curve in Hg whose affine equation
for the value t of the parameter is given as

y2 =
2g+1∏
k=1

(x − xk(t)), (4.7)

with the xk(t) as in (4.5): xk(t) = ζk + ζ−kt. The statement of Proposition 4.11 then
holds verbatim in Hg, adding in only the hyperelliptic involution, which acts ineffectively
on Hg. Note that although (4.6) is not split, we can pull back the triangular monodromy
group to πorb

1 (Hg).

5. Geodesic eigenloci and rational polygonal billiards

In this section we take up the subject of eigenloci from a different viewpoint, assuming
geodesicity in a certain sense but not algebraicity. As a special case we recover the
geodesic discs and curves classically associated with polygonal billiards with rational
angles. We then identify some of these curves with those eigencurves appearing in § 4.2
above, putting together their geodesic and algebraic properties.

5.1. Geodesic eigenloci: definition and first properties

We fix as usual a hyperbolic type (g, n) and the attending objects T , M, Γ , etc.
Let H ⊂ Γ be a finite group and T (H) ⊂ T the fixed-point set of H (cf. § 4.1). Let
now t = (X, f) ∈ T (H) and h ∈ H. Then h induces an action on the cotangent space
T ∗

t T at t, which is isomorphic to the space Q(X) of integrable quadratic differentials
on X. We thus get a linear map h∗ : Q(X) → Q(X); it has finite order, so can be
diagonalized with eigenvalues which are roots of unity. Note that the Teichmüller metric
is not Riemannian, that is it does not induce a scalar product on the cotangent space.
But the Weil–Petersson metric is Riemannian and h∗ is an isometry with respect to the
associated scalar product (see [37, Theorem 7.14]). This is a close analogue of the fact
that the Hecke operators induce unitary operators with respect to the Petersson scalar
product (see, for example, [64, § 3.4]) and what we do here can be partly thought of in
automorphic terms.
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Example. Think back to the setting in § 4.2: we have an element γ ∈ Γ0,[n+1] of order
n, projecting to the n-cycle c ∈ Sn ⊂ Sn+1; the special locus consists of the single point
Pc and the attached automorphism is just the rotation R. Now look back at the basis of
Q(Pc), namely the differentials qj of (2.3) in § 2.3. Clearly, since R is multiplication by
ζ−1, each qj is an eigenvalue for the action of R, with eigenvalue ζ−j−2. This is still valid
in the hyperelliptic situation, as described by (2.5) of § 2.3, where we are only analysing
that part of the cotangent space which is pulled back from genus 0 (i.e. the qj again).
In particular, for j = 0 we find that the differential q0 = (dx/y)2 is an eigenvector
for the action of R with eigenvalue ζ−2. In turn the algebraic eigenlocus appearing in
Proposition 4.11 corresponds to ξ = ζ−1, that is λ = ζ−2. In other words, the action of
the automorphism induces a rotation Λ on the eigenlocus with Λ(t) = ζ−2t. Keeping this
in store for the moment we note that this is no coincidence, as will appear more clearly
in § 5.3 below.

Returning to the general picture, we now add two more data: first we pick T ⊂ T (H)
an irreducible algebraic subvariety; if one wants to talk about arithmetic, which is part
of the motivation here, the image Z = π(T ) ⊂ M should be defined over a number field,
but this is of course not necessary as far as the geometric construction is concerned. Two
examples immediately come to mind, namely T = {t} consists of a single point, and
T = T (H) itself, in which case π(T ) = M(H) is indeed defined over a number field.
Lastly we choose an irreducible representation ρ ∈ Ĥ. For any t ∈ T let Eρ(t) ⊂ T ∗

t T be
the ρ-isotypic component, i.e. the subspace on which H acts through ρ. Then we have
following lemma.

Lemma 5.1. The subspaces Eρ(t) for t ∈ T glue into an algebraic involutive bundle Eρ

over T .

The fact that the fibres Eρ(t) glue into an algebraic bundle results from known results
(cf. [4]). The fact that Eρ is involutive is a local differential geometric fact which is a con-
sequence of the local triviality of the cotangent bundle T ∗T . After a possible t-dependent
conjugation one can locally consider ρ = ρt as a constant representation. We will return
to this local situation below (see (5.1)).

From now on, in order to avoid trivial exceptions, we assume that Eρ(t) is not reduced
to the origin, that is we choose a ρ which actually occurs in the decomposition of T ∗

t T
for some t ∈ T , and hence for all t ∈ T since we have assumed that T is connected. We
may now give the following definition.

Definition 5.2. The (geodesic) eigenlocus associated with the finite group H ⊂ Γ , its
irreducible representation ρ ∈ Ĥ and with centre T ⊂ T (H) is the manifold T (H, ρ, T ) ⊂
T spanned by the Teichmüller geodesics emanating from the points t ∈ T along the
vectors belonging to the fibre Eρ(t) of Eρ at t.

So, thinking in terms of complex geodesics, T (H, ρ, T ) is foliated by geodesic discs
D(t, q) for q ∈ Eρ(t). One can restrict of course to the unit bundle, that is consider
normalized integrable quadratic differentials. Beware of the fact that these loci are not
totally geodesic in general, except in the one-dimensional case. That they are globally

https://doi.org/10.1017/S1474748005000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000101


486 P. Lochak

stable under the action of the fixed finite group H is now an easy consequence of the
definition, but not part of it, as with algebraic eigenloci (cf. Definition 4.8).

Proposition 5.3. For any H, ρ, T , the eigenlocus T (H, ρ, T ) is globally preserved under
the action of H.

Indeed any h ∈ H induces as above a linear action on T ∗T and this action preserves
the bundle Eρ. Moreover, h being an isometry, its maps a disc D(t, q) (t ∈ T , q ∈ T ∗

t T )
to another such disc, so it preserves the locus T (H, ρ, T ).

These loci again generalize the special loci T (H) (here in Teichmüller space). Indeed
we note that for any T ⊂ T (H), one has T (H, 1, T ) = T (H). In particular, it is enough
to pick one point T = {t} corresponding to a curve having an automorphism group
containing H in order to recover the whole of T (H); here we use the fact that T (H) is
totally geodesic.

As a next piece of information we note that the elements of the modular group permute
the eigenloci, just as they do with special loci. More precisely, we record the following
easy statement.

Lemma 5.4. The modular group Γ permutes the geodesic eigenloci; given (H, ρ, T ) as
above and γ ∈ Γ , we have γ · T (H, ρ, T ) = T (γHγ−1, ρ, γ · T ).

Indeed γ permutes the geodesic discs and the linear map γ∗ : T ∗
t T → T ∗

γ·tT preserves
the conjugacy class of the representation.

The local situation can be analysed as follows. We are interested in points t ∈ T ⊂
T (H) which by definition are ramified for the canonical projection π : T → M, being
fixed points of some h ∈ Γ . In fact the corresponding point X = π(t) ∈ M is usually
(that is except for a few low-dimensional exceptions) a singular point of the coarse moduli
space. On the other hand, because T itself is smooth, one can in principle compute the
eigenlocus T (H, ρ, T ) by locally linearizing the action of H. To this end we use a classical
averaging formula, dating back to H. Cartan and probably before. It actually works for
the smooth action of any finite group H on a regular variety V . Given a local coordinate
system (z) on V near a point P (z(P ) = 0), the new system (z′) is defined via the
following averaging formula:

z′ =
1

|H|
∑
h∈H

(Dh(0))−1h(z), (5.1)

where Dh is the differential of h. The system (z′) is regular because the change of variable
z → z′ is tangent to the identity. Moreover, it is easily checked that in the coordinate
system (z′), the action is linear, that is any h ∈ H now acts via its differential Dh(0)
at P . Applying this to our situation, we see that given a coordinate system near a point
t ∈ T , the eigenlocus T (H, ρ, T ) locally ‘coincides’ in the new system with the bundle Eρ.
The above can be applied not only to T but also to any cover of M such that at least
one image of t on it is a regular point. In particular, one can use finite Galois covers of
M, given for example by level structures. Moreover, the same linearization formula holds
over any algebraically closed field, provided the characteristic is prime to |H|.
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We know next to nothing about geodesic eigenloci when defined in this generality,
although they appear as natural objects to look at. Given such a locus T (H, ρ, T ) we let
M(H, ρ, T ) = π(T (H, ρ, T )) denote its projection in the moduli space M. One of the
main questions is again the algebraization problem: for which sets of data (H, ρ, T ) is
M(H, ρ, T ) algebraic? Note that it is actually enough to show that T (H, ρ, T ) projects
to an analytic subvariety in M, which in turn is the same as asking whether or not
M(H, ρ, T ) is locally closed for the complex topology. The fact that this always holds
true for special loci (ρ = 1) boils down to the fact that Γ acts properly discontinuously
on T (see, for example, [20]).

