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Abstract

Consider a Lamperti–Kiu Markov additive process (J, ξ ) on {+,−} ×R∪ {−∞}, where
J is the modulating Markov chain component. First we study the finiteness of the expo-
nential functional and then consider its moments and tail asymptotics under Cramér’s
condition. In the strong subexponential case we determine the subexponential tails of
the exponential functional under some further assumptions.
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1. Introduction and preliminaries

Let E := {+,−} and suppose (Ft)t≥0 is a filtration. A pair of processes (J, ξ ) taking values
in E ×R∪ {−∞} with lifetime χ is a Lamperti–Kiu Markov additive process (MAP) with
respect to (Ft)t≥0 if, for any continuous bounded function f : E ×R→R+, (z, y) ∈ E ×R and
s, t ≥ 0, we have

Ez,y[f (Jt+s, ξt+s − ξt); t + s<χ |Ft] =EJt,0[f (Js, ξs); s<χ]1{t<χ}, (1.1)

where Pz,y is the law of (J, ξ ) started at (z,y) and Ez,y is the corresponding expectation. For
all t>χ , the process ξ is in the cemetery state −∞, whilst J continues as a Markov chain. A
detailed account of MAPs is given in [2, Chapter XI] whilst a more general definition is given
in [1, Section 3, Definition 1]. Note that (Jt exp (ξt), t ≥ 0) is a càdlàg multiplicative process
taking values in R∗ := R\{0} and so, following [7], we refer to it as a Lamperti–Kiu process.

There is a well-known construction of a Lamperti–Kiu process given in [7, Theorem 6(i)].
Let ξ± be two Lévy processes, let ζ± be two exponentially distributed random variables with
rates q±, and let U± be two random variables taking values in R. Then consider sequences
(ξ±,k)k∈{0,1,2,...}, (ζ±,k)k∈N, and (U±,k)k∈N of independent and identically distributed (i.i.d.)
copies of ξ±, ζ±, and U±, respectively. Under Pσ,x, i.e. assuming (J0, ξ0) = (σ, x), for each
k ∈N let ξ k = ξγ,k, ζ k = ζ γ,k, and Uk = Uγ,k, where γ = σ ( − 1)k. Finally, let χ be an expo-
nentially distributed random variable of rate q ∈ [0,∞) independent of the rest of the system,
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On the finiteness and tails of perpetuities under a Lamperti–Kiu MAP 1087

where q = 0 is interpreted to mean χ = ∞. Then, for t ≥ 0 and x ∈R∗ := R\{0}, set

Yt := xJt exp (ξt), t<χ (1.2)

with

ξt := ξNt
πt

+
Nt−1∑
k=0

(
ξ k
ζ k + Uk) and Jt := σ ( − 1)Nt,

where, for n ∈N,

T0 := 0, Tn :=
n−1∑
k=0

ζ k, Nt := max
m∈N0

{Tm ≤ t} and πt := t − TNt

using the notation N0 := {0, 1, 2 · · · }. Then (Yt, t ≥ 0) is a Lamperti–Kiu process and (J, ξ )
is the corresponding MAP. Conversely, any Lamperti–Kiu process has such a decomposition,
which we will refer to as the Lamperti–Kiu decomposition. We will refer to χ as the lifetime
of the Lamperti–Kiu process.

We study the standard and signed exponential functionals of (Yt, t ≥ 0) defined, respec-
tively, by

A∞ :=
∫ ∞

0
exp (ξt) dt and B∞ :=

∫ ∞

0
Yt dt. (1.3)

Recall that a perpetuity is a security where a stream of cashflows is paid indefinitely, such as
consols issued by the Bank of England. Under the MAP model, we suppose that the cashflows
are paid continuously at a rate ct := exp (ξt + rt) at time t ≥ 0, where r is the rate of interest.
Each element of E corresponds to a market state (for example, its states may refer to a bear or
bull market), where the state at time t ≥ 0 is given by Jt. The value of the perpetuity is given
by A∞.

It was shown in [7] that A∞ is the first hitting time of zero by an associated self-similar
Markov process (ssMp). Indeed, consider the Lamperti–Kiu MAP (J, ξ ) from (1.1), and for
α ∈ (0,∞) define the time transformation

τ (t) := inf

{
u ≥ 0:

∫ u

0
exp (αξs) ds ≥ t

}
.

