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Sameness and Separability
in Gauge Theories
John Dougherty*y

In the philosophical literature on Yang-Mills theories, field formulations are taken to
have more structure and to be local, while curve-based formulations are taken to have
less structure and to be nonlocal. I formalize the notion of locality at issue and show that
theories with less structure are nonlocal. However, the amount of structure had by some
formulation is independent of whether it uses fields or curves. The relevant difference in
structure is not a difference in set-theoretic structure. Rather, it is a difference in the
structure of the category of models of the theory.
1. Introduction. Much of the philosophical literature on Yang-Mills theo-
ries is concerned with the differences between interpretations that represent
the state of the world using fields and those that represent the state of the
world using properties assigned to curves in space-time. These interpretations
are inspired by corresponding mathematical formulations of Yang-Mills the-
ory using bundles and holonomies, respectively. The former class—advocated
by Weatherall (2016a), for example—is generally thought to deliver a lo-
calized picture of the world but also to involve a kind of “surplus structure”
(Redhead 2001). On these interpretations, mathematically unequal but gauge-
equivalent configurations correspond to the same physical state of affairs, so
there is a representational redundancy. The latter class of interpretations—
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advocated by Belot (1998) and especially Healey (2007), for example—is
meant to eliminate this surplus structure at the cost of locality. In these the-
ories, the state of some region does not supervene on the state of its subre-
gions (Myrvold 2011). The interpretive choice between these positions is
sometimes presented as a cost-benefit analysis, a trade-off between locality
and surplus structure.

This accounting oversimplifies the situation. Every claim above is con-
tested: Lyre (2004) and Wallace (2014) argue that field-theoretic interpreta-
tions are nonlocal, and Rosenstock andWeatherall (2016) argue that the two
classes of interpretations have the same amount of structure. This calls into
question the advantages of each interpretation. If bundle interpretations are
nonlocal, then they have no advantages over holonomy interpretations and
have unnecessary structure on top of that. But if holonomy interpretations
have the same amount of structure, then they have no less structure than bun-
dle representations, and so have whatever surplus the bundle interpretations
do, too. Sorting out what is really going on here is made difficult by the fact
that, by and large, arguments about locality in this literature are semiformal
at best. We should like a precise statement, susceptible to proof, of the local-
ity facts in these theories.

I show that the disagreements over locality and structure result from equiv-
ocation. There are two classes each of bundle representations and holonomy
representations that differ in their structure and locality facts. One class of rep-
resentations, call them truncated, has less structure than the other class of
untruncated representations. According to the definition of locality given be-
low, truncatedYang-Mills representations are nonlocal while untruncated rep-
resentations are local. Indeed, the part of the representation that gets lopped
off by truncation is just the structure representing the locality of the theory.
So the distinction between local and nonlocal theories is orthogonal to the dis-
tinction between bundle and holonomy representations: each kind of repre-
sentation has a local and a nonlocal version. The usual story attributes locality
to bundle representations and nonlocality to holonomy representations be-
cause it considers only the untruncated bundle representations and only the
truncated holonomy representations. When we make precise what we mean
by locality, it becomes clear that the relevant feature of the theory is whether
it is truncated, not whether it involves bundles or holonomies.

Disambiguating these theories also leads to an interesting general lesson.
On the standard view, a physical theory is its set of models. Halvorson (2012)
has argued that this conception of theories does not do justice to facts about
relationships between theories: it identifies distinct theories and distinguishes
alternative formulations of the same theory. It also fails to capture ways that
one theory might be a specialization or generalization of another. Halvorson
concludes from this that a physical theory cannot solely be its collection of
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models; instead we must keep track of isomorphisms between these models,
in the style of Rosenstock, Barrett, and Weatherall (2015). In what follows,
we find that these “external” facts about relationships between theories are
not the only thing that the standard view misses out on. Local and nonlocal
gauge theories have the same set of models but cannot be the same theory pre-
cisely because one is local and the other is not. Articulating the difference be-
tween these theories requires appealing to other parts of the mathematical
structure—in particular, the sameness structure of the theory. Truncating a the-
ory forgets precisely this sameness structure, simultaneously rendering the
theory nonlocal. So a view that takes a physical theory to be its set of models
also fails to account for “internal” facts about the theory itself.

