
Astin Bulletin (2025), 55, pp. 97–120
doi:10.1017/asb.2024.38

RESEARCH ARTICLE

Forecasting mortality rates with functional signatures
Zhong Jing Yap1 , Dharini Pathmanathan1,2,3 and Sophie Dabo-Niang4,5

1Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
2Universiti Malaya Centre for Data Analytics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
3Center of Research for Statistical Modelling and Methodology, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
4UMR8524–Laboratoire Paul Painlevé, Inria-MODAL, University of Lille, CNRS, Lille, 59000, France
5CNRS–Université de Montréal, CRM–CNRS, Montréal, Canada
Corresponding author: Dharini Pathmanathan; Email: dharini@um.edu.my

Received: 22 July 2024; Revised: 12 December 2024; Accepted: 12 December 2024; First published online: 9 January 2025

Keywords: Hyndman-Ullah model; Lee-Carter model; principal component analysis; functional data analysis

Abstract
This study introduces an innovative methodology for mortality forecasting, which integrates signature-based meth-
ods within the functional data framework of the Hyndman–Ullah (HU) model. This new approach, termed the
Hyndman–Ullah with truncated signatures (HUts) model, aims to enhance the accuracy and robustness of mortality
predictions. By utilizing signature regression, the HUts model is able to capture complex, nonlinear dependencies in
mortality data which enhances forecasting accuracy across various demographic conditions. The model is applied
to mortality data from 12 countries, comparing its forecasting performance against variants of the HU models across
multiple forecast horizons. Our findings indicate that overall the HUts model not only provides more precise point
forecasts but also shows robustness against data irregularities, such as those observed in countries with historical
outliers. The integration of signature-based methods enables the HUts model to capture complex patterns in mor-
tality data, making it a powerful tool for actuaries and demographers. Prediction intervals are also constructed with
bootstrapping methods.

1. Introduction
Mortality modeling and forecasting are quintessential to the disciplines of actuarial science, demogra-
phy, and public health, serving as critical tools for socioeconomic planning and risk management. Their
primary objective is to provide reliable estimates of future mortality rates and life expectancies, which
are essential for shaping policy and financial strategies. For government agencies, anticipating mortality
trends is fundamental for effective resource allocation in healthcare, social security, and public welfare
sectors. Precise mortality forecasts enable informed decisions on retirement ages, healthcare funding,
and pensions, ensuring that social security systems remain robust amid demographic changes.

In the insurance and pension industries, mortality modeling takes part in the pricing of life insurance,
annuities, and managing pension funds. Actuaries rely on these models to calculate premiums, reserves,
and pension contributions that align with predicted mortality rates, thus safeguarding institutions against
longevity risks (Deprez et al., 2017). Accurate mortality projections are also critical in addressing global
challenges posed by increasing life expectancy and declining fertility rates which shift the age structure
of populations. These demographic trends have profound implications for the economic sustainability
of pension systems and public health policies (Bjerre, 2022). Consequently, the practice of mortality
modeling and forecasting not only supports financial and actuarial operations but also facilitates broader
strategic planning and policy-making to accommodate the evolving demographic landscapes, ultimately
ensuring the economic and social stability of societies.
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1.1. Mortality modeling and forecasting
Mortality models are broadly categorized into three approaches: expectation, explanation, and extrapo-
lation (Booth and Tickle, 2008). Each serves distinct purposes in understanding and predicting mortality
rates. The expectation approach relies on expert opinions to forecast mortality, emphasizing informed
conjectures based on past experiences. Meanwhile, explanation models link mortality rates to vari-
ous risk factors such as lifestyle or socioeconomic status, using regression techniques to uncover the
underlying causes of mortality patterns. The primary focus, however, is on extrapolation, the most
actively researched and commonly used approach, particularly by national statistical bureaus. This
method projects future mortality rates based on the continuation of observed historical trends and age
patterns. By leveraging time series analysis and other statistical techniques that emphasize trend con-
tinuity, extrapolative models provide robust forecasts grounded in the regularity of past data, making
them indispensable for demographic analysis and policy planning.

The seminal work of Lee and Carter (1992) was undoubtedly one of the most influential extrapola-
tive models to be introduced to forecast mortality rates. While the Lee–Carter (LC) model was initially
applauded for its simple structure and straightforward implementation, it did have its fair share of lim-
itations which were subsequently addressed in various extensions of the LC model (Lee and Miller,
2001; Booth et al., 2002). Extensions were also not limited to adjustments to the original LC model
as seen in the deployment of generalized linear models (Renshaw and Haberman, 2003) and Bayesian
statistics (Czado et al., 2005). Readers are directed to Basellini et al. (2023) for a more recent review of
LC methods since the introduction of the LC model.

The LC extension of interest in this paper involves the functional data paradigm (Ramsay and
Silverman, 2005). The Hyndman–Ullah (HU) model (Hyndman and Ullah, 2007) is a generalization
of the LC model that uses concepts from functional data analysis to better model mortality rates by
exploring variations within the data from a functional perspective. The use of nonparametric smoothing
techniques on the age-specific mortality rates allowed for the removal of the LC model’s homoskedas-
ticity assumption and realize an underlying smooth curve that can be decomposed using functional
principal component analysis (FPCA) with their orthonormal basis. Component wise it is similar to the
LC model except it allows for multiple principal components to be included, accounting more variation
into the model which Hyndman and Ullah (2007) noted is the reason for its superior performance for
longer-term forecast. Comparisons also show that the HU model outperformed the LC, Lee–Miller, and
Booth–Maindonald–Smith models. Recent extensions of the HU model have been for the modeling of
subpopulations (Shang and Hyndman, 2017; Shang et al., 2022; Jiménez-Varón et al., 2024). In light
of the substantial contributions made by the HU model, there is still a growing interest to explore new
modifications to improve its efficacy and adaptability.

With the rise of network approaches in modeling, there is growing interest in extending age-period
models using deep learning techniques. Various aspects of the LC model have been coupled with deep
learning applications, both in parameter estimation (Hainaut, 2018; Richman and Wüthrich, 2021;
Schnürch and Korn, 2022; Scognamiglio, 2022; Miyata and Matsuyama, 2022) and in forecasting pro-
cedures (Nigri et al., 2019; Perla et al., 2021; Bjerre, 2022; Marino et al., 2023). Deep learning models
fundamentally process streams of input data to approximate relationships. While they perform well, they
can lack replicability and often require increased computational resources. Signatures offer a potential
solution to these limitations as they too possess universality to approximate relationships arbitrarily
well, reproducible, and efficient. Therefore, this paper aims to integrate signatures that better capture
the nonlinear patterns often present in single-population mortality data into the HU model’s functional
data framework.