Then the process X(x)
t := Jτ (t|x|−α)x exp (ξτ (t|x|−α)), for t< |x|α ∫∞

0 exp (αξs) ds and x ∈R∗, is
a self-similar Markov process of index α taking values in R∗ and started at x. That is, X is a
càdlàg Markov process such that, for all c> 0 and x ∈R∗, it satisfies(

cX(x)
c−α t, t ≥ 0

) L= (X(cx)
t , t ≥ 0),

where
L= means equality in law. Moreover, any self-similar Markov process taking values

in R
∗ of index α can be constructed in this way. The first hitting time of zero by X(x) is∫∞

0 exp (αξs) ds, which equals A∞ when α = 1. Many papers are devoted to the study of the
Lamperti transform of self-similar Markov processes. For example see [5], [7], [17], [20],
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and [19]. Other applications of MAPs and their exponential functionals include multi-type
self-similar fragmentation processes and trees; for example see [27].

The focus of this paper is on the finiteness and right tails of A∞ and B∞. The right tails
of a distribution determine which positive moments exist and whether it is a member of the
classes of heavy-tailed, long-tailed, or subexponential distributions. These classes of heavy-
tailed distribution are of particular interest to us because of their applications in finance, risk
theory, and insurance (see e.g. [13], [24], and [25]). Empirical data often shows realised market
returns to be heavy-tailed (see [8] and [14]). This motivates both considering Lamperti–Kiu
processes with Lamperti–Kiu components that are heavy-tailed and studying A∞ as an example
of a heavy-tailed distribution.

For Lévy processes, which are MAPs where E is a singleton set, the theory of the exponen-
tial functional is well developed. Several results on the moments and tails of the exponential
functional, including random affine equations, are collected in the survey [6]. Under Cramér’s
condition, with Cramér number θ , it is shown that the right tails are polynomial with order −θ .
More recently, [23] provided a complete description at the logarithmic level of the asymptotic
of the right tail and, under Cramér’s condition, the derivatives of the density. In the heavy-
tailed case, Cramér’s condition fails and different methods are needed. In this case, the right
tails of A∞ have been studied in, for example, [21], [22], [23], and [26]. The case of a MAP is
studied in [18] where, under a Cramér-type condition with Cramér number θ ∈ (0, 1), moments
of order s ∈ (0, 1 + θ ) are shown to exist and satisfy a recurrence relation. This leads to poly-
nomial tails similar to the Lévy case. The same recurrence relation is shown in [27] for the
case when the additive component is not increasing. Other properties, including the finiteness
and integer moments of the exponential functional of non-increasing MAPs, are also given
in [27].

We will use the law of large numbers and Erickson’s law of large numbers for when the
mean is undefined [10], to give a characterisation of the finiteness of A∞. Then we show
that, for a Lamperti–Kiu MAP, both A∞ and B∞ satisfy a random affine equation. Under a
Cramér-type condition, we show that the conditions of the implicit renewal theorems of [12]
and [16] hold, and hence we are able to determine the right tails of A∞ and B∞. In the heavy-
tailed cases, when Cramér’s condition does not hold, a different approach to studying the tails
of A∞ is required. We define a Lamperti–Kiu process to be of strong subexponential type
when YT2 is long-tailed and one of the Lamperti–Kiu components, ξ (±)

1 or U(±), is strong
subexponential and has right tails that asymptotically dominate the right tails of the other
Lamperti–Kiu components. By careful consideration of an embedded Markov chain, we are
able to overcome the lack of independent increments of ξ and provide a generalisation of the
subexponential results of [21] to Lamperti–Kiu processes of strong subexponential type. This
provides an asymptotic expansion of the right tails of A∞ to show that A∞ is long-tailed and
log (A∞) is subexponential.

This paper is organised as follows. In Section 2 we give necessary and sufficient conditions
for the standard and signed exponential functionals A∞ and B∞, respectively, to be finite. In
Section 3 we look at the random affine equation approach to studying the moments and tails
of A∞ and B∞ under Cramér’s condition and the assumption that YT2 does not have a lattice
distribution. In Section 4 we study the tails of A∞ when the Lamperti–Kiu process is of strong
subexponential type.
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2. Finiteness of A∞ and B∞
Let us keep the mathematical setting of the Introduction, where (Yt, t ≥ 0) is the Lamperti–

Kiu process defined in (1.2) associated with the Lamperti–Kiu MAP (J, ξ ) given, for a fixed
t ≥ 0, by ξt := log |Yt| and Jt := sgn (Yt).

If possible, define K ∈R∪ {−∞,+∞} by

K := E[ξT2 ]

E[T2]
= q−

q+ + q− (E[ξ+
1 ] + q+

E[U+]) + q+

q+ + q− (E[ξ−
1 ] + q−

E[U−]),

where we allow K to take the values +∞ and −∞ but if both E[ max (ξT2, 0)] = ∞ and
E[ max ( − ξ−

T2
, 0)] = ∞ we say that K is undefined.

