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Steady circular hydraulic jump on a rotating disk
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The paper deals with the steady axially symmetric flow of a viscous liquid layer over a
rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and
the centrifugal force. The viscous shallow-water approach gives a system of ordinary
differential equations governing the flow. We consider inertia, gravity, centrifugal and
Coriolis forces and estimate the effect of surface tension. We found four qualitatively
different flow regimes. Transition through these regimes shows the continuous evolution of
the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease
on a fast rotating one. We show that, in the absence of surface tension, the intensity of the
jump gradually vanishes at a finite distance from the axis of rotation while the angular
velocity increases. The surface tension decreases the jump radius and destroys the steady
solution for a certain range of parameters.
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1. Introduction

Radial spreading of a liquid film after a vertical jet hits the rigid surface appears in two
classic problems. They are a circular hydraulic jump on a fixed plane and a thin film flow
over a rotating disk.

The statement of the first problem is the following. A vertical liquid jet falls on a
horizontal disk and spreads radially, forming a thin film. At a certain distance from
the fall point, the film thickness abruptly increases – one observes the hydraulic jump
(Rayleigh 1914). The jump separates supercritical and subcritical flows where the gravity
wave velocity is smaller and larger than the liquid velocity. A hydraulic jump is an
analogue to a shock wave in the shallow-water gas-dynamics analogy framework (Landau
& Lifshitz 1987). This analogy allows using the hydraulic jump for small-scale laboratory
modelling of detonation (Kasimov 2008), white holes (Volovik 2005; Jannes et al. 2011)
and accretion (Foglizzo et al. 2012) in astrophysics.
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Figure 1. Scheme of the flow.

The ideal liquid theory used by Lord Rayleigh (1914) includes inertia and gravity and
does not predict the location of the jump. The axisymmetric flow from a source has
two solutions with either supercritical or subcritical flow everywhere. Taking viscosity
into account in supercritical flow defines the location of the jump (Watson 1964;
Rozhdestvenskii 1979; Bohr, Dimon & Putkaradze 1993).

For usual laboratory experiments and applications, capillarity is negligible in the
momentum equations for smooth parts of steady flows (Duchesne, Andersen & Bohr
2019). However, the surface tension forces add a term to the momentum jump conditions
(Bush & Aristoff 2003) and affect the boundary conditions at the disk edge (Mohajer
& Li 2015). Capillarity influences the stability of the hydraulic jump (Fernandez-Feria,
Sanmiguel-Rojas & Benilov 2019) and leads to the non-existence of a steady axisymmetric
solution Kasimov (2008). For liquids with low surface tension (e.g. silicone oils), the
capillarity is negligible. Experiments (Duchesne, Lebon & Limat 2014) and calculations
(Wang & Khayat 2019) show that the hydraulic jump forms a flow with a specific Froude
number in this case.

Bhagat et al. (2018) and Bhagat & Linden (2020) proposed a shallow-water theory that
does not involve gravity but predicts the hydraulic jumps due to surface tension. Their
theoretical results fit the experimental data for liquids with high surface tension (water,
water–glycerol mixtures, water with surfactants). They stated that gravity is irrelevant for
the hydraulic jump formation since they observed similar values of jump radii for the
experiments with water jets hitting the vertical plate, the horizontal plate from below and
for the classical situation. The experimental pictures (figure 1c from Bhagat et al. (2018))
show that, for the flow underneath the plane, there exists a short dripping ‘crown’ but not
a long film after the jump, so the shallow-water approximation is not applicable. A recent
letter (Bohr & Scheichl 2021) shows mathematical faults in the theory developed in Bhagat
& Linden (2020).

The second problem deals with smooth thin film flows over rotating disks. These flows
appear in coating applications (Weinstein & Ruschak 2004) and in chemical reactors (Pask,
Nuyken & Cai 2012). For large rotation rates, the centrifugal force is the main driving
force (Espig & Hoyle 1965; Charwat, Kelly & Gazley 1972). In this case, a liquid film on
a rotating disk is similar to a falling film (Kapitza & Kapitza 1949). The flow is unstable
for long waves; the scale of the growing waves indicates a balance of the centrifugal force,
viscosity and capillarity (Shkadov 1967; Sisoev, Matar & Lawrence 2003). The influence
of gravity stabilises the flow; the Needham criterion (Needham & Merkin 1987) predicts
that the flow is stable if the ratio of centrifugal force at the reference radius and gravity is
below a specific value of the order of unity.
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Interesting effects take place if the inertia, gravity and centrifugal forces have the same
order. This situation corresponds to a relatively low rotation rate (Pask et al. 2012). The
centrifugal force adds momentum to the liquid and pushes the hydraulic jump away from
the axis of rotation (Ozar, Cetegen & Faghri 2003; Wang & Khayat 2018). The model
considered by Wang & Khayat (2018) assumes synchronous rotation of the disk and the
liquid. This model predicts monotonic ‘washing’ of the jump away from the disk while
the rotation rate increases. However, the momentum is transferred from the disk to the
liquid by viscosity, and the Coriolis force slows down this process (Myers & Lombe
2006). There is an interplay between all forces that define the flow regime. Near the jet
impact region, viscosity balances inertia (Watson 1964), then gravity becomes of the
same order as inertia and viscosity (Bohr et al. 1993). Finally, in the disk periphery,
the centrifugal force and viscous friction dominate (Espig & Hoyle 1965). Scheichl &
Kluwick (2019) concentrated on the case of a relatively large rotation rate, so the flow
is globally supercritical, and gravity does not dominate anywhere. The same case is
simulated and studied experimentally by Wang et al. (2020).

Our goal is to fill the gap between the two problems mentioned above, investigating
the transition from the flow over a static disk with the hydraulic jump to the continuous
flow on a fast rotating disk and to study the disappearance of the jump. We consider the
rotation rate range from zero to large enough values that ensure globally supercritical
flow.

We extend the shallow-water theory proposed by Bohr et al. (1993) for the flow over
a rotating disk. We derive governing equations taking the inertia, hydrostatic pressure
gradient, centrifugal and Coriolis forces into account. The surface tension influences
boundary conditions but is neglected in the equations for smooth parts of the flow. We
perform a qualitative analysis of the equations showing the structure of the solutions
and obtain estimates for parameters corresponding to the existence of a hydraulic
jump.

We derive the governing equations in § 2 and provide their qualitative analysis in § 3
followed by numerical calculation and comparison with experiments (§ 4). We summarise
our results in § 5.

2. Governing equations

In this section, we state the problem. First, we describe the system, provide dimensional
equations and boundary conditions. We introduce non-dimensional coordinates and
parameters following Bohr et al. (1993); we simplify the equations and discuss the range of
validity of our assumptions. Finally, we derive the system of ordinary differential equations
(ODE) for depth-averaged characteristics to be analysed further.

2.1. Dimensional equations
Consider the round jet of an incompressible fluid that falls to the centre of a horizontal
rotating disk. The jet is vertical and has a constant flow rate of Q. The angular velocity Ω

of the disk is constant. The disk radius is Rf .
In the vicinity of the disk centre, the fluid changes the direction of motion from vertical

to radial. Viscous effects are negligible in this region (Watson 1964). Further, inertia,
viscous friction and gravity define the flow. We consider steady axially symmetric flow in
the region where the viscous flow is fully developed.
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In cylindrical coordinates (figure 1), the momentum Navier–Stokes and continuity
equations for axisymmetric flow in an inertial frame are (Batchelor 2000)

VR
∂VR

∂R
+ VZ

∂VR

∂Z
− V2

ϕ

R
= − 1

ρ

∂P
∂R

+ ν

[
∂2VR

∂Z2 + 1
R

∂

∂R

(
R

∂VR

∂R

)
− VR

R2

]
, (2.1)

VR
∂Vϕ

∂R
+ VZ

∂Vϕ

∂Z
+ VRVϕ

R
= ν

[
∂2Vϕ

∂Z2 + 1
R

∂

∂R

(
R

∂Vϕ

∂R

)
− Vϕ

R2

]
, (2.2)

VR
∂VZ

∂R
+ VZ

∂VZ

∂Z
= − 1

ρ

∂P
∂Z

− g + ν

[
∂2VZ

∂Z2 + 1
R

∂

∂R

(
R

∂VZ

∂R

)]
, (2.3)

∂VR

∂R
+ VR

R
+ ∂VZ

∂Z
= 0, (2.4)

where VR(R, Z), Vϕ(R, Z), VZ(R, Z) are the radial, azimuthal and vertical components of
the velocity, P is pressure, R is the coordinate along the disk radius, Z is the coordinate
along the vertical axis (Z = 0 corresponds to the disk plane), ρ is the fluid density, ν is
kinematic viscosity and g is the gravitational acceleration.

At the disk surface, the no-slip boundary condition reads

VR(R, 0) = VZ(R, 0) = 0, Vϕ(R, 0) = ΩR. (2.5a,b)

At the free surface Z = H(R), boundary conditions state no-penetration, zero shear
projections to the (R, Z) plane and azimuthal direction, action of surface tension
(coefficient σ ) and external constant pressure P0

VZ = VR
dH
dR

, (2.6)

(
∂VR

∂Z
+ ∂VZ

∂R

) [
1 −

(
dH
dR

)2
]

+ 2
(

∂VZ

∂Z
− ∂VR

∂R

)
dH
dR

= 0, (2.7)

∂Vϕ

∂Z
− R

∂

∂R

(
Vϕ

R

)
dH
dR

= 0, (2.8)

P − 2ρν

[
∂VZ

∂Z
−

(
∂VR

∂Z
+ ∂VZ

∂R

)
dH
dR

− ∂VR

∂R

(
dH
dR

)2
]

= P0 − 2σκ, (2.9)

where κ is the surface mean curvature

2κ = 1
R

d
dR

⎛
⎜⎜⎜⎜⎝

R
dH
dR√

1 +
(

dH
dR

)2

⎞
⎟⎟⎟⎟⎠ . (2.10)

We do not consider the flow in the axis of symmetry where the jet hits the disk. We set
the boundary conditions at the finite distance R = Rs (inlet) specifying the value of the
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film thickness Hs and velocity distribution

VR(Rs, Z) = Vrs(Z), Vϕ(Rs, Z) = Vϕs(Z). (2.11a,b)

The value of Hs and the function Vrs(Z) define the flow rate Q:

Rs

∫ Hs

0
Vrs(Z) dZ = q = Q

2π
. (2.12)

Since the Navier–Stokes equations are elliptic, they require boundary conditions for all
velocity components at the edge of the disk R = Rf , e.g. outflow boundary conditions
(Fernandez-Feria et al. 2019).