The algebraization problem inquires about which geodesic eigenloci are also algebraic
eigenloci in the sense of the previous section. One may then further inquire whether or
not M(H, ρ, T ) is arithmetic. Regarding this question we note that this is easy to decide,
as it depends only on the centre Z = π(T ).

Proposition 5.5. If M(H, ρ, T ) is algebraic, then it is arithmetic if and only if its centre
Z = π(T ) is.

Indeed this can be decided by looking at any finite cover of M. So replace M with a
regular cover and look at the linearization formula (5.1). It shows that the local equations
of the isotypic components are indeed defined over number fields if those of the centre
are. Here we use the fact that the action of Γ is itself arithmetic, i.e. defined over Q̄: as a
result, in the notation of (5.1) one can pick a coordinate system (z) which is compatible
with the Q̄-structure and the equations for h(z) will then have coefficients in Q̄.

The special locus M(H) in moduli space can be considered as an orbifold, with an
action of H on its preimage (any preimage) in Teichmüller space which is not effective.
For non-trivial ρ however, and assuming that M(H, ρ, T ) is algebraic, the latter defines
an orbifold equipped with an effective action of H in Teichmüller space or on any suf-
ficiently large covering. The eigenloci which descend to varieties in the moduli spaces
thus hopefully provide a large collection of orbifolds which contain the finite subgroups
of the Teichmüller modular groups in their orbifold fundamental groups. After putting
it in a more algebraic fashion, this point may be of real interest in the perspective of
Grothendieck–Teichmüller theory.

Before moving to more modest but also more concrete matters, we note that there
might exist algebraic eigenloci with, so to speak, empty centres. That is one can ask
the following question: does there exist H ⊂ Γ a finite group and E ⊂ M an algebraic
variety such that H stabilizes (an irreducible component of) π−1(E) ⊂ T and acts freely
(equivalently, fixed-point free) on it?

5.2. Computing the dimensions of the geodesic eigenloci:
the Chevalley–Weil formula

The first a priori quite modest piece of information in the general case may well be
the computation of the dimensions of the geodesic eigenloci. This turns out to be not
so modest a task but fortunately appears as a special case of a beautiful problem first
considered and solved by A. Weil and C. Chevalley; we will use the modern version
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given in [15] to which we refer for detail and complements (see also [4]). We include the
computation for completeness and also because adding marked points here is a little less
classical.

Let H, ρ ∈ Ĥ, T ⊂ T , and T (H, ρ, T ) be as above. If ρ is the trivial representation,
T (H, ρ, T ), or rather its projection M(H, ρ, Z) ⊂ M (Z = π(T )), is a special locus, the
dimension of which is well known (see Fact 4.1 above). We assume henceforth that ρ is
not trivial. Let t ∈ T , that is t = (X, f) is a marked Riemann surface, say of hyperbolic
type (g, n). We let mρ be the multiplicity of the representation ρ in the decomposition
of Q(X) under the action of H; we assume that mρ �= 0, that is ρ does occur in the
decomposition. Then we obviously get

dim(M(H, ρ, Z)) = dim(T (H, ρ, T )) = dim(T ) + mρ deg(ρ), (5.2)

so that the point is to compute the multiplicity mρ (deg(ρ) denotes the degree or dimen-
sion of ρ). The computation below is actually valid over any algebraically closed field
k, provided the action of H is reductive. In particular, if M(H, ρ, Z) is arithmetic (in
particular algebraic), one can reduce modulo almost all p and everything works verbatim
over F̄p provided:

(a) X has good reduction,

(b) the marked points do not coalesce, and

(c) the cardinal of H is prime to p.

In short, nothing terribly new happens at these primes. Below we denote the algebraically
closed ground field by k out of habit; calling it C makes no difference.

So let X be a smooth projective curve of genus g with n � 0 marked points defined
over the algebraically closed field k. Let H ⊂ Autk(X) be a group of automorphisms of
X, whose cardinal is prime to the characteristic of k. Let Y = X/H denote the quotient
of genus g′ = g(Y ) and p : X → Y the canonical projection, defining a possibly ramified
Galois covering of degree |H|. We let ω denote the sheaf of differentials on X and Q the
sheaf of quadratic differentials with at most simple poles at the marked points; Q(X) is
the space of global sections of Q. The n marked points are permuted under the action of
H and for simplicity we will assume that they lie on unramified fibres of p; the formula
we get is actually valid in the general case but we will not check it here. We can write
Q = ω2 ⊗ p∗P, where ω2(= ω⊗2) is the sheaf of regular quadratic differentials on X

and P is the line bundle on Y associated with the images of the marked points, so that
deg(P) = n/|H| = n′, which is the number of the images of the marked points on Y ; we
have assumed that this set is disjoint from the branch locus of p, which will also play a
role below.

For any coherent sheaf F on X with H-action, one defines the equivariant Lefschetz
trace of F as

LH(F) = H0(X, F) − H1(X, F).

Here the cohomology groups are viewed as H-modules and so is LH(F); of course we
give only the particular case adapted to our needs, that is when X is a curve. This is
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the computable entity and the point is to decompose LH(F) into irreducibles. Now we
wish to apply this to the case F = Q and by Serre’s duality H1(X, Q) vanishes, so
that LH(Q) = H0(X, Q) = Q(X), viewed again as an H-module. Moreover, by [15,
Proposition 4.2] (which is a simple direct computation), for any F and any line bundle
P on Y , one has

LH(F ⊗ p∗P) = LH(F) + deg(P) · rk(F) · k[H],

where k[H] is the group ring, i.e. the regular representation of H. Applying this to our
case, we get

Q(X) = LH(ω2) + n′k[H]. (5.3)

Note that for low genera g = 0, 1, H1(X, ω2) does not vanish, so we really need to keep
the Lefschetz trace in this equality. We are thus reduced to decomposing LH(ω2); more
generally one can actually replace ω2 with any power ωm, m � 1, and the solution is
analogous. We will record the result for m = 2, referring to [15] for detail (see also, for
example, [4]).

We need a little more notation in order to state the result. Let P1, . . . , Ps ∈ X be the
ramification points of p and Q1, . . . , Qt ∈ Y their images. To any P = Pi is attached
a ramification index which depends only on its image Q = p(P ), so that we denote it
either eP or eQ. The inertia subgroup HP ⊂ H at P is cyclic of order eP : HP � Z/eP Z
with generator, say, σP . The dual group ĤP also has order eP , generated by the character
χP acting on k via multiplication by ζP , a primitive eP th root of unity. The completed
local ring of the curve X at P is a ring of formal power series in one variable: ÔX,P � k[[u]],
and we can choose the uniformizing parameter u and the root of unity ζP in such a way
that the action of the inertia group is described by σP (u) = ζP u. Let now ρ be an irre-
ducible representation of H, i.e. an H-module (more precisely an H–k-module). Consider
the tensor product ρP = ÔX,P ⊗k ρ � k[[u]] ⊗k ρ which as an HP -module describes the
local representation at P . Decomposing ρP , we let nd,P,ρ (1 � d � eP ) denote the mul-
tiplicity of the character χd

P in ρP . This number is actually constant along the fibres, so
depends only on Q = p(P ); we write nd,P,ρ or equivalently nd,Q,ρ.