1.2. Signatures from rough path theory
The signature is a sophisticated mathematical tool that is capable of summarizing complex, high-
dimensional data paths through their iterated integrals in an informative and compact package as a power
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series that contains the tensor coefficients. Originally introduced by Chen (1957) and further developed
in the context of rough path theory by Lyons et al. (2007), they have found extensive applications across
multiple fields, particularly where the analysis of dynamic systems is crucial. Their effectiveness has
been demonstrated in various applications such as sepsis detection (Morrill et al., 2020), identifying
Chinese handwriting (Xie et al., 2018), and in diagnosing psychological disorders (Wang et al., 2020).
The increasing interest in signatures stems primarily from their ability to effectively condense infor-
mation from complex sequences without losing critical details, making them exceptionally useful for
detection work. This efficiency in capturing the essence of data paths while minimizing complexity is
what drives their growing popularity, especially in areas dealing with large volumes of sequential data
such as in the field of quantitative finance (Lyons et al., 2020; Kalsi et al., 2020; Cuchiero and Möller,
2024; Jaber and Gérard, 2024).

Signatures possess a unique mathematical property known as universal nonlinearity, which enables
the application of regression techniques directly on these signature representations, known as signa-
ture regression. This method leverages the rich algebra provided by the signatures to model and predict
dependent variables from a sequence of inputs. The practical implication of this is that it can construct
predictive models that are capable of handling data with complex temporal dynamics and interactions.
In other words, the universality of signatures means that any continuous function on the space of sig-
natures can approximate continuous functions on the space of paths to an arbitrary degree of accuracy.
This broad capability makes signature-based models exceptionally versatile and powerful, providing a
robust framework for tackling problems where conventional regression models might struggle with the
complexities of the data.

Signature regression is further highlighted through various applications across different fields. For
instance, Levin et al. (2016) utilized the universal properties of signatures to characterize functional
relationships within datasets, leading to the development of the expected signature model. This model
leverages linear regression on signature features to summarize the conditional distribution of responses
effectively. It has demonstrated superior forecasting abilities compared to autoregressive and Gaussian
Process models, especially in scenarios involving large datasets, thereby highlighting its efficiency in
data stream summarization and significant dimension reduction.

Moreover, the adaptability and simplicity of modeling with signature regression have been elabo-
rated by Cohen et al. (2023), who noted their effectiveness in simplifying time series modeling. This
approach involves merely computing signatures from observed paths and applying regression, signifi-
cantly reducing the complexity associated with time series analysis. The flexibility of signature methods
also extends to handling missing data and irregular sampling, making them applicable for diverse fore-
casting and analysis tasks. Notably, when applied to nowcast the gross domestic product growth of the
United States, signature regression methods have outperformed dynamic factor models, showcasing its
potential in economic forecasting.

Building on these insights, Fermanian (2022) was the first to apply the concept of signatures to func-
tional data analysis by introducing the signature linear model within a functional regression framework.
Fermanian (2022) noted that signatures are naturally adapted to vector-valued functions, unlike other
functional methods, and require little assumption on the regularity of functions to encode nonlinear geo-
metric information. This model operates by mapping functions to their signatures and employing ridge
regression for prediction, showing enhanced capabilities in handling multidimensional data. By surpass-
ing established methods like functional linear models and functional principal component regression,
the signature linear model eliminates the need for certain assumptions typically required within func-
tional settings, streamlining the modeling process. This lays the foundation that suggests that signature
regression is a good candidate to extend the functional data framework of the HU model.

In the field of actuarial science, the use of signatures has started to make inroads, particularly in areas
such as validating economic scenarios (Andrès et al., 2024) and option pricing (Cuchiero et al., 2023,
2024). However, the application of signatures in the life and mortality side of actuarial science remains
less explored, indicating a gap for research and potential development. The introduction of signature
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regression into mortality forecasting presents a novel methodology that could improve the accuracy of
predictions by leveraging the universality of signatures to effectively model complex, nonlinear relation-
ships inherent in mortality data. It is therefore the aim of this article to introduce a functional mortality
model by which is decomposed using truncated signatures in place of FPCA that also utilizes the extrap-
olation method to produce forecasts. The model will from here on be referred to as the HU with truncated
signatures (HUts) model and will be used to obtain point and interval forecasts of log mortality rates of
several countries that are readily available from the Human Mortality Database (2024).

The remainder of this paper is structured as follows. Section 2 provides a description of the methodol-
ogy, detailing the HU model and the integration of signature regression. Section 3 presents the empirical
analysis, including data preparation and results of applying the proposed model to mortality data across
various countries. In Section 4, we discuss the implications of these results, and Section 5 concludes.

2. Methodology
2.1. The Hyndman-Ullah (HU) model
The HU model is a generalized extension of the LC model, employing the functional data paradigm
(Ramsay and Silverman, 2005) and nonparametric smoothing to improve the forecasting of mortality
rates. This model is distinguished by its use of multiple principal components, capturing a broader
variation within the data, and applying more advanced time series forecasting methods than the random
walk with drift model typically used in the LC model (Hyndman and Ullah, 2007).

At its core, the HU model assumes that log mortality rates yt(x) observed at discrete ages x and years
t have an underlying smooth function ft(x), observed with error:

yt(x) = ft(x) + σt(x)εt,

where εt is the standard normal error term and σt(x) denotes the observational standard deviation which
is allowed to vary with age. This lets the HU model handle data heterogeneity and ensures demographic
consistency by applying monocity constraints when using penalized regression splines to smooth the
mortality curves (Hyndman and Ullah, 2007).

FPCA is used to decompose the smoothed mortality rates into principal components. By applying
FPCA to the centered smooth mortality would yield:

ft(x) = μ(x) +
K∑

k=1

βt,kφk(x) + et(x).

Here, μ(x) represents the mean function, φk(x) are orthonormal basis functions, βt,k are time-dependent
coefficients, and et(x) is the error function. Forecasts of mortality rates are done through the time-
dependent coefficients, βt,k which are fitted into univariate ARIMA models and extrapolated h-steps-
ahead.

A critical consideration in applying FPCA is its sensitivity to outliers. Extreme values can dispropor-
tionately influence the principal components derived from the data. This sensitivity may lead to biased
or misleading results, especially when modeling phenomena such as mortality rates where spikes might
occur due to extraordinary events like epidemics or wars. To address these issues, various adaptations
of the HU model have been put forth. These include the robust HU (HUrob) model with robust FPCA
(Hyndman and Ullah, 2007), which seeks to minimize the impact of outliers by using the L1-median
as the location measure, paired with the reflection-based algorithm for principal components analysis
(Hubert et al., 2002) for a robust set of principal components; the weighted HU (wHU) model with
weighted FPCA (Hyndman and Shang, 2009), which adjusts the influence of data points by placing
more weight on recent data with the measure of location being a weighted average using geometrically
decreasing weights. These modifications aim to enhance the stability and reliability of the model under
conditions where data anomalies are present. Having the same objective in mind to make the model less
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sensitive to outliers, we extend the literature by exploring the use of signature regression on the signature
of age-specific mortality rates as an alternative to enhancing the robustness of mortality forecasts.

