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Abstract

We study the cohomology of the space of immersed genus g surfaces in a simply-
connected manifold. We compute the rational cohomology of this space in a stable range
which goes to infinity with g. In fact, in this stable range we are also able to obtain in-
formation about torsion in the cohomology of this space, as long as we localise away from
(g − 1).

1. Introduction and statement of results

Let M be a smooth manifold, not necessarily compact and possibly with boundary, and
write M̊ for its interior. Let �g be a closed orientable surface of genus g, and Imm(�g, M̊)

be the space of immersions of �g into the interior of M , equipped with the Whitney C∞-
topology. The group Diff+(�g) of orientation preserving diffeomorphisms is also equipped
with the Whitney C∞-topology, and acts continuously on Imm(�g, M̊) by precomposition
of functions. The space of immersed surfaces of genus g in M is defined to be the quotient
space

Ig(M) := Imm(�g, M̊)/Diff+(�g),

so that a point in Ig(M) is represented by an unparametrised immersed oriented surface of
genus g in the interior of M .

We propose to study the cohomology of this space. The differential topology of such
spaces of unparametrised immersions has been studied in detail by Cervera–Mascaró–
Michor [CMM91] and Michor–Mumford [MM05], and the most elementary observation
is that the action of Diff+(�g) on Imm(�g, M̊) is not free: for example, if an immersion
is a covering space of its image, the group of covering transformations lies in the stabil-
iser. Thus the homotopy-type of Ig(M) is not as directly related to the homotopy-types of
Imm(�g, M̊) and Diff+(�g) as one might like. To exert better homotopical control we may
work with the homotopy quotient (i.e. Borel construction),

Ih
g (M) := Imm(�g, M̊)//Diff+(�g),

which enjoys better formal properties although it is perhaps not so geometrically mean-
ingful. (In fact, Imm(�g, M̊) admits the structure on an infinite-dimensional smooth man-
ifold, and the action of Diff+(�g) on Imm(�g, M̊) is smooth, proper, and has slices, so
Ig(M) is the coarse space of the infinite-dimensional translation orbifold, and Ih

g (M) is the
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homotopy-type of this orbifold.) In order to relate this auxiliary space to the problem at
hand, in Section 2 we apply the theory developed by Cervera–Mascaró–Michor to prove the
first part of the following theorem.

THEOREM A. For g � 2, the map H ∗(Ig(M); Z[1/(g − 1)]) → H ∗(Ih
g (M);

Z[1/(g − 1)]) is an isomorphism. On the other hand, for every prime p dividing (g − 1)

the map H ∗(Ig(M); Z(p)) → H ∗(Ih
g (M); Z(p)) is not surjective.

Thus to study the cohomology of Ig(M) with Z[1/(g − 1)] coefficients it is enough to study
the cohomology of Ih

g (M). We are mainly interested in rational cohomology, so this is no
restriction, although our methods will also provide certain torsion information.

Our strategy is to compare the space Ih
g (M) with a certain universal space which is in-

dependent of g, much as in Madsen and Weiss’ proof of the Mumford conjecture [MW07].
This space is an infinite loop space, and we may describe it as follows.

Let Gr+2 (T M) denote the Grassmannian of oriented 2-planes in the tangent bundle of M .
That is, it consists of pairs of a point x ∈ M and an oriented 2-plane L ⊂ Tx M . This space
has an evident 2-plane bundle over it (with fibre over the point (x, L) given by the vector
space L) which we denote �, and hence a classifying map

θM : Gr+2 (T M) −→ BSO(2).

Denote by MTθ M the Thom spectrum of the virtual bundle −� → Gr+2 (T M), and by
�∞MTθ M its associated infinite loop space. There is a natural surjective homomorphism

E : π0(�
∞MTθ M) −→ Z,

which we will describe in Section 4, and we denote by �∞
(n)MTθ M the collection of path

components mapping to n ∈ Z.

THEOREM B. For any manifold M, there is a map

αM : Ih
g (M) −→ �∞

(1−g)MTθ M .

If M is simply-connected and of dimension at least three, the map H ∗(αM; Z) is an iso-
morphism for degrees

∗ �

⎧⎪⎨
⎪⎩

2g − 6

5
if dim(M) = 3

2g − 3

3
if dim(M) > 3.

Remark 1·1. We will refer to the inequality in the above theorem as the “stable range”.
Thus, if we say that a certain statement about the (co)homology of Ig(M) or Ih

g (M) holds
“in the stable range”, we mean that it holds in all (co)homological degrees ∗ satisfying that
inequality.

This theorem will be a consequence of the author’s homology stability theorem for moduli
spaces of surfaces with tangential structure [RW09], along with the Smale–Hirsch theory
of immersions. Smale–Hirsch theory relates the space Imm(�g, M) to a space of bundle-
theoretic data, which we in turn identify with a space of θM -reductions of the bundle T �g.
In order to apply the homology stability theorem of [RW09], in Section 3 we give another
model of Ih

g (M), which extends to the case of surfaces with boundary, and in Section 4 we
compute the set of path components of these spaces.
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Once homology stability is known, the methods of Galatius–Madsen–Tillmann–Weiss
[GMTW09] identify the stable homology with that of (certain path components of) the
infinite loop space �∞MTθ M . Combining this theorem with Theorem A, we obtain the
calculation

COROLLARY C. There is an isomorphism of algebras

H ∗(Ig(M); Z[ 1
g−1 ])� H ∗(�∞

(1−g)MTθ M; Z[ 1
g−1 ])

in the stable range.

For this theorem to be useful we must be able to compute the right-hand side. In gen-
eral this is difficult, but for rational cohomology it is easy. Let us write �∞

• MTθ M for the
basepoint component of the infinite loop space associated to the spectrum MTθ M . There is
a composition

H ∗+2(Gr+2 (T M); Q)� H ∗(MTθ M; Q)
σ−→ H ∗(�∞

• MTθ M; Q)

where the first map is the Thom isomorphism and the second map is the cohomology sus-
pension. The right-hand side is a graded commutative algebra and so this extends to a map

	(H ∗+2>2(Gr+2 (T M); Q)) −→ H ∗(�∞
• MTθ M; Q)

from the free graded commutative algebra on the vector space of positive degree elements.
This is an isomorphism.

We now give an application of this result, by describing H ∗(Ig(R
n); Q) in the stable

range. In order to do so we first describe a relationship between the cohomology of the
moduli space of Riemann surfaces and the cohomology of Ig(M) for any manifold M .

1·1. Relation to moduli spaces of curves

Let M be a manifold equipped with a Riemannian metric. There is then a continuous map

r : Ig(M) −→ Mg

from the space of unparamerised immersions to the coarse moduli space of Riemann surfaces
of genus g. The map is defined as follows.