2. Spaces of Gauge Configurations. I claimed that “bundle formulation”
and “holonomy formulation” are importantly ambiguous. In this section we
resolve this ambiguity before considering locality. Briefly, we must choose
between modeling gauge-related configurations as equal andmodeling them
as isomorphic. If we go the former route, the theory is nonlocal whether it is a
bundle formulation or a holonomy formulation. If we instead model gauge
equivalences as isomorphisms, either kind of formulation is local.

Let X be some space-time region, and consider electromagnetism as a
U(1) Yang-Mills theory. What is the configuration space of the gauge fields
on X? According to the standard story, there are two classes of answers to this
question (Belot 1998; Healey 2007). The first class takes the bundle formu-
lation of Yang-Mills theory as its point of departure. According to this ap-
proach, a configuration is specified by a connection on a principalU(1) bun-
dle or by some coordinate representation thereof like a vector potential. The
second class of answers takes the configuration space to be a collection of
holonomy maps, which assign elements of U(1) to curves in X. Many de-
bates in the philosophical literature are concerned with this level of general-
ity, and arguments for or against one class of formulations confer support to
all members of that class.

But as I have presented these formulations, they are incomplete. I have
only said how to specify a configuration, not how to determine whether two
configurations are the same. Specifying the space of gauge configurations re-
quires choosing when two mathematical representatives correspond to the
same physical state of affairs. It is generally thought that there are two choices
in the case of Yang-Mills theory. This is incorrect. To clearly lay out the cor-
rect menu of choices in a Yang-Mills theory, it helps to speak in terms of group-
oids, which make these sameness facts explicit.1
1. For an introduction to groupoids, see Brown (1987).
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Definition 1. A groupoid is a category in which all arrows are isomor-
phisms.
Much of the philosophical literature on the interpretation of Yang-Mills the-
ories already involves groupoids. For example, Rosenstock and Weatherall
(2016) argue that bundle and holonomy interpretations have the same
amount of structure, in the sense that a particular groupoid of bundles is
equivalent to a particular groupoid of holonomy maps. Weatherall (2016b),
too, uses groupoids to analyze relative amounts of structure in gauge theories.
More generally, Rosenstock et al. (2015) adopt a point of view on which a
scientific theory amounts to a groupoid of models, rather than the set of mod-
els considered on the standard semantic view of theories.

I will assume for the rest of this discussion that every collection of math-
ematical objects is a groupoid. That is, I will take them to generalize sets. A
description of a collection requires both a description of the objects in the
collection and a description of when two objects are the same (i.e., of objects
and isomorphisms). In some cases the isomorphism structure is trivial; these
are the cases corresponding to sets. More precisely, say that a groupoid is a
set if there is at most one isomorphism between any two of its objects.

Most discussions in the philosophical literature assume that any collec-
tion must be a set. So when these discussions encounter a groupoid—such
as the groupoid of principal bundles and principal bundle isomorphisms be-
tween them—they must squash the isomorphism structure into triviality to
produce a set. Call this process truncation.
Definition 2. For any groupoid X, its truncation kXk is the set of isomor-
phism classes of X considered as a groupoid.
If a groupoid X is a set (in the sense of the previous paragraph), then it is
equivalent to its truncation kXk. If it is not a set, then there is a natural
map X → k X k that sends each object to its isomorphism class, but this
map has no inverse. So truncation forgets information about a groupoid,
in particular information about its isomorphism structure.