2.2. The signature of a path
2.2.1. The concept of signatures
In statistical analysis, particularly when dealing with time series or sequential data, understanding the
concept of a “path” is crucial. A path X : [0, 1] →R

d is defined as a continuous mapping from an inter-
val to a topological space, which is assumed to be piecewise differentiable and of bounded variation.
Unlike time series or stochastic processes, which are explicitly governed by time, a path emphasizes its
geometrical movements through space, making the term “path” more suitable. From a computational
perspective, think of a path as input data with d dimensions, analogous to multidimensional time series
data.

Signatures are mathematical tools used to encode the information contained in a path. Using Chen’s
identity (Chen, 1957), the signature of a piecewise linear path is computed by taking the tensor product
of exponentials of the linear segments of the path. Thus, the signature of a path, or simply signatures, is
a collection of all iterated integrals between coordinates of a path. This collection is often described as
an abstract summary of the input signal’s variability.

Definition 2.1 (Signature of a path (Fermanian, 2022)). Let X : [0, 1] →R
d be a path of bounded vari-

ation, and let I = (i1, . . . , ik) ∈ {1, . . . , d}k, where k ∈N
∗, be a multi-index of length k. The signature

coefficient of X corresponding to the index I is defined by:

SI(X) =
∫

· · ·
∫

0≤u1<...<uk≤1

dXi1
u1

. . . dXik
uk

=
∫ 1

0

∫ 1

u1

∫ 1

u2

. . .

∫ 1

uk−1

dXik
uk

. . . dXi2
u2

dXi1
u1

,

where SI(X) is called the signature coefficient of order k. The signature of X is then the sequence
containing all the signature coefficients:

S(X) = (1, S(1)(X), . . . , S(d)(X), S(1,1)(X), . . . , S(i1,...,ik)(X), . . . ).

However, from a practical standpoint, it is not feasible to use all the signature coefficients in the
infinite sequence of the signature of X due to computational limits and also due to the factorial decay of
the coefficients as the order increases (Bonnier et al., 2019). Therefore, it is often sufficient to consider
the signature of a path up to a truncated order of m, denoted as:

Sm(X) = (1, S(1)(X), . . . , S(d)(X), S(1,1)(X), . . . , S(i1,...,im)(X)),

which contains sd(m) = dm+1−1
d−1

number of signature coefficients. Note that the number of signature
coefficients grows exponentially with the truncation order.

A fundamental attribute of the signature is its ability to encode the geometric properties of a path.
The first-order terms, S(i)(X), are straightforward, representing the total change along each dimension
of the path or the increments observed in each variable. The second-order terms, S(i1,i2)(X), provide
insights into the interaction between pairs of dimensions, similar to capturing the area enclosed by the
path as it travels through these dimensions, and higher-order interactions are particularly valuable for
understanding complex dependencies and dynamics within the data.

2.3. Embedding with signatures
Embedding paths before computing its signature is a standard practice used to maximize the potential
of signatures by addressing inherent invariances such as translation and time reparametrization that can
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result in significant information loss. These embedding transformation ensure that all relevant informa-
tion are preserved and encoded into the signature and in turn enrich the signature’s capability to reflect
the complex dynamics within the path.

There are various embedding techniques that can be used to augment paths, each suited to specific
applications based on the aspects of the data they capture. Different embedding choices highlight differ-
ent features of the data, making them appropriate for particular tasks (Fermanian, 2021). In this paper,
we focus mainly on three types of embeddings: basepoint augmentation, time augmentation, and the
lead-lag transformation.

The basepoint augmentation (Kidger and Lyons, 2020) involves inserting a fixed initial point to the
path data. By anchoring the sequence, basepoint augmentation allows the signature to overcome the
translation invariance of the signature.

Time augmentation counteracts the signature’s invariance to time reparametrization, by introducing
a monotone coordinate that serves as a virtual timestamp to each point in the path. This embeds precise
temporal information into the path, making the signature sensitive to the sequence’s timing. Besides,
this also guarantees the uniqueness of the signatures computed (Hambly and Lyons, 2010).

To further aid the sequential learning capabilities of the signature, the lead-lag transformation extends
the path’s dimensionality by interleaving the original path with its lagged version, which enriches
the data representation, allowing the signature to capture not only the path’s immediate direction but
also its past states. Fermanian (2021) noted the lead-lag transformation improves a model’s predictive
capabilities and is beneficial for tasks involving sequential data.

In the proceeding sections, we will use these embedding transformation to prepare our data paths
before computing its signature so as to enhance the signatures’ ability to capture and reflect the complex
dynamics of the sequences.

2.4 Signature regression
One of the many practical applications of signatures are its usage as feature maps in a regression frame-
work. This rich representation allows for the modeling of complex relationships within functional data.
The ability of signatures to compactly encode information about paths makes them particularly powerful
for handling high-dimensional and complex datasets, enabling the application of regression techniques
in scenarios where conventional methods might be inadequate due to the complexity and dimensionality
of the data. These are motivated and guaranteed by many results as pointed out by the shuffle identity, the
signature approximation theorem (Levin et al. 2016), and the universal nonlinearity of paths (Bonnier
et al., 2019).

Definition 2.2 (Universal nonlinearity (Bonnier et al., 2019)). Let f be a real-valued continuous function
on continuous piecewise smooth paths in R

d and let κ be a compact set of such paths. Assume that
X0 = 0, ∀X ∈ κ , let ε > 0, there exists a linear functional L such that,

|f (X) − L(S(X))| < ε.

Kiraly and Oberhauser (2019) then gathered that a linear combination of signature features are capa-
ble of approximating continuous functions arbitrarily well, meaning signatures are able to linearize
functions of a path, further emphasizing the universality (Levin et al., 2016) of signatures. To further
clarify, consider a classical regression setting with a path X that maps some space into R

d and Y a
response, we have

Y = f (X) + ε,

where f is some functional that characterizes the relationship between the response and the path.
Assuming f is nonlinear, it is then generally challenging to determine the function f accurately due
to the increased complexity in parameter estimation, model interpretation, and computational resources
required for nonlinear regression or possibly neural networks, compared to linear regression. However,
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if the signature of path X is considered as the predictors instead, we can redefine the relationship with a
linear functional g such that

Y = g(S(X)) + ε.

Although in theory linear regression is sufficient for estimating g, in practice, regularization tech-
niques are used to handle the multicollinearity of signature features (Levin et al., 2016) as linear
regression models can become unstable when variables are not independent. This instability often results
in large variances in the estimated coefficients, making the model unreliable.