Pulling back the Riemannian metric on M defines a function Imm(�g, M) → Met(�g)

to the space of Riemannian metrics on �g. If we consider Met(�g) as a subspace of the
space of smooth sections of T ∗�g ⊗ T ∗�g, equipped with the Whitney C∞-topology, then
this function is continuous. Riemann’s moduli space Mg is a quotient space of Met(�g),
where we first divide by the equivalence relation of conformal equivalence, and then by the
action of Diff+(�g); taking the quotient by Diff+(�g) on the space of immersions as well
gives the continuous map r .

The map r depends on the original choice of Riemannian metric on M , but as the space
of metrics is connected (in fact, contractible) it is well-defined up to homotopy, and en-
dows H ∗(Ig(M); Q) with the structure of an algebra over H ∗(Mg; Q). Recall that there are
defined the so-called Mumford–Morita–Miller classes ([Mum83])

κi ∈ H 2i (Mg; Q),

and that by the theorem of Madsen and Weiss [MW07], the map

Q[κ1, κ2, . . .] −→ H ∗(Mg; Q)
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is an isomorphism in degrees ∗ � (2g − 2)/3 (at the time of Madsen and Weiss’ proof
the best known stability range was not quite as good as this one, which was established
later by Boldsen [Bol12] and the author [RW09] independently). We will typically describe
H ∗(Ig(M); Q) as an algebra over the polynomial ring Q[κ1, κ2, . . .].
1·2. Immersions in R3

Let i : �g � R3 be an immersion. Its derivative gives a bundle injection Di : T �g ↪→ ε3,
and the orientation of T �g gives a trivialisation of the complementary bundle: we obtain a
canonical isomorphism T �g ⊕ ε1 � ε3 and so a canonical Spin structure on T �g; changing
i by a regular homotopy does not change the isomorphism class of this Spin structure. Recall
([Joh80]) that Spin structures on oriented surfaces are classified up to isomorphism by their
Z/2-valued Arf invariant. This construction describes a map

π0(Ig(R
3)) −→ Z/2

sending an immersion to the Arf invariant of its associated Spin structure, which we will
show in Proposition 4·2 is a bijection for g � 1. Let Ig(R

3)[λ] denote the path component
which maps to λ ∈ Z/2. Then the unit map

Q −→ H ∗(Ig(R
3)[λ]; Q)

is an isomorphism in degrees 5∗ � 2g − 6.

Remark 1·2. In this case it is easy to extract a little torsion information as well: in
Section 5·1 we will show that there is a surjection

Z/2 ⊕ Z/24 −→ H1(Ig(R
3)[λ]; Z)

as long as g � 6, which is an isomorphism after inverting (g − 1). It would be interesting to
know if this isomorphism is false before localising (for example, when g = 7).

1·3. Immersions in R4

Let i : �g � R4 be an immersion. Its derivative gives a bundle injection Di : T �g ↪→ ε4,
with complement Vi . The orientation of T �g induces an orientation of Vi , and so there
is defined an Euler class e(Vi ) ∈ H 2(�g; Z) = Z. This reduces modulo 2 to w2(Vi) =
w2(T �g) = 0, so is even. The assignment i 
→ ∫

�g
e(Vi ) gives a map

π0(Ig(R
4)) −→ 2Z

which we will show is a bijection for all g � 0, and we write Ig(R
4)[n] for the component

which maps to 2n ∈ Z. Then the map

Q[κ1] −→ H ∗(Ig(R
4)[n]; Q)

is an isomorphism in degrees 3∗ � 2g − 3 (and all higher κ classes are zero).

1·4. Immersions in R2n+1, 2n + 1 � 5

The space Ig(R
2n+1) is connected for all g � 0, and the map

Q[κ1, κ2, . . . , κ2n−2] −→ H ∗(Ig(R
2n+1); Q)

is an isomorphism in degrees 3∗ � 2g − 3 (and all higher κ classes are zero). Write �g :=
π0(Diff+(�g)) for the mapping class group of the surface �g. In Section 5·5 we show there
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is a spectral sequence

E p,q
2 = H p(�g; H q(Imm(�g, R2n+1); Q)) =⇒ H p+q(Ig(R

2n+1); Q) (1·1)

and we use this calculation to study its behaviour in the stable range, where we find a curious
pattern of differentials.

1·5. Immersions in R2n, 2n � 6

The space Ig(R
2n) is connected for all g � 0. Let π : E → Ig(R

2n) be the universal
family of surfaces. It is tautologically equipped with a map i : E → R2n which is an
immersion on each fibre. The derivative gives a bundle injection Di : Tπ E ↪→ ε2n of the
vertical tangent bundle, and we write V → E for its (2n − 2)-dimensional complement,
which has an orientation induced by the orientation of Tπ E . Define a cohomology class

� := π!(e(V )) ∈ H 2n−4(Ig(R
2n); Q).

Then the map

Q[κ1, κ2, . . . , κ2n−3, �] −→ H ∗(Ig(R
2n); Q)

is an isomorphism in degrees 3∗ � 2g − 3 (and all higher κ classes are zero).

1·6. Outline

In Section 2 we describe the relationship between Ig(M) and the homotopical version
Ih

g (M), and show that they have isomorphic homology after inverting (g −1). We also show
that these spaces have different cohomology when localised at primes dividing (g − 1). In
Section 3 we relate the space Ih

g (M) to a moduli space of surfaces with tangential structure,
as in [RW09], which we define for surfaces with boundary. In Section 4, which is the bulk
of the paper, we calculate the set of path components of spaces of immersions of surfaces
(possibly with boundary) into a manifold M . This allows us to verify the conditions of the
homology stability theorem of [RW09], and we then give the stability range and describe
the stable homology. In Section 5 we first give the details of the calculations of Ig(R

n)

described above, and then in Section 5·5 we give a calculation of the spectral sequence (1·1)
in the stable range.

2. The orbifold structure of Ig(M) and proof of Theorem A

The work of Cervera–Mascaró–Michor [CMM91] establishes that the group Diff+(�g)

acts on Imm(�g, M) properly, so in particular with finite stabiliser groups. In fact, they show
that stabiliser group Diff+(�g)i of an immersion i acts freely and properly discontinuously
on �g, so it is finite and

2 − 2g = χ(�g) = #{Diff+(�g)i } · χ(�g/Diff+(�g)i).

As �g/Diff+(�g)i is an orientable surface it has even Euler characteristic, for g � 2 we
deduce that

#{Diff+(�g)i } | (g − 1).

