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Abstract
International relations scholarship concerns dyads, yet standard modeling approaches fail to adequately
capture the data generating process behind dyadic events and processes. As a result, they suffer from
biased coefficients and poorly calibrated standard errors. We show how a regression-based approach,
the Additive and Multiplicative Effects (AME) model, can be used to account for the inherent dependen-
cies in dyadic data and glean substantive insights in the interrelations between actors. First, we conduct a
simulation to highlight how the model captures dependencies and show that accounting for these pro-
cesses improves our ability to conduct inference on dyadic data. Second, we compare the AME model
to approaches used in three prominent studies from recent international relations scholarship. For each
study, we find that compared to AME, the modeling approach used performs notably worse at capturing
the data generating process. Further, conventional methods misstate the effect of key variables and the
uncertainty in these effects. Finally, AME outperforms standard approaches in terms of out-of-sample
fit. In sum, our work shows the consequences of failing to take the dependencies inherent to dyadic
data seriously. Most importantly, by better modeling the data generating process underlying political phe-
nomena, the AME framework improves scholars’ ability to conduct inferential analyses on dyadic data.

Keywords: Bayesian; latent variable models; multi-level and hierarchical models

1. Introduction
The aim of this study is to address how to estimate regression coefficients in a generalized linear
model (GLM) context when there are network dependencies in dyadic data. Specifically, we
discuss and evaluate how well the Additive and Multiplicative Effects (AME) model can be used
to account for the interdependencies underlying the data generating process of dyadic structures
(Hoff, 2005, 2008; Minhas et al., 2019) in International Relations data. The AME works by including
a set of parameters meant to capture network effects in the conditional mean equation of the GLM.

We focus on three types of network effects that can complicate dyadic analyses. First, depend-
encies may arise within a set of dyads if a particular actor is more likely to send or receive actions
such as conflict.1 Additionally, if the event of interest has a clear sender and receiver, we are likely
to observe dependencies within a dyad; for example, if a rebel group initiates a conflict against a

**Present address: Department of Political Science, University of California, Davis, USA
†Deceased
1In the case of undirected data where there is no clear sender or receiver, it is still essential to take into account the variance

in how active actors are in the system.
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government, the government will likely reciprocate that behavior. We capture these effects, often
referred to as first- and second-order dependencies, respectively, within the additive effects portion
of the model. Third-order dependencies capture relationships of transitivity, balance, and clusterabil-
ity between different dyads. For example, we can only understand why Poland was involved in a
dyadic conflict with Iraq in 2003 if we understand that the United States invaded Iraq in 2003
and that Poland often participates in US-led coalitions. The multiplicative effects capture these
sorts of dependencies, specifically, those that result because the specified model has not accounted
for a latent set of shared attributes that affect actors’ probability of interacting with one another.

We begin with a discussion of these dependencies and an introduction to the AME model.
Next, we conduct a simulation study to show how the AME approach can recover unbiased
and well-calibrated regression coefficients in the presence of network-based dependence. Last,
to highlight the utility of this approach, we apply the AME model to three recent studies in
the international relations (IR) literature. Our comparison reveals that accounting for observa-
tional dependence leads to results that, at times, differ from those found in the original study
as well as from the broader literature. Moreover, we demonstrate that the additional parameters
included by AME in the conditional mean equation of a typical GLM can offer substantive
insights that are often occluded by ignoring the interdependencies found in relational data.
Finally, we show that for each replication our network-based approach provides substantially
more accurate out-of-sample predictions than the models used in the original studies.

The AME approach advances statistical analysis of dyadic data by accounting for observational
dependence while allowing scholars to test the substantive effect of variables of interest. Thus, the
AME allows scholars to achieve a twofold goal: to continue to generate meaningful, substantive
insights about political phenomena without abandoning a regression-based approach, while at the
same time accounting for the data generating processes behind such events of interest. Perhaps
most importantly, the AME approach concentrates on the relational aspect of international rela-
tions through a statistical framework that is familiar to most scholars.

2. Dependencies in dyadic data
When modeling dyadic data, scholars typically employ a GLM estimated via maximum-
likelihood. This type of model is expressed via a stochastic and systematic component
(Pawitan, 2013). The stochastic component reflects our assumptions about the probability
distribution from which the data are generated: yij∼ P(Y | θij), with a probability density or
mass function, such as the normal, binomial, or poisson, and we assume that each dyad in the
sample is independently drawn from that particular distribution, given θij. The systematic com-
ponent characterizes the model for the parameters of that distribution and describes how θij var-
ies as a function of a set of nodal and dyadic covariates, Xij: uij = bTXij. A fundamental
assumption we make when applying this modeling technique is that given Xij and the parameters
of our distribution, each of the dyadic observations is conditionally independent. The importance
of this assumption becomes clearer in the process of estimating a GLM via maximum likelihood.
After having chosen a set of covariates and specifying a distribution, we construct the joint
density function over all dyads, for example:

P(yij, yik, . . . | uij, uik, . . . ) = P(yij | uij)× P(yik | uik)× . . .

P(Y | u) = ∏n×(n−1)
a=1 P(ya | ua)

(1)

We next convert the joint probability into a likelihood: L(u |Y) = ∏n×(n−1)
a=1 P(ya | ua).