Return to the candidate configuration spaces for a Yang-Mills theory. For
simplicity, consider a simply connected space-time region X, and consider a
formulation in terms of vector potentials. Let Q1(X ) denote the set of all such
vector potentials. If we take this set to be the configuration space, then we
have a well-known problem: any two vector potentials related by a gauge
transformation are empirically and dynamically indistinguishable, leading
to empirical underdetermination and dynamical indeterminism. In response,
physicists take gauge-related potentials to represent the same physical con-
figuration. That is, the set Q1(X ) is too fine because it includes spurious dis-
tinctions between gauge-related vector potentials.
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We cannot take the set of vector potentials to be the configuration space.
Instead we want a space that is obtained from Q1(X ) by identifying any two
gauge-related configurations. There are twoways to do this using groupoids.
If we restrict ourselves to sets, there’s only one option: take the set of gauge-
equivalence classes of potentials. But groupoids allow for nontrivial same-
ness structure, and we can take advantage of this. Let Q1(X )⫽U (1) be the
groupoid in which an object is a vector potential and an isomorphism is
a gauge transformation. This is a kind of quotient of Q1(X ), in that it starts
with the set of potentials and then makes any gauge-related configurations
the same. But it is not the familiar set-theoretic quotient into equivalence
classes. That, rather, is the set k Q1(X )⫽U (1) k, the truncation of our weaker
quotient.

Assume that gauge-related potentials are the same physical configuration.
It remains to decide whether the configuration space is the groupoid where
gauge transformations are isomorphisms or the truncation thereof. Relaxing
the assumption that our space-time is simply connected, one presentation of
the bundle and holonomy formulations of the configuration space is as fol-
lows:2
2. Th
rigor

86/6940
Definition 3. Let X be a smooth manifold and G a Lie group with Lie al-
gebra g. Denote the groupoid of principal G-bundles with connection on X
by BGconn(X ), in which an object is a principal G-bundle on X equipped
with a principal G-connection, and an isomorphism is a principal bundle
isomorphism that restricts to the identity on the base space and preserves
the connection.

Definition 4. Let X be a smooth manifold and G a Lie group. Denote the
groupoid of G-valued holonomy maps on X by [P1(X ),BG], in which an
object is a map from the path groupoid of X to the group G considered
as a one-object groupoid, and an isomorphism is an isomorphism of such
functors.
Both of these definitions are underspecified, but we are concerned with a
high-level distinction between bundle and holonomy formulations, so this
is fine. It will suffice for our discussion to keep in mind the simpler electro-
magnetic case of the groupoid Q1(X )⫽U (1), where an object is a vector po-
tential and an isomorphism is a gauge transformation.WhenX is simply con-
nected, this groupoid is equivalent to BGconn(X ).

Neither of the groupoids just defined is a set, and so neither is equivalent
to its truncation. Sowe seem to have four candidate configuration spaces: the
ese definitions are taken from Schreiber (2013, sec. 1.2.6.1.1); see there for more
ous statements.
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bundle formulation BGconn(X ), the holonomy formulation [P1(X ),BG], and
the truncations of each. However, it follows from Rosenstock and Weath-
erall’s (2016) main result that BGconn(X ) and [P1(X ),BG] are equivalent, so
they are two presentations of the same groupoid. Hence, their truncations
are also equivalent. As such, there are really only two options: the groupoid
BGconn(X ) and its truncation kBGconn(X )k. And these really are different be-
cause the former is not a set and the latter is.

This menu of spaces resolves one of the tensions discussed in the open-
ing. The standard story has it that bundles involve more structure than ho-
lonomy models, but Rosenstock and Weatherall show that there is a precise
sense in which a particular bundle representation has the same amount of
structure as a particular holonomy representation. As we now see, the stan-
dard story rests on an ambiguity. By themeasure of structure Rosenstock and
Weatherall use, BGconn(X ) and [P1(X ),BG] have the same amount of struc-
ture, and their truncations have the same amount of structure, but BGconn(X )
and [P1(X ),BG] have more structure than their truncations. In the standard
story, “the” bundle representation is usually taken to be BGconn(X ), and “the”
holonomy representation is usually taken to be k[P1(X ),BG]k. So, properly
interpreted, this story is right. It is just not the whole story. Worse, this termi-
nology has not be consistently maintained.Wu and Yang, for example, do not
distinguish between [P1(X ),BG] and its truncation, referring to the truncated
state space asmerely “less easy to use” (1975, 3846) than the untruncated one.
But the details of their argument rely on structure lost in truncation, so this is a
matter of substance, not convenience. A defense of a holonomy interpretation
based on the truncated state space’s having less structure must show that the
truncated state space has all the resources Yang-Mills theory requires, so it
cannot appeal to an analysis like Wu and Yang’s, which does not attend to
the distinction.