Thus the fibres of p : Ih
g (M) → Ig(M) are all classifying spaces of finite groups of order

dividing (g − 1), and hence are Z[1/(g − 1)]-acyclic. In order for this to imply that p is
a Z[1/(g − 1)]-cohomology isomorphism we also require that the map p be locally well-
behaved in a suitable sense.
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Such a sense is provided by the construction in [CMM91] of slices for the action of
Diff+(�g) on Imm(�g, M). For each i ∈ Imm(�g, M) let N (i) denote the normal bundle
of the immersion (formed using a metric on M which we fix once and for all). They construct
a submanifold Q(i) ⊂ Imm(�g, M) diffeomorphic to a convex open neighbourhood of zero
in the space �(N (i)) of smooth sections of the normal bundle of the immersion i , enjoying
the following properties (cf. [MM05, section 2·4]):

(i) Q(i) is invariant under the isotropy group of i ;
(ii) ϕ(Q(i)) � Q(i)�� if and only if ϕ is in the isotropy group of i ;

(iii) Diff+(�g) ·Q(i) is an open, invariant neighbourhood of the orbit Diff+(�g) · {i}, and
retracts onto it.

Using that Q(i) is homeomorphic to a convex open subset of the vector space �(N (i)), we
see that scaling vectors in �(N (i)) gives a Diff+(�g)i -equivariant deformation retraction of
Q(i) onto {i}, and so by ((ii)) a Diff+(�g)-equivariant deformation retraction of Diff+(�g) ·
Q(i) onto Diff+(�g) · {i}. Let U := [Diff+(�g) · Q(i)] ⊂ Ig(M), a contractible open
neighbourhood of [i].

For n > 0, consider the presheaf Rn p∗Z[1/(g − 1)] on Ig(M) given by

V 
→ H n(p−1(V ); Z[1/(g − 1)]).
The stalk at [i] of this presheaf is computed as a colimit over neighbourhoods of [i], but as
p−1(U ) deformation retracts onto p−1([i]), the stalk is the same as the nth cohomology of
p−1([i]). This fibre is EDiff+(�g)×Diff+(�g)Diff+(�g)i � BDiff+(�g)i the classifying space
of a finite group of order dividing (g − 1), and hence has trivial Z[1/(g − 1)]-cohomology
in positive degrees. Hence all stalks of the presheaf Rn p∗Z[1/(g − 1)] are trivial, and hence
the sheafification is trivial. Thus the Leray spectral sequence for the map p in Z[1/(g − 1)]-
cohomology collapses, which establishes the first part of Theorem A. We remark that this is
entirely analogous to the proof of the same result for finite-dimensional orbifolds.

We will now prove the second part of Theorem A. Let G = Z/(g − 1), which has a free
action on �g with quotient diffeomorphic to �2 (by viewing �g as a torus with (g − 1)

smaller tori glued on at regular intervals around a meridian, where G acts by rotation). We
then have a map

E = EG ×G �g −→ {∗} ×G �g ��2

which is a submersion on each fibre over BG, so choosing an immersion �2 � M gives a
fibrewise immersion of the surface bundle E → BG into M , which is classified by a map
f : BG → Ih

g (M). Its composition with p : Ih
g (M) → Ig(M) is constant, taking value the

equivalence class of the immersion �g → �g/G ��2 � M .
Let P ⊂ G be a subgroup of order p. We claim that the map B P → BG → Ih

g (M) is
non-trivial on integral cohomology in positive degrees: as the cohomology of P is p-local
in positive degrees, it follows that there are classes in H ∗(Ih

g (M); Z(p)) which do not come
from H ∗(Ig(M); Z(p)). To establish this claim we consider the composition

B P −→ BG
f−→ Ih

g (M) −→ ∗//Diff+(�g) = BDiff+(�g) −→ B�g

where �g = π0(Diff+(�g)) is the mapping class group of �g. On fundamental groups the
homomorphism G → �g is injective (which may be seen, for example, by considering the
action of G on the first homology of �g). It is well known that �g has a torsion-free normal
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subgroup of finite index, say � (see e.g. [BL83, theorem 4·3]), so P → G → �g → �g/�

is also injective. It follows from a theorem of Swan [Swa60, theorem 1] that this composition
is non-trivial on integral cohomology in infinitely many positive degrees, which proves the
claim.

3. Other homotopical models and surfaces with boundary

Let us write Bun(T �g, �) for the set of bundle maps T �g → �, i.e. those continuous maps
which are linear isomorphisms on each fibre, and equip it with the compact-open topology.
We will construct a slightly different homotopical model to Ih

g (M). Define

MθM (�g) := Bun(T �g, �)//Diff+(�g)

to be the homotopy quotient, or Borel construction.

LEMMA 3·1. As long as M has dimension at least three, there is a (naı̈ve) Diff+(�g)-
equivariant weak homotopy equivalence

Imm(�g, M̊) � Bun(T �g, �).

Here, by a naı̈ve equivariant weak homotopy equivalence we mean that the two Diff+(�g)-
spaces are connected by a zig-zag of equivariant maps which are (non-equivariant) weak
homotopy equivalences. This relation is too coarse for many applications of equivariant
homotopy theory, but is sufficient to guarantee that the homotopy quotients are weakly equi-
valent.

Proof. We proceed in two steps. The first step is to note that Smale–Hirsch immersion
theory (cf. [Ada93, theorem 3·9]) implies that the Diff+(�g)-equivariant “derivative map”

Imm(�g, M̊) −→ Bunin j (T �g, T M),

to the subspace of Bun(T �g, T M) consisting of injective bundle maps, is a weak homotopy
equivalence.

The second step is to note that there is a Diff+(�g)-equivariant map

Bunin j (T �g, T M) −→ Bun(T �g, �)

sending the bundle injection e : T �g ↪→ T M to the bundle map

e′ : T �g −→ �

(x, v) 
→ ((e(x), e(Tx�g) ⊂ Te(x)M), e(v)).

This is easily seen to be a homeomorphism, and the claim follows.

By taking homotopy quotients, this lemma shows that there is a weak homotopy equival-
ence Ih

g (M) � MθM (�g). Along with Theorem A this implies the zig-zag

Ig(M)
�H∗←− Ih

g (M)
�−→ MθM (�g)

where the leftwards map is a Z[1/(g − 1)]-homology equivalence and the rightwards map
is a weak homotopy equivalence.
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3·1. Surfaces with boundary

The definition of the spaces MθM (�g) extends easily to the case of surfaces with bound-
ary. Let us write �g,b for a surface of genus g with b boundary components. We fix a bundle
map δ : T �g,b|∂�g,b → � and let Bun∂(T �g,b, �; δ) be the space of those bundle maps
which restrict to δ on the boundary. The group Diff+∂ (�g,b) of diffeomorphisms which are
the identity near ∂�g,b acts on this space, and we define

MθM (�g,b; δ) := Bun∂(T �g,b, �; δ)//Diff+∂ (�g,b).

The main results of [RW09] reduce the problem of establishing a homology stabil-
ity theorem for the moduli spaces Mθ (�g,b; δ) to the problem of understanding the sets
π0(Mθ (�g,b; δ)) and the gluing maps between them sufficiently well. We will explain what
this means in Section 4.