A Lamperti–Kiu process Y will be called degenerate if Y is such that lim supt→∞ |ξt|<∞.
This can be shown to be equivalent to the case when either Y has a finite lifetime or ξ±

t ≡ 0 for
all t ≥ 0 and U+ = −U− is deterministic, hence

Y(x)
t =

{
x if T2k ≤ t< T2k+1 for some k ∈N0,

x exp (Usgn (x)) if T2k+1 ≤ t< T2k+2 for some k ∈N0,

for all t ≥ 0 and x ∈R∗.
When K is defined and Y has an infinite lifetime from [2, Proposition 2.10] and [2, Corollary

2.8], it is known that almost surely limt→∞ t−1ξt = K. Also, if K = 0 and Y is non-degenerate,
then limt→∞ t−1ξt = 0, lim inft→∞ ξt = −∞, and lim supt→∞ ξt = ∞, almost surely.

In the case when K is undefined, we will use Erickson’s theorem [10, Theorem 2], which
provides a strong law of large numbers for a random walk with an undefined mean. The
following lemma provides an analogous result to Erickson’s theorem for MAPs.

First we define

m−(x) :=
∫ 0

−x
P(ξT2 ≤ y) dy, m+(x) :=

∫ x

0
P(ξT2 > y) dy

and

I+ :=
∫ ∞

0

x

m−(x)
P(ξT2 ∈ dx), I− :=

∫ 0

−∞
|x|

m+(|x|)P(ξT2 ∈ dx).

Then the long-term behaviour of (ξt, t ≥ 0) is described by the following lemma.

Lemma 2.1. Suppose that K is undefined. Then at least one of I+ and I− equals infinity, and
almost surely we have:

(i) lim supt→∞ t−1ξt = ∞ if and only if I+ = ∞,

(ii) limt→∞ t−1ξt = ∞ if and only if I+ = ∞ and I− <∞,

(iii) lim inft→∞ t−1ξt = −∞ if and only if I− = ∞,

(iv) limt→∞ t−1ξt = −∞ if and only if I+ <∞ and I− = ∞.

Proof. Consider the sequence {ξT2n}n∈N as the random walk

ξT2n =
n∑

k=1

(ξT2k − ξT2k−2 ),
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and notice that ξT2n − ξT2(n−1)

L= ξT2 has an undefined mean, for each n ∈N. Then Erickson’s
theorem for random walks with undefined mean [10, Theorem 2], and the remark that follows
it, states that either I+ = ∞ or I− = ∞ or both hold, proving the first statement of the lemma.
Furthermore, the following statements hold:

(1) lim supn→∞ n−1ξT2n = ∞ a.s. if and only if I+ = ∞,

(2) limn→∞ n−1ξT2n = ∞ a.s. if and only if I+ = ∞ and I− <∞,

(3) lim infn→∞ n−1ξT2n = −∞ a.s. if and only if I− = ∞,

(4) limn→∞ n−1ξT2n = −∞ a.s. if and only if I+ <∞ and I− = ∞,

and similar statements hold for {T2n+1}n∈N.
Since E[T2]<∞, it is immediate that if lim supn→∞ n−1ξT2n = ∞ a.s., then

lim supt→∞ t−1ξt = ∞ a.s. If lim infn→∞ n−1ξT2n = −∞ a.s., then lim inft→∞ t−1ξt = −∞
a.s., hence the ‘if’ direction of statements (i) and (iii) holds. To prove the ‘only if’ direction of
(i) and (iii), we must first prove (ii) and (iv).

Consider (iv) and notice that the ‘only if’ direction is an immediate consequence of state-
ment (4) above. Now suppose I+ <∞ and I− = ∞. Then lim supn→∞ n−1ξT2n = −∞ a.s.
and lim supn→∞ n−1ξT2n+1 = −∞ a.s., hence lim supn→∞ n−1ξTn = −∞ a.s. also. Suppose
for a contradiction there exists an R> 0 such that lim supt→∞ t−1ξt >−R>−∞ a.s. Since
limn→∞ n−1Tn = 1

2E[T2] a.s. and lim supn→∞ n−1ξTn = −∞ a.s., there exists some N ∈N

such that for all n>N we have Tn > 1 and

ξTn

Tn
<−2R a.s.

Define a sequence (τn)n∈N of times and (xn)n∈N of values such that, for each n ∈N, we have

τn = sup

{
t ∈ [Tn, Tn+1) : ξt = sup

s∈[Tn,Tn+1)
ξs

}

and

xn = sup{ξt : t ∈ [Tn, Tn+1)}.
Since lim supt→∞ t−1ξt >−R a.s., there is an increasing sequence of times (sn)n∈N such that
s−1

n ξsn >−R a.s. for each n ∈N and limn→∞ sn = ∞. Then we may take a subsequence (s′
n)n∈N

such that there is at most one element of the sequence (s′
n)n∈N in each interval [Tm, Tm+1] and