Turn to the second tension, concerning locality.

3. Locality, Functorially. The particular notion of locality that interests us
is separability. A physical theory is separable if the physical state of some
region supervenes on the physical states of its subregions. To make this pre-
cise, we need a way of spelling out how the mereological structure of space-
time is reflected in the structure of the space of possible states of regions. For
any field theory, the state of a region involves at least the states of its subre-
gions. In particular, there is a duality between parthood and determination: if
U is a subregion of X, then a physical state of X induces a physical state ofU
when we restrict our attention. The assignment of configuration spaces to
space-time regions is thus functorial—it respects the composition structure
of space-time. If the theory is separable, then the state of a region also in-
volves no more than the states of its subregions. So we will formalize sep-
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arability as a property of the functor that assigns configuration spaces to re-
gions of space-time. Informally, this functor is separable if the configuration
space it assigns to some region is the same as the space of collections of
states of its subregions.

Einstein formulated the earliest version of the principle of separability as
an articulation of a difference between classical and quantum theories.
Broadly, a theory is separable if the state it assigns to a system is determined
by the state assigned to its subsystems. For a classical field theory, these sys-
tems are regions of space-time, with subregions as subsystems. Einstein’s
principle can be sharpened up into amore formal criterion, versions of which
have been given by Belot (1998, 544), Healey (2007, 125), and Myrvold
(2011). Following Myrvold, take some manifold X and consider covers of
X by open sets. A cover V of X is finer than a cover U if every region in
V is a subregion of some region in U. We can give a semiformal definition
of separability as follows:3
3. Th
Heale

4. Se
sets,

86/6940
For any space-time region X, there are arbitrarily fine open covers U of X
such that the state of X supervenes on the states of the elements of U.
As these authors have pointed out, the Aharonov-Bohm (AB) effect
(Aharonov and Bohm 1959) demonstrates a failure of separability for holo-
nomy formulations. If {U, V } is a cover of the exterior region of an infinite
solenoid containing magnetic flux F by simply connected regions, as in fig-
ure 1, then there is only one possible state for each of U and V, represented
by the trivial holonomy. But the state ofU [ V depends on the current in the
solenoid, and there are infinitely many different ways that U [ V could be.
So a difference in the state U [ V does not imply a difference in the states
of U or V.

However, this criterion is still ambiguous. It formalizes the mereological
structure of space-time, but the notion of supervenience remains intuitive. To
formalize the claim that the states of the subregions determine the states of
the entire region, we need to model the way that possibilities for subregions
interact with the mereological structure of space-time. For a field theory like
Yang-Mills theory, the state of a region determines the state of its subregions:
if you tell me the electromagnetic facts in this building, I can tell you the
electromagnetic facts in each room. More formally, a Yang-Mills theory has
a presheaf of configuration spaces:4
is analysis is adapted from Myrvold (2011, 425). See also Belot (1998, 540) and
y (2007, 46).

e Mac Lane and Moerdijk (1992) for an introductory treatment of presheaves of
which are a special case of our presheaves.
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Definition 5. Let X be a topological space. A presheaf (of groupoids) on X
is a functor F :O(X )op →Grpd, where Grpd is the category of groupoids
and O(X ) is the category in which an object is an open set U ⊆ X and for
any objects V and U there is a unique arrow V →U just in case V ⊆U .
Presheaves capture the duality remarked on at the start of this section. If V is
a subregion of U, then there is an arrow V →U , and a presheaf F sends this
to an arrow F(U )→ F(V ). If we think of F as an assignment of possibility
spaces to regions of space-time, then this map F(U )→ F(V ) is just the re-
striction map.