3·2. Spaces of bundle maps as spaces of lifts

In order to understand these sets of path components, we require a further model for the
space Bun∂(T �g,b, �; δ). Let us pick a map τ : �g,b → BSO(2) classifying the tangent
bundle (i.e. we have a given bundle isomorphism ϕ : τ ∗γ +

2 � T �g,b).

Definition 3·2. For a fibration θ : X → BSO(2) let Lifts(τ, θ) denote the space of maps
l : �g,b → X such that τ = θ ◦ l. If a lift b : ∂�g,b → X of τ |∂�g,b is already given, let
Lifts(τ, θ; b) denote the subspace of those l which restrict to b on the boundary.

If θ is any map, we define Lifts(τ, θ; b) to be Lifts(τ, θ f ; b f ) where θ f : X f → BSO(2)

is the canonical replacement of θ by a fibration, and b f is the composition of b with the
canonical map X → X f . If θ is already a fibration then the spaces Lifts(τ, θ; δ) and
Lifts(τ, θ f ; b f ) are homotopy equivalent.

Suppose θ is a fibration (by replacing it if necessary). Given a lift l of τ , we have a bundle
map

B(l) : T �g,b

ϕ

� τ ∗γ +
2 = (θ ◦ l)∗γ +

2 � l∗(θ∗γ +
2 ) −→ θ∗γ +

2 ,

and this construction defines a map

B : Lifts(τ, θ; b) −→ Bun∂(T �g,b, θ
∗γ +

2 ;B(b)).

This map is a weak homotopy equivalence: this may be proved by directly showing that the
induced map on homotopy groups is a bijection, using the homotopy lifting property for θ .

3·3. Gluing

Suppose we are given a surface �, a collar c : [0, 1)×∂� → � and a boundary condition
δ : T �|∂� → �, and similar data (�′, c′, δ′). Suppose we have embeddings

∂�
i←− ∂0

i ′−→ ∂�′

such that

ε1 ⊕ T ∂0
ε1⊕Di−→ ε1 ⊕ T ∂� = T ([0, 1) × ∂�)|{0}×∂�

Dc−→ T �|∂�

δ−→ �

and the analogous map for (�′, c′, δ′, i ′) are equal. Then there is a gluing map

Bun∂(T �, �; δ) × Bun∂(T �′, �; δ′) −→ Bun∂(T (� �∂0 �′); δ � δ′)

https://doi.org/10.1017/S0305004112000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000679


The space of immersed surfaces in a manifold 427

and an associated gluing map

MθM (�; δ) × MθM (�′; δ′) −→ MθM (� �∂0 �′; δ � δ′). (3·1)

4. Isotopy classes of immersions and homology stability

Fix an immersion δ : [0, 1) × ∂�g,b � M and let us write δ for the associated bundle
map T �g,b|∂�g,b → � as well as for the underlying map ∂�g,b → Gr+2 (T M); the precise
meaning will be clear from the context. We first aim to compute

π0(Bun∂(T �g,b, �; δ)) = π0(Lifts(τ, θM; δ))

as then π0(MθM (�g,b; δ)) will be the quotient of this set by the evident action of the mapping
class group

π0(Diff+∂ (�g,b)) =: �g,b.

From now on we make the assumption that M is simply-connected and of dimension at
least three, which implies that all boundary conditions δ are regularly homotopic, and we
can hence take them to be in some standard position.

There is an action of the group π2(M) � H2(M; Z) on the set π0(map∂(�g,b, M; δ))

defined by composing with the map �g,b → S2 ∨ �g,b which collapses a small embedded
circle in the interior of �g,b. An easy obstruction theory argument shows that this action
makes π0(map∂(�g,b, M; δ)) into a H2(M; Z)-torsor, so a choice of immersed discs with
boundary condition δ gives a bijection π0(map∂(�g,b, M; δ)) � H2(M; Z). Let us choose
once and for all such a collection of immersed discs with boundary condition δ.

PROPOSITION 4·1. Let M be simply-connected and of dimension d � 5. Then the natural
map

π0(Bun∂(T �g,b, �; δ)) −→ π0(map∂(�g,b, M; πM ◦ δ))� H2(M; Z)

induces a bijection. The action of the mapping class group is trivial.

Proof. Consider the diagram

Sd−2

Fr2(R
d)

�
� Gr+2 (T M)

θM × πM� BSO(2) × M

Sd−1

ev1
�

BSO(2)

θM
�

=========== BSO(2)

πBSO(2)

�

(4·1)

where the first column and middle row are homotopy fibre sequences, and πX denotes the
natural projection to X . By the first column, if d � 5 then Fr2(R

d) is 2-connected, and
hence the map θM × πM is 3-connected. Fixing a map τ : (�g,b, ∂�g,b) → (BSO(2), ∗)

classifying the tangent bundle, the map

Lifts(τ, θM; δ) −→ Lifts(τ, πBSO(2); (θM × πM) ◦ δ) � map∂(�g,b, M; πM ◦ δ)

is then 1-connected and in particular a bijection on π0.
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The cases of 3- and 4-dimensional background manifolds are rather more complicated.
In these cases an immersion of a surface into such a manifold endows the surface with
additional geometric structure which cannot be recovered from the homotopy class of the
map alone. In dimension 3 this is a Spin structure, and in dimension 4 it is a choice of
oriented rank 2 vector bundle with Euler class satisfying a certain congruence condition.

PROPOSITION 4·2. Let M be a simply-connected 3-manifold; such a manifold admits a
Spin structure. A choice of Spin structure on M gives a bijection

π0(Bun∂(T �g,b, �; δ))�Spin(�g,b; ∗) × H2(M; Z),

where Spin(�g,b; ∗) denotes the set of isomorphism classes of Spin structures on �g,b, with
the trivial Spin structure around the boundary. The action of the mapping class group is
given by its usual action on the set of Spin structures.

Proof. An orientable 3-manifold admits a Spin structure as there is a relation w2 = w2
1

among its Stiefel–Whitney classes by Wu’s formula. We choose one, s, once and for all.
From diagram (4·1) in the proof of Proposition 4·1, we see there are homotopy cartesian

squares

Lifts(τ, θM; δ) � Lifts(τ × f, θM × πM; δ)

map∂(�g,b, M; πM ◦ δ) � Lifts(τ, πBSO(2); πM ◦ δ)
�

� { f : �g,b → M}
�

for each point { f } ∈ Lifts(τ, πBSO(2); πM ◦ δ).
The space Lifts(τ× f, θM ×πM; δ) is always non-empty. Finding a point in it is the same as

finding a bundle injection T �g,b ↪→ f ∗T M extending δ. The bundle f ∗T M is always trivial
(it is a Spin vector bundle on a 2-manifold), and choosing a trivialisation η : f ∗T M → ε3,
we see that finding such a bundle injection is the same as finding a lift in a diagram

∂�g,b
η ◦ δ� Gr+2 (R3) � S2

�g,b

�

�

τ� BSO(2).
�

By obstruction theory there is a unique obstruction w2(τ ) ∈ H 2(�g,b, ∂�g,b; Z/2) to the
existence of such a lift, but this is of course zero, as all orientable surfaces are Spin. Hence
there is a surjection

π0(Bun∂(T �g,b, �; δ)) −→ π0(map∂(�g,b, M; πM ◦ δ))� H2(M; Z)

and the preimage of [ f ] is the quotient of π0(Lifts(τ × f, θM × πM; δ)) by the action of
π1(map∂(�g,b, M; πM ◦ δ), { f }).