Js′
n

is constant.
Let (τkn)n∈N be a subsequence of (τn∈N) such that kn >N and s′

n ∈ [Tkn, Tkn+1] for each
n ∈N. Then, for each n ∈N, we have

xkn ≥ ξs′
n
>−Rs′

n ≥ −RTkn+1,

whilst ξTkn+1 <−2RTkn+1 and Tkn+1 > 1, therefore

xkn − ξTkn+1 > RTkn+1 > R

almost surely. However, for each n ∈N, by the Lamperti–Kiu decomposition,

{ξTkn+t − ξTkn
: t< Tkn+1 − Tkn}
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is a Lévy process, so, by splitting at the last time of the maximum [4, Chapter VI, Theorem 5],
xkn − ξTkn+1 is independent of xkn and has the same distribution as x0 − ξT1 , hence its distribu-
tion does not depend on R. This contradicts the fact that it only has support on (R,∞). Hence
I+ <∞ and K undefined imply that limt→∞ t−1ξt = −∞ a.s. and so the ‘if’ direction of (iv)
holds. By applying similar arguments to −ξt, statement (iii) of the lemma also holds.

To prove the ‘only if’ direction of (i), suppose I+ <∞. Since K is undefined, by [10,
Theorem 2] and the remark that follows it, we have I− = ∞. Then, by statement (iv), we have
limt→∞ t−1ξt = −∞ a.s. Hence lim supt→∞ t−1ξt = ∞ a.s. only if I+ = ∞. The argument for
(iii) is analogous. �

The following theorem shows that in the infinite lifetime case, the convergence and finite-
ness of A∞ and B∞ are fully characterised by K when this is defined and by the finiteness of
I+ otherwise.

Theorem 2.1. Suppose Y has an infinite lifetime. Then A∞ converges a.s. if and only if B∞
converges a.s. Moreover, A∞ and B∞ converge almost surely if and only if either K is defined
and K < 0 or K is undefined and I+ <∞.

Before proving Theorem 2.1, we prove the following preliminary lemma.

Lemma 2.2. If lim supn→∞ ξT2n = ∞ a.s., then both A∞ and B∞ diverge a.s.

Proof. If lim supn→∞ ξT2n = ∞ a.s., then there exists a strictly increasing sequence
{τn}n∈N ⊂N such that exp (ξT2τn

) ≥ 1 a.s. for all n ∈N. First, by considering A∞ and using
the Markov property for the second inequality, we have

A∞ ≥
∞∑

n=0

exp
(
ξT2τn

) ∫ T2τn+2

T2τn

exp
(
ξt − ξT2τn

)
dt ≥

∞∑
n=0

∫ T(n)
2

0
exp

(
ξ

(n)
t
)

dt.

Since the terms of this series form an i.i.d. sequence with strictly positive values, the series
must diverge.

Similarly, B∞ converges a.s. only if the sum
∑∞

n=0

∫ T2n+2
T2n

Jt exp (ξt) dt converges a.s., which
implies the a.s. convergence to zero of the subsequence

∣∣∣∣
∫ T2τn+2

T2τn

Jt exp (ξt) dt

∣∣∣∣= exp (ξT2τn
)

∣∣∣∣
∫ T2τn+2

T2τn

Jt exp (ξt − ξT2τn
) dt

∣∣∣∣
≥
∣∣∣∣
∫ T2τn+2

T2τn

Jt exp (ξt − ξT2τn
) dt

∣∣∣∣.
Then, by using the Markov property, B∞ converges a.s. only if

∣∣∣∣
∫ T(n)

2

0
J(n)

t exp (ξ (n)
t ) dt

∣∣∣∣→ 0 a.s.

as n → ∞. This convergence is impossible since we are dealing with an i.i.d. sequence that
does not converge to zero in distribution. �

https://doi.org/10.1017/jpr.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.24


1092 L. ALILI AND D. WOODFORD

Proof of Theorem 2.1. We will consider the cases when K is defined and undefined
separately.

1. Suppose that K is defined and K < 0. Then recall that limt→∞ t−1ξt = K a.s. as t → ∞. If
−∞<K < 0 let k = 1

2 K and if K = −∞ let k = −1. Then a.s. there exists a finite T ≥ 0 such

that ξt < kt< 0 for all t> T. Thus A∞ ≤ ∫ T
0 exp (ξt) dt + k−1 ekT <∞ a.s., and by absolute

convergence it is then immediate that B∞ also converges a.s.
Next we consider the case when either K > 0 or both K = 0 and Y is non-degenerate. Then,

by [15, Proposition 9.14], lim supn→∞ ξT2n = ∞ a.s., so the result follows from Lemma 2.2. If
K = 0 and Y is degenerate, then, since Y has an infinite lifetime, we have

ξt =
{

0 if T2k ≤ t< T2k+1 for k ∈N0,

UJ0 if T2k+1 ≤ t< T2k+2 for k ∈N0.