2.2. Scales
We introduce non-dimensional coordinates, velocities and pressure. We use different
scales R0 and H0 for radial and vertical coordinates as the film thickness and typical
distances to the axis of symmetry have different orders of magnitude. For given R0, H0,
the value of the flow rate gives the scale for the radial velocity U; the aspect ratio H0/R0
allows us to calculate the proper scaling for the vertical velocity. For the azimuthal velocity,
we introduce the relative value: the difference between local azimuthal velocity Vϕ of the
liquid and the azimuthal velocity ΩR of the disk point right below the given one. The
latter provides the scale for the relative azimuthal velocity.

The dimensional coordinates and functions are

R = R0r1, Z = H0z1, H = H0h1,

VR = Uvr1, Vϕ = ΩR0r1(1 + vϕ1), VZ = UH0

R0
vz1,

P = P0 + ρgH0p1.

⎫⎪⎬
⎪⎭ (2.13)

Following Bohr et al. (1993), we choose scales for radial coordinate R0, radial velocity
U and the film thickness H0 so that viscous, gravity and inertial terms are of the same
order if non-dimensional velocity, radial coordinate and thickness have the order of unity

U2

R0
= gH0

R0
= νU

H2
0
. (2.14)

The mass conservation law (2.12) gives the third relation for R0, U, H0

R0UH0 = q. (2.15)

From (2.14), (2.15), the scale parameters are

R0 = (q5ν−3g−1)1/8,

U = (qνg3)1/8,

H0 = (qνg−1)1/4.

⎫⎬
⎭ (2.16)

The non-dimensional form of the problem (2.1)–(2.11a,b) has five non-dimensional
parameters: two of them are physical and express the effect of rotation and surface tension,
the three others are geometrical, namely non-dimensional radii of the inlet and of the disk,
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Source Q (ml s−1) ν (mm2 s−1) H0 (mm) R0 (cm) U (cm s−1)

Tani (1949) 3 to 47 1.1 0.5 to 1 1.4 to 8.1 6.9 to 9.7
Bohr et al. (1993) 3 to 50 1 0.5 to 0.9 1.5 to 8.7 6.8 to 9.6
Rojas, Argentina & Tirapegui (2013) 5 to 100 1 to 95 0.5 to 4 0.4 to 13.4 7.2 to 18.6
Duchesne et al. (2014) 4 to 68 20 1 to 2 0.6 to 3.2 10.2 to 14.6
Wang et al. (2020) 10 to 40 3.3 to 177 0.9 to 3 0.6 to 6.6 9 to 18

Table 1. Parameters of some hydraulic jump experiments.

and the aspect ratio

ω2
1 = Ω2R2

0
U2 = Ω2q

νg
, Bo−1

1 = σ

ρgH0R0
,

r1s = Rs

R0
, r1f = Rf

R0
, ε = H0

R0
.

⎫⎪⎪⎬
⎪⎪⎭ (2.17)

For the parameters presented in table 1, typical values of geometrical parameters are

r1s � 1, r1f ∼ 102 � 1, ε ∼ 10−2 � 1. (2.18a–c)

The Reynolds number is

Re = UH0

ν
= ε−1 =

(
q3g
ν5

)1/8

� 1. (2.19)

The centrifugal and Coriolis forces have the same order of magnitude as inertia, viscous
friction and gravity if

ω2
1 ∼ 1. (2.20)

For the values presented in table 1, ω1 = 1 corresponds to

Ω ∼ 10 rad s−1 ≈ 1.5 r.p.s. = 90 r.p.m. (2.21)

Experiments by Leshev & Peev (2003), Ozar et al. (2003) and Wang et al. (2020)
correspond to ω1 = 0.5 to 8, ω1 = 10 to 50 and ω1 = 3.6 to 40, respectively.

2.3. Thin-layer approximation
In most experiments, the aspect ratio ε � 1 and the governing equations (2.1)–(2.4)
contain small terms and admit simplification. The Navier–Stokes equations (2.1)–(2.4)
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read

vr1
∂vr1

∂r1
+ vz1

∂vr1

∂z1
− ω2

1r1

(
1 + 2vϕ1 + v2

ϕ1

)
= −dp1

dr1
+ ∂2vr1

∂z2
1

+ ε2

[
1
r1

∂

∂r1

(
r1

∂vr1

∂r1

)
− vr1

r2
1

]
,

vr1
∂vϕ1

∂r1
+ vz1

∂vϕ1

∂z1
+ 2vr1(1 + vϕ1)

r1
= ∂2vϕ1

∂z2
1

+ ε2

[
1
r1

∂

∂r1

(
r1

∂vϕ1

∂r1

)
− vϕ1

r2
1

]
,

ε2
[
vr1

∂vz1

∂r1
+ vz1

∂vz1

∂z1

]
= −∂p1

∂z1
− 1 + ε2

{
∂2vz1

∂z2
1

+ ε2
[

1
r1

∂

∂r1

(
r1

∂vz1

∂r1

)]}
,

∂vr1

∂r1
+ vr1

r1
+ ∂vz1

∂z1
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.22)
The boundary conditions (2.5a,b)–(2.10) have the following form: at z1 = 0

vr1 = vz1 = vϕ1 = 0; (2.23)

at z1 = h1(r1)

vz1 = vr1
dh1

dr1
, (2.24)

(
∂vr1

∂z1
+ ε2 ∂vz1

∂r1

) [
1 − ε2

(
dh1

dr1

)2
]

+ 2ε2
(

∂vz1

∂z1
− ∂vr1

∂r1

)
dh1

dr1
= 0, (2.25)

∂vϕ1

∂z1
− ε2r1

∂

∂r1

(
vϕ1

r1

)
dh1

dr1
= 0, (2.26)

p1 − 2ε2

[
∂vz1

∂z1
−

(
∂vr1

∂z1
+ ε2 ∂vz1

∂r1

)
dh1

dr1
− ∂vr1

∂r1

(
dh1

dr1

)2
]

= −2εBo−1
1 κ1, (2.27)

the non-dimensional curvature κ1 is

2κ1 = 1
r1

d
dr1

⎛
⎜⎜⎜⎜⎝

r1
dh1

dr1√
1 + ε2

(
dh1

dr1

)2

⎞
⎟⎟⎟⎟⎠ . (2.28)

Omitting small terms of the order of ε2 and εBo−1, we simplify the problem. The
problem for pressure separates from the one for velocity and gives the hydrostatic pressure
distribution

p1 = h1(r1) − z1. (2.29)

The equations (2.22) together with (2.29) read

vr1
∂vr1

∂r1
+ vz1

∂vr1

∂z1
− ω2

1r1

(
1 + 2vϕ1 + v2

ϕ1

)
= −dh1

dr1
+ ∂2vr1

∂z2
1

,

vr1
∂vϕ1

∂r1
+ vz1

∂vϕ1

∂z1
+ 2vr1(1 + vϕ1)

r1
= ∂2vϕ1

∂z2
1

,

∂vr1

∂r1
+ vr1

r1
+ ∂vz1

∂z1
= 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.30)
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The boundary conditions (2.23)–(2.26) transform to

vr1(r1, 0) = vϕ1(r1, 0) = vz1(r1, 0) = 0,

vz1(r1, h1) = vr1(r1, h1)
dh1

dr1
,

∂vr1(r1, h1)

∂z1
= ∂vϕ1(r1, h1)

∂z1
= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.31)

The derivation implies that the non-dimensional free surface slope is less or of
the order of unity. Hence, the regions where this assumption does not hold, namely,
the jet impact region (inlet), the hydraulic jump and the disk edge, require separate
consideration.

2.4. Boundary conditions
This subsection considers the regions where the thin-layer approximation is not valid.
These regions are the inlet, the hydraulic jump and the outer edge of the disk. We replace
the consideration of the complex two-dimensional flow with boundary conditions.

2.4.1. Inlet conditions
The inlet boundary conditions at R = Rs (2.11a,b)–(2.12) in non-dimensional form are

vr1(r1s, z1) = vrs(z1), vϕ1(r1s, z1) = vϕs(z1),

h1(r1s) = h1s, r1s

∫ h1s

0
vrs(z1) dz1 = 1,

vrs = Vrs

U
, vϕs = Vϕs

ΩRs
− 1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.32)

These boundary conditions match the flow in the considered domain with the one near
the impact area. After the jet hits the disk, the liquid changes the direction of motion,
and the viscous friction at the disk surface affects the velocity distribution. We put
the boundary r1s at the point where the viscous radial flow becomes fully developed.
The location of this point depends on the jet Reynolds number Rejet = Q/(νa), where
a is the jet radius.

If Rejet � 1, the boundary layer takes some space to grow throughout the film; Watson
(1964) estimated the location where it reaches the free surface, and a self-similar solution
develops at

Rs = 0.3155aRe1/3
jet . (2.33)

This value corresponds to

r1s = 0.581
(

a3g
ν2

)2/9

Re−7/9. (2.34)

This solution states a film thickness of (in the present notation)

h1s = 1.94
(

a3g
ν2

)4/9

Re−14/9 = 5.74r2
1s. (2.35)
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The radial velocity distribution is

vrs = vrs0fw(z1), vrs0 = 1
r1sh1s

, (2.36a,b)

where vrs0 is the mean velocity value, and the function fw is a solution of the
boundary-value problem for the ODE

f ′′
w = cf 2

w, fw(0) = 0, f ′
w(1) = 0,

∫ 1

0
fw(ζ ) dζ = 1. (2.37a–d)

The value of vrs0 ensures that the velocity at the free surface equals the jet velocity for
r = r1s. At this location, the surface velocity starts changing.

For low values of Rejet this solution is not valid as it gives Rs < a. In this case,
numerical modelling of the two-dimensional flow gives the radius where the free surface
becomes nearly horizontal and viscous stresses become significant throughout the film
thickness. Calculations (Sisoev, Tal’drik & Shkadov 1986) show that the free surface
velocity remains nearly constant while R < Rs = ka for some constant k. The value of k
can be a fitting parameter for comparing the results of calculations with the experimental
data. The velocity distribution vrs(z1) is a smooth function with zero value at z1 = 0, zero
derivative at z1 = h1s, unit value of the integral from z1 = 0 to z1 = h1s and value of the
function at z1 = h1s equal to the jet velocity. The second derivative of this function is
negative everywhere due to the relaxation of the viscous stresses.