We can then estimate the parameters by maximizing the likelihood, or, more typically, the
log-likelihood. However, the likelihood as defined above is only valid if we are able to make
the assumption that, for example, yij is independent of yji and yik given the set of covariates
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we specified, or the values of θij. Without the assumption of conditional observational independ-
ence the joint density function cannot be written in the way described above and a valid likeli-
hood does not exist. Accordingly, inferences drawn from misspecified models that ignore
potential interdependencies between dyadic observations are likely to have a number of issues,
including biased estimates of the effect of independent variables, uncalibrated confidence inter-
vals, and poor predictive performance. The importance of accounting for the underlying structure
of our data has been a lesson well understood, at least when it comes to time-series cross-sectional
data (TSCS) within political science (Beck and Katz, 1995; Beck et al., 1998). As a result, it is now
standard practice to take explicit steps to account for the complex data structures that emerge in
TSCS applications and the unobserved heterogeneity that they cause.

To uncover the underlying structure of relational data, it is helpful to restructure dyadic data in
the form of a matrix—often referred to as an adjacency matrix—as shown in Figure 1. Rows des-
ignate the senders of an event and columns the receivers. The cross-sections in this matrix
represent the actions that were sent by an actor in the row to those designated in the columns.
Thus yij designates an action y, such as a conflictual event or trade flow, that is sent from
actor i to actor j. In many applications, scholars are interested in studying undirected (i.e.,
symmetric) outcomes in which there is no clear sender or receiver, these types of outcomes
still can, and we argue should, be studied using the type of framework we discuss below.

Using the structure of an adjacency matrix, Figure 1 visualizes the types of first- and
second-order dependencies that can complicate the analysis of relational data in traditional

Figure 1. Nodal and dyadic dependencies in relational data.
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GLMs. The adjacency matrix on the top left highlights a particular row to illustrate that these
values may be more similar to each other than other values because each has a common sender.
Interactions involving a common sender also manifest heterogeneity in how active actors are
across the network when compared to each other. In most relational datasets (e.g., trade flows,
conflict, participation in international organizations, even networks derived from Twitter or
Facebook), we often find that there are some actors that are much more active than others
(Barabási and Réka, 1999). For example, in an analysis of international trade, certain countries
(e.g., China) export much larger volumes than other countries for a variety of structural, context-
ual, and idiosyncratic reasons. Unless one is able to develop a model that can account for the
variety of explanations that may play a role in determining why a particular actor is more active
than others, parameter estimates from standard statistical models will be biased.2

For similar reasons one also needs to take into account the dependence between observations
that share a common receiver. The bottom-left panel in Figure 1 illustrates that sender and
receiver type dependencies can also blend together. Specifically, actors who are more likely to
send ties in a network tend to also be more likely to receive them. As a result, the rows and
columns in an adjacency matrix are often correlated. For example, consider trade flows both
from and to many wealthy, developed countries. The bottom-right panel highlights a
second-order dependence, specifically, reciprocity. This is a dependency occurring within
dyads involving the same actors whereby values of yij and yji are correlated. The concept of reci-
procity has deep roots in the study of relations between states (Richardson, 1960; Keohane, 1989).

For most relational data, however, dependencies do not simply manifest at the nodal or dyadic
level. More often we find significant evidence of higher-order structures that result from depend-
encies between multiple groups of actors. These dependencies arise because there may be a set of
latent attributes between actors that affect their probability of interacting with one another
(Zinnes, 1967; Wasserman and Faust, 1994). In Figure 2, we provide a visualization of a simulated
relational dataset wherein the nodes designate actors and edges between the nodes indicate that
an interaction between the two took place. To highlight third-order dependence patterns, nodes
with similar latent attributes are colored similarly.

The visualization illustrates that actors belonging to the same group have a higher likelihood of
interacting with each other, whereas interactions across groups are rarer. A prominent example of a
network with this type of structure is discussed by Adamic and Glance (2005), who visualize lin-
kages between political blogs preceding the 2004 United States Presidential Election. Adamic and
Glance (2005) find that the degree of interaction between right- and left-leaning blogs is minimal
and that most blogs are linked to others that are politically similar. This showcases the types of
higher-order dependencies that can emerge in relational data. First, the fact that interactions are
determined by a shared attribute, in this case political ideology, is an example of homophily.
Homophily explains the emergence of patterns such as transitivity (“a friend of a friend is a friend”)
and balance (“an enemy of a friend is an enemy”), which also have a long history in international
relations. The other major type of meso-scopic features that emerge in relational data is community
structure (Mucha et al., 2010), which is often formalized through the concept of stochastic equiva-
lence (Anderson et al., 1992). Stochastic equivalence refers to a type of pattern in which actors can
be divided into groups such that members of the same group have similar patterns of relationships.
In the example above, each of the left leaning blogs would be considered stochastically equivalent to
one another because any given left-leaning blog is more likely to interact with a blog of a similar
political position and less likely to interact with one of a divergent political position.

These types of patterns frequently emerge in IR contexts.3 For example, a perennial finding in
the interstate trade literature emphasizes the role that geography plays in determining trade flows.

2In an undirected setting instead of studying sender and receiver heterogeneity, we would just be concerned with actor
heterogeneity in general.

3For example, see: Manger et al. (2012), Kinne (2013), and Chyzh (2016).
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Geographic proximity in the network context is an example of homophily—a shared attribute
between actors that corresponds to a greater likelihood of the event of interest taking place.
Alternatively, in the interstate conflict literature, we may find that actors who are each a member
of a particular (formal or informal) alliance are likely to act similarly in the conflict network.
Specifically, they will tend to initiate conflictual events with actors that their fellow alliance
members initiate conflict with, and they will be unlikely to initiate conflict with the members
of their alliance—an example of stochastic equivalence. In both these examples, we are able to
explicitly parameterize the attribute that might explain the emergence of higher order depend-
ence patterns. While sometimes the conditions driving these patterns, such as geography, are
easy to identify, at other times it can be difficult to describe exactly why higher order dependence
patterns in networks may develop.