2.5. The Hyndman–Ullah model with truncated signatures
We are now prepared to integrate signatures into the HU model, which we will refer to as the HU with
truncated signatures (HUts) model. The integration of signatures with functional data models have been
documented by Fermanian (2022) and Frévent (2023). However, these studies primarily applied signa-
ture regression in a functional regression framework with scalar responses and functional covariates,
where signatures of the functional covariates were used directly. In contrast, the HU model operates
more like a functional regression model with functional responses, making the direct application of sig-
nature regression more complex. We plan to consider using the signature of cross-sectional data from
these functional covariates to apply signature regression at each point throughout the functional domain
and then reconstruct a functional response. The HUts model is presented as follows:

yt(x) = ft(x) + σt(x)εt,

ft(x) = μ(x) +
K∑

k=1

βt,kZk(x) + et(x),

where Zk(x) is the kth principal component of the signature of the transformed path of age-specific rates,
and its respective scores βt,k.

The smoothing approach of the mortality rates are remained as the original HU model, which is
with the constrained weighted penalized regression splines to obtain f̂t(x). This ensures the model
retains the capacity to account for handling heteroskedasticity in mortality data as variability is different
across different ages or time periods. Although more advanced smoothing techniques such as bivariate
smoothing (Dokumentov et al., 2018) have been put forth, they also introduce additional complexity
and computational demands.

Additionally, the estimation of the mean function is also kept the same as in the HU model, by
averaging all the smoothed curves:

μ̂(x) = 1

n

n∑
t=1

f̂t(x).

This method provides a straightforward and effective way to capture the central tendency of the func-
tional responses. Now, we will decompose the centered curves, f ∗

t (x) = f̂t(x) − μ̂(x) with signature
regression over a fine grid of q equally spaced values x∗

1, . . . , x∗
q ∈ [x1, xp].

Consider the time series of the centered smoothed mortality rates for age xi, {f ∗
t (xi)}n

t=1. Combining
the basepoint augmentation, time augmentation, and the lead-lag transformation, the augmented path
can be transformed as follows:

X̃i =
(

(t0, 0, 0), (t1, f ∗
1 (xi), f ∗

1 (xi)), (t2, f ∗
2 (xi), f ∗

1 (xi)), (t3, f ∗
2 (xi), f ∗

2 (xi)),

(t4, f ∗
3 (xi), f ∗

2 (xi)), . . . , (tn, f ∗
n (xi), f ∗

n (xi))
)

,

where t is an ordered sequence within the interval [0,1] and t0 = 0 < t1 < t2 < . . . < tn = 1, marking the
times of observations. This structured augmentation ensures that each data point xi is not only repre-
sented by its current value but also linked to its immediate past, enhancing the path’s dimensionality and
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capturing both the direction and history within the data, thereby enriching the data representation for
signature computation. The transformed time series X̃i is then used to compute the truncated signature
Sm(X̃i).

To estimate βt,k, we then set up our signature regression framework:

f ∗
t (xi) = gt(S

m(X̃i)) + êt(xi)

for some linear function gt, which we will use principal component regression to solve. Applying princi-
pal component analysis (PCA) helps by reducing the dimensionality of the signature coefficient feature
space to a smaller set of k uncorrelated principal components denoted as Zk(xi). This reduction not only
simplifies the model but also enhances its stability and efficiency by focusing on the most informative
aspects of the dependency within the signatures. Additionally, using PCA aids in orthogonalizing the
terms, which simplifies the calculation of forecast variance later and resembles the approaches used in
both the original HU and LC models.

For computational simplicity, we define the matrices:

S =
⎡
⎢⎣

Sm(X̃1)
...

Sm(X̃q)

⎤
⎥⎦

q×sd (m)

, Yt =
⎡
⎢⎣

f ∗
t (x∗

1)
...

f ∗
t (x∗

q)

⎤
⎥⎦

q×1

. (2.1)

We then normalize S to obtain S∗ before applying PCA to obtain the orthogonal principal component
scores by singular value decomposition, S∗ = U�VT where the first K principal component scores are
the first K columns of Z = U�. Then, to obtain β̂t is equivalent to solving

β̂t = (Z�
K ZK)−1Z�

K Yt,

where ZK is a q × K matrix where the ith row contains the principal component of S∗ of order m of
age xi.

By combining everything together, we have

f̂t(x) = μ̂(x) +
K∑

k=1

β̂t,kẐk(x) + êt(x),

where Ẑk(x) is obtained via interpolation.

Remark 2.3. As time augmentation leads to identical values for the signature coefficients
S(1), S(1,1), S(1,1,1), . . ., along each row of S in Equation (2.1), certain columns of S become constant. During
normalization, these zero-variance columns are excluded from being centered and scaled, ensuring a
well-defined normalized matrix S∗. Consequently, when performing PCA on S∗, one of the principal
components is expected to be constant.

2.6. Forecasting with the HUts model
2.6.1. Point forecast
Similar to that of the HU model, the time-dependent coefficients are extrapolated by fitting them into
univariate time series {β̂t,k}n

t=1. We preserve the choice of using univariate ARIMA models as in the
HU model to forecast each coefficient h-steps-ahead, β̂n+h|n,k, for each k = 1, . . . , K. Subsequently, the
forecasted log mortality rates can be calculated with:

ŷn+h|n(x) = μ̂(x) +
K∑

k=1

β̂n+h|n,kẐk(x).

Since each term is constructed to be orthogonal to one another, the forecast variance can also be approx-
imated, assuming all sources of error are normally distributed, by summing the component variances
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similar to that of the forecast variance of the HU model (Hyndman and Ullah, 2007):

Var(yn+h|n(x)) ≈ σ̂ 2
μ
(x) +

K∑
k=1

Ẑ2
k (x)un+h|n,k + v(x) + σ 2

n+h|n(x), (2.2)

where σ̂ 2
μ
(x) is the variance obtained from estimating the mean function, un+h|n,k is the variance from the

time series used to forecast β̂n+h|n,k, v(x) are model fit errors estimated by averaging êt(x), and finally
σ 2

n+h|n(x), the observational variance.

2.6.2. Interval forecast
Obtaining prediction intervals is essential because they provide a measurable indication of the uncer-
tainty in forecasts. Prediction intervals quantify the range within which future observations are likely
to occur, at a specified confidence level. This allows evaluation of the reliability of predictions when
model uncertainty is significant, as different models may offer varying forecasts performance. Chatfield
(1993) emphasized the importance of prediction intervals for evaluating future uncertainty, preparing
for various scenarios, comparing different forecasting methods, and exploring outcomes under differ-
ent assumptions. By providing a range of possible outcomes, interval forecasts allow policymakers and
researchers to prepare for a variety of future scenarios, thus enhancing the reliability of their strategies
against unexpected changes. For example, understanding the variability in future mortality rates can
profoundly impact the structuring of insurance (Hyndman and Shang, 2009). Interval forecasts helps
insurers assess the risk associated with different demographic scenarios, which is then translated into
premiums to reflect the uncertainty of their projections. This further frames the concept of interval
forecasts as a fundamental component in the field of demography.

Constructing prediction intervals is straightforward under the assumption that all sources of error are
uncorrelated and normally distributed. Using the standard normal distribution, these intervals can be eas-
ily derived by applying quantile values to scale the forecast standard deviation obtained in Equation (2.2)
which is straightforward to implement. However, its accuracy heavily depends on the validity of the nor-
mality assumption. If the normality assumption is violated, the prediction intervals may not be accurate,
suggesting that a nonparametric bootstrap procedure would be more practical.