As an example, consider the case of H cyclic of order r; the case H commutative can
be worked out in much the same way. Let σ ∈ H be a generator, and χ a generator
of Ĥ, with χ(σ) = ζ, a primitive rth root of unity. We can write ρ = χ� for some
integer u, 1 � u � r. Let rP = r/eP denote the number of points in the fibre at P ;
so rP = rQ again depends only on Q ∈ Y . Let σP = σrP generate HP and ζP = ζrP .
The local representation at P is given by χP such that χP (σP ) = σkP

P for some integer
kP (1 � kP � eP ). On the other hand, the restriction of the character χ to HP is
determined by χ(σP ) = χ(σrP ) = ζrP = ζP . We thus find that, when restricted to HP ,
χ = χjP

P , where jP is an inverse of kP in Z/eP Z, i.e. jP kP = 1 mod (eP ). In turn ρ

restricted to HP is equal to χ�jP

P and the representation ρP as defined above is equal to
χ1+�jP

P . So in this case nd,P,ρ is 1 or 0 according to whether 1+ �jP = 1 mod (eP ) or not.
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Returning to the case of an arbitrary finite group H, one finds (cf. [15]) that the
multiplicity of ρ ∈ Ĥ in the trace LH(ω2) is equal to

(3g′ − 3) dim(ρ) +
∑
Q∈Y

eQ−1∑
d=0

nd,Q,ρ

(
1 − 1

eQ
+

〈
1 − d

eQ

〉)
,

where 〈x〉 denotes the fractional part of x (0 � 〈x〉 < 1). Putting this together with (5.3)
and remembering that ρ occurs in the regular representation k[H] a number of times
equal to its dimension, we finally get the following proposition.

Proposition 5.6. With the above notation the H-module Q(X) of integrable quadratic
differentials decomposes as

Q(X) =
∑
ρ∈Ĥ

mρρ,

with the multiplicity mρ given by

mρ = (3g′ − 3 + n′) deg(ρ) +
∑
Q∈Y

eQ−1∑
d=0

nd,Q,ρ

(
1 − 1

eQ
+

〈
m − 1 − d

eQ

〉)
. (5.4)

Together with formula (5.2) this completes the computation of the dimensions of the
geodesic eigenloci.

5.3. Geodesic eigencurves and rational polygonal billiards

The name ‘eigenlocus’ was chosen in reference to the abelian case: if H is abelian,
the representation ρ is one dimensional and Eρ(t) is a simultaneous eigenspace of the
operators h∗ (h ∈ H) acting on T ∗

t T � Q(X) (t = (X, f)). Specializing again, just
pick one finite-order diffeomorphism h ∈ Γ , giving rise to a cyclic group H = 〈h〉 with
a preferred generator. The character ρ is then determined by ρ(h) = λ, which is a
root of unity of order dividing the order of h. We then write Eλ instead of Eρ and
Eλ(t) is thus nothing but the λ-eigenspace of h∗ acting on T ∗

t T � Q(X). If one further
assumes that the eigenvalue λ is simple, one is lead to the important one-dimensional
case. One-dimensional eigenloci, we call eigendiscs in Teichmüller space; an eigencurve is
the projection of an eigendisc to moduli space, provided this projection is locally closed,
in which case it is an algebraic curve. From now on we will restrict ourselves to the case
of cyclic groups for simplicity.

So we consider a point t = (X, f) ∈ T , a finite-order diffeomorphism h, the linearized
action of h∗ on Q(X) and an eigenvalue λ of h∗. Letting r > 1 denote the order of h, λ is
an rth root of unity and we assume that λ �= 1. We do not assume that λ is simple, thus
slightly abusing the general Definition 5.2 in order to connect more obviously with §§ 2–4.
We simply pick qλ ∈ Eλ ⊂ Q(X), that is a λ-eigenvector of h∗. We are then clearly back
to the setting of § 2. The data (t, qλ) ∈ T ∗T define a geodesic disc Dλ = Dλ(t) which
is an eigendisc. In case the projection π(Dλ) ⊂ M of the eigendisc Dλ is a curve, we
denote it by Cλ. There are only preciously few known examples, which originally arose
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from the study of rational polygonal billiards and until very recently were all essentially
patterned after the original example of Veech in [69], to which we will return shortly. In
general the curve Cλ is determined by the pair (X, qλ) or else by X and the flat structure
uλ = u(qλ) associated with qλ as in § 2.4. Such curves X with these flat structures are
often called Veech curves in a dynamical systems context.

The curve Cλ can be written as Cλ = Γ (Dλ)\Dλ, with the exact sequence (2.7) of
§ 2.5, which we here rewrite as

1 → Hλ → S(Dλ) → Γ (Dλ) → 1. (5.5)

Beware of the unfortunate clash of notation with respect to § 2.5. The finite kernel Hλ

records the fact that Cλ may be included in a special locus: in fact Cλ ⊂ M(Hλ);
generically Hλ = {1} and M(Hλ) = M({1}) = M. Since λ �= 1, Γ (Dλ) ⊂ Γ contains
H = 〈h〉 and H ∩ Hλ = {1}. Now h acts on Dλ isometrically for the Teichmüller metric,
which coincides with the Poincaré metric when restricted to Dλ because it is a geodesic
disc. Since h has finite order, it implies that h acts as a rotation of order r (the order
of λ) on the disc Dλ with centre t: in this cyclic one-dimensional case we get a copy
of the Poincaré disc with the action of a finite-order rotation. The group Γ (Dλ), which
can also be regarded as a subgroup of PSL2(R), has torsion by definition and is usually
not commensurable with PSL2(Z), contrary to what happens with the origamis of § 4.
In that sense origamis and eigencurves are very different, although they do not describe
strictly disjoint sets of geodesic curves in the moduli spaces. But they share the property
of being defined over number fields, assuming in the case of eigencurves that X = π(t)
is itself defined over a number field (cf. Proposition 5.5).

As a final topic we now turn to billiards and the identification of algebraic and geodesic
eigenloci (in fact eigencurves) in a very special case. We need to recall the first inputs on
rational polygonal billiards. Generally speaking a ‘billiard’ consists of a plane bounded
domain with piecewise smooth boundary inside which one studies the motion of a point (a
dimensionless ball) subject only to the usual laws of reflection on the boundary. Billiards
in general have been a central object of study in dynamical systems for more than a
century now, ever since Poincaré and Hadamard in particular singled them out as model
systems exhibiting some general phenomena in a particularly pure and striking way. For
a general survey (of necessity very much incomplete) and references on billiards, we refer
to [67]. Billiards in polygons embody the parabolic (in the sense of dynamical systems)
side of the question. Because conics have their whims, we will actually use this parabolic
aspect in order to study the elliptic aspects of the modular groups by means of hyperbolic
curves.

Specializing again we now focus on billiards in rational polygons. For our immediate
purposes it is enough to define a rational polygon as a convex polygon P whose angles are
commensurable with π. Following [67, § 3.4], to which we refer for details (among many
other places), we let n be the number of sides and πmi/ni be the values of the angles
(with mi and ni coprime). Using a geometric construction which has been rediscovered
again and again since the thirties, one can build a compact Riemann surface by pasting
together 2N copies of P , where N is the least common multiple of the ni. Roughly
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speaking one uses reflections in the sides of P for the gluing. Put slightly differently, let
D2N be the dihedral group generated by the reflections in lines through the origin of
the plane meeting at angle π/N . Upon reflection on the boundary, a trajectory inside P

changes direction according to the action of an element of D2N and this action of D2N

on the directions provides a rule for pasting the 2N copies of P . Viewing P as a domain
of the complex plane, one gets a Riemann surface X = X(P ), whose genus g = g(P ) can
be computed using Euler’s formula. To wit one finds

g(P ) = 1 + 1
2N

n∑
i=1

mi − 1
ni

. (5.6)

We assume from now on that g(P ) � 2, that is we exclude the four so-called integrable
cases, corresponding to linear flows on the torus. Let CN ⊂ D2N be the cyclic subgroup
of index 2 consisting of the orientation-preserving transformations: it is generated by the
rotation with angle 2π/N . The elements of CN translate into (complex) automorphisms of
X, whereas the other elements of D2N , corresponding to reflections, provide real analytic,
antiholomorphic transformations. The quotient surface X/CN has genus 0. In fact it is
obtained by sewing two copies of P with opposite orientations. It follows that X/CN is
a sphere with n unordered marked points, forming a real divisor.