3. Additive and multiplicative effect models for networks
To account for the dependencies that are prevalent in dyadic data, we turn to the AME model.
The AME approach can be used to conduct inference on cross-sectional and longitudinal net-
works with binary, ordinal, or continuous linkages. It is flexible and easy to use for analyzing
the kind of relational data often found in the social sciences. It accounts for nodal and dyadic
dependence patterns, as well as higher-order dependencies such as homophily and stochastic
equivalence.4 The AME model combines the social relations regression model (SRRM) to account
for nodal and dyadic dependencies and the latent factor model (LFM) for third-order dependen-
cies.5 For details on the SRRM see Li and Loken (2002), Hoff (2005), and Dorff and Minhas
(2017). The AME model is specified as follows:

yij = f (uij), where
uij = b`

d Xij + b`
s Xi + b`

r X j (Exogenous parameters)
+ai + b j + eij (SRRM parameters)
+u`i Dv j (LFM parameters)

(2)

where yij,t captures the interaction between actor i (the sender) and j (the receiver) at time t. We
model a latent variable, θij, first using a set of exogenous dyadic (b`

d Xij), sender (b`
s Xi), and

receiver covariates (b`
r Xj). f is typically a mapping function, and can be one that applies to

dichotomous, ordinal, or continuous distributions.

Figure 2. Higher-order dependence patterns
in a network.

4Minhas et al. (2019) detail how this framework contrasts with alternative network-based approaches.
5An earlier version of the LFM used in AME is presented as the general bilinear mixed effects (GBME) model in Hoff

(2005). The GBME model is more limited in the types of dependence patterns that it can capture due to the formulation
of the matrix decomposition procedure.
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Next, to account for the dependencies that emerge in dyadic data that may complicate infer-
ence on the parameter associated with exogenous covariates, we add parameters from the SRRM
and LFM. ai and bj in Equation 2 represent sender and receiver random effects incorporated from
the SRRM framework:

{(a1, b1), . . . , (an, bn)}iid�N(0, Sab)
{(eij, e ji) : i = j}iid�N(0, Se), where

Sab = s2
a sab

sab s2
b

( )
Se = s2

e
1 r
r 1

( ) (3)

The sender and receiver random effects are modeled jointly from a multivariate normal distribu-
tion to account for correlation in how active an actor is in sending and receiving ties.
Heterogeneity in the sender and receiver effects is captured by s2

a and s2
b, respectively, and σab

describes the linear relationship between these two effects (i.e., whether actors who send [receive]
a lot of ties also receive [send] a lot of ties). Beyond these first-order dependencies, second-order
dependencies are described by s2

e and a within dyad correlation, or reciprocity, parameter ρ.
The LFM contribution to the AME is in the multiplicative term: u`i Dvj =

∑
k[K dkuikvjk. K

denotes the dimensions of the latent space. The construction of the LFM here is actually quite
similar to work on low rank approximations in computer science and has been applied to the
development of recommender systems that companies like Amazon and Netflix use to model
customer behavior (Resnick and Varian, 1997; Bennett and Lanning, 2007).6 This model posits
a latent vector of characteristics ui and vj for each sender i and receiver j. The similarity or dis-
similarity of these vectors will then influence the likelihood of activity, and provides a represen-
tation of third-order interdependencies. The LFM parameters are estimated by a process similar
to computing the singular value decomposition (SVD) of the observed network. When comput-
ing the SVD we factorize our observed network into the product of three matrices: U, D, and V.
This provides us with a low-dimensional representation of our original network.7 Values in U
provide a representation of how stochastically equivalent actors are as senders in a network or,
for example, how similar actors are in terms of who they initiate conflict with. ûi ≈ ûj would indi-
cate that actors i and j initiate battles with similar third actors. V provides a similar representation
but from the perspective of how similar actors are as receivers. The values in D, a diagonal matrix,
represent the levels of homophily in the network.8 Note that this model easily generalizes to the
case, common in IR, where interactions are undirected (e.g., the presence of conflict or a bilateral
investment treaty). In the case of the SRRM, ρ is constrained to be one and instead of separate
sender and receiver random effects a single actor random effect is utilized. For the LFM, an eigen-
decomposition scheme is used to capture higher-order dependence patterns. In the application
section, we show the applicability of the AME approach to both directed and undirected dyadic
data. Parameter estimation in the AME takes place within the context of a Gibbs sampler in
which we iteratively sample from the posterior distribution of the full conditionals for each
parameter.9

Non-iid observations in relational data result from the fact that there is a complex structure
underlying the dyadic events or processes that we observe. Accounting for this structure is

6The LFM also shares similarities with work in the econometric literature on interactive fixed effects (Bai, 2009; Pang,
2014). In this stream of work, interactive fixed effects are used to deal with cross-sectional dependence in TSCS data, in
such a way that a latent factor for time can be used to capture common shocks to actors and a latent factor on actors
can capture varying responses to those shocks.

7The dimensions of U and V are n × K and D is a K ×K diagonal matrix.
8Unlike traditional SVD, in the LFM the singular values are not restricted to be positive, thus allowing us to account for

both positive and negative homophily.
9Details on the sampling procedure and the full conditional distributions can be found in: Hoff (2005, 2008, 2021) and

Minhas et al. (2019).
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necessary if we are to adequately represent the data generating process. If one can specify each of
the nodal, dyadic, and triadic attributes that influence interactions then the conditional independ-
ence assumption underlying standard approaches will be satisfied. However, it is rarely the case
that this is possible even for TSCS data and thus modeling decisions must account for underlying
structure. Failing to do so in either TSCS or dyadic data leads to a number of well-known chal-
lenges: (a) biased estimates of the effect of independent variables, (b) uncalibrated confidence
intervals, and (c) poor predictive performance. Additionally, by ignoring these potential inter-
dependencies, we often ignore substantively interesting features of the phenomena we investigate.
The study of international relations is founded on the relations among actors. Why ignore the
interdependencies that led to the study of IR in the first place?