2.6.3. Bootstrap prediction interval
Since the HUts model, like the wHU model, do not satisfy the normality assumption (see Appendix
A in the Supplementary Material), we employ the same method used to construct bootstrap prediction
intervals for the wHU model in Hyndman and Shang (2009) to construct prediction intervals for the
HUts model.

The procedure begins by utilizing univariate time series models to generate multi-step-ahead fore-
casts for the scores of principal components, {βt,k}n

t=1. Subsequently, for t = h + 1, . . . , n, we calculate
the forecast errors for h-step-ahead forecasts as:

ξ̂t,h,k = β̂t,k − β̂t|t−h,k.

To create a bootstrap sample of βn+h,k, we randomly resample these forecast errors with replacement,
designated as ξ̂

(l)
∗,h,k, and add them to the h-step-ahead forecast, β̂n+h|n,k, yielding:

β̂
(l)
n+h|n,k = β̂n+h|n,k + ξ̂

(l)
∗,h,k,

for l = 1, . . . , L.
The model’s residual, ê(l)

n+h|n(x) is bootstrapped from the residuals {ê1(x), . . . , ên(x)} by sampling with
replacement. Similarly, smoothing errors ε̂

(l)
n+h,i can be bootstrapped by resampling with replacement

from {ε̂1,i, . . . , ε̂n,i}.
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Table 1. Mortality data by country.

Country Commencing year Age range
Australia 1921 0-100+
Belgium 1920 0-100+
Bulgaria 1947 0-100+
Denmark 1899 0-99+
Finland 1899 0-96+
France 1899 0-100+
Ireland 1950 0-100+
Italy 1899 0-100+
Japan 1947 0-100+
Netherlands 1899 0-99+
Norway 1899 0-100+
United States 1933 0-100+

When constructing the L variants for ŷ(l)
n+h|n(x), all possible components of variability are combined,

assuming they are uncorrelated to each other by using:

ŷ(l)
n+h|n(xi) = μ̂(xi) +

K∑
k=1

β̂
(l)
n+h|n,kẐk(xi) + ê(l)

n+h|n(xi) + σ̂n+h(xi)ε̂
(l)
n+h,i.

Subsequently, the (1 − α)100% prediction intervals, [lh(x), uh(x)] can then be obtained from the (1 −
α/2) and (α/2) quantiles of these bootstrap variants. We also consider the adjustment made to the
bootstrap prediction intervals in Hyndman and Shang (2009):

[0.5{lh(x) + uh(x)} − {uh(x) − lh(x)}p(x), 0.5{lh(x) + uh(x)} + {uh(x) − lh(x)}p(x)]

to account for the uncertainty in our forecast by calibrating the intervals using one-step-ahead forecast
errors. Here, p(x) = d(x)/[u1(x) − l1(x)], where d(x) is the empirical differences between the (1 − α/2)
and (α/2) quantiles of the in-sample one-step-ahead forecast errors {f̂t+1(x) − f̂t+1|t(x);t = r, · · · , n − 1}
and r is the smallest number of observations used to fit the model.

3. Empirical analysis
3.1. Data description
This study utilized datasets from 12 different countries, all sourced from the Human Mortality Database
(2024). Of the 12 countries considered, data spanning all available years up to 2015 were extracted,
with age groups ranging from zero to a carefully determined maximum age to avoid zero or missing
values in elderly data. For ages beyond this established maximum, they were combined into an upper age
group. In addressing intermediate missing values within the data for Denmark, Finland, and Norway, a
uniform approach was applied. A constant, represented by the smallest death rate value in the dataset, was
added to each death rate prior to taking its logarithm. This adjustment facilitated a consistent treatment
of missing values across the dataset. The selected countries are tabulated in Table 1, along with the
commencing years and age groups.

3.2. Point forecast
The log mortality rates of 12 countries were forecasted with the HUts model using a truncation order
m = 2 (see Appendix B in the Supplementary Material). It is therefore intuitive to compare the fore-
cast accuracy of the proposed method with the HU model, HUrob model, and the wHU model, which
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are commonly used on mortality rates of a single population. The selection of the number of principal
components K can impact the forecasting performance of the HUts model and the HU model variants.
They can be chosen based off a threshold function that measures the proportion of variance explained by
each principal component, or by minimizing the integrated squared forecast error (Hyndman and Ullah,
2007). However, Hyndman and Booth (2008) noted that the HU models are relatively insensitive to the
choice of K as long as it is sufficiently large, and that setting K = 6 is more than adequate to capture the
essential features of the data. For consistency across all models, we adopt K = 6 for both the HU model
variants and the proposed HUts model. The models were fitted using an expanding window approach,
incorporating data from the respective commencing years of each country as outlined in Table 1. The
initial forecasting period covers the most recent two decades which ends at 2015. We fit this data using
both models and produce forecasts up to 10 years ahead. The accuracy of these forecasts are then evalu-
ated. Subsequently, the fitting period is then extended by a year and the forecasts for the same horizons
are recalculated. This procedure of expanding the training window continues until it includes data up to
the year 2014.

In order to gauge the accuracy of the point forecast of the HUts model, the mean squared errors (MSE)
are calculated and compared with those of the forecasts of the HU model variants. MSE quantifies the
average squared difference between the predicted and observed values, providing a measure of the overall
accuracy and precision of predictions with lower values indicating better forecasting performance. The
MSE is computed using:

MSE(h) = 1

pq

q∑
t=1

p∑
i=1

(yt(xi) − ŷt|t−h(xi))
2, (3.1)

where h is the forecasting horizon, p is the number of ages, q is the number of years considered in the
forecasting period, yt(xi) is the observed log mortality, and ŷt|t−h(xi) is the predicted value.

Figure 1 presents the plot of the root MSE of h = 1, 5, 10 forecasts across the different models. The
square roots of the MSE values are plotted instead of the MSE themselves to ensure the plot scale
accommodates all data. Readers are directed to Appendix D in the Supplementary Material for the
tabulated MSE values of all countries. The results indicate that while the wHU model often achieves
the lowest MSE values for one-step-ahead forecasts, the HUts model still performs competitively, fre-
quently achieving values close to the best-performing models. In comparison, the HU model shows
higher error rates, followed by the HUrob model.

For five-step-ahead forecasts, the HUts model demonstrates more competitive performance.
Figure 1(b) shows that overall the HUts model achieves lower error metrics compared to the other
models, suggesting an improvement in the HUts model’s forecasting ability as the forecast horizon
increases.

The results for ten-step-ahead forecasts, shown in Figure 1(c), further confirms the strong per-
formance of the HUts model. It consistently achieves lower or comparable MSE, reinforcing its
effectiveness in long-term mortality rate forecasting. In most countries, the HUts model has lower MSE
values, with exceptions to a few cases such as in the United States, where the HU model occasionally
performs better. This consistent performance across a majority of countries highlights the robustness of
the HUts model in capturing long-term trends in mortality rates.