In experiments considering the flow over a rotating disk, e.g. Leshev & Peev
(2003), Ozar et al. (2003) and Wang et al. (2020), the jet is non-swirling. During the
development of the velocity profile in the radial direction, the azimuthal velocity changes.
Asymptotically, its distribution reflects the balance between viscous and Coriolis forces
(Sisoev et al. 1986), but at a small or finite distance from the axis, this velocity profile
is different (Myers & Lombe 2006). Since the viscous friction with the disk is the only
source of non-zero azimuthal velocity, we take the following limitations for the function
vϕs:

− 1 ≤ vϕs ≤ 0, (2.38)

which means that the liquid cannot overtake the disk rotation and counter-rotate.

2.4.2. Jump conditions
Governing equations (2.30) express momentum and mass conservation laws assuming the
free surface slope is small, and the vertical velocity is much smaller than the radial one.
We replace these equations in the regions inside the computational domain where the
assumption fails by integral conservation laws and treat the regions as the discontinuity
surfaces.

The flow with balanced inertia and viscous friction, e.g. the self-similar flow (Watson
1964), exhibits blow-up at a finite distance from the axis of symmetry (Bohr et al. 1993),
the flow drops from the supercritical to subcritical flow regime, forming a hydraulic jump.
A detailed description of the jump involves recirculation zones near the free surface or
the disk (Bush & Aristoff 2003). It requires special effort to model in the framework of
the thin-layer equations (Watanabe, Putkaradze & Bohr 2003). For simplification, as the
transition region from supercritical to subcritical flow is usually much shorter than the
reference length R0, the discontinuity is a suitable replacement of this region, similarly to
the shock wave in gas dynamics.
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Mass flux is continuous at the jump; the momentum flux is affected by surface tension
(Bush & Aristoff 2003). In the dimensional form, the jump conditions are

∫ H(1)

0
V(1)

R dZ =
∫ H(2)

0
V(2)

R dZ, (2.39)

ρ

∫ H(1)

0
(V(1)

R )2 dZ +
∫ H(1)

0
P(1) dZ = ρ

∫ H(2)

0
(V(2)

R )2 dZ +
∫ H(2)

0
P(2) dZ

+ σ
H(2) − H(1)

Rj
+

∫ H(2)

H(1)

P0 dZ. (2.40)

Here, the superscripts ‘(1)’ and ‘(2)’ denote the magnitudes of quantities before and after
the jump. Transferring to non-dimensional variables (2.13) gives the following conditions:

rj

∫ h(1)
1

0
v

(1)
r1 (z1) dz1 = rj

∫ h(2)
1

0
v

(2)
r1 (z1) dz1 = 1,∫ h1

(1)

0
(v

(1)
r1 )2 dz1 + 1

2
(h(1)

1 )2 =
∫ h1

(2)

0
(v

(2)
r1 )2 dz1 + 1

2
(h(2))2 + Bo−1

1
h(2) − h(1)

rj
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.41)

For rotating flows, the circular hydraulic jump is an oblique shock and the shock
condition for the tangential velocity component (conservation of the angular momentum)
completes the Rayleigh conditions (2.41):

rj

∫ h(1)
1

0
v

(1)
r1 (z1)v

(1)
ϕ1 (z1) dz1 = rj

∫ h(2)
1

0
v

(2)
r1 (z1)v

(2)
ϕ1 (z1) dz1. (2.42)

Unlike the problem of a rotating curvilinear hydraulic jump considered by Ivanova &
Gavrilyuk (2019), we consider axially symmetric flows and the direction of the jump is
known a priori.

2.4.3. Outlet conditions
Parabolic partial differential equations, e.g. boundary layer equations, do not require
boundary conditions at large values of the longitudinal coordinate and can be solved by
a downstream marching procedure (Anderson 1995). The considered thin-layer equations
(2.30) contain a hydrostatic pressure gradient term on the right-hand side. The solution
depends on the downstream conditions if the radial velocity vr1 is less than the
gravitational wave velocity. To obtain a unique solution, we set a downstream boundary
condition at some point after the jump.

Watson (1964) did not consider the flow after the jump and set the film thickness after
the jump h(2)

1 . With the self-similar solution before the jump and the jump conditions, this
value fixes a unique solution and determines the jump location.

Bohr et al. (1993) and Watanabe et al. (2003) showed that a solution for the flow after
the jump has a singular point, where the free surface has a vertical tangent, and demand
that the singularity is located at the disk edge. Kasimov (2008) extended the computational
domain beyond the disk edge, attaching a step-down topography and keeping the thin-layer
approximation valid. Flowing over the step-down, the liquid transfers from the subcritical
to the supercritical regime. A unique solution satisfies the continuity condition during
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this transition. Duchesne et al. (2014) used a general solution in the subcritical zone, which
neglects the effect of inertia and assumes a parabolic velocity profile. This solution has one
arbitrary constant fixed by setting the film thickness at the disk edge. In experiments, the
film thickness at the disk edge is specified explicitly by a rim (Ellegaard et al. 1998; Bush,
Aristoff & Hosoi 2006; Rojas et al. 2013) or defined by capillarity.

For liquids with a high value of the surface tension coefficient, the film thickness at
the disk edge depends on the surface tension (Mohajer & Li 2015). Neglecting inertia and
viscous stresses for the flow near the disk edge, we obtain that the balance of gravity and
surface tension defines the free surface shape. The Young–Laplace equation specifies this
(Landau & Lifshitz 1987). The film thickness is of the order of the capillary length

H(Rf ) = b1

√
σ

ρg
, (2.43)

where b1 is constant dependent on the wetting properties of the disk edge. The maximal
value of b1 is

√
2 (Landau & Lifshitz 1987). In non-dimensional form we have

h1(r1f ) = b1

√
Bo−1

1
ε

. (2.44)

The solution neglecting inertia in the subcritical zone (Bohr et al. 1993) gives nearly
constant film thickness after the jump for h1(r1f ) � 1. The same outlet boundary condition
describes the propagation of the liquid front over a non-wetted surface (Askarizadeh et al.
2019).

For the film on a rotating disk, the momentum flux at the disk edge is significant as
the centrifugal force keeps the liquid moving. Generally, a complete numerical simulation
involving jet formation at the disk edge is required (Li, Sisoev & Shikhmurzaev 2019).
Simple boundary conditions such as infinite slope or a fixed thickness give the limit cases
for the qualitative analysis of the flow.

2.5. Range of the model applicability
During the derivation of the governing equations (2.30) and boundary conditions at the
free surface (2.31), we neglected the terms of the order of ε2 and εBo−1

1 . The jump
conditions (2.41) and the outlet conditions (2.44) involve Bo−1

1 , Bo−1
1 /ε. If at least one

of these numbers is small, the model can be further simplified. In particular, small values
of both of these numbers means a negligible effect of the surface tension.

Both non-dimensional parameters Bo−1
1 and ε involve flow rate q. To separate the effect

of surface tension and inertia we introduce a new set of non-dimensional values: the flow
independent Kapitza number Γ and the surface tension independent Reynolds number as

Γ = σ

ρg1/3ν4/3 , Re =
(

q3g
ν5

)1/8

. (2.45a,b)

Since the surface tension coefficients and densities for all liquids used in experiments
(water, water with surfactants, water–glycerol mixtures, silicone oils) have the same order
of magnitude (from 20 × 10−3 to 72 × 10−3 N m−1, from 980 to 1260 kg m−3), the value
of the Kapitza number is mainly affected by the viscosity.
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100 101 102

Bo1
–1 = 1

Bo1
–1 = 0.1

Bo1
–1/ε = 10

Bo1
–1/ε = 1

Γ

Water

Re

Bhagat et al. (2018)
Bohr et al. (1993)
Brechet & Néda (1999)
Choo & Kim (2016)
Duchesne et al. (2014)
Fernandez-Feria et al. (2019)
Hansen et al. (1997)
Mohajer & Li (2015)

Figure 2. Parameters of some experiments and simulations and range of the model applicability. Light and
dark shades show areas when the omitted terms are less than 10 % and 1 %, respectively. Blue dotted and red
dashed lines indicate values of the capillary terms at the disk edge and the jump. Symbols show the ranges of
parameters in the cited experiments and simulations.

The non-dimensional numbers of interest are

ε2 = Re−2, Bo−1
1 = Γ Re−7/3, εBo−1

1 = Γ Re−10/3,
Bo−1

1
ε

= Γ Re−4/3. (2.46a–d)

Figure 2 shows the (Re, Γ ) plane and presents the areas where assumptions for the
equations (2.30) and free surface boundary conditions (2.31) hold at the level of 10 %
and 1 % accuracy assuming all functions and their derivatives are of the order of unity.
We also plotted reference values of the capillary term at the jump (Bo−1

1 ) and at the disk
edge (Bo−1

1 /ε). We put the values of the parameters from the experiments and simulations
by Bhagat et al. (2018), Bohr et al. (1993), Choo & Kim (2016), Duchesne et al. (2014),
Fernandez-Feria et al. (2019), Hansen et al. (1997) and Mohajer & Li (2015). Microgravity
experiments (Avedisian & Zhao 2000; Phillips et al. 2008) correspond to the upper-left
corner of the diagram (figure 2) and cannot be described by the presented model. The
majority of tests (except some experiments by Hansen et al. (1997) and Duchesne et al.
(2014) with highly viscous oils) lie in the thin-layer equations’ range of applicability. The
capillarity is significant for the outlet boundary conditions for most cases, except the tests
with highly viscous silicone oils by Duchesne et al. (2014) and those with a water–glycerol
10/90 mixture by Bhagat et al. (2018) (points below the lowest blue dotted line in figure 2).
For water and water with surfactant experiments at the lower part of the Reynolds number
range, the capillarity dominates at the outer boundary. The surface tension term in the jump
conditions is significant for water and water with surfactant experiments but is negligible
if water–glycerol mixtures or oils are used. The sink of the momentum flux due to gravity
at the hydraulic jump is significant for all the analysed experiments.