4. Simulation study
We explore the utility of AME as an inferential tool for dyadic analysis via a simulation exercise.10

Most scholars working with dyadic data are primarily concerned with understanding the effect of
a particular independent variable on a dyadic-dependent variable. The goal of our simulation is
to assess how well AME can provide unbiased and well-calibrated estimates of regression coeffi-
cients in the presence of unobserved dependencies, specifically, homophily. As discussed in the
previous section, homophily is the idea that actors are more likely to have a tie if they have similar
values on a particular variable, and in networks the presence of homophily can lead to
third-order dependencies such as transitivity. Homophily can be operationalized by creating a
dyadic covariate via the multiplication of a nodal covariate with its transpose. For example, if
the nodal covariate was a binary indicator for democracy, multiplying it by its transpose
would give us a dyadic covariate that represents whether any dyad is jointly democratic or not.11

Assume that the true data-generating process for a binary variable, Y, is given by:

Zij = m+ bXij + gWij + eij, e � normal(0, 1)

Yij = I(Zij . 0)
(4)

Xij = x × xT, where x is a nodal covariate that is drawn from a standard normal distribution.
Similarly,Wij =w ×wT, where w is also a nodal covariate that is independently drawn from a stand-
ard normal distribution. We generate our binary dependent variable, Y, within a probit framework
with Z serving as the latent variable. X and W are both dyadic covariates that are a part of the
data-generating process for Y, butW is not observed. We compare inference for μ and β—the latter
parameter would be of primary concern for applied scholars—using three models:

• the “standard” international relations approach estimated through a generalized linear model;12

• the AME approach outlined in the previous section with a unidimensional latent factor
space (K = 1);13

• and an “oracle” regression model that assumes we have measured all sources of dependen-
cies and thus includes both xij and wij.

10Alternative network-based approaches for dyadic data are exponential random graph models and the related stochastic
actor-oriented model. While both these models have led to numerous contributions to a variety of literatures, the applicability
of these approaches may be limited to certain types of networks and individual-level characteristics. Specifically, Block et al.
(2017) note that these types of models may not be appropriate in situations where network and behavioral data depend on
unobserved latent variables, which is explicitly the focus of our analysis here.

11This process of operationalizing homophily is equivalent to the “nodematch” function in the “ergm” and “latentnet”
packages. There are many other options of operationalizing homophily including calculating the difference in scores that
a pair of actors may have on a particular nodal variable.

12Specifically, here we are just regressing Y on X assuming independent errors.
13Results with higher values of K are similar.
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The first model corresponds to the “standard” approach in which little is explicitly done to
account for dependencies in dyadic data. In the second model, we use the AME framework
described in the previous section. For both the first and second models, we are simply estimating
a linear model of X on Y, and assessing the extent to which inferences on the regression para-
meters are complicated by the presence of unobserved dependencies, W. In the last model, we
provide an illustration of the ideal case in which we have observed and measured W and include
it in our specification for Y. The oracle case provides an important benchmark for the standard
and AME approaches.

For the simulation, we set the true value of μ (the intercept term) to − 2 and β (the effect of X
on Y) to 1.14 We conduct two sets of simulations, one in which the number of actors in the net-
work is set to 50 and the other at 100. In total, we run 1000 simulations where we begin by simu-
lating Y from the specification given in Equation 4 and then for each simulated Y we estimate a
standard, AME, and oracle model.

We first compare the performance of the models in terms of how well they estimate the true
values of μ and β in Figure 3. The panels on the left show the results for when the number of
actors is set to 50 and on the right for 100 actors. The top pair of panels represents the estimates
for μ while the bottom pair do the same for β. In each case, we find that the estimates for μ and β
produced by the standard approach are notably off from their true values. On the other hand, the
AME model performs just as well as the oracle at estimating the true parameter values.

Next, we estimate the 95 percent credible interval for the three models in each of the simula-
tions and estimate the proportion of times that the true value fell within those intervals. The
results are summarized in Figure 4, and again we see that the AME approach performs as well
as the oracle, while the standard approach performs poorly by comparison. The implication of
the results presented in Figures 3 and 4 is that standard approaches can often fail at estimating
parameter values and conducting inferential tasks in the presence of unobserved dependencies.
The AME approach by comparison can be used as a tool for scholars working with dyadic
data to still estimate the true effects of their main variables of interest, while accounting for
dependencies that do often emerge in dyadic data.

Figure 3. Regression parameter estimates for the standard, AME, and oracle models from 1000 simulations. Summary sta-
tistics are presented through a traditional box plot, and the estimates from each simulation are visualized as well as points.