Across different forecasting horizons, the best model is generally a choice between the HUts and
wHU models, as these models tend to have the lowest MSE values. The wHU model performs better
at shorter forecast horizons, as seen in Figure 1(a). However, as the forecasting horizon increases, the
HUts model demonstrates improved performance and eventually surpasses the wHU model. This shift
indicates that the HUts model’s accuracy and reliability become more pronounced with longer-term
forecasts.

Notably, in the cases of France and Ireland, the HUts model performs consistently well across all fore-
casting horizons, maintaining lower MSE values compared to other models. Conversely, for Australia,
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Figure 1. Root MSE of (a) one, (b) five, and (c) ten-step-ahead point forecasts of log mortality rates by
model and country.

the HUts model does not appear to be the most favorable at any point across the forecast horizons, with
other models, such as the wHU model, often yielding better results. The following section will take a
closer look at the mortality rate forecasts for France and Australia, exploring the nuances and potential
reasons behind the differing performances of the HUts model against the HU model variants.
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Figure 2. France (1899–2015); (a) observed log mortality rates; (b) smoothed log mortality rates;
(c) times series for ages.

3.2.1. A closer look at the French and Australian mortality data
To assess the robustness of the HUts model, we examine the mortality rates of France and Australia
more closely. Figures 2(a) and 3(a) include the observed log mortality rates, and Figures 2(b) and 3(b)
show the smoothed log mortality rates with red representing the earlier years. Figures 2(c) and 3(c) the
smoothed log mortality rates viewed as a time series with red representing the earlier ages. France’s
mortality data, notably influenced by periods of war and disease outbreaks, presents distinct outliers
which are evident in the volatility observed in their mortality trends, as shown in Figure 2 which are
most visible around the 1920s and 1940s. This provides an oppurtunity to test for the HUts model’s
ability to handle anomalies in data. In contrast, Australia’s mortality data, starting from 1921 appears
to have a smoother trend, without any significant outliers as depicted in Figure 3.

The ability of the HUts model to effectively handle anomalies in French mortality is illustrated in
Figure 4(a), where the model demonstrates a substantial reduction in MSE across various forecast hori-
zons when compared to the HU model. This significant improvement shows the HUts model’s robustness
against data irregularities, making it a reliable choice for forecasting in scenarios with potential outliers.
Additionally, the HUts model showcases lower MSE than both the HUrob and wHU models, further
affirming its superior performance in handling French mortality. Conversely, Australia presents a more
stable dataset with mortality rates following a consistent trend and lacking significant outliers. The MSE
plot for Australia in Figure 4(b) shows less pronounced differences compared to France. While the HUts
model demonstrates superior performance over the HU and HUrob models, affirming its effectiveness
even in more uniform datasets, the wHU model performs better than the HUts model. This suggests that
the wHU model might be more suited for datasets with consistent trends and fewer irregularities. This
comparative analysis highlights the importance of selecting appropriate models based on the charac-
teristics of the dataset, with the HUts model excelling in more variable datasets and the wHU model
in more stable ones. The MSE plots of the remaining countries can be found in Appendix E in the
Supplementary Material.
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Figure 3. Australia (1921–2015); (a) observed log mortality rates; (b) smoothed log mortality rates;
(c) times series for ages.
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Figure 4. MSE plots for (a) French and (b) Australian mortality of the HUts, wHU, HUrob, and HU
models.
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Figure 5. One-step-ahead forecast MSE averaged over years in forecasting period of (a) French and
(b) Australian mortality for the HUts, wHU, HUrob, and HU models.

To gain deeper insights into the model performance, the MSE values are considered across the age
spectrum. Instead of using Equation (3.1), the MSE values are averaged only over the years of the fore-
casting period. This approach will allow us to observe how the models perform at different age groups,
providing a more granular understanding of the forecast accuracy. The MSE across ages are computed
with the following:

MSE(h, xi) = 1

q

q∑
t=1

(yt(xi) − ŷt|t−h(xi))
2.

Upon a closer inspection of the MSE across different age groups of the French mortality data in
Figures 5(a), 6(a), and 7(a), the HUts model generally surpasses every other model in terms of forecast-
ing performance. For one-step-ahead forecasts (Figure 5(a)), the HUts and wHU models show similar
performance in terms of MSE, with both models outperforming the HU and HUrob models substantially.
For five-step-ahead forecasts (Figure 6(a)), the HUts model continues to perform well, maintaining lower
MSE values across most age groups compared to the other models. The HUts model shows improved
performance at middle ages (30–50 years) over the wHU model, while the HU and HUrob models,
although better at these ages, struggle during early and older ages, contributing to their higher overall
error metric. For ten-step-ahead forecasts (Figure 7(a)), the HUts model’s performance remains robust,
achieving lower MSE values across most age groups. However, it still faces competition from the wHU
model, which performs better in certain age ranges. Overall, these observations suggest that while the
HUts model performs exceptionally well, particularly as the forecast horizon increases, the wHU model
also shows strong performance, especially at shorter forecast horizons. The choice between these models
often depends on the specific age group and forecasting horizon, with the HUts model becoming more
favorable as the horizon increases.

Similarly, MSE for the Australian mortality forecasts in Figures 5(b), 6(b), and 7(b) highlight the
competitive nature of the HUts model, particularly at shorter forecast horizons. For one-step-ahead fore-
casts (Figure 5(b)), the HUts model performs comparably to the wHU model, with both showing nearly
identical MSE values. This indicates that the HUts model is effective at short-term forecasting. At the
five-step-ahead horizon (Figure 6(b)), the HUts model continues to perform well but begins to show
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Figure 6. Five-step-ahead forecast MSE averaged over years in forecasting period of (a) French and
(b) Australian mortality for the HUts, wHU, HUrob, and HU models.
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Figure 7. Ten-step-ahead forecast MSE averaged over years in forecasting period of (a) French and (b)
Australian mortality for the HUts, wHU, HUrob, and HU models.

higher MSE values in the 20–40 age range compared to the wHU model. This underperformance in mid-
age groups becomes more evident, reflecting some potential biases that start to emerge at this forecast
horizon. By the ten-step-ahead forecasts (Figure 7(b)), the HUts model, although still competitive, shows
further increased MSE values around ages 20–40 years. This trend highlights the model’s underestima-
tion (see Appendix F of the Supplementary Material) in this specific age group, significantly affecting
the overall error metric. Despite this, the HUts model maintains reasonable performance across other
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Table 2. Empirical coverage probabilities of bootstrapped prediction intervals.