2.6. Equations for mean values
Following the general approach for thin film dynamics (Kalliadasis et al. 2011), we average
the equation across the film. This procedure results in an ODE system for the film thickness
and mean values of the velocity components. The obtained system captures the main
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features of the flow dynamics and skips less important details. The averaging is consistent
with the integral jump conditions. To close the equations for mean values, one has to
specify the shape of the velocity profiles. In this subsection, we describe the averaging
procedure, discuss the system’s closure and obtain the equations for mean values to
perform qualitative analysis and numerical simulations.

2.6.1. Averaging the equations
We use the von Kármán–Polhausen method (Schlichting & Gersten 2016) assuming the
profiles of radial and azimuthal velocities are similar in any cross-section

vr1(r1, z1) = u1(r1)fu

(
z1

h1(r1)

)
, vϕ1(r1, z1) = v1(r1)fv

(
z1

h1(r1)

)
, (2.47a,b)

where fu and fv satisfy boundary conditions (2.31) and have the unit mean values

fu(0) = fv(0) = 0,

f ′
u(1) = f ′

v(1) = 0,∫ 1

0
fu(ζ ) dζ = 1,

∫ 1

0
fv(ζ ) dζ = 1.

⎫⎪⎪⎬
⎪⎪⎭ (2.48)

The inlet boundary condition (2.12) and the mass conservation law give

u1r1h1 = 1. (2.49)

The von Kármán–Polhausen method is a basis of the integral boundary layer (IBL)
approach (Shkadov 1967) which shows strong predictive power for nonlinear waves in
falling films (Kalliadasis et al. 2011). It is a particular case of Galerkin method application
with one basic function (Shkadov 1967). The calculations with a large number of basic
functions in the framework of the full Navier–Stokes equations for the falling film
(Trifonov 2014) and thin-layer equations for the flow on the static (Fernandez-Feria et al.
2019) or fast rotating (Sisoev et al. 1986; Mogilevskii & Shkadov 2009) disk show that
the contribution of the first basic function is dominant apart from the regions where the
free surface profile sharply changes. Bohr et al. (1993) used the IBL approach for the
description of the hydraulic jump. Equations obtained by this approach describe nonlinear
(Sisoev et al. 2003) and stationary spiral (Sisoev, Goldgof & Korzhova 2010) waves on a
rotating disk. More complicated methods involving shape factors (Watanabe et al. 2003)
for velocity profiles and equations for energy transport (Ivanova & Gavrilyuk 2019) allow
us to study the hydraulic jump structure and other details of the flow but make the analysis
much more intricate.

Integration of the momentum equations (2.30) across the film taking into account
boundary conditions (2.31) and (2.49) gives

C1u1
du1

dr1
− ω2

1r1(1 + 2v1 + C5v
2
1) = −dh1

dr1
− C2

u1

h2
1
,

dv1

dr1
+ 2

C3r1
+ 2

v1

r1
= −C4

C3
v1u1r2

1,

u1r1h1 = 1,

C1 =
∫ 1

0
f 2
u (ζ ) dζ, C2 = f ′

u(0),

C3 =
∫ 1

0
fu(ζ )fv(ζ ) dζ, C4 = f ′

v(0), C5 =
∫ 1

0
f 2
v (ζ ) dζ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.50)
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The boundary conditions at r1 = r1s give the values of u1 and v1 in this point

h1(r1s) = h1s, u1(r1s) = u1s, v1(r1s) = v1s,

u1s = 1
h1s

∫ h1s

0
vrs(z1) dz1,

v1s = 1
h1s

∫ h1s

0
vϕs(z1) dz1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.51)

2.6.2. Rescaling
Following Bohr et al. (1993), to simplify the equations (2.50), we rescale the magnitudes
for velocities and the film thickness to make the coefficients in the first equation equal to
unity:

u1 = αu, r1 = βr, h1 = γ h, v1 = δv. (2.52a–d)

Substituting (2.52a–d) in (2.50), we get

C1α
2

β
u

du
dr

− βω2
1r(1 + 2δv + C5δ

2v2) = −γ

β

dh
dr

− C2α

γ 2
u
h2 ,

δ

β

dv

dr
+ 2

C3βr
+ 2

δ

β

v

r
= −C4

C3
α2β2δvur2,

αβγ urh = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.53)

We choose the coefficients α, β, γ, δ to have as many unit coefficients in the system (2.53)
as possible:

C1
α2

β
= γ

β
, C1

α2

β
= C2

α

γ 2 ,
δ

β
= 2

C3β
, αβγ = 1. (2.54a–d)

Equation (2.54a–d) gives the expressions for α, β, γ, δ via Ci, i = 1 . . . 5:

α = C−1/2
1 C1/8

2 , β = C1/2
1 C−3/8

2 , γ = C1/4
2 , δ = 2C−1

3 . (2.55a–d)

The system of equations (2.53) has the following form (primes denote derivative by r):

uu′ − ω2r(1 + B1v + B2v
2) = −h′ − u

h2 ,

v′ + 1
r

+ 2v

r
= −Avur2,

uhr = 1,

ω2 = W2ω2
1, W2 = β2

γ
= ω2

1
C1

C2
,

A = C4αβ3

C3
= C4C1

C3C2
, B1 = 4

C3
, B2 = 4C5

C2
3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.56)

The values of the boundaries of the computational domain r1s, r1f and functions in the
former point u1s and v1s transform into rs, rf , us, vs according to (2.52a–d), respectively.
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The jump conditions (2.41 and (2.42) for the mean values give

u(1)h(1)rj = u(2)h(2)rj = 1,

(u(1))2h(1) + 1
2
(h(1))2 = (u(2))2h(2) + 1

2
(h(2))2 + Bo−1 h(2) − h(1)

rj
,

v(1) = v(2),

Bo−1 = Bo−1
1

C1/8
2

C1/2
1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.57)

For a static disk (ω = 0), the first equation of (2.56) and the first two jump conditions
(2.57) coincide with those obtained by Bohr et al. (1993), and the other equation and jump
condition have no physical meaning.

Eliminating h from (2.56) we obtain

uu′ − ω2r(1 + B1v + B2v
2) = 1

u2r
u′ + 1

ur2 − u3r2, (2.58)

v′ + 2
v

r
+ 1

r
= −Auvr2. (2.59)

The boundary conditions for the system (2.58)–(2.59) are

u(rs) = us, v(rs) = vs. (2.60a,b)

Bohr et al. (1993) proposed an equivalent form of (2.58) for ω = 0 introducing a new
independent variable on the integral curve. This allows numerical calculation near the
fixed point (r = 1, u = 1). We use the same variable transformation and obtain

dr
ds

= u3r2 − r,
du
ds

= u − u5r4 + ω2u2r3(1 + B1v + B2v
2),

dv

ds
= −(u3r − 1)(1 + 2v + Avur3).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.61)

The first equation is the definition of the new variable s. The boundary conditions now are

s = 0 : r = rs, u = us, v = vs. (2.62)

The solutions for the problem (2.58)–(2.60a,b) correspond to the solutions of
(2.61)–(2.62); the latter system of equations simplifies the analysis.

2.6.3. Polynomial velocity profiles
To obtain the specific values of the coefficients W2, A, B1, B2, Ci, i = 1 . . . 5, we set
the velocity profiles assuming that the viscous stresses in the radial direction balance an
independent of z1 force (centrifugal force, hydrostatic pressure gradient or the mean value
of the inertial term) and the viscous stresses in the azimuthal direction balance the Coriolis
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Figure 3. Profiles of radial (a) and azimuthal (b) velocity.

Profiles C1 C2 C3 C4 C5 α β γ δ W2 A B1 B2

Polynomial 6
5 3 17

14
5
2

155
126 1.05 0.73 1.32 28

17
2
5

14
17

56
17

8680
2601

Self-similar 1.26 2.28 1.26 2.23 1.27 0.98 0.82 1.23 1.58 0.55 0.98 3.17 3.18
Difference, % 4.8 24 3.9 11 3 5.6 13 6.6 3.8 39 18 3.8 4.6

Table 2. Coefficients for different velocity profiles.

force

d2fu
dz2

1
= const.,

d2fv
dz2

1
∼ fu. (2.63a,b)

Together with boundary and normalisation conditions (2.48), this gives

fu(ζ ) = 3
2
(2ζ − ζ 2), fv = − 5

16
(4ζ 3 − ζ 4 − 8ζ ), ζ = z

h
. (2.64a–c)

These velocity profiles (2.64a–c) with

u = ω2/3r−1/3, v = − 1
A

ω−2/3r−8/3, h = ω−2/3r−2/3 (2.65a–c)

are the asymptotic solution of the thin-layer equations (2.30)–(2.31) at r → ∞. Higher
terms of the asymptotic are given in Shkadov (1973). The solution (2.65a–c) provides the
analogy between the falling film and the film on a rotating disk and is referred to as the
Nusselt solution. Shkadov (1967), Bohr et al. (1993) and Sisoev et al. (2003) used these
functions for finite thickness film modelling.

The use of functions fu, fv different from (2.64a–c), e.g. self-similar solution fu = fw
given by (2.37a–d) and fv defined by (2.63a,b) (Bush & Aristoff 2003; Askarizadeh et al.
2019) changes the coefficients of (2.56), but not the structure of equations. Table 2 gives
the values of the coefficients for the profiles (2.64a–c) and self-similar profile (2.37a–d)
referred to as polynomial and self-similar. Figure 3 shows these velocity profiles. Despite
the relatively large discrepancy in C2 and W2, the equations (2.56) contain only A, B1, B2
which weakly depend on the profile and do not affect qualitative properties of the system.
Further, we use polynomial velocity profiles for the calculations.

927 A24-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.751


Steady circular hydraulic jump on a rotating disk

3. Qualitative analysis

In this section, we analyse fixed points of (2.61). This analysis predicts the existence or
absence of a hydraulic jump and gives an estimation of its location. We recall results for
the static disk (Bohr et al. 1993) and study the transformation of the system properties
while ω /= 0.

3.1. General properties
Consider ω = 0. The system (2.61) has the form (Bohr et al. 1993)

dr
ds

= u3r2 − r,

du
ds

= u − u5r4.