14The value of γ is also set to 1, which corresponds to an example where the W character is associated with homophily.
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Moreover, the AME approach allows scholars to better understand what parameters their
model may be missing. In the case of the simulation here, W is set as an unobserved dyadic cov-
ariate that has a homophilous effect on Y. The effect of W is homophilous within this framework
because it is a dyadic attribute involving i and j that positively affects the degree to which actors
interact with one another, i.e., yij. This type of unobserved dependency will be captured through
the multiplicative effects portion of the model, U`DV. To estimate how well the model performs,
we recover the multiplicative effects term for each simulation and calculate the correlation
between it and the unobserved dependency, W.15 We visualize the distribution of the correlations
from each of the 1000 simulations in Figure 5 for the case where the number of actors is set to 100
(top pair of panels) and 50. Additionally, we calculate the median across the correlations and dis-
play the result using a vertical line. For both n = 50 and n = 100, we find that the multiplicative
effects perform very well in capturing the unobserved dependency, which indicates that the AME
does not simply capture noise but also works as a tool to estimate unobserved structure.

The simulation shows that beyond obtaining less biased and better-calibrated parameter esti-
mates, a key benefit of the AME framework is to directly estimate unobserved dependencies
through the random effects structure of the model. Scholars can use this framework in an iterative

Figure 4. Proportion of times the true value fell within the estimated 95 percent confidence interval for the standard, AME,
and oracle models from 1000 simulations.

Figure 5. Distribution of correlation between missing variable and multiplicative random effect in AME across the 1000
simulations. Vertical line through the distribution represents the median value across the simulations.

15Specifically, since both the multiplicative effects term and W are continuous dyadic variables, we calculate the Pearson
correlation coefficient.
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fashion: beginning with an estimated model, they can then empirically study the structure of the
random effects to assess whether there are unobserved covariates that they want to include in
their model. Importantly, this simulation underscores how a careful consideration of a systems’
interconnectedness, both through theoretical approaches and empirical models, can result in
more precise estimates of direct and indirect effects across the system.

5. Applications with AME
We apply AME to three recent IR studies: Reiter and Stam (2003),Weeks (2012), and Gibler (2017).
Each of these studies use relational data of state interactions and propose both dyadic, monadic, and
structural explanations for the behavior of actors in the system. We demonstrate the capabilities of
AME with reference to existing studies in order to highlight several features of our network-based
approach. First, we show that simply by using the AME framework scholars can better model the
data generating process behind events of interest. Second, the results of AME estimation are inter-
pretable alongside results using standard approaches. Third, through using this approach, we can
also quantify the degree to which first-, second-, and third-order dependencies are present.

We obtain the data for these studies from their replication archives.16 The chosen studies have
each gained over 100 or more citations and were recently published.17 Each of these articles are
well-known and posit a hypothesis in which interdependencies are consequential. Reflecting the
dominant approach in the literature, the studies test their hypothesis by employing some form of
a GLM. Table 1 provides descriptive information for the studies that we replicate.

For each of the studies listed above, we replicate the authors’ key model using their original
estimation procedure, a GLM.18 Next, utilizing the same covariate specifications, we estimate
the models with the AME framework.19 For Reiter and Stam (2003) and Weeks (2012), we use
a version of AME that accounts for the directed nature of the data and for Gibler (2017) we
used an undirected version. In the directed formulation, separate random effects are used for sen-
ders and receivers in both the additive and multiplicative portions of the model.

A key claim that we have made is that by accounting for dependencies inherent to relational
data, we can better capture the data generating process behind events of interest. To assess
whether or not the AME approach successfully does this, we turn to an out-of-sample
cross-validation strategy. An out-of-sample approach is essential since relying on in-sample pro-
cedures would enable models with more parameters, such as AME, to simply overfit the data. The
cross-validation procedure is executed as follows. For each study, we randomly divide the data
into k = 30 sets, letting sij,t be the set to which pair ij, t is assigned. Then for each s∈ {1, …,
k}, we estimate model parameters with {yij,t : sij,t≠ s}, the data not in set s, and predict
{ŷij,t : sij,t = s} from these estimated parameters.

Table 1. Descriptive information about the replicated studies

Model Date range N. actors Dyads type Clustering sb̂

Reiter and Stam (2003) Logit 1945–1995 193 Directed Robust
Weeks (2012) Logit 1946–1999 197 Directed Robust
Gibler (2017) Logit 1816–2008 193 Undirected Robust

16Without exception, the data were easy to retrieve thanks to the authors’ transparency and an increasing norm in the
social sciences of open data sharing.

17We selected our cases based on a few criteria. We focus on studies that are explicitly about International Relations, were
published after the year 2000, and were published in a top ranking general political science outlet (for consistency in editorial
standards and reviews, we focus on one journal American Political Science Review). We hope that these three criteria ensure
that our paper is readable and interpretable to an applied audience.

18Replicating the key models from each study was straightforward because of the authors’ assembled replication scripts.
19In estimating AME, we show results when setting K = 2. Results with alternative values of K are similar. We recommend

that authors try out a range of Ks.
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The result of this procedure is a set of sociomatrices Ŷ , in which each entry ŷij,t is a predicted
value obtained from a subset of the data that does not include yij,t. Next we conduct a series of
analyses to discern whether or not the AME model provides any benefit for each study. These
analyses are summarized in Figure 6. The left-most plot in each of the panels evaluates perform-
ance using Receiver Operating Characteristic (ROC) curves. Models that have a better fit accord-
ing to this metric will follow the upper-left corner border of the ROC space. In addition to ROC
curves, we also use separation plots (Greenhill et al., 2011). Separation plots visualize each of the
observations in the dataset according to their predicted probability. In this graph, the shaded
panels correspond to the occurrence of an event. Darker panels are events, lighter panels are
non-events. If a model performs well, then the events that actually occur would stack to the
far right of the graph, where the predicted probabilities generated by the model are highest.
The right-most plot in each of the panels evaluates performance using precision-recall (PR)
curves. PR curves are useful in situations where correctly predicting events is more interesting
than simply predicting non-events (Davis and Goadrich, 2006). This is especially relevant in
the context of our applications here, as they each are trying to model conflict within dyads,
which is an infrequent occurrence.