HUts wHU

95% Adjusted 95% 95% Adjusted 95%
Australia 92.70% 94.77% 88.30% 89.22%
Belgium 97.36% 96.09% 91.05% 81.13%
Bulgaria 91.89% 85.44% 82.51% 79.47%
Denmark 92.99% 95.84% 78.06% 91.17%
Finland 97.39% 98.80% 94.68% 98.97%
France 100.00% 100.00% 99.95% 100.00%
Ireland 92.81% 82.62% 73.54% 80.54%
Italy 99.84% 99.94% 99.42% 99.86%
Japan 97.08% 97.39% 95.84% 79.40%
Netherlands 99.61% 99.95% 98.15% 99.94%
Norway 94.30% 97.98% 88.26% 98.15%
USA 96.60% 99.11% 92.39% 85.70%

age groups, yet the wHU model generally achieves better results at these longer horizons, suggesting that
the wHU model might be better suited for datasets with more consistent trends and fewer irregularities.

The findings of French and Australian mortality data present a comparative analysis of the HUts
model’s performance under differing demographic conditions and historical events influencing mortality
data. While the HUts model is able to perform well in stable demographic conditions, its advantages
are particularly noticeable when confronting data with potential outliers, making it a robust tool for
forecasting when compared with the HU model variants.

3.3. Interval forecast
To evaluate the interval forecasts, the empirical coverage probability is calculated using the following
expression (Hyndman and Shang, 2009):

1

qph

q∑
t=1

h∑
j=1

p∑
i=1

1
(
ŷ(α/2)

t+j|t (xi) < yt+j(xi) < ŷ(1−α/2)
t+j|t (xi)

)
,

where 1( · ) is the indicator function and ŷ(α/2)
t+j|t (xi) is the α/2-quantile from the bootstrapped samples. It

quantifies whether the intervals are adequately wide to encompass the actual observations at a specified
nominal coverage of (1 − α)100%. 95% prediction intervals of the HUts model and the wHU model
are constructed for all the 12 countries and tabulated in Table 2. The minimum observations required to
obtain the one-step-ahead forecast errors used for the adjustment, r is set to 30.

The bootstrapping procedure generally performs well in obtaining prediction intervals that are
close to the nominal 95% coverage level. Across various countries and forecasting methods, the unad-
justed 95% prediction intervals yield empirical coverage probabilities that align reasonably well with
the expected nominal level. These results demonstrate that the bootstrap approach reliably captures the
underlying variability in mortality data, ensuring that the prediction intervals accurately achieve the
desired 95% coverage.

However, when applying the Hyndman and Shang (2009) adjustment to these prediction intervals, the
effectiveness of the adjustment varies across different countries and methods. This adjustment aims to
refine the intervals based on one-step-ahead forecast errors, potentially bringing the empirical coverage
probabilities closer to the nominal level. Yet, its impact is not uniformly beneficial and depends on the
specific characteristics of the mortality data and the forecasting models used.
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Figure 8. Bootstrapped (a) 95% (b) adjusted 95% prediction intervals of one-step-ahead forecast for
French mortality (1899–2014) for the HUts model and the wHU model.

In the case of Australia, both the prediction intervals of the HUts and wHU models show improve-
ments in coverage probabilities after the adjustment. For the HUts model, the empirical coverage
increased from 92.70% to 94.77%, moving closer to the nominal 95% level. Similarly, for the wHU
model, the coverage improves from 88.30% to 89.22%. This indicates that the adjustment effectively
enhances the reliability of the prediction intervals in these instances. A similar positive effect is observed
for Denmark with the wHU model, where the coverage probability significantly increases from 78.06%
to 91.17% after adjustment, as well as from 92.99% to 95.84% with the HUts model.

On the other hand, the adjustment does not always lead to better coverage probabilities. For example,
in Belgium using the wHU model, the coverage probability decreases from 91.05% to 81.13% after
adjustment, moving further away from the nominal level. Similarly, in Bulgaria with the HUts model, the
coverage dropped from 91.89% to 85.44% post-adjustment. These instances indicate that the adjustment
may not universally improve the prediction intervals possibly due to the nature of the forecast errors of
the fitted models.

A notable case is France, where the empirical coverage probabilities reaches 100% for both unad-
justed and adjusted intervals with the HUts model. This phenomenon is caused by the prediction intervals
absorbing a significant amount of uncertainty from the forecasts, resulting in wider intervals as seen in
Figure 8. For the unadjusted prediction intervals, the uncertainty arises from bootstrapping the model
errors. Due to the presence of outliers in the French mortality data, these model errors are larger. When
the prediction intervals are adjusted, they incorporate additional variability from the in-sample one-step-
ahead forecast errors. These forecast errors are also inflated by outliers, resulting in even wider intervals.
This further widening makes the predictions more conservative to ensure coverage despite the high vari-
ability in the data. The same effect is observed with the wHU model, where the prediction intervals are
similarly wide which suggests that outliers can impact the bootstrapping approach, potentially reducing
the reliability of the intervals.

In contrast, when examining the prediction intervals for Australia in Figure 9, they are signifi-
cantly narrower than those for France. Australia’s mortality data is more stable, with fewer outliers,
leading to less uncertainty in the forecasts. Consequently, the prediction intervals are narrower. This

https://www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2024.38
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 05 Feb 2025 at 20:20:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2024.38
https://www.cambridge.org/core


ASTIN Bulletin 115

0 20 40 60 80 100

−8
−6

−4
−2

(a)

Age

Lo
g 

de
at

h 
ra

te

0 20 40 60 80 100

−8
−6

−4
−2

(b)

Age

Lo
g 

de
at

h 
ra

te

HUts

wHU

Observed

Figure 9. Bootstrapped (a) 95% (b) adjusted 95% prediction intervals of one-step-ahead forecast for
Australian mortality (1921–2014) for the HUts model and the wHU model.

comparison highlights the point that uncertainty within mortality data leads to wider bootstrapped pre-
diction intervals, as seen in France, while more stable data results in narrower intervals, as observed in
Australia.

4. Discussion
In mortality modeling and forecasting, the HUts model introduces a novel methodology by taking advan-
tage of the universal nonlinearity of signatures and applying signature regression to decompose mortality
curves. Unlike the HU model, which relies on the covariance function and is sensitive to outliers, the
HUts model learns data dependency through signature coefficients using principal component regression
or SVD, effectively reducing the impact of outliers. The principal components obtained thus represent
the structure and interactions within the data.

The HUts model performs competitively and often surpasses other HU model variants in various sce-
narios. Notably, the HUts model achieves these results without the need for weighted methods or robust
statistics, which are employed by the wHU and HUrob models to improve their performance under spe-
cific conditions. This approach of the HUts model delivers robustness and is capable of adapting to
diverse datasets. Whether dealing with irregularities as seen in the French mortality data or handling
more stable demographic trends like those observed in Australia, the HUts model maintains high accu-
racy and reliability, making it a highly viable option for actuaries and demographers seeking dependable
mortality forecasts without the complexity of additional methodological adjustments.