Thus, for all t ≥ 0, we have

eξt ≥ min (1, exp (UJ0)) := V > 0,

so A∞ = ∞ a.s. Also, B∞ can be written as the sum

B∞ =
∞∑

n=0

(∫ T2n+1

T2n

Jt eξt dt +
∫ T2n+2

T2n+1

Jt eξt dt

)
= J0

∞∑
n=0

(
ζ 2n − exp

(
UJ0

)
ζ 2n+1),

and since ζ 2n − exp (UJ0 )ζ 2n+1 does not converge to zero in distribution, B∞ must a.s. diverge.

2. Suppose that K is undefined. From [10, Theorem 2] we know that if I+ = ∞ then
lim supn→∞ ξT2n = ∞ a.s. Hence, by using Lemma 2.2, both A∞ and B∞ diverge a.s.

If I+ <∞, then since K is undefined, as a consequence of [10, Theorem 2], I− = ∞ and so
by Lemma 2.1 we have lim supt→∞ t−1ξt = −∞ a.s. Then, by the argument of case 1 above,
both A∞ and B∞ converge a.s. as desired. �

3. Moments and tail asymptotics of A∞ and B∞
Throughout this section we assume the Lamperti–Kiu process has an infinite lifetime. For

z ∈C suppose the characteristic exponents ψ±(z) := log (E[ exp (zξ±
1 )]) and Laplace trans-

forms G±(z) := E[ exp (zU±)] exist and are finite. Then the matrix exponent of Y is defined
to be

F(z) :=
(
ψ+(z) 0

0 ψ−(z)

)
+
(

−q+ q+G+(z)

q−G−(z) −q−

)
,

and from [2, XI.2b] it is known that, for l, j ∈ {+,−} and z ∈C,

E[ezξt ; Jt = j | J0 = l] = (
etF(z))

l,j. (3.1)

Then let λ(z) denote the eigenvalue of F(z) with largest real part. Using Perron–Frobenius
theory, it is shown in [18, Proposition 3.2] that such an eigenvalue is guaranteed to be simple,
real, and continuous as a function of z. From [18, Proposition 3.4] we also know that λ(z)
is convex when considered as a map λ : R→R. Provided F exists in a neighbourhood of
zero, from [2, Corollary 2.9] it is known that K = λ′(0) ∈ [ − ∞,∞], where the derivative is
considered on this restriction.
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It can be shown that the integrals A∞ and B∞ are the solutions of random affine equations.
We will assume q+, q− > 0 so that T2 <∞ and note that T2 is independent of Y0. Then, for
any T ∈ [0,∞], define the random variables

AT := q
∫ T

0
eξt dt and BT := q

∫ T

0
Jt eξt dt,

and notice that A∞ = limT→∞ AT and B∞ = limT→∞ BT . Similarly, due to the result in [5,
Section 4.3], by the Markov additive property

B∞ = BT2 + YT2 B̂∞,

where B̂∞ is an independent copy of B∞.
Notice that YT2 has the same sign as Y0 and that |YT2 | is independent of J0 because of its

symmetry in the components of the decomposition of Y. Similarly

A∞ = AT2 + YT2 Â∞,

where Â∞ is an independent but identically distributed copy of A∞ and is independent of YT2

and AT2 .
The following results are generalisations of [5, Corollary 5] to Lamperti–Kiu processes

using the implicit renewal theorems given in [12, Theorem 4.1] and [16, Theorem 5]. In the
case of a Lévy process, it has been shown in [23] that the coefficient cA of the proposition
below can be found explicitly by evaluating a Bernstein-gamma function.

Proposition 3.1. Suppose Y is an infinite lifetime Lamperti–Kiu process with K < 0 and there
is a κ > 0 such that F(κ) exists, λ(κ) = 0 and

E[|YT2 |κ log+ |YT2 |]<∞. (3.2)

If YT2 does not have a lattice distribution, then there exist constants cA, c+
B , c−

B ∈R such that

cA := lim
t→∞ tκP(A∞> t), c+

B := lim
t→∞ tκP(B∞ > t) and c−

B := lim
t→∞ tκP(B∞ <−t),

and therefore A∞, B∞ have moments of order s ∈C+ := {x ∈C : �(x) ≥ 0} if and only if
0 ≤ �(s)< κ .