For each of the replications, we find that the AME approach substantially outperforms the
original models in terms of out-of-sample predictive performance. This indicates that
switching to the AME framework—even when using the same covariate specification as the ori-
ginal studies—enables scholars to better represent the data generating process of their events of
interest. The fact that this analysis is done in an out-of-sample context ensures that the AME
framework is not simply overfitting with more parameters. Instead, it suggests that the AME
are capturing underlying structure previously missed by the exogenous covariates in the models.

Ignoring this underlying structure has consequences for inferential analysis.20 The fact that
there is such a divergence in the performance of AME versus the original estimation procedures
highlights that there are unobserved sources of bias in each of these studies. We hone in on the
main finding of each study to draw into focus the potential consequences for ignoring these
sources of bias and the inferential benefits of the AME estimation procedure. In Table 2, we pre-
sent the overall results; the term Unconfirmed indicates that the statistical significance of the cru-
cial finding in the original study is not found to hold in the AME estimation.21

An important takeaway here is that many scholars are forced to make knowledge claims based
on the statistical significance of a small set of covariates or the differences between these covari-
ates. These differences may change dramatically once interdependencies are taken into account.
This outcome follows from AME’s ability to better account for the dependencies discussed in the
previous section, whereas GLM approaches explicitly assume observational independence
conditional on the specified covariates. As this is a widely-known limitation of GLM approaches,
scholars often attempt to account for clustering of observations by including additional variables
and adjusting the standard errors of the resulting estimates. At best, this method introduces noise
and imprecision into results and at worst can produce misleading outcomes.

Next we discuss each of the replications in more detail and highlight the substantive insights
drawn from the AME framework.

5.1. Reiter and Stam (2003)

Reiter and Stam (2003) examine the relationship between democracy, dictatorship, and the ini-
tiation of militarized disputes. Their work contests prior scholarship claiming that interstate
dyads containing democracies and personalist dictatorships were particularly prone to conflict

20As shown in the simulation section, inference in a dyadic setting can become complicated when there are unobserved
dependencies.

21Full tabular results for each of the original and re-estimated models are presented in the online Supplementary
Appendix.
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Figure 6. Assessments of out-of-sample predictive performance using ROC curves, PR curves, and separation plots.
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because of aggression on the part of the democratic state (Peceny et al., 2002). Using a directed
dyadic dataset of almost a million observations, they find evidence against this hypothesis: dic-
tators are in fact more likely to challenge democracies, but not the other way around. In addition,
military regimes and single-party regimes are more prone to initiate disputes with democracies,
but the opposite is not true.22 As is prevalent in this literature, Reiter and Stam employ a logistic
regression that includes an indicator of the time since the last dispute as well as three cubic
splines. Based on their statistical analysis, they conclude that institutional constraints affect the
propensity of democratic and non-democratic leaders to engage in military conflict.

The key variables in the original model measure whether or not the sender in the directed dyad
is a personalist regime and the target a democratic regime (“Pers/Democ directed dyad”) or
whether the opposite is true (“Democ/Pers directed dyad”). The authors find that coefficient
of the Pers/Democ directed dyad indicator is positive, while the Democ/Pers directed dyad is
too imprecisely measured to indicate a direction. In our re-estimation using the AME framework,
we confirm these results, indicating that dictators are likely to initiate or engage in conflict with
democratic regimes but not vice versa.

Even though we are able to confirm the original results, employing the AME model offers clear
benefits in this case. As already shown in Figure 6, our approach performs notably better in
reflecting the data generating process. The reason for this is that there is still underlying structure
within this conflict system that the Reiter and Stam model does not fully capture. To highlight
this we visualize the estimated sender random effects (ai) from the SRRM portion of the AME
framework in Figure 7.

The visualization of the sender random effects highlights that the behavior of countries does
not fully accord with predictions from the covariates specified by Reiter and Stam. Specifically, we
can see that countries such as Iraq, Israel, and Iran are more likely to be involved in initiating or
continuing conflict with other countries than the model would predict. Further, other countries
such as Sweden, Finland, and Swaziland are less likely to engage in conflict than the exogenous
covariates in the model would suggest. In this case, the finding that countries in the middle east
experience more conflict with other countries might lead one to more carefully examine the
effects of geography on conflict initiation or to account for Colgan (2010)’s theory that revolu-
tionary petrostates are more aggressive. None of these findings change the key conclusion
from Reiter and Stam’s work, but by using the AME framework we are able to better understand
the limitations of their model.

5.2. Weeks (2012)

Weeks examines the influence of domestic institutions on the initiation of military conflicts by
autocratic leaders. She argues that in some circumstances autocrats are held accountable for
their foreign policy decisions, and that this is dependent on the audiences of autocrats. When

Table 2. Here we provide a brief summary of the key variable in each of the replications and a note about whether or not
the highlighted finding remains when using our network-based approach

Study Central finding
Confirmed after accounting

for dependencies?

Reiter and Stam (2003) Personalist regimes attack democracies, not vice versa Confirmed
Weeks (2012) Bosses, juntas, and strongmen are more aggressive,

machines are not
Unconfirmed

Gibler (2017) Entry to the international system, not power parity,
determines conflict

Partially confirmed

22Independent variables focus on various encodings of regime types, contiguity, alliance, and capability measures. For a full
tabular display of the results see online Supplementary Appendix.
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the autocratic regime is nonmilitary, domestic audiences do not favor military actions, but in
military autocracies this is not the case. Further, she argues that in personalistic regimes without
a military or civilian domestic audience, the leaders are more likely to employ military force in
their foreign policy. To study this question, Weeks employs a directed dyad design of conflict
similar to that used by Reiter and Stam.