One then notices that the plane polygon P comes equipped with the natural differential
form ω0 = dz and thus the quadratic form q0 = ω2

0 = dz2. Considering again 2N copies
of P with ω0 and q0 on each copy, these glue into ω and q on X. We get a pair (X, q)
and a geodesic disc D = D(P ) ⊂ Tg, after fixing a marking f : Sg → X; this choice plays
no role in the sequel. Moreover, the automorphism group CN is generated by a rotation
R with R(z) = ρz, ρ an Nth root of unity (which it is best not to fix at this point). It
corresponds to a rotation Λ of the disc D ⊂ Tg given by Λ(t) = λt, where the centre t = 0
is the point (X, f) ∈ Tg. Recalling how q is constructed from q0 one finds that λ = ρ2.

We summarize the above in the following statement, in which we slightly modify the
notation in order to tune it to that of the last subsections.

Proposition 5.7. A plane rational n-gon P with angles πmi/ni (i = 1, . . . , n) defines a
compact Riemann surface X = X(P ) of genus g = g(P ) as in (5.6) above. It has a cyclic
group of automorphisms H of order N = l.c.m.(ni) and the quotient surface X/H is a
sphere marked with n unlabelled points which span a real divisor.

The Riemann surface X comes equipped with a holomorphic quadratic differential q.
After choosing a marking f , the point (X, f, q) ∈ T ∗Tg defines a geodesic disc D =
D(P ) ⊂ Tg which is an eigendisc for H; the latter group acts on D via rotations of order
N and centre (X, f) ∈ Tg.

We note that there are obvious points of similarity but also of difference with Propo-
sition 3.2 for origamis. The data are Euclidean, not merely topological or combinatorial
and there is no guarantee that D descends to an algebraic (much less arithmetic) curve
in Mg. It may very well be that the stabilizer of D in Γg is trivial. Although Propo-
sition 5.7 contains nothing new technically speaking, looking at the situation from this
viewpoint may be helpful, as illustrated below. In short the above statement underlines
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that rational polygons do provide an ample source of geodesic eigendiscs, which, how-
ever, are of a particular kind, especially in that the quotient surface has genus 0. In
other words, the centre of the disc can be seen as a point of a Hurwitz space of the
simplest kind, classifying Galois covers of spheres with n marked points which are cyclic
of order N . The latter space is a finite cover of M0,[n]. It might be interesting to let these
structures, or equivalently (see, for example, [38]) spin curves, come into play.

Proposition 5.7 has nothing to do in principle with dynamical systems in general and
billiards in particular. That this type of geometry has dynamical relevance was realized
in the early 1980s by several people (among whom were S. Kerchkoff, Masur, J. Smillie
and Veech) in the wake of Thurston’s program. There exists at present a large body
of literature on the subject; Veech was the first to examine (in [69]) the algebraization
problem in that setting, that is in the present terms inquire whether the disc D(P ) in
Proposition 5.7 projects to an algebraic curve in moduli space. He also demonstrated
the dynamical relevance of that property. Among the many papers on the subject, we
refer to [69], [71], [28], [31], [72], [39], [25] and [52] for recent and less recent results,
various viewpoints, condensed surveys and further references. Until very recently, very
few algebraizable geodesic discs were known outside of those coming from origamis, and
the examples were essentially patterned after the main result of [69], to which we will
shortly return. The situation may be changing with the recent papers [49] and [8].

The examples of algebraizable geodesic discs known to date are not explicit in the sense
that the curves are shown to exist but not explicitly exhibited. The purpose of our next
and last proposition is precisely to explicitly identify the eigencurves whose existence was
proved in [69]. We thus turn to the case where the polygon P is a triangle and at first very
specifically to the case of an isosceles triangle Tn with angles (π/n, π/n, (n−2)π/n) and we
assume for simplicity that n > 3 is odd, n = 2g+1; in particular Tn is an obtuse triangle.
It is not difficult to confirm (see [69, § 8]) that the curve Xn = X(Tn) is the hyperelliptic
curve of genus g with affine equation y2 = xn − 1. The gluing actually goes as follows:
consider the regular n-gon Pn with vertices at the nth roots of unity; let en = exp(2iπ/n)
and Sn the triangle with vertices (0, 1, en). Now reflect Sn in its short side (1, en), getting
a reflected copy S∗

n of Sn; let Rn = Sn ∪ S∗
n be the resulting quadrilateral. Cutting Rn

along its long diagonal one gets two copies of Tn. Now the curve Xn can be seen as two
copies of Pn which are exchanged by the hyperelliptic involution, acting on the complex
plane via (z �→ −z). The construction above shows that it can also be obtained by gluing
2n copies of Tn, in accordance with Proposition 5.7 since here N = n. The curve Xn has an
obvious automorphism of order n (= N), the quotient being a sphere with three marked
points. The form dz (respectively, the quadratic form dz2) on the complex plane (or on
Tn) lifts to the form ω = dx/y on Xn (respectively, the quadratic form q = (dx/y)2).
Veech proved (see [69, Theorem 1.1]) that the geodesic disc Dn = D(Xn, q) defined by
(Xn, q) (plus an unimportant arbitrary marking) is algebraizable; in fact he explicitly
computed its stabilizer in Γg, which turns out to be a triangle group of type ∆(2, n,∞).
This gives rise to an algebraic curve Cn ⊂ Mg; in fact Cn is contained in the hyperelliptic
locus Hg because the quadratic form q = (dx/y)2 = dx2/y2 = dx2/(xn − 1) is the pull
back of a form in genus 0 by the hyperelliptic involution. One can thus also consider
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Cn as a curve in M0,[2g+2] = M0,[n+1], which we still denote by Cn (in order to avoid
confusion, our Xn is Veech’s Cn in his Theorem 1.1).

Proposition 5.8. The curve Cn viewed in M0,[n+1] coincides with the algebraic eigen-
curve described in Proposition 4.11; as a curve in Mg it is described by formula (4.7)
of § 4.

In order to prove this statement we use a powerful and deep property, namely rigidity
of the monodromy, which states that a non-constant map from a base curve B into a
stably compactified moduli space of curves of hyperbolic type (equivalently a non-trivial
stable fibration of B with smooth hyperbolic generic fibre) is entirely determined by its
monodromy representation (see, for example, [36] and § 6.2 below). We recall that the
very existence of such a map implies that the base B is itself of hyperbolic type. Here we
know by Veech’s main result that Cn is algebraic and the curve Ec in Proposition 4.11
is algebraic by definition. They both have a monodromy group which is triangular of
type ∆(2, n,∞) and we have to show that these groups coincide up to conjugacy. Both
curves contain the point in M0,[n+1] with automorphism γ of order n (the rotation of
angle 2π/n). We take this point as basepoint for the fundamental groups just as in
Proposition 4.11. Both groups contain the element γ and the monodromy group of Ec

contains the braid β appearing in the statement of Proposition 4.11. There remains
only to show that β ∈ π1(Cn); actually it is enough to prove that π1(Cn) contains an
element which is a conjugate of β±1 by a power of γ. This makes it possible to base the
fundamental groups as we did, without worrying about the fact that it is an orbifold
point because the attached automorphism group is precisely generated by γ. The fact
that β appears in π1(Cn) is actually shown in §§ 5, 7 of [69] and this concludes the proof
of the proposition. For the convenience of the reader, however, and for the purpose of
comparison with Proposition 4.11, we sketch the picture obtained in [69] and illustrate
it in Figure 3 for n = 5 (g = 2), to be compared with Figure 1 in § 4.