⎫⎪⎬
⎪⎭ (3.1)

At the line
u3r = 1, (3.2)

we have dr/ds = 0 and thus du/dr = ∞. This line at the (r, u) plane separates
supercritical (above the line) and subcritical (below the line) flow regimes as the local
Froude number indicates the ratio of the velocity and the gravity wave speed. It equals

Fr = u2

h
= u3r. (3.3)

The point (r, u) = (1, 1) is a fixed point, its type is a stable focus. Approaching this point,
all phase trajectories are ‘spiralling’ and there are multiple values of u for a given value of
r close to 1.

Bohr et al. (1993) proved that for any phase trajectory u is uniquely defined for r from a
finite segment only. For boundary conditions and parameters corresponding to experiments
(table 1), the trajectory going through the point (rs, us) does not reach rf and no continuous
solution exists. To obtain the overall solution at the interval (rs, rf ), one considers two parts
of the solution separately. The inner solution describes the supercritical flow at rs ≤ r < rj,
the outer one is defined at rj < r ≤ rf and corresponds to subcritical flow. Here, rj is the a
priori unknown location of the hydraulic jump.

The outer solution requires boundary conditions at rf . Bohr et al. (1993) and Watanabe
et al. (2003) stated that the outer solution has a singularity (du/dr = ∞) at the disk
edge, Kasimov (2008) considered the flow beyond the disk edge adding a step-down
topography and found a continuous solution at the step-down. Duchesne et al. (2014) fixed
a film thickness at rf . All these boundary conditions lead to close prediction of the jump
locations, provided rf is large enough.

To find the jump location rj, we integrate (3.1) from rs towards larger r and from rf
towards smaller values. The integration stops at the point when dr/ds changes sign. We
find the point rj in the common domain of definition for inner and outer solutions where
Rayleigh jump conditions (2.57) hold.

For ω > 0, we introduce the radial Froude number

Frr = u2

h
= u3r. (3.4)

Further, we will refer to the region with Frr > 1 as supercritical and Frr < 1 as subcritical,
although the total Froude number can be larger than one.
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Due to the asymptotic solution (2.65a–c), the radial Froude number at infinity is

Frr = ω2. (3.5)

For ω2 < 1, the flow is subcritical at infinity. If the flow is supercritical at rs, it must
change its type from supercritical to subcritical at least once. Due to continuity, one expects
hydraulic jump formation for the transition from supercritical to the subcritical regime, at
least for small ω.

3.2. Estimation of azimuthal velocity
Purely radial spreading is impossible for the flow over the rotating disk due to the
Coriolis force: v ≡ 0 does not satisfy the angular momentum equation (2.59). The relative
azimuthal velocity v defines the local centrifugal force, the last term in the left-hand side of
the radial momentum equation (2.58). This term makes the main difference between flows
over the static and rotating disks, and thus the qualitative analysis requires estimations
for v.

3.2.1. Global estimation
The liquid gets azimuthal momentum by viscous friction. Hence, the relative azimuthal
velocity v has limitations. On the one hand, the disk pulls the liquid, and the latter
cannot overtake the former. On the other hand, the liquid must follow the disk, so the
liquid azimuthal velocity has the same direction. The inequality (2.38) holds for the entire
domain. Taking into account scaling (2.55a–d), we obtain the global estimation

− 68
175

= vm ≤ v < 0 ∀r. (3.6)

3.2.2. Supercritical region
The equation for angular momentum (2.59) allows us to enhance the lower estimation in
the supercritical region rs < r < rj. There, Frr = u3r ≥ 1 then

dv

dr
= −2

v

r
− 1

r
− Avur2 ≥ −2

v

r
− 1

r
− Avr5/3. (3.7)

Consider the function ṽ such that its derivative is the right-hand side of (3.7), and its
value at r = rs is the minimum possible velocity v = vm. The equation for ṽ is

r
dṽ

dr
+ (2 + Ar8/3)ṽ = −1, ṽ(ri) = vm, (3.8)

which is a linear heterogeneous equation with the solution

ṽ = vm

(rs

r

)2
exp

[
−3A

8
(r8/3 − r8/3

s )

]

− exp
(

−3A
8

r2/3
) ∫ r

rs

ξ exp
(

3A
8

ξ8/3
)

dξ. (3.9)

As we underestimated the right-hand side of (2.59) while obtaining (3.8), we have

ṽ ≤ v < 0. (3.10)

927 A24-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.751


Steady circular hydraulic jump on a rotating disk

–0.50

–0.25

0

0 1 2 3
10–1

100

101

0 1 2 3

u v

r r

(a) (b)

Figure 4. Distribution of radial (a) and azimuthal (b) velocity in supercritical region. Dotted lines show
estimation for small r (3.12). Dashed lines indicate Frr = 1 and the estimation (3.9) in panels (a) and (b),
respectively. Solid lines are results of numerical integration with the conditions rs = 0.3, us = 7, vs = 0 and
vs = vm; ω = 1.35. Solid lines in panel (a) are indistinguishable.

3.2.3. Estimation for small r
At small distances from the axis of rotation, the hydrostatic pressure gradient and
centrifugal force are negligible (Watson 1964). Omitting these terms transforms the
governing equations (2.58)–(2.59) to

uu′ = −u3r2,

v′ + 2
v

r
+ 1

r
= −Auvr2,

u(rs) = us, v(rs) = vs.

⎫⎪⎬
⎪⎭ (3.11)

The solution û, v̂ for these equations is

û = 3us

usr3 + C
, C = 3 − usr3

s ,

v̂ =
−

∫ r

rs

ξ(usξ
3 + C)A dξ + 3Avsr2

s

r2(usr3 + C)A .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.12)

The first term in the numerator in the expression for v̂ does not depend on the boundary
condition vs and grows with r. The second term is constant; the first one overrates it by an
order of magnitude for r ≈ 2rs. As a result, the function v̂(r) weakly depends on vs near
the jump. The function v̂ can be smaller or larger than the exact solution v(r) for the full
equations (2.58)–(2.59) as the sign of the omitted terms changes. This function does not
provide any inequality but gives quite a precise estimation.

3.2.4. Comparison of estimations
Figure 4 shows the dependence of u and v on r for different boundary conditions vs
together with the estimations (3.9) and (3.12). We obtained the solution of the full
equations (2.58) and (2.59) numerically by solving the Cauchy problem with fixed values
of rs = 0.3 and us = 7. We stopped the integration when the radial Froude number
Frr = u3r reached unity or the radial coordinate became large enough.

The numerical solutions are close to the analytical estimation (3.12), the solutions
for different vs quickly reach a common trajectory. The value vs weakly changes the
dependencies u(r) and the free surface shape for small r, (3.12) approximates the
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Figure 5. Projections of phase trajectories on (r, u) plane for different values of ω. Lines 1–5 correspond to
ω = 0, 0.5, 1.2, 1.32, 1.5. Panel (b) presents enlarged area shown by rectangle in panel (a).

solution well. The change of ω affects the dependence u(r) and the free surface shape
for r > 1 (figure 5).

The global estimation (3.6) is stricter than the estimation (3.9) in the supercritical zone
for small values of r. The numerical solutions with vs close to vm violate the condition
v ≥ vm providing a physically impossible situation when upper liquid layers rotate counter
to the disk rotation. This result is an artefact of the approximation procedure that assumes
a fixed shape of the radial and azimuthal velocity profiles.

The effect of the centrifugal force given by ω and v is noticeable at u(r) for r � 1. In
particular, for large values of ω the line u(r) does not intersect the line Frr = 1 and the
solution of the Cauchy problem (2.58)–(2.60a,b) gives an overall solution for rs < r < rf .

We analyse how the line u(r) crosses the line Frr = 1 considering fixed points of the
system (2.61) in the next subsection.

3.3. Fixed points
We assume that boundary conditions at r = rs provide a supercritical flow regime. Figure 4
shows that these boundary conditions generally do not correspond to a solution defined for
all r, similar to the case of the flow on a static disk. Bohr et al. (1993) associated a switch
between phase trajectories (2.61) and the existence of the overall solution with a fixed point
of the equations. In this subsection, we derive the conditions of existence of fixed points
and provide their classification. As a result, we obtain a global classification of the flow
regimes.

At the fixed points (r∗, u∗, v∗) of the system (2.61), the right-hand side of all equations
(2.61) are zero. The first equation gives

u3
∗r∗ = 1, (3.13)

which makes the right-hand side of the third equation equal to zero. We have two equations
for three variables

u∗ = r−1/3
∗ ,

r−8/3
∗ = 1 − ω2(1 + B1v∗ + B2v

2∗).

}
(3.14)

The second equation is quadratic with respect to v∗ and its roots are

v± = −B1 ± √
D

2B2
, D = B2

1 − 4B2

(
1 − 1 − r−8/3

ω2

)
, (3.15a,b)
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r
Figure 6. Domain of existence of fixed points and chart of their type. Shaded area shows parameters

corresponding to ṽ < v∗ < 0.

if D ≥ 0. One of the roots v− ≤ −B1/(2B2) < vm, so the fixed point corresponds to the
other root v∗ = v+. The inequality ṽ < v∗ < 0 gives an estimation for the location of the
fixed point which provides the transition of the flow from the supercritical to the subcritical
regime.

To find the type of fixed point, we consider the characteristic polynomial for the Jacobi
matrix of (2.61) ∣∣∣∣∣∣∣

1 − λ 3r4/3
∗ 0

−(4 − 3ω2K)r4/3
∗ −(4 − ω2K)r8/3

∗ − λ ω2Lr7/3
∗

−Mr−1∗ −3Mr1/3
∗ −λ

∣∣∣∣∣∣∣
= −λ(a2λ

2 + a1λ+ a0), (3.16)

where

K = 1 + B1v∗ + B2v
2
∗, L = B1 + 2B2v∗, M = 1 + 2v∗ + Av∗r2/3

∗ (3.17a–c)

and
a2 = 1, a1 = 3r8/3

∗ > 0, a0 = 8 + 3ω2MLr8/3
∗ . (3.18a–c)

For given ω and r∗, (3.15a,b) gives the value of v∗ and defines the type of the fixed point.
Depending on the point location r∗ and ω, we have the following possibilities:

(i) there is no solution for v∗ satisfying vm < v∗ < 0 then no fixed points;
(ii) a2

1 − 4a0 < 0 then the fixed point is a focus;
(iii) a2

1 − 4a0 ≥ 0, a0 > 0 then the fixed point is a node; and
(iv) a2

1 − 4a0 ≥ 0, a0 < 0 then the fixed point is a saddle.