The major innovation in her study resides in the nuanced way she conceptualizes and codes
regimes into four types: (a) Machine, (b) Junta, (c) Boss, and (d) Strongmen.23 She uses a logistic
regression, following Beck et al. (1998) and includes splines to capture temporal covariation in the
dependent variable along with dyad clustered standard errors. The key findings of her work are
that (a) juntas, boss, and strongmen regimes are more likely to initiate conflict than machine-type
regimes and (b) machine-type regimes are no more belligerent than democracies.24 In the
empirical analysis, Weeks finds that machines are less prone to initiate conflict than the reference
category, whereas juntas, bosses, and strongmen are more conflict-prone. When analyzing
the results using AME, however, we find that the parameters on each of her autocratic regime
type variables are too imprecisely measured to draw any inference about their putative causal
effects. Consequentially, none of the findings from her original analysis are confirmed once
known dependencies among the data are taken into account via AME.

There is also a striking difference between Weeks’ original model and our estimation using
AME in terms of capturing the data generating process. As with Reiter and Stam, the divergence
is a result of the GLM framework’s inability to account for underlying structure generating the
event of interest. To uncover this structure, we illustrate another beneficial aspect of the AME
framework, which is the multiplicative random effects estimated through the LFM portion of
the model: u`i Dvj. These random effects account for higher order dependencies that manifest
as a result of homophily and stochastic equivalence in dyadic data.

Figure 7. Estimates of sender random effects (ai) from AME for the Reiter and Stam (2003) model. Positive values indicate
that the particular country is more likely to be involved in conflict than predicted by the covariates in the model. Negative
values indicate that the country is less likely to be involved in conflict. The left panel shows ai estimates for all countries
and right panel highlights the top ten countries in terms of positive and values of ai.

23Weeks also includes a variety of control variables focusing on capabilities for both sides of the dyad, alliances, geography,
trade dependence, regime instability, and the regime type of “side B.” For a full tabular display of the results see online
Supplementary Appendix.

24These insights are mainly emphasized in the paper by the parameter estimates depicted in Tables 1 and 2 (pages 339–
340) from the paper.
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To visualize the multiplicative effects, we display the circular diagram shown in Figure 8. The
nodes throughout the diagram represent countries and are colored according to their geographic
position—a legend is provided in the center. The outer ring visualizes higher order dependence
patterns through countries’ sender relationships—country positions here are estimated in the ui
random effects described in Equation 2. Countries that are more proximate to each other in this
outer ring are more likely to send or initiate conflicts with similar targets. The inner ring, based
on the estimates of vi, is constructed such that countries closer together are more likely to receive
conflict from the same sender countries. Last, the distance between countries in the inner and
outer rings proportionately reflects who a country is more likely to be in conflict with.

Figure 8 reveals a number of notable clusters. For example, in the bottom right corner we see
the US, UK, Germany, Canada, and Israel. These states cluster together in the outer ring of this
visualization because they tend to send conflicts to similar targets. Conversely, in the top left of
the outer ring, we see a cluster of authoritarian countries: Iraq, Russia, Syria, North Korea, and
China. We observe similar clusters in the inner ring. Specifically, we again see the US, UK,
Germany, Canada, and Israel clustering together indicating that they are more likely to receive
conflict from the same countries. The cluster of democratic and authoritarian countries facing

Figure 8. Visualization of multiplicative effects for Weeks (2012). Each circle designates a country and the color corre-
sponds to the legend at the center of the visualization. Countries that cluster together in the outer ring are those that
were found by the model to have similar sending patterns, meaning that they tend to send conflict to similar sets of coun-
tries. The inner ring clusters countries by the similarity of who they receive conflict from.
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each other in the inner and outer rings indicate that they are more likely to engage in conflict with
one another.

Perhaps most critically, an evaluation of this visualization highlightsWeeks’ original expectation
of how states behave in the conflict system. Specifically, Iraq, Syria, Libya, and North Korea all fell
under Weeks’ “boss” category, and each of these states tends to cluster together in the inner and
outer rings. This indicates that even though we do not find support forWeeks’ assertion that certain
authoritarian regime types aremore likely to initiate conflict, we do find that these regimes aremore
likely to behave similarly in terms of who they target and receive conflict from.

5.3. Gibler (2017)

The last replication we conduct with the AME model considers a study by Gibler (2017). Gibler
argues that the long-standing relationship between the relative parity of capabilities and initiation
of militarized interstate disputes (MIDs) is almost completely mediated by the initial conditions
for the members of the dyad when they joined the international system as sovereign members. In
most specifications, after taking into account the initial conditions for dyadic entry, the statistical
significance of power parity vanishes. This finding calls into question many IR theories about the
role of balance in generating international conflict (Organski, 1958).

To test this hypothesis, Gibler employs an undirected dyadic design and estimates his model
using a GLM with dyad-clustered standard errors.25 With this design, Gibler finds support for
both the insignificance of contemporary power parity, and the effect of the initial conditions
for entry on driving conflict behavior. When we re-estimate using AME power parity still has
a small, imprecisely measured effect, supporting Gibler’s argument that contemporary power par-
ity is an artifact of other aspects of state relations, and does not drive contemporary conflict
behavior. At the same time, the AME approach finds that the effect of power parity when a coun-
try enters into the international system is too imprecisely measured to draw any inferences about
its effect on the initiation of MIDs. Not only is our estimate of the effect of this variable small, but
it has a very large relative standard error—over a magnitude larger than the parameter itself.
Thus, while we can confirm the argument that the effect of power parity vanishes when account-
ing for both initial conditions and network dependencies, we find less support for the argument
that initial conditions drive the initiation of MIDs.