Let s : Gr+2 (γ
Spin
3 ) → BSO(2) classify the canonical oriented 2-plane bundle, and t :

Gr+2 (γ
Spin
3 ) → BSpin(3) classify the canonical Spin 3-plane bundle. In the fibration

Fr2(R
3) −→ Gr+2 (γ

Spin
3 )

s×t−→ BSO(2) × BSpin(3),

the space Gr+2 (γ
Spin
3 ) has a sequence of bundles

0 −→ s∗γ +
2 −→ t∗γ Spin

3 −→ ε1 −→ 0
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which splits to give an isomorphism s∗γ +
2 ⊕ ε1 � t∗γ Spin

3 . Thus s∗γ +
2 in fact has a ca-

nonical Spin structure, and the map s factors canonically through BSpin(2). Given a map
f : �g,b → M with boundary condition πM ◦ δ, there is a diagram

Fr2(R
3) ============= Fr2(R

3) � RP∞

∂�g,b
δ � Gr+2 (T M)

�
� Gr+2 (γ

Spin
3 )

�
� BSpin(2)

�

�g,b

�

�

τ × f�

l

......
......

......
......

...�

BSO(2) × M

θM × πM
� Id × s� BSO(2) × BSpin(3)

s × t
� πBSO(2)� BSO(2)

�

and hence a lift l produces a Spin structure on �g,b, and we have defined a map

π0(Lifts(τ × f, θM × πM)) −→ π0(Bun∂(T �g,b, γ
Spin
2 ; ∗)) =: Spin(�g,b; ∗).

This is easily seen to be a bijection (as Fr2(R
3) � RP3, and the induced map Fr2(R

3) →
RP∞ between fibres of the rightmost two vertical maps in the diagram is the standard in-
clusion, hence 3-connected), and the action of a self-homotopy of f , that is, an element of
π1(map∂(�g,b, M; πM ◦ b), { f }), is trivial. Thus there is the exact sequence of sets

∗ −→ Spin(�g,b; ∗) −→ π0(Bun∂(T �g,b, �; δ)) −→ H2(M; Z) −→ ∗,

but a bundle map T �g,b → � gives in particular a map f and a lift of τ × f , so there is a
function

π0(Bun∂(T �g,b, �; δ)) −→ Spin(�g,b; ∗)

which splits it.

PROPOSITION 4·3. Let M be a simply-connected 4-manifold. Then there is a surjection

π0(Bun∂(T �g,b, �; δ)) −→ H2(M; Z)

with preimage of f in natural bijection with the set

P( f ) := {a ∈ Z | a ≡ 〈w2(M), f 〉 mod 2}.
Thus π0(Bun∂(T �g,b, �; δ)) may be identified with a subset of Z × H2(M; Z). The action of
the mapping class group is trivial.

Proof. Recall that Fr2(R
4) is the homogenous space SO(2)\SO(4), and that Gr+2 (γ +

4 ) is
the two-sided homotopy quotient

Gr+2 (γ +
4 ) := SO(2)\\(SO(2)\SO(4))//SO(4) � BSO(2) × BSO(2).

A map giving this homotopy equivalence is given as follows: let s : Gr+2 (γ +
4 ) → BSO(2)

classify the canonical oriented 2-plane bundle, and t : Gr+2 (γ +
4 ) → BSO(4) classify the

canonical oriented 4-plane bundle. The space Gr+2 (γ +
4 ) carries a sequence of bundles

0 −→ s∗γ +
2 −→ t∗γ +

4 −→ V −→ 0

so there is a map c : Gr+2 (γ +
4 ) → BSO(2) classifying the oriented 2-plane bundle V . The

map s × c : Gr+2 (γ +
4 ) → BSO(2) × BSO(2) provides the homotopy equivalence.

https://doi.org/10.1017/S0305004112000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000679


430 OSCAR RANDAL–WILLIAMS

Given a map f : �g,b → M with boundary condition πM ◦ δ, there is a diagram

Fr2(R
4) ============== Fr2(R

4)

∂�g,b
δ � Gr+2 (T M)

�
� Gr+2 (γ +

4 )

� c� BSO(2)

�g,b

�

�

τ × f�

l

......
......

......
......

...�

BSO(2) × M

θM × πM
� Id × τM� BSO(2) × BSO(4)

s × t
�

and hence composing a lift l with c produces an element c(l) ∈ H 2(�g,b, ∂�g,b; Z), that
is, an integer. It reduces modulo 2 to f ∗w2(M) ∈ H 2(�g,b, ∂�g,b; Z/2) = Z/2, which is
a homotopy invariant of the map f . Furthermore, the set of homotopy classes of lifts is a
π2(Fr2(R

4))-torsor, and the image of

Z�π2(Fr2(R
4)) −→ π2(Gr+2 (γ +

4 ))
cV−→ π2(BSO(2)) = Z,

is the even integers. Thus we have defined an injective map

π0(Lifts(τ × f, θM × πM; δ)) −→ P( f ) :=
{

1 + 2Z if f ∗w2(M)� 0

2Z if f ∗w2(M) = 0
⊂ Z (4·2)

l 
−→ c(l).

Given an oriented 2-plane bundle V → �g,b trivialised over the boundary, standard obstruc-
tion theory shows that the only obstruction to finding an isomorphism T �g,b ⊕ V � f ∗T M
(extending the standard isomorphism of trivial bundles on the boundary) is the class

f ∗w2(T M) − w2(V ) − w2(T �g,b) ∈ H 2(�g,b, ∂�g,b; Z/2).

This shows that the map (4·2) is also surjective.

COROLLARY 4·4. Let M be simply-connected. If dim(M) = 3 then choosing a Spin
structure on M gives a bijection

π0(MθM (�g,b; δ))�π0(MSpin(�g,b; ∗)) × H2(M; Z)

for all g and b. Gluing surfaces along boundary components corresponds to adding homo-
logy classes and gluing Spin structures.

If dim(M) = 4 then there is a surjection

π0(MθM (�g,b; δ)) −→ H2(M; Z)

with preimage of f given by the set P( f ), for all g and b. Gluing surfaces (a ∈ P( f ), f )

and (b ∈ P(g), g) along boundary components has result (a + b ∈ P( f + g), f + g).
If dim(M) � 5 then there is a bijection

π0(MθM (�g,b; δ))� H2(M; Z)

for all g and b. Gluing surfaces along boundary components corresponds to adding homo-
logy classes.