Using the same notation as above, the curve Xn (n = 2g + 1) can be constructed by
gluing two copies P and Q of the regular n-gon; Q is a copy of P rotated by π, that is
obtained by applying the map z �→ −z on the complex plane and sides are glued using
parallel translations (see [69, § 4] for details). The holomorphic quadratic differential q on
the hyperelliptic curve Xn is the lift of an integrable quadratic differential on the plane,
whose singular points are the zeros of y, in other words the Weierstrass points of Xn.
There are n+1 = 2g+2 such points, given by the n midpoints of the edges of P (and Q),
which shape another regular n-gon, and the vertices of P (and Q), which are all identified
because n is odd. The vertical foliation associated with q cuts Xn into g cylinders of closed
leaves V1, . . . , Vg, whose sides pass through the vertices of P and Q. A key point is that
the moduli of these cylinders, namely the ratios of their heights to their widths, are all
equal (see (5.2) in [69]). One can explicitly define the Dehn twists associated with these
cylinders by specifying that the boundaries of the cylinders are fixed, increasing linearly
the twist from 0 to 2π between the boundaries. Because the moduli coincide, these glue
into an affine diffeomorphism which is thus an element of π1(Cn). It is in fact no other
than β. Indeed one can number the Weierstrass points as in Figure 3 (but for any n),
that is counterclockwise starting from the vertical boundary of the leftmost cylinder,
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plus the label n + 1 for the vertices of P and Q (which are all one and the same point).
Then the affine diffeomorphism constructed above, that is the product of the Dehn twists
on the cylinders, permutes the points i and n + 2 − i (i = 2, . . . , g + 1) leaving 1 and
n + 1 = 2g + 2 fixed and it acts precisely like β.

Proposition 5.8 implies in particular that the rational curve described by (4.5) (or
(4.7)) in § 4 with ξ = ζ−1 is geodesic and Cn gives an explicit example of a geodesic
(algebraic) eigencurve. Treating the case of an even n requires only minor changes, mostly
erasing the point ∞ in (4.5), since it is unramified for the hyperelliptic involution of the
curve (4.7). The rest goes through essentially literally, but with a triangular group of
different type. We have preferred to stick to the case n odd for simplicity and because a
unified treatment tends to obscure the notation.

We remark that the curve C5 (giving rise to a curve in M2) can be described in another
(much more complicated) geometric way, originating in the work of G. Humbert [32] and
tying it with abelian varieties (here Jacobians) with real multiplication, hence with the
subject matter of [49]. It does not seem that this description can easily be extended to
higher values of n. We refer the reader to [73] and [2] for recent sources of information.

Several papers have been devoted to the study of rational triangles (see in particular
[31,39,72]). In the last of these papers the authors achieve a complete classification, that
is they give a list of all the cases in which the disc associated with a rational triangle
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as in Proposition 5.7 projects to an algebraic curve in moduli space. It is interesting to
note that looking at a triangle with angles (kπ/n, kπ/n, (n − 2k)π/n) with its canonical
(quadratic) differential turns out to be equivalent to looking at Xn as above (coming
from Tn which is the case k = 1) with another differential, namely ωk = xk−1 dx/y (and
qk = ω2

k). We refer to [31] for a detailed exposition and proof. These triangles do not give
rise, for k > 1, to eigencurves. As mentioned already it would be interesting to investigate
the situation more closely, comparing in particular with the algebraic eigencurves in (4.5)
of § 4, which are by definition algebraic and whose lifts to Teichmüller space are tangent
to the eigendiscs corresponding to the (Xn, qk), letting ξ and k vary.

More generally one could try and generalize or apply the above to various situations,
including those which are found in the literature on billiards; for instance one could
investigate from this viewpoint the case of regular polygons, as treated in [71], which
is closely related to that of triangles. One should also notice that prior to [49] and
[8], all monodromy groups that had been computed were triangular. Those connected
with origamis are commensurable with PSL2(Z) � ∆(2, 3,∞) and are thus not terribly
different from our present viewpoint.

We briefly return to (hypothetical) arithmetic, merely to remark that ‘everything’
that is algebraic here is actually arithmetic and indeed defined over Qab. These genus 0
objects should perhaps lend themselves to the construction of an elliptic lego, which
moreover would be essentially cyclotomic in a genus 0 setting. How to implement this
vague suggestion remains wholly to be seen (but see [46] for a start).

6. Conclusion in the form of an introduction

In this final section we will try to explain in plain words bits and pieces of what we
are after, in part for the simple reason that if a road in that direction does exist, we
surely stand only at its very beginning. Out of necessity we will be sketchy and will not
even try to recall the definitions and properties of the objects we mention, as this would
occupy far too much space. We also take full advantage of modern reference databases:
recalling a theme and the name of an author makes it easy nowadays to retrieve the
relevant references.

6.1. Glimpses of Grothendieck–Teichmüller theory

Grothendieck–Teichmüller theory was conceived or dreamt of by Grothendieck in his
Esquisse d’un programme (now in [63]), following his Longue marche à travers la théorie
de Galois. A few seminal papers, especially [12] and [33], started giving flesh to the
vision. The theory is still very much in flux, so that there does not and probably cannot
exist a satisfying global survey text. Moreover, there are several possible versions which
are connected in subtle ways, for instance by all kinds of linearization processes. We
will be concerned here with the version which we feel is closest to the spirit of the
Esquisse, an assertion which should clearly be taken as nothing more than a personal
opinion. It may perhaps be termed ‘nonlinear’, as opposed to ‘motivic’, although such
terminology would deserve ample explanation. At any rate we refer to [60], [43], the
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introduction to [30], the more recent [42] and references therein for very imperfect and
partial accounts. The papers [34] and [26] survey different but hopefully converging paths
and the monograph [1] explores a related landscape.

Getting started in a nutshell, skipping the necessary motivating questions, we consider
the collection of fine moduli spaces Mg,n for varying hyperbolic types (g, n), together
with their stable completions M̄g,n. These objects were constructed in [11] as algebraic
stacks over Z but we confine attention to the generic fibre and view them as regular
Q-stacks. They fit together into a category or modular tower which we denote by M̄.

This means that one can define smooth morphisms of geometric origin between the
Mg,n. There are actually several (existing or not yet existing) versions, the simplest
and most classical being derived from the stable stratification already briefly mentioned
in §§ 2.6 and 3.2 above; the point is that the divisor at infinity M̄g,n \ Mg,n is made
of products of Mg′,n′ of lower dimensions, up to finite morphisms. These give rise to
‘natural’ morphisms, also-called Knudsen or ‘clutching’ morphisms (see the papers by
F. Knudsen). By their very definition these morphisms ‘live at infinity’. One can also
add the point-erasing morphisms, that is the fibration Mg,n+1 → Mg,n defining the
universal curve over Mg,n and the corresponding universal monodromy map. Finally,
one can take the action of the permutation groups into account and replace the Mg,n

by the Mg,[n] or variants thereof. The long and the short is that the above defines,
modulo ‘technical details’, a version of M̄ which essentially lives at infinity and is entirely
defined over Q. All the morphisms mentioned above are Q-morphisms, essentially because
they feature algebraic counterparts of familiar topological gestures: pasting, pinching,
erasing, etc. It is this version of the modular tower M̄ which gives rise to the ‘lego at
infinity’ (see [30] and [55] in this context). In the case of genus 0 as initiated in [12],
it is sometimes referred to as the ‘geometry of associativity’ because it was Drinfeld’s
groundbreaking idea to, so to speak, not take associativity for granted (related themes:
quasi-Hopf algebras, braided categories, McLane coherence relations, universal scattering
matrix, Yang–Baxter equations, gravity operad, etc.).