The HUts model also offers the advantage of easy modification to enhance performance, unlike the
HU model’s basis expansion. Therefore, suboptimal results are not indicative of inherent limitations
but rather reflect its modular nature, allowing for greater adaptability. For instance, the embedding
step is not limited to the basepoint, time and lead-lag transformation, Morrill et al. (2021) compiled
various other augmentations that can be incorporated to improve the model and better represent the
geometric characteristics of a path. Besides augmentations, applying the log-signature (Morrill et al.,
2021) or a randomized signature (Cuchiero et al., 2020; Compagnoni et al., 2023) (see Appendix G
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in the Supplementary Material) over the signature can also be considered to reduce the feature vec-
tor dimensions. Morrill et al. (2021) also suggests that the scaling of paths or signatures may offer
improvements.

It is also important to acknowledge the limitations of this study. The prediction intervals constructed
under the HUts model face certain limitations, particularly due to the normality assumptions on error
terms. Normality assumptions, when not justified, can lead to inaccuracies in the predicted intervals,
necessitating the use of bootstrap methods. Bootstrap methods, although useful in addressing non-
normality, come with more computational demand. This computational demand can be a significant
drawback in practical applications where computational efficiency is crucial. In addition, bootstrap
methods are sensitive to outliers which can affect the resampling process, leading to wider prediction
intervals. This is evident in the case of French mortality data, which includes periods of war and dis-
ease outbreaks. These outliers introduce greater variability into the bootstrap samples, resulting in more
conservative and wider intervals. This phenomenon is less pronounced in the mortality data, where the
historical data is more stable and follows a general trend without significant outliers. Steps such as adapt-
ing the robust bootstrap procedure from Beyaztas and Shang (2022) can be taken to reduce the influence
of outliers by assigning weights to model residuals.

In addition, the performance of the HUts model, like any other model, depends on the country’s data
and forecast horizon, with some models performing relatively better in certain settings. This emphasizes
the influence of country-specific mortality dynamics and model sensitivities. As Shang (2012) pointed
out, there is no universal mortality model capable of effectively handling data from all countries. This
makes the HUts model a candidate for model averaging approaches. Model averaging combines the
strengths of various models to improve forecast accuracy by assigning empirical weights to each model
based on their performance at different horizons. Given the HUts model’s demonstrated efficacy, espe-
cially in long-term forecasts, it can be assigned greater weight in model-averaged forecasts to leverage its
strengths (Shang and Booth, 2020; Chang and Shi, 2023). The benefits of model averaging lie in enhanc-
ing forecast accuracy through a strategic combination of models. By integrating the HUts model into
a model averaging framework, it is possible to achieve more reliable and accurate mortality forecasts,
particularly over longer forecast horizons.

Beyond demography, the HUts model extends itself by offering a robust framework to address a
range of challenges in functional data analysis, including functional principal component regression
(FPCR), functional regression with functional responses, and forecasting functional time series. The
flexibility of the HUts model to adapt to various functional data analysis scenarios is primarily due to its
ability to integrate advanced mathematical concepts from functional data analysis, such as smoothing
and handling of high-dimensional datasets. This integration not only enhances the model’s performance
in demographic forecasting but also makes it a powerful tool for broader applications in statistical and
machine learning fields involving complex, structured data.

5. Conclusion
This paper has introduced the incorporation of signatures into the HU model, resulting in the HUts
model. It is able to outperform the HU model variants while exhibiting enhanced robustness, particularly
in the presence of outliers and irregularities in the data. The empirical results from the French and other
mortality datasets provide compelling evidence of the HUts model’s efficacy. In the case of France, with
the presence of notable historical outliers due to wars and disease outbreaks, the HUts model showed
substantial improvement over the HU model variants. This is evident from the lower MSE values across
various forecast horizons. The enhanced performance can be attributed to the model’s ability to miti-
gate the influence of outliers, which are more prevalent in the French data. This robustness is crucial for
accurate mortality forecasting in regions with volatile historical trends. The HUts model’s superior per-
formance across all age groups, particularly at longer forecast horizons, displays the model’s versatility
across diverse demographic conditions. Prediction intervals were constructed with the application of
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bootstrap procedures. The coverage probabilities of the 95% bootstrapped prediction intervals generally
are close to the intended nominal coverage, while the adjustment is able to improve said coverage for
certain cases. The presence of outliers can impact the construction of the intervals, which is particularly
pronounced in the case of French mortality, where the intervals constructed were more conservative
and wide. In contrast, Australian mortality, with fewer outliers, shows smaller coverage deviance with
its bootstrapped prediction interval. From a practical standpoint, these findings have significant impli-
cations for actuaries and policymakers. The improved accuracy and robustness of the HUts model can
lead to more reliable mortality forecasts, which are essential for various applications, including insur-
ance pricing, pension fund management, and public health planning. The model’s ability to handle data
with outliers and provide accurate long-term forecasts makes it a valuable tool for demography.

Future research should focus on refining the HUts model, potentially integrating more advanced
smoothing techniques or exploring alternative statistical methods to enhance its performance further.
Additionally, the model’s application can be extended to multi-population mortality forecasting as sig-
natures are an excellent dimension reduction tool, and incorporating socioeconomic factors as a binary
dimension could provide deeper insights into mortality trends. The following practical extensions can
be readily implemented:

1. Gender-specific HUts model

Male: ft,M(x) = μ(x) +
K∑

k=1

βt,kZk(x) + et(x),

Female: ft,F(x) = μ(x) +
K∑

k=1

βt,kZk(x) + et(x).

This adaptation allows the model to capture and forecast mortality trends separately for differ-
ent genders, taking into account potential differences in mortality patterns, improvements, and
other gender-specific characteristics.

2. Fitting the HUts model with mortality improvement rates, zx,t = 2 × 1− mx,t
mx,t−1

1+ mx,t
mx,t−1

instead of raw mor-
tality rates mx,t (Haberman and Renshaw, 2012). Let the underlying smoothed function of zx,t

be γt(x), then using the HUts we can decompose it into:

γt(x) = μ(x) +
K∑

k=1

βt,kZk(x) + et(x).

Modeling mortality improvement rates helps stabilize the mortality data series by focusing on
changes over time, making it stationary and enhancing the accuracy of forecasts.

3. Coherent mortality forecasting using the product ratio method by Hyndman et al. (2012)
by fitting pt(x) = √

ft,M(x) · ft,F(x) and rt(x) =
√

ft,M (x)

ft,F (x)
using the HUts model and forecasting it

h-steps-ahead. Then the h-steps-ahead forecasts of the gender-specific log mortality rates can
be obtained as follows:

fn+h|n,M(x) = pn+h|n(x) × rn+h|n(x),

fn+h|n,F(x) = pn+h|n(x)

rn+h|n(x)
.

This method ensures that the mortality forecasts for different subpopulations remain within real-
istic and historically observed relationships. Jiménez-Varón et al. (2024), Shang et al. (2022),
Shang and Hyndman (2017) also provide potential directions for extending the HUts model for
subpopulation modeling.
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