Proof. The previous three propositions provide the descriptions of the sets. Gluing to-
gether immersed surfaces certain adds the homology classes they represent. In dimension 3
the Spin structure induced on the union of two immersed surfaces is the union of the Spin
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structures on each, and in dimension 4 the Euler number of the normal bundle of an immer-
sion of a union of two surfaces is the sum of the Euler numbers of the individual immersions.

Using these calculations and the methods of [RW09], we establish the following homo-
logy stability theorem for the spaces MθM (�g,b; δ). Recall from Section 3·3 that for a pair
of surfaces with boundary condition and partially identified boundaries, we have defined a
gluing map (3·1). Let us call a pair of pants any genus zero surface with three boundary
components, and write

α(g) : MθM (�g,b; δ) −→ MθM (�g+1,b−1; δ′)

for any gluing map which adds on a pair of pants along two boundary components (such
maps can only exist if b � 2). Similarly, write

β(g) : MθM (�g,b; δ) −→ MθM (�g,b+1; δ′)

for any gluing map which adds on a pair of pants along a single boundary component (which
can only exist if b � 1), and write

γ (g) : MθM (�g,b; δ) −→ MθM (�g,b−1; δ′)

for any gluing map which adds on a disc along some boundary component (which can only
exist if b � 1). We call these stabilisation maps.

THEOREM 4·5. Any stabilisation map α(g) is a homology epimorphism in degrees

∗ �

⎧⎪⎨
⎪⎩

2g − 1

5
if dim(M) = 3

2g

3
if dim(M) > 3

and a homology isomorphism in one degree lower.
Any stabilisation map β(g) is a homology epimorphism in degrees

∗ �

⎧⎪⎨
⎪⎩

2g − 2

5
if dim(M) = 3

2g − 1

3
if dim(M) > 3

and a homology isomorphism in one degree lower.
Any stabilisation map γ (g) is a homology isomorphism in the same range that β(g) is an

epimorphism.

Proof. By Corollary 4·4 if dim(M) � 4 then all stabilisation maps induce bijections
on sets of path components, and if dim(M) = 3 stabilisation maps induce surjections or
bijections on sets of path components precisely when Spin structures do. Thus by [RW09,
section 7] these cases have the same stability ranges as the tangential structures BSO(2)×M
and BSpin(2) × M respectively. The range in the first case has been calculated in [RW09,
section 7.5], and the range in the second case follows from [RW10, section 2·4–2·6].

To identify the stable homology, we apply the theorem of Galatius–Madsen–Tillmann–
Weiss [GMTW09, section 7]. Write MTSO(2) for the Thom spectrum of the virtual bundle
−γ2 → BSO(2). The map of Thom spectra induced by θM : Gr+2 (T M) → BSO(2) gives a
map

�∞MTθ M −→ �∞MTSO(2)
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and it has been calculated in [MT01] that there is a natural isomorphism

E : π0(�
∞MTSO(2))�Z

under which the point represented by an oriented surface of genus g maps to 1 − g. The
evident composition defines a map

E : π0(�
∞MTθ M) −→ Z

and we let �∞
(n)MTθ M be those path components which map to n ∈ Z under E . In

[GMTW09, section 5] the authors show that Pontrjagin–Thom theory provides a map

αM : MθM (�g) −→ �∞
(1−g)MTθ M ,

and by Theorem 4·5 and [RW09, section 11], this map induces a homology isomorphism in
degrees

∗ �

⎧⎪⎨
⎪⎩

2g − 6

5
if dim(M) = 3

2g − 3

3
if dim(M) > 3,

which establishes Theorem B.

5. Calculations in Euclidean space

In this section we prove the results of Sections 1·2–1·5.

5·1. Immersions in R3

That Ig(R
3) has two components, distinguished by the Arf invariant of the associated Spin

structures, follows from Proposition 4·2. In this case Gr+2 (R3) � S2 and the tautological
bundle corresponds to T S2. This is stably trivial and so MTθR3 � S−2 ∨ S0. Hence the
associated infinite loop space is Q0(S0) × �2

0 Q(S0), which has trivial rational cohomology
in positive degrees. The result now follows from Corollary C.

The torsion calculation may be seen as follows. The fundamental group of this infinite
loop space is Z/2 ⊕ Z/24, by the well known homotopy groups of spheres in low degrees.
This is its first integral homology too, by Hurewicz’ theorem, and it follows from Corollary C
that this is the first homology of Ih

g (R3) as long as g � 6. As the fibres of Ih
g (R3) → Ig(R

3)

are all connected, it follows that the map is surjective on first homology, and the statement
about localisation follows from Theorem A.

5·2. Immersions in R4

That Ig(R
4) has components indexed by Z, distinguished by the Euler number of the nor-

mal bundle of the immersion, follows from Proposition 4·3. Gr+2 (R4) is a simply-connected
4-manifold (in fact, it is S2 × S2 but we do not require this). Thus the cohomology of the
spectrum MTθR4 has a unique class in positive degree, [Gr+2 (R4)]∗ · u−2 ∈ H 2(MTθR4; Q),
and so the rational cohomology of �∞

• MTθR4 is

H ∗(�∞
• MTθR4; Q)�Q[a2]

a polynomial algebra on a single generator in degree 2. One can easily check that the natural
map Gr+2 (R4) → Gr+2 (R∞) pulls back the square of the Euler class to a non-trivial top-
dimensional class, and so a2 can be taken to be κ1. The result now follows from Corollary
C.
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5·3. Immersions in R2n+1, 2n + 1 � 5

That Ig(R
2n+1) is connected follows from Proposition 4·1. We have the calculation

H ∗(Gr+2 (R2n+1); Q) = Q[e]/(e2n)

where e ∈ H 2(Gr+2 (R2n+1); Q) is the Euler class. Thus

H ∗(�∞
• MTθR2n+1; Q)�Q[κ1, κ2, . . . , κ2n−2]

and so the result now follows from Corollary C.

5·4. Immersions in R2n, 2n � 6

That Ig(R
2n+1) is connected follows from Proposition 4·1. By [Lai74, theorem 2] we

have the calculation

H ∗(Gr+2 (R2n); Q) = Q[e, δ]/(δ2, en − 2δe)

where e is the Euler class and δ is Poincaré dual to the fundamental class of the submanifold
CPn−1 ↪→ Gr+2 (R2n). In terms of these classes, the Euler class of the orthogonal complement
to the tautological bundle is

ē = 2δ − en−1.