Not much is known to date beyond this version of the modular tower which again
(a) lives at infinity, and (b) is defined over Q. In fact (a) and (b) are far from indepen-
dent and it may well be that it is essentially the largest possible tower which is entirely
defined over Q. At any rate and for the time being, having built a more or less expensive
version of M̄ over Q, one applies the geometric fundamental group functor πgeom

1 , from
the category (Q-Stacks) of Q-stacks with Q-morphisms to the category (Grps) of profinite
groups with continuous outer homomorphisms. In other words, if X is a Q-stack, one sets
πgeom

1 (X ) = π1(X ⊗ Q̄), which is a finitely generated profinite group. The theory of the
fundamental group for stacks parallels, but with interesting differences, Grothendieck’s
classical [22] theory for schemes (see [57] and [45]); for the specific case of the moduli
stacks of curves, which are classifying spaces, we also refer to the contribution of T. Oda
in [63], which uses simplicial techniques. An extended version of the Lefschetz princi-
ple implies that, considering Q̄ as a subfield of C, πgeom

1 (X ) is canonically isomorphic
to the profinite completion of πorb

1 (X an), the orbifold fundamental group (as defined
by Thurston) of the analytification of X viewed as a complex orbifold. In particular,
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πgeom
1 (Mg,n) = Γg,n, where Γg,n denotes the profinite Teichmüller modular group. Note

that in this section all groups are profinite by default. Regarding πgeom
1 as a covariant

functor from (Q-Stacks) to (Grps) we can apply it to the subcategory M̄, getting the
Teichmüller tower T = πgeom

1 (M̄) = π1(M̄ ⊗ Q̄). It is thus no more and no less than
the collection of the Γg,n with varying type and morphisms coming functorially from the
morphisms in M̄. The name ‘Teichmüller tower’ for a tower of groups may not be so
appropriate but comes directly from the Esquisse; it would be more consistent to denote
it by Γ

¯
, but there are already too many Gammas around.

The next step consists of considering the group Out(πgeom
1 ), the outer automorphism

group of the functor πgeom
1 , meaning the group of automorphisms modulo inner auto-

morphisms on the left-hand side, i.e. in (Grps). Let GQ denote as usual the absolute
Galois group of Q. By a fairly easy extension to stacks of Grothendieck’s short exact
sequence [22, § IX.6], we find a map GQ → Out(πgeom

1 ). This map is an injection, i.e. the
outer Galois action is faithful as soon as we consider a big enough version of (Q-Stacks).
We were a little fuzzy above as to which geometric objects we wish to include but Belyi’s
theorem easily implies something much more drastic: as soon as (Q-Stacks) contains the
single object P1

Q \ {0, 1,∞}, the action is faithful and the above map is an injection. Note
that P1

Q \ {0, 1,∞} can be seen as the generic fibre of P1
Z \ {0, 1,∞} (indeed) and the lat-

ter can be characterized as the only smooth hyperbolic curve over Z; this may serve to
illustrate, although certainly not ‘explain’, the amazing universality of this object. We
will sometimes write P∗ = P1

Q \ {0, 1,∞}. Before going back to the modular tower, we
mention an important recent and as yet unpublished result of Pop. Not only the above
map is an injection, but under rather mild conditions it is an isomorphism! This means
the following: consider C ⊂ (Q-Stacks) a full subcategory and the restriction of πgeom

1 (C)
to C. We still get a natural map GQ → Out(πgeom

1 (C)) which is still an injection under
very mild conditions (e.g. if C contains P∗). Moreover, and somewhat informally, as C gets
smaller, the target gets larger. Pop’s result says that actually, even for a rather ‘small’
sample of geometric objects C, the above map is an isomorphism. This is true for instance
if one takes for C the quasi-projective varieties which are the complements in the pro-
jective plane of (not necessarily irreducible) curves; one can actually let C decrease still
further. The upshot is that taking as the source category a (rather small) subcategory C of
the quasi-projective Q-schemes, one gets a natural isomorphism: GQ

∼−→ Out(πgeom
1 (C)).

This is a striking and beautiful result, the first which connects a purely arithmetic object
(on the left-hand side) to a purely geometric object (on the right-hand side). We note
for further reference that the right-hand side is really unknown, apart from being proved
to be isomorphic to the left-hand side.

Now let us go back to the modular tower M̄ and consider as above the group
Out(πgeom

1 (M̄)) = Out(T ) where the outer automorphisms are equivariant with respect
to the morphisms in T . One still has GQ ⊂ Out(T ) since M0,4 � P∗. In the colourful
words of the Esquisse: ‘l’action est déjà fidèle au premier étage’. Moreover, the action of
GQ enjoys a well-known property: it preserves inertia groups and the inertia groups in
Γg,n associated with the components of the divisors at infinity of the stable completion
of Mg,n are nothing but Dehn twists. Concrete conclusion: the action of GQ on the Γg,n
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maps Dehn twists to conjugates of powers of themselves; in other words, they preserve
the conjugacy classes of the procyclic groups they generate. This is folk wisdom but
there is actually a lot more to say on the subject of inertia, in particular stack inertia;
Proposition 4.6 and the short discussion above it provide a foretaste. Sticking here to the
inertia groups classically (see especially [23]) associated with a divisor with (strict) nor-
mal crossings, we let IΓ = Out∗(T ) ⊂ Out(T ) denote the subgroup of inertia-preserving
outer automorphisms in that sense. This is by definition the Grothendieck–Teichmüller
group, at least in its present, all genera, profinite version, and for the modular tower M̄
we outlined above.

As a first concrete approach, and in order to find ‘coordinates’ for IΓ, one notes that

IΓ = Out∗(T ) ⊂ Out∗(πgeom
1 (M0,4)) = Out∗(πgeom

1 (P∗))

and
πgeom

1 (P∗) = π1(P∗ ⊗ C) = π1(C \ {0, 1}) = F̂2,

the profinite completion of the free group on two generators, since obviously

πtop
1 (C \ {0, 1}) � F2.

We thus get IΓ ⊂ Out∗(F̂2) and the latter group can be parametrized by pairs (λ, F ) ⊂
Ẑ∗ × F̂ ′

2 where F̂ ′
2 denotes the derived subgroup of F̂2 (see any paper on the subject,

starting with [33] and [12]). We also note that the group IΓ is itself naturally endowed
with the profinite topology because the Γg,n are topologically finitely generated (hence
characteristic sugbroups form a cofinal sequence). The amazing point, foreshadowed in
the Esquisse, is that it is ‘computable’: it is given as a subgroup of Out∗(F̂2) by a
small number of relations (say four) which translate into equations on the pair (λ, F ).
In fact IΓ has been computed in [30] and [55], adding one, perhaps not independent,
relation to the genus 0 group introduced in [12]. Note that the term ‘relation’ which is
commonly used here should not be misleading; IΓ is given as a subgroup, not a quotient
of Out∗(F̂2). Essentially by definition there is a natural inclusion GQ ⊂ IΓ. Whether or
not this inclusion is strict is a main driving question of this young field. Note that the
situation is in some sense opposite to that of Pop’s result quoted above. Throwing in more,
or say different, objects he proves the remarkable isomorphism: GQ � Out(πgeom

1 (C)),
giving in principle a geometric characterization of the arithmetic Galois group GQ. Yet
as mentioned above we know nothing concrete about the right-hand side, so it does not
immediately help study the left-hand side. On the other hand, using the Teichmüller
tower as above, we get that GQ ⊂ IΓ = Out∗(T ). Here in some sense we are able to
‘compute’ the right-hand side, but we do not know whether or not the inclusion is an
isomorphism.