In physics, a field theory involves a presheaf of configuration spaces on
space-time. For example, consider a theory involving some scalar field on a
space-time X—a mass density, say, or a gravitational potential. The possible
field configurations on X are elements of the set C∞(X, R) of real-valued func-
tions on X. If U is a subregion of X, then the possible configurations of U are
elements of the set C∞(U, R). Given a configuration ɸ on X in C∞(X, R), we
obtain a configuration ɸjU in C∞(U, R) via restriction. So the presheaf of con-
figurations in this theory is the functor C∞(2,R) : O(X )op→Set.

If we think of separability in terms of presheaves, it amounts to the claim
that the restriction maps can sometimes be reversed. Consider the AB setup.
By restriction, a configuration in F(U [ V ) gives a configuration in F(U )
and one in F(V ), and these configurations agree on F(U \ V ). So there is
a map taking a configuration in F(U [ V ) to a collection of compatible con-
figurations on the cover. If the theory is separable, we can go the other way: a
collection of compatible configurations on the cover determines a configu-
ration in F(U [ V ). Moreover, these two maps are inverses. Two different
elements of F(U [ V ) are sent to different collections of configurations on
the cover because there can be no difference in the state ofU [ V without a
difference in the state of some subregion in the cover—this is just what it
means for the state ofU [ V to supervene on the state of its subregions. This
Figure 1. AB setup.
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makes the restriction map injective, and since we have a determination map
in the other direction it must be a bijection.

Formalizing the compatibility condition on a collection takes a bit of care
if it is to be done in a gauge-invariant way. To see how things could go
wrong, consider the presheaf of configuration spaces Q1(2)⫽U (1). Naively,
a compatible collection of configurations for the AB setup is a pair of vector
potentials AU onU and AV on V such that AU 5 AV on the overlap. However,
this statement of the compatibility condition is not gauge invariant. If (AU,
AV) is such a pair (e.g., AU 5 AV 5 0) and A0

V is gauge equivalent to AV

(e.g.,A0
V 5 dv=2pr), then (AU,A0

V ) will generally not be a compatible collec-
tion. But (AU, AV) and (AU, A0

V ) are gauge equivalent, because AV is gauge
equivalent to A0

V . So this statement of the compatibility condition distin-
guishes between isomorphic collections. This makes it gauge variant and
ill defined with respect to the groupoid structure. So this cannot be the right
statement of the compatibility condition.

The problem we face is familiar to mathematicians, and they have devel-
oped a extensive toolkit called abstract homotopy theory to deal with prob-
lems like it. In our AB case, the theory says that the groupoid of compatible
collections of configurations on the cover is the groupoid where an object is
a triple (AU,AV, g) of configurationsAU andAV onU andV, respectively, and a
gauge transformation g from AU to AV on the overlap U \ V . An isomor-
phism in this groupoid between objects (AU, AV, g) and (A0

U , A0
V , g 0 ) is a pair

of gauge transformations h and h0 between the first two entries of the triple
such that hg0 5 gh0.

Generalizing this situation, for any presheaf F on a space X and cover U
of X we define the collection of compatible configurations using the homot-
opy limit, which turns a diagram of configuration spaces and restriction
maps into a groupoid of collections of configurations that are compatible
with respect to all of the restriction maps in an isomorphism-invariant way.
If the configuration space F(X ) is the same as the space of compatible collec-
tions for every cover, then we say that F is separable since it is separable with
respect to every cover. In mathematical parlance this means that F is a stack.5
5. Th
ficien
cussi

86/6940
Definition 6 (Hollander 2008, def. 1.3). For any topological space X, a
presheaf F on X is a stack on X if for any good cover U of X the natural map