We define a spectrum cohomology class ē · u−2 ∈ H 2n−4(MTθR2n ; Q) and let � ∈
H 2n−4(�∞

• MTθR2n ; Q) denote its cohomology suspension. Then

H ∗(�∞
• MTθR2n ; Q)�Q[κ1, κ2, . . . , κ2n−3, �]

(and κi = 0 for i > 2n − 3), so the result now follows from Corollary C.

5·5. The spectral sequence for immersions in R2n+1, 2n + 1 � 5

In order to emphasise the nontriviality of the fibration

Imm(�g, M) −→ Ih
g (M) −→ BDiff+(�g), (5·1)

we will describe a computation of its Leray–Serre spectral sequence when M = R2n+1

with 2n + 1 � 5, for rational cohomology in the stable range. We must first understand
the cohomology of the space Imm(�g, R2n+1), and the coefficient system it describes over
BDiff+(�g).

Recall that the mapping class group of a closed genus g surface is defined to be

�g := π0(Diff+(�g)),

and for g � 2 the map BDiff+(�g) → B�g is a homotopy equivalence [EE69]. The action
of a diffeomorphism of �g on the homology of the surface makes H1(�g; Z) into a �g-
module, which we call H . We write HQ = H ⊗ Q. The naturality of Poincaré duality and
the Universal Coefficient Theorem shows that H � H ∗ as �g-modules.

The Leray–Serre spectral sequence for the fibration (5·1) has the form

E p,q
2 = H p(�g; H q(Imm(�g, R2n+1); Q)) =⇒ H p+q(Ih

g (R2n+1); Q), (5·2)

where we can equally well write H ∗(Ig(R
2n+1); Q) for the abutment, by Theorem A, to

obtain the spectral sequence (1·1).

PROPOSITION 5·1. There is an isomorphism of �g-modules

H ∗(Imm(�g, R2n+1); Q)�	[x4n−3, x4n−1] ⊗ Sym∗(HQ[4n − 2])
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where HQ[4n − 2] denotes HQ considered as a vector space of grading (4n − 2), and Sym∗

denotes the symmetric algebra on this graded vector space.

Proof. We first decompose Imm(�g, R2n+1) using the fibration

Imm∂(D2, R2n+1) −→ Imm(�g, R2n+1)
restrict−→ Imm(�g \ D2, R2n+1), (5·3)

which restricts an immersion to the complement of a disc. It is far from obvious that this
restriction map is a fibration: this follows from Smale’s “fibration theorem” [Sma59, the-
orem 1·1], which is the fundamental ingredient of Smale–Hirsch theory. We then consider
the fibration

Imm∗(�g \ D2, R2n+1) −→ Imm(�g \ D2, R2n+1)
restrict−→ Fr2(R

2n+1), (5·4)

where the base is the space of linearly-independent 2-frames in R2n+1, which takes the de-
rivative of an immersion at a point x0 ∈ ∂(�g \ D2). The notation Imm∗(�g \ D2, R2n+1)

means the space of immersions which agree with a fixed germ near x0.
Both fibrations admit an action of Diff+(�g,1, ∂). In the first case the action is trivial

on each fibre, and in the second case it is trivial on the base. If we write �g,1 :=
π0(Diff+(�g,1, ∂)), this makes the Serre spectral sequence a spectral sequence of �g,1-
modules in both cases.

We now apply Smale–Hirsch theory. There is a map

Imm∂(D2, R2n+1) −→ map∂(D2, Fr2(R
2n+1))

i 
−→ ε2 = T D2 Di→ T R2n+1

to the space of maps which have some fixed behaviour on the boundary, and by Smale–
Hirsch theory this is an equivalence. As Fr2(R

2n+1) is simply-connected, we can suppose
that the boundary condition is the constant map to a basepoint, and so there is a homotopy
equivalence Imm∂(D2, R2n+1) � �2Fr2(R

2n+1). The fibration

S2n−1 −→ Fr2(R
2n+1) −→ S2n

is equivalent to the sphere bundle of T S2n . As such it has non-trivial Euler class, and so its
Serre spectral sequence has a non-trivial differential. Thus we have H ∗(Fr2(R

2n+1); Q) =
	[x4n−1], and we deduce that

H ∗(Imm∂(D2, R2n+1); Q) = 	[x4n−3].
We now study the cohomology of Imm∗(�g,1, R2n+1), which is a little more complicated.

Choosing a trivialisation ϕ : T �g,1 � ε2 defines a map

Tϕ : Imm∗(�g,1, R2n+1) −→ map∗(�g,1, Fr2(R
2n+1))

i 
−→ ε2 � ϕ−1 T �g,2
Di→ T R2n+1

and by Smale–Hirsch theory this is a homotopy equivalence. Both sides have an action of
the group Diff+(�g,1, ∂), but the map Tϕ is not equivariant for this action. To describe the
failure of equivariance, consider the map

ψ : Diff+(�g,1, ∂) −→ map∂(�g,1, GL+
2 (R))

f 
−→ ε2 � ϕ−1 T �g,1
f→ T �g,1 � ϕε

2.

Let us write f · − for the action of f on Imm∗(�g,1, R2n+1), f ∗ − for the action on
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map∗(�g,1, Fr2(R
2n+1)), and ψ( f ) ◦ − for the action of ψ( f ) on map∗(�g,1, Fr2(R

2n+1))

induced by the action of GL+
2 (R) on Fr2(R

2n+1). Then we have the relationship Tϕ( f · i) =
ψ( f ) ◦ ( f ∗ Tϕ(i)) between these actions.

We have the homotopy equivalence

map∗(�g,1, Fr2(R
2n+1)) � [�Fr2(R

2n+1)]2g

and so H ∗(map∗(�g,1, Fr2(R
2n+1)); Q) = Q[a1

4n−2, b1
4n−2, . . . , ag

4n−2, bg
4n−2] and the action

f ∗ − of a diffeomorphism is the usual symplectic action on the variables ai , bi . Thus
H ∗(map∗(�g,1, Fr2(R

2n+1)); Q) = Sym∗(HQ[4n − 2]) as a �g,1-module.
This computes H ∗(Imm∗(�g,1, R2n+1); Q) as a ring, but we must compute the action

f · − as well. By the formula above, this corresponds to computing the action ψ( f ) ◦ −
on H ∗(map∗(�g,1, Fr2(R

2n+1)); Q) induced by μ : GL+
2 (R) × Fr2(R

2n+1) → Fr2(R
2n+1).

However for dimension reasons the action μ is trivial on homology and it is easy to deduce
from this that ψ( f ) ◦ − acts trivially too. Thus despite Tϕ not being an equivariant map, the
map (Tϕ)

∗ is a map (in fact, an isomorphism) of �g,1-modules.
Consider the Serre spectral sequence for the fibration (5·4), which has the form

Sym∗(HQ[4n − 2]) ⊗ 	[x4n−1] =⇒ H ∗(Imm(�g \ D2, R2n+1); Q).