Proof. Since the proposition assumes (3.2), the result is an immediate consequence of [12,
Theorem 2.3] and [16, Section 4, Theorem 5] provided that

E[ log |YT2 |]< 0, (3.3)

E[|YT2 |κ ] = 1, (3.4)

0<E[|AT2 |κ ]<∞, (3.5)

0<E[|BT2 |κ ]<∞. (3.6)

We now prove that under the conditions of the proposition each of these equations holds.
To show (3.3), we expand log |YT2 | to get

E[ log |YT2 |] = 1

q+E[ξ+
1 ] + 1

q−E[ξ−
1 ] +E[U+] +E[U−] =

(
1

q+
+ 1

q−

)
K,

and since q−1+ + q−1− > 0, (3.3) follows from the assumption K < 0.
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Since det (F(z)) = (ψ+(z) − q+)(ψ−(z) − q−) − q+q−G+(z)G−(z) and by the assumption
that 0 is an eigenvalue of F(κ), we have

1 =
(

q+G+(κ)

ψ+(κ) − q+

)(
q−G−(κ)

ψ−(κ) − q−

)
. (3.7)

Let μ(z) be the other eigenvalue of F(z). Then, for all real z ∈ (0, κ), by assumption, μ(z)<
λ(z)< 0 and so 0<μ(z)λ(z) = det (F(z)). Rearranging this gives (ψ+(z) − q+)(ψ−(z) − q−)>
0, so ψ±(z) − q± has no roots in (0, κ). Since ψ±(0) − q± < 0, by continuity,ψ±(z) − q± < 0
for all z ∈ (0, κ). By independence and using (3.7), we get

E[|YT2 |κ ] =E[ exp (ψ+(κ)ζ+)]G+(κ)E[ exp (ψ−(κ)ζ−)]G−(κ) = 1,

and hence (3.4) holds.
Using independence and the inequality (a + b)x ≤ 2x(ax + bx) for a, b, x> 0, we get

2−κ
E[|AT2 |κ ] ≤E

[(∫ ζ 1

0
exp (ξ1

s ) ds

)κ]
+E

[
exp

(
κ
(
ξ1
ζ 1 + U1))]

E

[(∫ ζ 2

0
exp (ξ2

s ) ds

)κ]
.

From [5] it is known that

E

[(∫ ζ±

0
exp (ξ±

s ) ds

)x]
<∞

for all x ∈ (0,∞) such that ψ±(x) − q± < 0. This follows from the fact that
∫ ζ±

0 exp (ξ±
s ) ds

is the exponential functional of the Lévy process ξ (±) sent to the cemetery state −∞ at an
independent, exponentially distributed time of rate q±. Then, since we have already seen that
ψ±(κ) − q± < 0, it follows that

E

[(∫ ζ±

0
exp (ξ±

s ) ds

)κ]
<∞.

By the assumption that F(κ) exists, we have E[ exp (κU±)]<∞, whilst E[ exp (κξ±
ζ±)]<∞

follows easily from E[ exp (κξ±
t )] = exp (tψ±(κ)) for t ≥ 0. Hence E[|BT2 |κ ] ≤E[|AT2|κ ]<∞

and so equations (3.5) and (3.6) hold. �
Remark 3.1. In the case when G± are continuous, (3.2) is automatic. Indeed, by continuity,
we can pick ε > 0 such that ψ±(κ + ε) − q± < 0 and G±(κ + ε)<∞. Then, from the proof
of (3.4), we obtain

E[|YT2 |κ+ε] =
(

q+G+(κ + ε)

q+ −ψ+(κ + ε)

)(
q−G−(κ + ε)

q− −ψ−(κ + ε)

)
<∞.

Since log (x)+ < xε for all x ≥ R, for some sufficiently large R> 0 we have

E[|YT2 |κ log Y+
T2

] =E[|YT2 |κ log Y+
T2

; |YT2 | ≤ R] +E[|YT2 |κ log Y+
T2

; |YT2 |> R]

≤ Rκ+ε +E[|YT2 |κ+ε]
<∞.

Hence (3.2) holds.
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4. Subexponential tails of A∞
When the conditions of Proposition 3.1 do not hold, a different approach to the investigation

of the tails and moments of A∞ is required. In Proposition 3.1 it is assumed that F(κ) exists,
which requires that positive exponential moments of ξ must exist. This is a condition that does
not necessarily hold in general, and in particular, when ξT2 is heavy-tailed.

In this section we will define Lamperti–Kiu processes of strong subexponential type and
study the right tails of the exponential functional of such processes. The main result of this
section is Theorem 4.1, which shows, under some conditions, that the exponential functional,
A∞, is itself long-tailed and log (A∞) is subexponential.

First we will prove two preliminary lemmas in Section 4.1. In Section 4.2 a framework is
presented for bounding log (A∞) by considering a piecewise linear bound for {ξt : t ≥ 0} with
a.s. finitely many discontinuities. Finally, in Section 4.3, we define Lamperti–Kiu processes of
strong subexponential type and use the framework from Section 4.2, in conjunction with the
subexponential properties, to obtain the right tails of A∞. Interestingly, the resulting tails are
of a very different nature to those considered under Cramér’s condition.