Since a1 > 0, all foci and nodes are attractive. Figure 6 presents a chart indicating the
domain of fixed point existence and the type of fixed point inside this domain on the (r∗, ω)

plane. We also plot a line corresponding to v∗ = ṽ, the points with v∗ > ṽ lie below this
line.

There are no fixed points satisfying the condition v∗ ≤ ṽ for ω > 1.49. This means that,
for these values of ω, a solution corresponding to supercritical flow at rs never approaches
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a fixed point. The transition to the subcritical regime is impossible in this case. For smaller
values of ω where a focus or node exists, the solution of the Cauchy problem can fall into
the domain of attraction of this fixed point and cross the line Frr = 1 or end at this line.

Figure 5 shows the projections of phase trajectories onto the (r, u) plane for the same
boundary conditions at r = rs. For ω = 0 the only fixed point is the focus at (1, 1). While
ω increases, the terminal point of the phase trajectory moves towards larger r. The absolute
value of the imaginary part of the Lyapunov exponents λ decreases, and the spiral near the
fixed point becomes hardly noticeable in the figure. After the fixed point type changes from
a focus to a node during the further increase of ω, the spiral and multiple intersections with
the line Frr = 1 disappear. However, the phase trajectory turns around at some point on
the line Frr = 1.

While ω increases further, the phase trajectory comes over the eigenvector, resulting in
the disappearance of the turning around. The solution monotonically goes to its terminal
fixed point; the values of du/dr remain finite. For larger ω, the fixed point is a saddle that is
repelling; the solution does not reach the fixed point and goes away from the line Frr = 1
after approaching.

In the cases when the solution of the Cauchy problem is not defined for all r, the overall
solution is a union of several phase trajectories combined by the jump conditions (2.57) or
continuity condition at the line Frr = 1 if this line is reached with a finite value of du/dr.

3.4. Flow regimes
Transitions from the supercritical flow regime to the subcritical one and back occur in the
vicinity of fixed points (Bohr et al. 1993). Consider the flow structure depending on the
type of fixed point. The hydraulic jump conditions (2.57) combine two phase trajectories
into the overall solution locating the jump. We assume that the flow is supercritical at
r = rs.

For 0 < ω < 1, we have supercritical flow at r = rs and subcritical at r � 1 (2.65a–c).
The solution crosses the line Frr = 1 an odd number of times (at least once). Figure
6 shows that fixed points are a focus or node for the considered values of ω, and the
hydraulic jump exists. We call this regime Regime I and present an example of the phase
trajectory on the (r, u) plane in figure 7(a). The phase trajectories are obtained numerically,
Subsection 4.1 describes details of the procedure.

If ω > 1, the fluid flow is supercritical at infinity (Frr = ω2 > 1). The phase trajectory
crosses the line Frr = 1 an even number of times (e.g. never or twice). The first transition
from the supercritical to subcritical flow regime occurs in the vicinity of a focus or a node
at r ∼ 1. The backward transition to the supercritical regime takes place at large r via a
saddle point. If the first transition goes through the jump, we call the regime Regime II
(shown in figure 7b).

For given value of us, at certain ω = ω∗, the phase trajectory changes the behaviour
from the hydraulic jump to the continuous regime (e.g. from the type shown by
line 3 in figure 5 to the one like line 4 in that figure). For values of ω above ω∗,
there is an interval of r with subcritical flow. The continuous flow with the structure
supercritical–subcritical–supercritical is Regime III (shown in figure 7c). At a certain
value of ω = ω∗∗, the phase trajectory detaches from the Frr = 1 line, from this value
onwards the flow is supercritical for any r (regime IV, figure 7d). Table 3 summarises the
properties of the regimes described above.

The values of ω∗, ω∗∗ weakly depend on boundary conditions at r = rs. Lines in figure 8
show the dependencies of ω∗ and ω∗∗ on us for vs = 0 and vs = vm; for the calculations
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Figure 7. The dependence of radial velocity on radial coordinate for different flow regimes: (a) Regime I (ω =
0.5), (b) Regime II (ω = 1.2), (c) Regime III (ω = 1.32), (d) Regime IV (ω = 1.5). All solutions correspond
to rs = 0.3, us = 7, vs = vm. Dashed and dotted lines show asymptotics at infinity and Frr = 1, respectively.

Flow regime Fixed points Jump existence Disk angular velocity

I Focus/node Yes 0 < ω < 1
II Focus/node and saddle Yes 1 < ω < ω∗
III Node and saddle No ω∗ < ω < ω∗∗
IV No No ω > ω∗∗

Table 3. Characteristics of the flow regimes.

we set rs = 0.3. The estimation of ω∗∗ based on the existence of the fixed points (no
fixed point for ω > 1.49, hence ω∗∗ ≤ 1.49) is quite accurate: we obtained that the
transition to Regime IV takes place at ω < 1.46 for all boundary conditions corresponding
to supercritical flow at r = rs and satisfying physical limitations for vs. The dependence
of ω∗ on us is non-monotonic as v(r) is non-monotonic (figure 4) and different values of
us lead to a different location of the terminal point for the supercritical flow.

4. Results

In this section, we present the results of the numerical solution of the problem
(2.58)–(2.60a,b) for different disk angular velocities. First, we neglect the effect of surface
tension. After that, we analyse the effect of surface tension on the flow on a static or
rotating disk. We describe the numerical procedure, present our results on the flow regime,
jump location and intensity dependence on the disk angular velocity and compare our
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IV

III
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ω
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Figure 8. Flow regime chart. Lines indicate angular velocity for the regime change, solid and dashed lines
correspond to vs = vm and vs = 0. Roman numbers stand for the regime number.

results with the data presented by Wang et al. (2020). We analyse the influence of surface
tension on the jump on a static disk and consider the change of this effect when the rotation
occurs.

4.1. Numerical procedure
The procedure for the modelling of the flow on a static disk described in § 3.1 needs some
modifications to take into account the effect of rotation. The general idea remains the same:
we integrate the equations for supercritical and subcritical regions of the flow separately
using (2.58)–(2.59) and find the proper jump location to satisfy the jump conditions (2.57).
Several problems arise for rotating flows depending on the flow regime. The common
point for Regimes I and II is that the jump conditions provide two equations that have
to be solved relative to one unknown, namely the jump location; the solvability of this
problem is not given. For Regimes II and III, there are two transitions between supercritical
and subcritical zones, and the locations of both transitions are unknown. There is also
a technical problem: the integration of (2.58)–(2.59) or, equivalently, (2.61) is unstable
if the initial conditions (with respect to s) correspond to the subcritical flow regime.
Nevertheless, the integration is stable if one fixes a function v(r) and solves the problem
with respect to u(s), r(s) in the subcritical zone. The integration of the equation for v

is stable after the transformation s1 = −s and fixing a function u(r). In other words, the
integration of the equation for v is stable if we go rightwards by r; the integration of the
equation for u must take into account whether the flow is supercritical or subcritical (it
must go rightwards or leftwards by r in these cases, respectively).

We propose an iterative method to solve the problem (2.58)–(2.59) using the
continuation over ω. The first step is to obtain the solution u(r) for the static disk (ω = 0)
for all r: rs < r < rf . Then, we integrate the equation (2.59) from rs to rf and obtain v(r).
This function has no physical meaning but is used in the iterative process.

4.1.1. Regime I
After the solution for ω = 0 is known, we fix a sufficiently small �ω > 0 and find a
solution for ω = �ω by the steps listed below. After that, we apply the same procedure
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to go from ω to ω + �ω. This method works for ω < 1 while the solution exhibits
Regime I.

(i) Inner solution. We integrate (2.61) with initial conditions (2.62) while the value of
dr/ds is positive, obtaining the inner supercritical solution ui(r), vi(r).

(ii) Approximation of u for outer solution. For the kth iteration, we fix the function vk
o (r)

as v(r) (from the (k − 1)th iteration or obtained for the previous value of ω for the
first iteration) and integrate (2.61) with respect to r(s), u(s) taking initial conditions
as r(0) = rf , u(0) = (1 − ε)r−1/3

f for some small positive ε (similarly to the case
of the static disk). The integration stops when dr/ds changes its sign. This gives a
function uk

o(r) which is the kth approximation for the outer subcritical solution.
(iii) Jump location. Since the fixed point is a focus or node and the inner solution

correspond to Regime I, the functions ui(r) and uk
o(r) has non-empty intersection of

definition domains. At the smallest value of r of the intersection, the inner solution
has Frr > 1 and the outer has Frr = 1; at the largest r, the inner solution has Frr = 1
and the outer has Frr < 1. This fact allows us to find a point rk

j where Rayleigh jump
conditions (2.57) for mass and momentum conservation hold.

(iv) Approximation of v for outer solution. Substituting uk
o(r) to the right-hand side of

(2.59) we integrate this equation from rk
j to rf using vi(rk

j ) as the boundary condition.
The integration gives the next approximation for vo(r). From this procedure, the
jump condition for angular momentum satisfied automatically.

We repeat steps (ii)–(iv) until the differences |r k
j − rk+1

j |, maxr |uk
o(r) − uk+1

o (r)|,
maxr |vk

o (r) − vk+1
o (r)| are larger than a specified tolerance. For the tolerance of 10−6

and �ω = 0.01, the process needs up to seven iterations for convergence.

4.1.2. Regimes II, III and IV
Obtaining a solution for ω > 1 requires a slight modification of the procedure described
above for Regime I as the flow is supercritical at infinity. The solutions for considered
regimes contain a subcritical zone, and one has to find two points: rj and rt, where
transitions from the supercritical regime to the subcritical one and back occur.

We start with the inner solution ui(r), vi(r), similarly to step (i) for Regime I. Then,
we fix an approximation vk

o (r) defined for all r and tending to zero at infinity. After that,
we find an approximation for the subcritical–supercritical transition point rk

t solving the
equation

(rk
t )−8/3 = 1 − ω2(1 + B1v

k
o (rk

t ) + B2(v
k
o (rk

t ))2), (4.1)

which follows from the expression for the fixed point location (3.14).
We obtain the approximation uk

o(r) and rk
j similarly to steps (ii) and (iii) for Regime I

replacing rf by rk
t and stating the boundary condition for uk

o as (rk
t )−1/3 there. The

integration on step (iv) giving vk+1
o stops at the point r k+1

t where the condition (4.1) for
the fixed point holds.