F Xð Þ→ holim
Y
U∈U

F Uð Þ⇉
Y

U ,U 0∈U

F U \ U 0ð Þ⇶ :::

 !
e requirement that the cover be “good” is a technical condition encoding the “suf-
tly fine” clause in the semiformal statement above. See Schreiber (2013) for a dis-
on of its importance.
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is an equivalence. Call this homotopy limit the groupoid of descent data for
F with respect to U.
Note that the stack condition is well defined, in that it does not distinguish
between equivalent presheaves: if two presheaves are equivalent and one is
a stack, then so is the other. Informally, definition 6 says that a presheaf is a
stack if a configuration of the region X is the same thing as a compatible
collection of configurations of the subregions of X, for any way of carving
X up into subregions.

I take the stack condition to be a precise statement of separability. For the
concept to apply, the theory must assign configuration spaces to all of the
subregions of some space-time region, and the state of the region determines
the state of its subregions. So we should be concerned with presheaves. The
stack condition then formalizes the idea that the state of the entire region su-
pervenes on the states of its subregions. Any two different collections of
compatible subregions determine different configurations of the total region
and vice versa. So there cannot be a difference in the configuration of the
total region without a difference in some subregion. With this analysis of
separability in hand, we can ask whether our Yang-Mills theories are sepa-
rable.

4. Separability in Gauge Theories. The untruncated groupoids of defini-
tions 3 and 4 generalize to stacks; their truncated cousins do not. In closing,
I will sketch proofs of these claims. The arguments from Lyre (2004) and
Wallace (2014) are proofs of the latter fact. Myrvold’s (2011) proof of the
nonseparability of Healey’s (2007) holonomy theory is dual to these, show-
ing that the pre-cosheaf assigning algebras of observables to space-time re-
gions is not a costack. Since observables are, broadly speaking, functions on
state space, this argument is dual to Lyre’s and Wallace’s. Benini, Schenkel,
and Szabo (2015) give a similarly dual argument that the untruncated alge-
bras of observables are a costack. The fact that the configuration space of a
gauge theory is a stack is urged by Schreiber (2013), and the discussion here
broadly follows his.

Consider one last time the AB setup. We can take the configuration in the
exterior region to be (the principal connection corresponding to) the poten-
tial A 5 F=2pr dv, where F is the magnetic flux through the solenoid. Sup-
pose that A and A0 are the potentials corresponding to fluxes F and F0, re-
spectively. Potentials A and A0 are gauge equivalent just in case F and F0
differ by a multiple of 2p; otherwise they specify two different equivalence
classes [A] and [A0] in the configuration groupoid kBU (1)conn(U [ V ) k.
The groupoid of descent data in this case is the set of pairs of gauge-equivalence
classes of configurations on U and V that are equal on the overlap. But no
matter the value of F, the restriction AjU toU is gauge equivalent to the van-
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ishing potential, and likewise for A0jU . It follows that both [A] and [A0] are
mapped to the same descent datum, the pair ([0],[0]). Since generally
½A�≠½A0�, the map appearing in the stack condition is not injective. Hence
it is not an equivalence, and we have shown that
86/6940
Proposition 1. The presheaf kBGconn(2)k is generally not a stack.
It follows from this proposition and the equivalence between BGconn and
[P1(2),BG] that the presheaf k[P1(2),BG]k is also not a stack. So both of
the truncated configuration spaces are nonseparable.