4.1. Preliminary results

We will need the following lemma, which bounds the probability distribution of the supre-
mum of a Lévy process over an exponentially distributed interval of time in terms of the
distribution of the Lévy process at the end of the interval. It is a variation of [28, Lemma
1], where the time interval considered was fixed.

Lemma 4.1. Let X be a Lévy process, let τ be an independent exponentially distributed random
variable, and suppose 0< u0 < u. Then

P

(
sup

0≤s<τ
Xs > u

)
≤ P(Xτ ≥ u − u0)

P(Xτ ≥ −u0)
. (4.1)

Proof. Let Su := inf{t ≥ 0: Xt > u}. Then, since XSu ≥ u, by independence of increments of
X and the memoryless property of τ , we have

P(Su < τ ; Xτ < u − u0) ≤ P(Su < τ ; Xτ − XSu <−u0)

= P(Su < τ ; X̃τ̃ <−u0)

= P(Su < τ ) P(Xτ <−u0),

where X̃ and τ̃ are independent and identically distributed copies of X and τ , respectively. Then
(4.1) can be obtained by rearranging the inequality

P(Su< τ ) ≤ P(Xτ ≥ u − u0) + P(Su < τ ; Xτ < u − u0)

≤ P(Xτ ≥ u − u0) + P(Su < τ ) P(Xτ <−u0). �

We now consider long-tailed distributions. Let Q : R+ → [0, 1] be a probability distribution
and Q̄(x) := 1 − Q(x) for all x ∈R

+. Then Q is a long-tailed distribution if Q(x + y)/Q(x) →
1 as x → ∞, for any y ∈R+. For any two functions f , g : R+ →R+, we will write f ∼ g if
limx→∞ f (x)/g(x) = 1 and say that f and g are asymptotically equivalent.
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For a random variable X, we define the functions

GX(x) :=
∫ ∞

x
P(X> u) du and HX(x) := min (1,GX(x))

and refer to HX as the integrated tail of X.
In the next lemma we show that the integrated tail of a long-tailed random variable is asymp-

totically equivalent to an infinite series. This will be used in Lemma 4.6 to show the asymptotic
equivalence of the integrated tail GX and an infinite series that we will construct.

Lemma 4.2. Suppose K + ε < 0 and that X is a long-tailed random variable, which is
independent of (T2n)n∈N. Then the integrated tail of X has the asymptotics

∫ ∞

x
P(X> u) du ∼E[T2]|K + ε|

∞∑
n=0

P(X> x − (K + ε)T2n). (4.2)

Proof. By splitting the interval (0,∞) into a disjoint union, we can write

GX(x) =
∞∑

n=0

∫ −T2(n+1)(K+ε)

−T2n(K+ε)
P(X> u1 + x) du1.

Then, by using the change of variables u = −(K + ε)−1u1, we get

GX(x) =
∞∑

n=0

∫ T2(n+1)

T2n

P(X>−(K + ε)u + x) |K + ε| du.

By independence of {T2n}n∈N and X, we can shift the domain of integration to obtain

GX(x) =
∞∑

n=0

∫ T2(n+1)−T2n

0
P(X> x − (K + ε)(u + T2n) | T2n) |K + ε| du.

Taking expectations and noting that the left-hand side is not random, that T2(n+1) − T2n
L= T2,

and that T2(n+1) − T2n is independent of T2n gives

GX(x) = |K + ε|
∞∑

n=0

E

[∫ T̃2

0
P(X> x − (K + ε)(u + T2n) | T2n) du

]
,

where T̃2 is an independent and identically distributed copy of T2. This can be written in the
integral form

GX(x) = |K + ε|
∞∑

n=0

∫ ∞

0
P(T̃2 ∈ ds)

∫ s

0

∫ ∞

0
P(T2n ∈ dv) P(X> x − (K + ε)(u + v)) du.

(4.3)

Let δ > 0; then, since X is long-tailed, for all s> 0 there exists R(s)> 0 such that, whenever
z> R(s) and y ∈ [0,−s(K + ε)],

(1 − δ) ≤ P(X> z + y)

P(X> z)
≤ (1 + δ),
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and since −v(K + ε) ≥ 0 for v ≥ 0, we have for all x> R(s) and u ∈ [0, s]

(1 − δ) ≤ P(X> x − (K + ε)(v + u))

P(X> x − (K + ε)v)
≤ (1 + δ).