After convergence of iterations for rj, uo, vo and rt, the direct integration of (2.58)
and (2.59) at the segment [rt, rf ] with continuity boundary conditions at r = rt gives the
solution for the second supercritical region. The system does not need boundary conditions
at r = rf in this case.

For Regime III, the inner solution solely defines the value of rj; the functions ui(r) and
vi(r) are not defined for r > rj. To ensure that the outer solution reaches this value of r and
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Figure 9. Radial (a) and azimuthal (b) velocity distributions and free surface shape (c). Lines 1–6 correspond
to ω = 0, 0.5, 1.2, 1.32, 1.5, 2. Dotted line indicates Frr = 1. Boundary conditions for all lines are rs = 0.3,
us = 7, vs = vm. For ω < 1, rf = 15 and uf = 15−1/3. The surface tension is neglected (Bo−1 = 0).

continuously matches the inner solution, we keep vk
o (rj) = vi(rj) for all k. We skip steps

(ii) and (iii) for the first iteration and use function u(r) from the previous value of ω as u1
o

at step (iv).
Regime IV does not require special effort – the continuous solution for all r comes from

direct integration of (2.61).

4.2. Velocity distribution and free surface shape
The described numerical method allows us to obtain solutions and determine the hydraulic
jump location for arbitrary parameters. We provide the results of our calculations showing
the effect of the inlet liquid velocity us and rotation vs for the fixed inlet radius rs = 0.3.
We examine the values us = 7, 10 and 20 and vary ω for each variant. We consider vs = vm
only as the value of vs has a minor effect on the jump location: the dependences v(r) reach
the common trajectory at the typical jump location. In this subsection, we focus on the
effect of the centrifugal force.

Figure 9 presents radial and azimuthal velocity distributions and the free surface shape
for us = 7, vs = vm and different values of ω. The curves continuously transform while the
rotation rate increases. Regardless of ω, the solution follows the estimation (3.12) for small
r. The point where the numerical solution deviates from the estimation moves towards
larger r while ω increases. The centrifugal force partially compensates the decelerating
hydrostatic pressure gradient keeping the inertial and viscous terms the principal ones and
making the estimation valid. At large values of r, the solutions significantly depend on ω,
as predicted by asymptotics (2.65a–c).

The location of the jump gradually moves away from the axis of symmetry. The
difference between the liquid thickness after and before the jump (the jump intensity)
decreases down to zero. It disappears when the flow regime changes from Regime II to
Regime III. Figure 10 presents the dependence of the jump radius and intensity on ω.

For small values of ω, the jump location and intensity change due to rotation are
proportional to ω2. For larger ω, the dependence of these values on ω becomes weaker.
The maximal displacement of the jump due to rotation is approximately 30 % of the jump
radius for the static disk. Larger values of the radial velocity in the inlet us lead to larger
jump radii. The jump intensity weakly depends on us.

Figure 11 shows lines separating subcritical and supercritical regions in the (r, ω)

plane. Lines for different values of us lie close to each other. Increasing us moves the
left boundary of the subcritical region (rj) rightwards. There is no right boundary of the
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Figure 10. Dependence of the jump location (a) and intensity (b) on angular velocity ω. Solid, dashed and
dotted lines correspond to (us = 7, Bo−1 = 0), (us = 20, Bo−1 = 0), (us = 7, Bo−1 = 0.5). For all lines, rs =
0.3, vs = vm. For ω < 1, rf = 15 and uf = 15−1/3.
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321
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Figure 11. Chart of parameters for subcritical and supercritical flow regimes. Solid, dashed and dotted lines
correspond to us = 7, 10, 20. Other parameters are rs = 0.3, vs = vm. Circles and squares indicate ω∗ and ω∗∗.
The surface tension is neglected (Bo−1 = 0).

subcritical region for ω < 1. For ω > 1, the right boundary corresponding to rt coincides
for different values of us within the accuracy of the graphical representation.

4.3. Effect of surface tension
Capillarity is negligible in the smooth parts of the flow, the corresponding term is of the
order of εBo−1 (Duchesne et al. 2019), but changes the jump conditions (Bush & Aristoff
2003) and has an impact on the outlet boundary conditions (Mohajer & Li 2015). Hence,
the surface tension does not affect continuous flows (Regimes III and IV). For Regime II,
no outlet boundary conditions are stated, so the surface tension changes the flow through
the jump conditions only. We start our consideration with Regime I taking into account
capillarity for the jump conditions and the outlet conditions. We recall the results for the
static disk (Rojas et al. 2013) and consider the changes due to rotation.
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4.3.1. Static disk
Consider ω = 0. The jump location determination requires two integrations of the ODE for
the inner and the outer solutions and solving of a finite equation for rj. The ODE contains
three terms for inertia, viscosity and the hydrostatic pressure gradient. The former becomes
negligible at a certain distance in the subcritical zone downstream of the jump; the latter is
usually small in the supercritical zone (Fernandez-Feria et al. 2019). Omitting these small
terms allows analytical solution of (2.56) in supercritical and subcritical zones separately
(Watson 1964; Duchesne et al. 2014). For the supercritical zone,

uu′ = − u
h2 , uhr = 1, u(rs) = us, (4.2a–c)

and

u = 3
r3 − r3

s + 3/us
, (4.3)

which is equivalent to (3.12). For the experiments with a small jet radius and large jet
Reynolds number, rs � 1, us � 1 and the solution takes simple form of

u = 3
r3 , h = r2

3
. (4.4a,b)

For the subcritical zone, taking into account the boundary condition (2.44) gives

0 = −h′ − u
h2 , uhr = 1, h(rf ) = hf = b

√
Bo−1

ε
, b = b1

C1/4
1

C5/16
2

, (4.5a–d)

and

h =
(

h4
f − 4 ln

r
rf

)1/4

, (4.6)

which is the non-dimensional form of the solution used by Duchesne et al. (2014). For
experiments with high Kapitza number liquids, e.g. water or water with surfactant (Bohr
et al. 1993; Hansen et al. 1997; Brechet & Néda 1999; Mohajer & Li 2015; Choo & Kim
2016; Bhagat et al. 2018), the first term dominates

h4
f ∼ Γ 2Re−8/3 ≥ 40, 4 ln rf ≈ 10, (4.7a,b)

and the film thickness is large and nearly constant in the subcritical zone

h = hf , u = 1
rhf

. (4.8a,b)

As a result, in the jump conditions (2.57) one can neglect the hydrostatic pressure term
for the supercritical flow (h(1))2/2 and the inertial term (u(2))2h(2) for the subcritical flow
and set the film thickness before the jump to much less than those after the jump to simplify
the capillary term. Thus, the jump radius satisfies an equation similar to the one obtained
by Rojas et al. (2013)

3
r4

j
= 1

2
h2

f + Bo−1 hf

rj
, hf = b

√
Bo−1

ε
, (4.9a,b)

with one fitting parameter b that describes the wetting properties of the disk. Due to the
limitations for b1 (Landau & Lifshitz 1987), b ≤ 1.05. If the capillary term is negligible,
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we obtain

rj = 61/4

h1/2
f

(4.10)

that gives the dimensional value of

Rj = 0.266

b1/4
1

(
ρQ3

σν

)1/4

. (4.11)

Qualitatively, this result coincides with the correlation derived by Bhagat et al. (2018)
for b1 = 0.575 ± 0.15. The derivation shows that their conclusion on the irrelevance
of gravity is wrong. We see that, despite the hydraulic jump radius not depending on
gravitational acceleration explicitly, the force has been taken into account three times:
the film thickness is defined by the balance of the gravity and surface tension; gravity
ensures constant thickness throughout the subcritical zone; last but not least, the location
of the jump reflects the balance of the film momentum flux and the thrust produced by the
hydrostatic pressure.

The capillary term in (4.9a,b) is small if

Bo−1

hf rj
� 1 ⇔ Bo−3/4ε1/4 � 1, (4.12)

which is not true for typical experiments with water and water with surfactant (Bohr et al.
1993; Hansen et al. 1997; Brechet & Néda 1999; Mohajer & Li 2015; Choo & Kim 2016;
Bhagat et al. 2018). To compare the simplified theory with experiments, we solve the
algebraic equation (4.9a,b) and obtain the dependence of the hydraulic jump radius on
Reynolds number, taking into account (2.46a–d). Figure 12 presents the results of the
simplified theory and experimental data and empirical correlations by Bhagat et al. (2018)
and Rozhdestvenskii (1979). The latter assumes that the hydraulic jump location is mostly
defined by viscosity and corresponds to the equality of the local Reynolds number to a
certain value. The theory coincides with experimental data within the accuracy level of
the scatter of the experimental data. The deviation is of the order of the omitted terms.
The simplified theory for low Kapitza number liquids is given by Wang & Khayat (2019).
It predicts a nearly constant Froude number after the jump and corresponds to the empirical
relation obtained by Duchesne et al. (2014).

To observe the effect of surface tension in the calculations, it is more convenient to fix
ε and vary Bo−1 only. In this case, the surface tension changes the jump conditions and
the outer solution through the value of hf , unlike the case considered by Kasimov (2008).
Figure 13 shows the dependence of the jump radius on Bo−1. The radius monotonically
decreases down to rs. The simplified theory works well within its range of applicability
(us � 1, rj � rs, hf � 1).

4.3.2. Rotating disk
The key difference between the flow over the static and rotating disks is the presence of the
centrifugal force, which grows towards the disk periphery. If ω > 1, it dominates for large
r and no boundary conditions at r = rf is required (Regime II). The situation is similar to
those considered by Kasimov (2008) as the capillarity affects the jump conditions only. If
the surface tension is large enough, no solution exists; for each ω, there is a critical value
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Figure 12. Comparison of the simplified theory predictions for the hydraulic jump radius with experiments
for high Kapitza number liquids: water Γ = 3360 (a), water with surfactant Γ = 1850 (b).
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Figure 13. Effect of surface tension on the jump radius in case of a static disk. Lines 1–3 correspond to
us = 7, 20, 3/r3

s , rs = 0.3, dashed line shows the result of the simplified theory (4.9a,b), ε = 10−2, rf = 15.
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Figure 14. Domain of the solution existence for Regimes I and II. Lines 1, 2 correspond to us = 7, 20. At
dashed lines rj = rs. Parameters are rs = 0.3, vs = vm, rf = 15, ε = 10−2.
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Figure 15. Radial (a) and azimuthal (b) velocity distributions and free surface shape (c). Lines 1–3 correspond
to Bo−1 = 0, 1, 2. For all lines ω = 0.4, dotted line indicates asymptotic solution (2.65a–c). Parameters are
rs = 0.3, us = 20, vs = vm, rf = 15, ε = 10−2.

of Bo−1. Figure 14 shows the dependence of the domain of the steady solution existence
in the (Bo−1, ω) plane.