The untruncated configuration spaces avoid this counterexample, and
we can prove that they satisfy the stack condition. The configurations in
BGconn(U [ V ) corresponding to A and A0 are not isomorphic unless the dif-
ference in their respective fluxes F and F0 is a multiple of 2p. The former is
mapped to the descent datum (AjU , AjV , 1), and the latter to (A0jU , A0jV , 1),
where the third entry in both is the gauge transformation corresponding to
the constant identity function on U \ V . As before, we can use the fact that
both potentials are gauge equivalent to 0 when restricted to U or V to trans-
form them away. The triple corresponding to A becomes (0, 0, eil), and the
triple corresponding to A0 becomes (0, 0, eil

0
), where l is a locally constant

real-valued function on U \ V such that the difference ljU 2 ljV is equal
to F, and likewise for l0 and F0. So the two triples are not the same: the third
entry of the triple retains the information about themagnetic flux up to amul-
tiple of 2p. The isomorphism structure of the groupoid allows the compat-
ibility condition to encode the difference between the two configurations,
avoiding the counterexample.

More generally, we have
Proposition 2. BGconn is a stack.

Proof sketch. Let g be the Lie algebra of G, and let Q1(–; g)⫽G be the
presheaf of g-valued 1-forms weakly quotiented by the action of the gauge
groupG. To any presheaf F there is associated a stack, the stackification of
F, which is the universal way of making F a stack (Laumon and Moret-
Bailly 2000, lemma 3.2). The stackification of Q1(–; g)⫽G is BGconn;
hence, it is a stack. QED
In sum, there are separable and nonseparable bundle formulations, and
there are separable and nonseparable holonomy formulations. For each bun-
dle formulation there is an equivalent holonomy formulation, and this equiv-
alence respects separability. The association of holonomy representations
with nonseparability rests on the coincidental focus in the literature on
k[P1(2),BG]k as the paradigmatic holonomy representation.
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5. Conclusion. The primary geographic feature in the interpretive land-
scape of Yang-Mills theories has been a division between bundle formula-
tions and holonomy formulations. Other theoretical features—determinism,
empirical underdetermination, locality, andmore—have beenmapped along
this division. In particular, bundle formulations have generally been treated
as separable, while holonomy interpretations have not (Healey 2007, sec. 2.4).
I have argued above that this neglects an important feature of Yang-Mills
theories. The distinction between separable and nonseparable theories is
unrelated to the distinction between bundles and holonomies. There are sep-
arable theories with equivalent configuration stacks BGconn and [P1(2),BG],
and there are nonseparable theories with equivalent configuration presheaves
kBGconn(2)k and k[P1(2),BG]k. So even after choosing between bundle and
holonomy formulations, we still must choose between separable and nonsep-
arable versions of these.

The foregoing discussion aimed to point out that there aremore choices to
make than is usually supposed; it did not try to adjudicate this choice. An
argument for the untruncated, separable choice would have to appeal to fur-
ther assumptions about what we are doing when interpreting classical Yang-
Mills theory. If we adopt the cost-benefit analysis of the opening paragraph,
then the discussion here leads to an argument for the untruncated theory: it is
local, and the “surplus” structure is not surplus after all—it represents local-
ity facts (although the precise way in which it represents these locality facts
is unclear). If we are motivated by understanding quantized Yang-Mills the-
ory, we need some story about the correspondence between the quantum and
the classical, along with a sense of whether and how differences in separa-
bility make a quantum difference. Benini et al. (2015) argue along these
lines, claiming that the separable theory is required if we want to get the
global algebra of quantum observables right. Schreiber (2013, sec. 1.1.1),
too, has argued that nonperturbative effects in quantum field theory require
the structure lost in truncation. Arguments along these lines will be pursued
elsewhere.

Finally, note that both separability and the amount of structure turn on the
difference between a state space and its truncation. This difference is “inter-
nal” to the theory, in the sense that it is a fact about the theory itself, not about
how the theory stands in relation to other theories or formulations. To be
sure, the groupoid structure of BGconn(X ) makes a difference to its standing
with respect to other theories. It means that BGconn(X ) has the same amount
of structure as [P1(X ),BG] and more than k[P1(X ),BG]k, for example. But
this groupoid structure also makes BGconn separable, and this is just a fact
about BGconn. So if we think that separability is a feature of theories—and
it is hard to see what else it could be a feature of—then a theorymust bemore
than its underlying set of models.
3 Published online by Cambridge University Press
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