In the two previous replications, we showed how to parse apart underlying structure using the
SRM and LFM portions of the AME framework. Here we turn our focus to parameter interpret-
ation in a substantive context. Specifically, even when the GLM and AME frameworks produce
results that may seem to be in accordance with one another, the substantive interpretations of the
effects of covariates can differ notably since the AME model uses a set of random effects to
account for unobserved factors. To explore this, we focus on the effect of rivalry on MID initi-
ation. Both the GLM and AME estimations find that rivalry has a positive effect on MID initi-
ation, but the expected effects between the two models differ greatly.

To clarify the difference, we turn to a simulation-based approach. We employ mean or modal
values for all independent variables, except we change the rivalry variable to indicate that there
was a rivalry when the actual data suggest there is none. This provides us with two scenarios, one
in which rivalry is set to one and the other zero, while in both scenarios all other parameters are
set to their measure of central tendency. The expected values of this scenario are essentially a first
difference plot comparing results with the model when estimated in two different ways: the GLM
estimation and our AME approach.

As Figure 9 illustrates, the substantive results differ notably. The expected value of the depend-
ent variable—the probability of the onset of a MID, is considerably lower once interdependencies
are taken into account with the AME model. These are rare events, so the probabilities are low,
but the difference in predictions is notable.

25Full tabular results are shown in the online Supplementary Appendix, we focus on model 6 from Table 6 (2017, 34).
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5.4. Lessons learned

First, utilizing the AME framework enables scholars to better model the underlying structure
inherent to dyadic data. In each of the models, the AME substantially outperforms the original
model out of sample. Not only does AME perform better at correctly identifying cases in
which the dependent variable takes a value of 0 (via the ROC curves), but it also dominates at
correctly identifying occurrences of the dependent variable in the data (seen via the PR curves).
This may be because by ignoring dependencies, the original models are misspecifying the DGP,
and the AME better accounts for it.

Second, in both the simulation and replication sections, we have shown that results can change not-
ably when interdependencies are not taken into account. Not only are coefficients biased in the GLM
approaches, but they are often imprecisely measured with poorly calibrated standard errors. This
means that significance testing (for betterorworse) is compromisedwhennetworkeffects are ignored.

Third, even when the results from the AME estimation conform with those found in an OLS or
logistic regression, new insights canemerge fromthe structureuncoveredby the randomeffects of the
AME framework. In particular, the AME provides information about the dependencies so that clus-
ters can be identified. This information can then be used to generate new hypotheses.

Fourth, it is evident that the actual results—not the estimated coefficients and their covariances—
generated by themodels differ greatly in expectations. This implies that policyexperimentationswith
the models, as well as scenario-based simulations and forecasting of GLM models are likely to give
misleading results compared to the AME approach.

6. Conclusion
International relations is about the interactions, relationships, and dependencies among countries
or other important international actors. This is particularly true of scholarship in the tradition of

Figure 9. Marginal effects of a change in the Rivalry variable for both the AME and the Gibler estimation.

Political Science Research and Methods 719

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
02

1.
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2021.56


the Correlates of War Project, but it is by no means limited to it.26 Many scholars have debated
the use and abuse of dyadic data.27 A broad survey of the IR literature makes it clear that scholars
find dyadic data to be an essential touchstone in the study of international relations (Erikson
et al., 2014; Aronow et al., 2015). Our findings bolster a growing recognition in the field of
International Relations that interdependence influences not only statistical estimations, but
how scholars theorize about internationally relevant politics. Scholars have demonstrated the
theoretical importance of interdependence through research on intrastate conflict (Dorff et al.,
2020), interstate bargaining (Gallop, 2017), economic interdependence (Maoz, 2009), and
international treaties (Kinne, 2013) among other topics.

At the same time, we know that research designs focusing on the statistical analysis of dyadic
data quickly go astray if the dyadic data are assumed to be iid. Virtually all of the standard stat-
istical models—ordinary least squares and logistic regressions, to name a few—fail if the data are
not conditionally independent. This fact has been accepted as it relates to temporal dependencies,
but adoption of methods to account for network dependencies have seen less progress. By
definition dyadic data are not iid and thus the standard approaches cannot be used cavalierly
to analyze these data. Signorino (1999) showed why this is true of models of strategic interaction,
but it is more broadly true of models that employ dyadic data. We show that the AME framework
can be employed to account for the statistical issues that arise when studying dyadic data.

To explore this approach in the context of international relations we have presented two
analyses. The first is a simulation where the characteristics of the network are known. This
shows that when there are unobserved dependencies, the AME approach is less biased in
terms of parameter estimation compared to the standard approach employed in international
relations to study dyadic data (i.e., GLM models). The second analysis is a replication of recent
studies that use a broad range of dyadic data to draw inferences about international relations.
These studies have been replicated with the original research designs, each of which used a stat-
istical method that assumes the dyadic data are all independent from one another. We then
re-analyzed each study using the AME model. In every case, we found that the AME approach
provided (a) increased precision of estimation, (b) better out-of-sample fit, and (c) evidence of
1st-, 2nd-, and 3rd-order dependencies that were overlooked in the original studies.28

Supplementary material. Online appendix material for this article can be found at https://doi.org/10.1017/psrm.2021.56.
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