Although it took quite some time to complete the picture sketched above, it should
still be considered as a rather primitive stage of the theory. True we have used moduli
spaces of curves of all finite types, especially all genera, and we have used the full profi-
nite completions, two important positive features. But we have used essentially only the
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structure of the modular tower at infinity. So we get what can be called a (Grothendieck–
Teichmüller) lego at infinity or parabolic lego to take up the terminology of the classifi-
cation of diffeomorphisms. From this point of view, we are after a different and probably
much more subtle sort of lego, connected in particular with the automorphisms of curves
(so that it could be termed elliptic lego) which is actually the only one mentioned in the
Esquisse and would encode a lot more arithmetic than the one at infinity. The present
paper hopefully points to some relevant objects. In particular, one has to enrich the mod-
ular tower in a drastic way, probably throwing in morphisms which are defined over Q̄,
not only over Q. Each such morphism is actually defined over a finite extension K of Q
because everything is finitely presented, and leads to an equivariant action of GK , that is
an open subgroup of GQ which, however, effectively depends on the particular morphism
one is looking at. A more general way to put it is to say that one should perhaps think
in terms of outer actions modulo coverings, both on the arithmetic and the geometric
sides. For example, Facts 4.4 and 4.5 above say that open subgroups of Teichmüller mod-
ular groups appear as subquotients of such. It may happen that the open subgroup is
in fact the full group (the cover in Fact 4.5 has degree 1) and it may happen that the
subquotient is a subgroup (sequence (4.1) after Fact 4.4 splits). Conditions for this to
happen are given in [61,62] where simple cases of such situations are explored, which give
rise to interesting compatibility conditions and relations. But in general it seems that
‘anything is possible’; for instance the extension class of (4.1) is defined by a geometric
cohomology class which may or may not vanish (cf. [45]) and special loci can probably
be defined over any finite extension (i.e. covering) of Q. At any rate, they give, up to
finite covering (and normalization) copies of moduli spaces of curves inside such spaces,
which is quite relevant for the theory (see [61]). Higher-dimensional algebraic eigenloci
may also prove interesting objects in this respect. In the next and last subsection, how-
ever, we will concentrate on the potential relevance of one-dimensional objects, namely
curves.

6.2. Mapping curves into moduli spaces of curves

Like anabelian geometry, Grothendieck–Teichmüller theory is concerned in the first
place with fundamental groups and the arithmetic Galois action on their geometric part.
Equivalently it deals with relative (or augmented) fundamental groups obtained by apply-
ing the fundamental group functor to structure morphisms, e.g. Mg,n → Spec(Q). This
already tells us what the main characters should be, namely geometric objects which
are effectively determined by their fundamental groups, roughly speaking points, curves,
surfaces and classifying spaces. Indeed Lefschetz hyperplane section theorem precisely
tells us that we cannot learn much in general from higher-dimensional objects by look-
ing at the fundamental group only, except if these objects enjoy very special properties
with respect to this invariant; the simplest and main such property consists of being a
K(π, 1)-space.

Let us detail the above somewhat. We leave aside here the case of points, that is the
birational side of the theory, which in anabelian geometry has given rise to a lot of activity
(from J. Neukirch to Pop, Mochizuki and others). Curves enter in more than one way
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as should be plain already. In particular, P1
Q \ {0, 1,∞} � M0,4 lies at the crossroads of

hyperbolic curves and moduli spaces thereof, in a way akin to elliptic curves for curves
and abelian varieties. Moreover, Belyi’s theorem states that any hyperbolic arithmetic
curve has an open set which is a finite étale covering of that object. This connects with
the fact that curves enter through their moduli spaces, which is a key point and a defining
original feature of Grothendieck’s initial vision. The Mg,n are orbifold K(π, 1)-spaces,
that is their orbifold universal covering spaces, alias Teichmüller spaces, are contractible
(in cohomological terms they are called ‘rationally’ K(π, 1)). We remark that as partly
demonstrated above, these spaces also contain essentially equivalent information to that
conveyed by some closely related objects, Hurwitz spaces among them.

Now what about the last kind of objects in the list, namely surfaces? We will confine
attention to those surfaces S, say connected smooth projective, which admit a stable
fibration to a curve. In other words, there is a curve X with smooth projective completion
X̄ and a proper flat morphism f : S → X̄ such that for any p ∈ X a (closed geometric)
point, f−1(p) is a smooth hyperbolic curve of fixed type (g, n); above the finitely many
exceptional points, the fibre is a stable curve, that is it has only normal crossing self-
intersections (plus the stability condition). Such an object determines, and indeed is
equivalent to, a classifying map φ̄ : X̄ → M̄g,n. The points with non-smooth fibre land
on the divisor at infinity and deleting these points from the basis, we recover a map
φ : X → Mg,n. Of course the fibration f , if it exists at all, is not determined by S

and in any case it would be interesting to know how much information exactly we leave
aside by confining attention to this class of surfaces. We just remark that blowing up
a point on a surface does not alter the fundamental group, whereas applying the stable
reduction theorem usually involves a base change which affects the fundamental group
in a tractable way. The above may, or may not, have convinced the reader that it is at
least natural to study maps from curves into moduli spaces of curves.

The fibration is locally trivial if and only if the base curve maps to a point, which is not
especially interesting from our viewpoint, so we start from a non-constant (equivalently,
generically injective) map φ : X → Mg,n. Working over C with the analytic topology, it
determines a topological monodromy representation:

φtop
∗ = µtop

φ : πtop
1 (Xan) → πorb

1 (Man
g,n) = Γ top

g,n . (6.1)

We apologize for the cumbersome and far from ideal notation here and in what follows;
it just points to the fact that it is useful to keep the various structures in mind. To
summarize again: this is the complex analytic or topological setting; X is regarded as a
Riemann surface, Mg,n as a complex orbifold, πtop

1 is the discrete or topological funda-
mental group and idem on the right-hand side, where Γ top

g,n is just the discrete modular
or mapping class group.

Rewriting the above viewing X as a C-scheme XC and Mg,n as a C-stack Mg,n,C

(= Mg,n,Q ⊗ C) amounts to taking profinite completions of the fundamental groups:
π1(XC) = πgeom

1 (XC) is the profinite completion of πtop
1 (X), idem for Γg,n and Γ top

g,n . We
get the map

φ∗ = µφ : πgeom
1 (X) → πgeom

1 (Mg,n) = π1(Mg,n,C) = Γg,n. (6̂.1)
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This all may look rather boring and formal but the fact is that there is a very serious
rub. Assume for ease of notation that the topological monodromy map µtop

φ is injective
(if not, divide by the kernel) and recall that the modular groups Γg,n are residually
finite: in other words the completion map Γ top

g,n → Γg,n is injective. So the composed map
πtop

1 (X) → Γg,n is injective. The geometric monodromy µφ is obtained by completing this
map, using the universal property of the profinite completion. But there is no guarantee
that the resulting map µφ is injective. It could be that µφ actually factors through a
quotient of πgeom(X), which, however, has to be large enough so that πtop

1 (X) injects
into it. In other words, the topology induced by Γg,n on πtop

1 (X) may a priori very well
be a quotient of the profinite topology. Geometric translation: is it true that any covering
of X can be dominated by the pull-back of a covering of Mg,n via φ? This is equivalent
to proving the injectivity of µφ and it seems very hard, because of our poor knowledge
of the category of coverings of Mg,n, in other words of the structure of the modular
groups. The conclusion is that when we consider surface groups inside modular groups,
it may be that the topologies on the completions do not coincide and that we will lose
information when acting equivariantly with the arithmetic Galois group. One is tempted
to conjecture that this does not happen but it is certainly good to keep this difficulty in
mind. Note that it does happen, and in a most drastic way, if for instance one replaces
the moduli of curves by moduli of polarized abelian varieties, whose fundamental groups
displays rigidity in the form of the arithmetic congruence subgroup property.