For ω < 1, the boundary condition at r = rf is a significant issue that cannot be solved
in the framework of depth-averaged equations (Li et al. 2019). For consistency with the
case of a static disk, we state the same hf : it corresponds to Frr = 1 for Bo−1 = 0 and
is proportional to

√
Bo−1/ε, otherwise. While Bo−1 increases, the solution disappears in

two ways. The hydraulic jump collapses to r = rs, similarly to the static disk case, or the
solution disappears, similarly to the case of the static disk with capillarity-independent
outlet conditions (Kasimov 2008). The first occurs if the balance of capillary and gravity
forces produces such a large film thickness that the influence of this boundary condition
reaches the jump area. For large ω, the centrifugal force localises the capillary ridge near
the disk edge. It forms the asymptotic solution (2.65a–c) in the intermediate range between
the jump and the disk edge (figure 15). In this case, the film thickness rise appears near the
disk edge (Thomas, Faghri & Hankey 1991; Leshev & Peev 2003; Ozar et al. 2003). This
rise is not a hydraulic jump since the flow is subcritical before and after it. The dependence
of the jump radius on surface tension (figure 16) indicates the transition between the flow
with a localised ridge (weak change of the jump radius) and that with a thick subcritical
zone affected by the conditions at the disk edge (sharp decrease of the jump radius).
Dashed and solid lines in figure 14 show the limits of the parameters for the solution
existence; they correspond to the former and the latter ways of the solution disappearance.

4.4. Comparison with experiments
The considered range of the disk angular velocity ω corresponds to the relatively low
rotation rate for commonly used flow rates and viscosities (table 1); for Q ∼ 10 ml s−1,
ν ∼ 10−5 m2 s−1, a unit value of ω corresponds to 12.6 rad s−1 (120 r.p.m.).

Thomas et al. (1991) and Leshev & Peev (2003) examined water and water–glycerol
mixtures flowing over rotating disks in this range of angular velocity; however, they
used a relatively large rs (rs > 1). Thomas et al. (1991) used a collar with a radius of
50.8 mm, which is the radius of the liquid inlet, and the scale for radial coordinate (2.16)
is approximately10 mm. In the experiments by Leshev & Peev (2003), the liquid jet fell
into the centre of the rotating disk, but the jet’s radius is not reported. The authors focused
on the structures that appeared near the disk edge; they measured the film thickness for
R > 2 cm, which corresponds to r � 3. The sharp rise of the liquid thickness near the
disk edge (Thomas et al. 1991; Leshev & Peev 2003; Ozar et al. 2003) appeared due
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Figure 16. Hydraulic jump radius vs Bo−1 for ω = 0.2, 0.4, 0.8 (lines 1–3). Parameters are rs = 0.3,
us = 20, vs = vm, rf = 15, ε = 10−2.

to capillarity: all the cited experiments used liquids with relatively high surface tension
coefficient (from 64 to 72 mN m−1).

Wang et al. (2020) used the scheme studied in the present work and controlled a falling
jet’s radius. Typically, the non-dimensional angular velocity in their experiments is ω >

1.7 (Regime IV). There is one experiment that corresponds ω = 1.2 (Regime II) but the
measurements in this case were performed at larger r than that for which the described
effects take place. The authors do not report the sharp change of the film thickness but
notice a local maximum of the thickness and a local maximum of the radial velocity.
Their locations are referred to as jump and synchronisation radii. For the flows that belong
to Regime IV, our theory predicts no jumps, but the calculations show these maxima as
well. We denote the thickness and velocity maximum locations as rIV

j and rsync to avoid
confusion with the previous notation. Wang et al. (2020) derived empirical correlations
for rIV

j and rsync, in our notation they read

rIV
j = 2.095ω−1/4, rsync = 3.389ω−1/4. (4.13a,b)

Figure 17 shows comparison of the results given by (4.13a,b) and by our calculations for
different values of us. For large values of us, the obtained data fit the power-law exponent
of −1/4, but the coefficient is lower than that given by (4.13a,b) by approximately 15 %.
The ratio between calculated values of rIV

j and rsync tends to the experimentally observed
constant value as us increases.

Figure 18 presents comparison of the free surface shape for the flows with the lowest
available values of ω corresponding to Regime IV. We observe a good correspondence in
the asymptotic region (large r) and overestimation of the film thickness closer to the axis
of rotation. This overestimation results in a lower value of the thickness maximum position
treated as a hydraulic jump in Wang et al. (2020). A large value of the thickness means the
overestimation of the viscous friction implied by the parabolic velocity profile assumption.
The parabolic velocity profile also implies the Nusselt solution is the asymptotic at large r
(2.65a–c); however, Wang et al. (2020) observed the difference between the measurements
and this prediction by a factor that varies from 0.96 to 1.11 in the considered range of
parameters. These correction factors correspond to the ratio between our data for the jump
and synchronisation radii and the correlations by Wang et al. (2020).
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Figure 17. Jump (a) and synchronisation (b) radii as introduced by Wang et al. (2020) and their ratio (c) versus
ω. Lines 1–3 correspond to us = 5, 15, 25, rs = 0.3, vs = vm. Dashed lines show experimental correlation
(4.13a,b). Panels (a) and (b) have a logarithmic scale, panel (c) has a linear scale for all axes.
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Figure 18. Free surface shapes for Regime IV: calculations (lines) and measurements (points) by Wang et al.
(2020). Parameters of the flows are listed in table 4.

Line number (colour, markers) Q (ml s−1) ν (mm2 s−1) Ω (r.p.m.) ω us

1 (blue, rectangles) 40 89.27 300 1.695 9.27
2 (red, circles) 40 49.75 300 2.27 9.91

3 (green, triangles) 10 9.37 300 2.61 3.84
4 (purple, diamands) 25 9.37 300 4.13 8.22

Table 4. Parameters of experiments for Regime IV (Wang et al. 2020) plotted in figure 18. The jet radius is
2 mm for all experiments.

5. Conclusion

In this work, we applied the viscous shallow-water theory developed by Bohr et al. (1993)
for a description of the liquid film flow over a rotating disk. Averaging the governing
equations across the film gives the system of ODE for mean values of the radial and
azimuthal velocity components. We consider inertia, hydrostatic pressure gradient, viscous
momentum transport in the radial and azimuthal directions and centrifugal and Coriolis
forces. The averaging procedure uses the von Kármán–Polhausen method and implies
specific velocity profiles. The profiles affect coefficients but not the structure of the
equations.

We performed a qualitative analysis of the obtained system of ODE, focusing on the
location and type of fixed points. Since the hydraulic jump appears in the vicinity of a
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fixed point, this analysis estimates parameters for the existence of a hydraulic jump and
points to its location. We proved that there are four qualitatively different flow regimes;
they differ by the number of regions of supercritical and subcritical flow and type of
transition between these regions (continuous or discontinuous). For the flow on a rotating
disk, the radial velocity component solely defines whether the flow is supercritical or
subcritical.

We trace continuous transition between two well-studied situations: supercritical and
subcritical flows separated by a hydraulic jump at a static disk and a fully supercritical
rotating flow at a fast rotating disk where viscous friction balances the centrifugal force
(asymptotic flow). If the rotation rate is relatively small, the flow is similar to the static
disk: the supercritical flow near the inlet transfers to the subcritical regime via a hydraulic
jump (Regime I). While the rotation rate increases, we observe the transformation of the
flow regime at the disk periphery from subcritical to the supercritical regime, a transition
from the subcritical regime to the supercritical one is continuous (Regime II). Further
increase of the rotation rate smooths the hydraulic jump; there remains a subcritical region
but the flow is continuous everywhere (Regime III). For large enough rotation rate, the flow
is supercritical everywhere (Regime IV). We found the values of the rotation rates for all
transitions between flow regimes depending on the inlet conditions and surface tension.

We show that non-synchronous rotation of the liquid and the disk due to the Coriolis
force is crucial for the flow structure. This force decreases the local liquid angular velocity
and prevents the shift of the jump location to infinity. During the transition from Regime I
to Regime III, the hydraulic jump moves away from the axis of rotation by approximately
30 % of its radius at the static disk. The difference between the liquid thickness before and
after the jump (the jump intensity) gradually decreases to zero, so the hydraulic jump is
not ‘washed away’ as predicted by Wang & Khayat (2018) but smoothed by rotation. We
validate our calculations by comparison with experiments and simulations by Wang et al.
(2020). We observe good agreement for the radii of local maxima for the film thickness
and radial velocity dependence on the rotating rate. The estimation of 30 % enlargement of
the jump radius before the disappearance by rotation is similar to the result experimentally
obtained by Saberi, Mahpeykar & Teymourtash (2019) for the film flow over a sphere.

The surface tension affects the jump conditions for Regimes I and II and the boundary
conditions at the disk edge for Regime I. The balance of the surface tension and gravity
defines the film thickness at the disk edge if the flow is subcritical there. For high Kapitza
number liquids, this equilibrium thickness is large. For a static disk, the thick film fills
the entire subcritical region. Increase of surface tension pushes the jump towards the
axis of symmetry until the jump collapses to the inlet. The effect of surface tension
remains qualitatively the same for low rotation rates. While the rotation rate increases,
there appears a zone of asymptotic flow in the subcritical region. This flow cancels the
influence of the outlet boundary conditions on the jump location. For this case, as well as
for Regime II, there is no solution for large enough surface tension.

From a practical point of view, the presence of a subcritical region is essential for
coating applications. If the flow is locally subcritical a disturbance on the disk surface
produces distortion of the free surface at smaller radii than the disturbance’s location.
The proposed analysis estimates the rotation rate, which ensures the transition to fully
supercritical continuous flow.
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