The only possible differential is d4n−1, and it is determined by

d4n−1 : E0,4n−2 = HQ −→ E4n−1,0 = Q

but is also a map of �g,1-modules, so must be zero (it corresponds to an invariant vector
in H ∗

Q � HQ). Thus the spectral sequence collapses, and one may check that there are no
extensions.

Next we consider the Serre spectral sequence for the fibration (5·3), which has the form

	[x4n−3] ⊗ Sym∗(HQ[4n − 2]) ⊗ 	[x4n−1] =⇒ H ∗(Imm(�g, R2n+1); Q).

The only possible differential is d4n−2, and it is determined by

d4n−2 : E0,4n−1 = Q −→ E4n−2,0 = HQ

but this must again be trivial as it corresponds to a �g,1-invariant vector in HQ. Thus this
spectral sequence also collapses, and again one may check that there are no extensions.
This determines H ∗(Imm(�g, R2n+1); Q) as a �g,1-module, and the final step is to observe
that the natural homomorphism �g,1 → �g is surjective, and so we have determined the
�g-module structure.

Hence (for g � 2) the Leray–Serre spectral sequence for the fibration (5·1) has the form

H ∗(�g; 	[x4n−3, x4n−1] ⊗ Sym∗(HQ[4n − 2])) =⇒ H ∗(Ih
g (R2n+1); Q).

To determine the E2-term of this spectral sequence we must compute the cohomology of
�g with coefficients in Symq(HQ), and it is very useful to have the multiplicative structure,
induced by Symp(HQ) ⊗ Symq(HQ) → Symp+q(HQ), available to us too.

In [ERW12], Ebert and the author constructed certain cohomology classes �2i+1 ∈
H 2i+1(�g; HQ) (denoted xi,1 in that paper) for each i � 1. Considering HQ to be Sym1(HQ),
using the classes κi ∈ H 2i (�g; Q), and using the bigraded-commutative algebra structure on
⊕p,q H p(�g; Symq(HQ)), we obtain a map of bigraded algebras

Q[κ1, κ2, . . .] ⊗ 	[�3, �5, �7, . . .] −→
⊕
p,q

H p(�g; Symq(HQ)). (5·5)
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PROPOSITION 5·2. The map (5·5) is an isomorphism in bidegrees (p, q) such that p +
q � (2g − 3)/3.

Proof. By a theorem of Looijenga [Loo96, example 1] there is an isomorphism

H ∗(�g; Syms(HQ))�Q[κ1, κ2, . . .] ⊗ �s(s+2)Q[x2, . . . , x2s]
of Q[κ1, κ2, . . .]-modules in the stable range, i.e. the stable cohomology is a free
Q[κ1, κ2, . . .]-module on one generator for each monomial of Q[x2, . . . , x2s], with suitably
shifted degrees. Some dilligent work with generating functions—which we omit—shows
that the two sides of (5·5) are isomorphic as Q[κ1, κ2, . . .]-modules: there are the correct
number of free generators in each degree.1

What remains is to show that the map we constructed induces an isomorphism. This uses
many of the same techniques as [ERW12], where Ebert and the author computed the bi-
graded algebra H ∗(�g; 	∗ HQ) in the stable range, so we will just sketch the argument
briefly.

We consider the moduli space Sg,b := map∂(�g,b, K (Z, 3); ∗)//Diff+∂ (�g,b) which classi-
fies surface bundles with a third integral cohomology class on the total space. By a the-
orem of Cohen and Madsen [CM09, CM11], and the extension to closed surfaces by
the author [RW09], these spaces have homological stability with homology independent
of g in degrees ∗ � (2g − 3)/3. The stable homology is that of the infinite loop space
�∞

• (MTSO(2) ∧ K (Z, 3)+), and standard methods give the calculation

H ∗(�∞
• (MTSO(2) ∧ K (Z, 3)+); Q)�Q[κ1, κ2, . . .] ⊗ 	[l1, l3, l5, . . .],

for some classes li of degree i . Next we observe that there is a decomposition

map(�g, K (Z, 3)) � K (Z, 3) × K (H, 2) × K (Z, 1),

as the space of maps into an Eilenberg–MacLane space is again a product of Eilenberg–
MacLane spaces, and it is easy to calculate its homotopy groups. Thus the Serre spectral
sequence for the fibration

map(�g, K (Z, 3)) −→ Sg −→ BDiff+(�g)

has the form

H ∗(�g; Sym∗(HQ[2])) ⊗ 	[x1, x3] =⇒ Q[κ1, κ2, . . .] ⊗ 	[l1, l3, l5, . . .]
in total degrees ∗ � (2g − 3)/3. By counting dimensions using Looijenga’s theorem, we see
that this spectral sequence must collapse in the stable range, and that the assiciated filtration
on Q[κ1, κ2, . . .]⊗	[l1, l3, l5, . . .] must be by word length in the li . The proposition follows.

Thus the spectral sequence (5·2) has the form

Q[κ1, κ2, . . .] ⊗ 	[x4n−3, x4n−1, �4n+1, �4n+3, . . .] =⇒ H ∗(Ih
g (R2n+1); Q),

in the stable range, where �4n+1+2k has bidegree (p, q) = (3 + 2k, 4n − 2). A chart of the

1 As a hint to the reader, after a change of variables the generating functions for the ranks as a
Q[κ1, κ2, . . .]-module of Looijenga’s and our description become the left- and right-hand sides respect-
ively of the identity

∑∞
k=0 qk(k−1)/21/(1 − q) · · · 1/(1 − qk) · qk xk = ∏∞

k=1(1 + qk x), which holds as
the right-hand side is nothing but the q-Pochhammer symbol (−x; q)∞ and the left-hand side is its well-
known series expansion.
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Fig. 1. Chart of the spectral sequence (5·2).

spectral sequence is then as shown in Figure 1, where each dot represents a free
Q[κ1, κ2, . . .]-module generator.

By the result of Section 1·4, we know that

H ∗(Ih
g (R2n+1); Q)�Q[κ1, . . . , κ2n−2]

in degrees ∗ � (2g − 3)/3. If we suppose that g � n, then the classes κ2n−1, κ2n, . . . can-
not survive the spectral sequence. We see from the chart that the only possible pattern of
differentials in the stable range is

d4n−2(x4n−3) = κ2n−1

d4n−1(�4n+1+2k) = κ2n+1+k for k � 0

d4n(x4n−1) = κ2n

up to units, which then determines the remaining structure of the spectral sequence in the
stable range by multiplicativity.

Remark 5·3. It is curious that κ2n−1 and κ2n do not survive the spectral sequence for what
seem like less systematic reasons than the higher κi . From the point of view of Section 5·3
there is nothing special about them: all of the vanishing is deduced from the relation e2n = 0
in the cohomology of Gr+2 (R2n+1). It would be interesting to find a geometric interpretation
of this fact.
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