Return to the curve X and the map φ and assume they are both defined over Q̄ ⊂ C,
that is in fact over some number field K. We still get the geometric monodromy µφ,
working over Q̄, or equivalently over C. But we also get an action of the Galois group
GK = Gal(Q̄/K) on πgeom

1 (X) and Γg,n which is φ-equivariant, that is commute with
µφ = φ∗. Here one can as usual either be careful with basepoints or just think in terms
of outer action, moding out by inner automorphisms. We choose the second option for
simplicity and because we never mentioned basepoints, but the first one is also avail-
able. Finally, one can of course try and study the action of the finite group Gal(K/Q)
(assume K/Q Galois) on the situation, mapping φ and perhaps X to different morphisms
and perhaps different curves. Origamis provide a concrete class of examples, and so do
arithmetic eigenloci (see [53] for a first case study).

By definition we have an action of the Grothendieck–Teichmüller group IΓ on the
Teichmüller tower, that is a coherent action on the groups Γg,n. On the other hand,
Belyi’s result says that by suitably puncturing an arithmetic curve X, we can realize the
punctured curve X̌, that is a dense open subset of X, as an unramified covering of P∗.
Now IΓ is a subgroup of Out∗(πgeom

1 (P∗)), so an open subgroup of it acts on πgeom
1 (X̌);

moreover, πgeom
1 (X) is the quotient of πgeom

1 (X̌) obtained by annihilating the inertia
associated with the divisor X \ X̌, which sits over the points (0, 1,∞) in the covering
X̌/P∗. Since IΓ is inertia preserving the action is compatible with that quotient. This
is all very well, but essentially useless as is. The point is that there is nothing natural
(functorial) in the above construction; one has to ‘pick a Belyi function’, and there is just
no guarantee that these various actions are coherent (they are indeed, when restricting
to the Galois action!). By mapping curves into moduli spaces of curves we are at least
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beginning to see an interplay between curves and their moduli spaces. Notwithstand-
ing the difficulty mentioned above about induced topologies, we find copies of geometric
fundamental groups of curves inside the modular groups and IΓ by definition acts coher-
ently on the latter groups. Moreover, if the image φ(X) ⊂ Mg,n happens to be geodesic
for the Teichmüller metric (switching to a complex analytic setting), the plot thickens
because of Proposition 2.4 above, which enables one to view the Fuchsian group uni-
formizing X inside the Teichmüller modular group, leading to the picture described in
Proposition 2.10. Again origamis provide a particularly simple and attractive class of
examples.

Let us recall a few relevant and perhaps helpful geometric properties before closing.
First and only for the record, we recall that a lot of geometric work has been devoted
to finding complete curves and higher-dimensional complete varieties inside the moduli
spaces of curves. Here the curves and higher-dimensional objects we contemplate are not
complete and it is not a problem to find a plentiful of them; the problems and interest
lie elsewhere. Now at least two fundamental results may be relevant in our context: first,
under the assumptions above, given the curve X and the hyperbolic type (g, n), the non-
constant map φ is entirely determined by its topological monodromy φtop

∗ = µtop
φ ; second,

still fixing X up to isomorphism and the type (g, n), there are only finitely many non-
constant maps φ : X → Mg,n. The second assertion is the celebrated Parshin–Arakelov
theorem (ex-Shafarevich conjecture) and can be deduced from the first rigidity asser-
tion. In turn it implies the Manin–Grauert theorem (ex-Mordell’s conjecture for function
fields). There is of course a large body of literature devoted to this circle of ideas; see [36]
for a short analytic proof using Teichmüller spaces and [48] for an unusual survey, in the
spirit of ‘topological arithmetic’. Certainly both the rigidity and the finiteness assertions
are striking from the point of view we are trying to build up and we used the first prop-
erty in a crucial way in Proposition 5.8. Moreover, from the standpoint of Grothendieck–
Teichmüller theory, it would surely be interesting to have an algebraic treatment of the
rigidity of the monodromy available, perhaps in the style of [66]. Here ‘algebraic’ means
as usual that it should not involve Teichmüller space and distance in an essential way.
Rigidity of the monodromy is indeed in the spirit of Grothendieck’s question or program
in both Galois–Teichmüller theory (renamed ‘Grothendieck–Teichmüller’ in [12]) and
anabelian geometry: how much geometry is encoded in the fundamental group functor?
For results, references and a broad discussion of Galois and π1-rigidity, we refer to [54],
supplemented by [56] for more recent anabelian results.

So this is where we stand: again a wholly subjective and partial view. We have at
our disposal a modular tower based essentially on considerations ‘at infinity’ that is on
completely degenerate (Mumford) curves. It gives rise to a Teichmüller tower, a lego at
infinity and a version of the Grothendieck–Teichmüller group; all this already gives flesh
to Grothendieck’s ‘two levels’ principle (see in particular [30] and the use of ‘locality’
there). The above situation is over Q; by definition GQ ⊂ IΓ and equality remains obscure,
not even necessarily conjectural. We now finds that moduli spaces of curves are populated
by interesting subobjects, like special loci which themselves very much resemble the
moduli spaces, or more generally arithmetic eigenloci which have hardly been studied at
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all. All this is in general defined over Q̄ but not over Q. Some particular situations, like
special loci in genus 0, are typically cyclotomic, that is defined over Qab. Finally, we find
that it is also natural and important to map curves into their moduli spaces, and that
geodesicity and algebraicity or arithmeticity mix up in an odd and hitherto mysterious
way. Again this sort of thing is usually not defined over Q.

We would now like to go after some sort of lego, assuming it exists at all, that is try to
see if the information depends somehow on local data. Needless to say (using the familiar
preterition) all this should be interesting not only in terms of putative Grothendieck–
Teichmüller theory but also for the study of the Galois action in this highly non-abelian
framework. Because the situation is not defined over Q anymore, one is tempted to take
a small step and formalize it via the convenient notion of virtual group action. Given a
profinite group G, we say that it acts virtually on an object (a variety, a group, etc.)
if some open subgroup of G does. Of course one requires obvious coherence conditions,
like the fact that if two subgroups act, the actions coincide on the intersection. Note
that we use ‘virtual’ as group theorists do, that is for a property pertaining to an open
subgroup (e.g. ‘virtually torsion free’); arithmeticians use ‘potential’ for just the same
notion. We also conform to the motto that things should sometimes be considered up to
coverings. Clearly, this notion is of little or no interest when applied to just one object.
But as a perhaps more interesting example, let k be a field, k̄ an algebraic closure of k,
and consider (k̄-Var) the category of varieties over k̄. We can apply again the geometric
fundamental group functor πgeom

1 : (k̄-Var) → (Grps) and we find that the absolute Galois
group Gk = Gal(k̄/k) defines a virtual outer action on the image. The long and the short
is that given a situation, say, over Q̄, we may abstractly, that is without using the Galois
correspondence, apply πgeom

1 and define a virtual outer automorphism group (it is indeed
a group). This applies to a host of situations we have encountered above and we leave it
to the reader to think of others. In some of these situations at least, this virtual outer,
say inertia-preserving, automorphism group again deserves the namesake ‘Grothendieck–
Teichmüller’ and contains the absolute Galois group GQ. Moreover, it will usually also be
contained in the enormous Out∗(F̂2). So there are two questions in essentially opposite
directions, hopefully meeting at the midpoint of the tunnel. Is this group computable,
that is defined by finitely many relations, or better said equations? A lego, that is a
way of breaking information into local pieces, usually provides a positive answer. And is
the group equal to the Galois group? The theorem of Pop quoted above gives a positive
answer for a bona fide action in a setting where everything is defined over Q. We have
seen many ways of adding in maps between or into moduli spaces of curves. How much
do we need to add in order to ensure that the corresponding ‘Grothendieck–Teichmüller
group’ coincides with the Galois group?
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(Société Mathématique de France, 1999) (English translation published by American
Mathematical Society, Providence, RI, 2003).

8. K. Calta, Veech surfaces and complete periodicity in genus 2, J. Am. Math. Soc. 17
(2004), 871–908.
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