To show the lower bound we use this inequality within the last two integrals of (4.3) to obtain,
for x> R(s), ∫ s

0

∫ ∞

0
P(T2n ∈ dv) P(X> x − (K + ε)(u + v)) du

≥
∫ s

0

∫ ∞

0
P(T2n ∈ dv)(1 − δ) P(X> x − (K + ε)v) du.

Then, evaluating the integrals and noticing that the integrand is constant with respect to u gives,
for x> R(s),∫ s

0

∫ ∞

0
P(T2n ∈ dv) P(X> x − (K + ε)(u + v)) du ≥ s(1 − δ) P(X> x − (K + ε)T2n).

Now consider some l> 0 and suppose x> R(l), so that x> R(s) for any s ∈ [0, l]. Then∫ ∞

0
P(T2 ∈ ds)

∫ s

0

∫ ∞

0
P(T2n ∈ dv) P(X> x − (K + ε)(u + v)) du

≥
∫ l

0
P(T2 ∈ ds)s(1 − δ) P(X> x − (K + ε)T2n)

= (1 − δ) P(X> x − (K + ε)T2n) E[T2; T2 < l].

Since l> 0 and δ > 0 are arbitrary and T2 is integrable, we can take l sufficiently large to obtain
E[T2; T2 < l] ≥ (1 − δ) E[T2] and thus∫ ∞

0
P(T2 ∈ ds)

∫ s

0

∫ ∞

0
P(T2n ∈ dv) P(X> x − (K + ε)(u + v)) du

≥ (1 − δ)2
P(X> x − (K + ε)T2n)E[T2].

If this is substituted into the expression for GX for x> R(l), we have

GX(x) ≥ (1 − δ)2|K + ε|E[T2]
∞∑

n=0

P(X> x − (K + ε)T2n).

For the upper bound, since −(K + ε)u> 0 for u> 0,

E

[∫ T̃2

0
P(X> x − (K + ε)(u + T2n) | σ (T2n)) du

]
≤E[T̃2] P(X> x − (K + ε)T2n),

which, substituted into the expression for GX , gives, for all x> 0,

GX(x) ≤E[T2]|K + ε|
∞∑

n=0

P(X> x − (K + ε)T2n).

Combining the upper and lower bounds gives (4.2). �
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4.2. Framework for an upper bound of log (A∞)

We now develop a framework for bounding log (A∞) whenever E[ξT2 ] ∈ ( − ∞, 0). This
will be used in the strong subexponential setting of Section 4.3 to obtain the right tails of A∞.
This framework consists of constructing a series of stopping times between which ξ is bounded
from above. By studying the properties of these stopping times and the behaviour of ξ at those
times, we can begin to understand log (A∞).

For ε ∈ (0,−K) and sufficiently large A ∈R, define a sequence of stopping times by σ0 := 0
and

σn := inf{t>σn−1 : ξt − ξσn−1 ≥ (K + ε)(t − σn−1) + A},
for each n ∈N, with the convention inf (∅) = ∞, and setting σn = ∞ if σn−1 = ∞. Then also
define

N := max{n ∈N0 | σn <∞} and ρn := P(σn <∞ | σn−1 <∞).

The next lemma concerns the finiteness of N.

Lemma 4.3. If E[ξT2 ]< 0, then there exists an A∗ > 0 such that, for all A> A∗, N is a.s. finite.

Proof. Define a new MAP {(Jt, ξ̃t) : t ≥ 0} by setting ξ̃t := ξt − (K + ε)t. For each n ∈N,

1 − ρn = P

(
sup

t>σn−1

ξ̃t − ξ̃σn−1 < A | σn−1 <∞
)
,

then, since σn−1 is a stopping time, using the Markov additive property and summing over the
events {Jσn−1 = j} for j ∈ {+,−},

1 − ρn =
∑

j∈{+,−}
Pj

(
sup
t≥0

ξ̃t < A

)
P(Jσn−1 = j).

By the strong law of large numbers,

lim
t→∞ t−1ξ̃t = lim

t→∞ t−1(ξt − (K + ε)t) = K − (K + ε) = −ε < 0 a.s.

and hence there a.s. exists T > 0 such that if t> T then ξ̃t < 0. From this we can conclude that
supt≥0 ξ̃t = max (0, supt∈[0,T] ξ̃t)<∞, since the supremum of a càdlàg process over a compact
interval is bounded.

This implies that there exists an A∗ > 0 such that for all A> A∗ we have P( supt≥0 ξ̃t > A)<
1. From this, we conclude N <∞ a.s., since

P(N > n) =
n∏

k=1

P(σk <∞ | σk−1 <∞) ≤ max
j∈{+,−} Pj

(
sup
t≥0

ξ̃t < A

)n

. (4.4)

�
Since there are conditions for N to be finite, we can bound log (A∞) by using the stopping

times {σn}n∈N to split the process {ξt : t ≥ 0} into a finite number of bounded sections.
Define the constant

C := log

(
eA

|K + ε|
)
,

and by taking A> A∗ sufficiently large we can ensure eC > 2. Then we have the following
upper bound for log (A∞).
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Lemma 4.4. If E[ξT2 ]< 0, then

log A∞ ≤ (N + 1)C +
N∑

n=1

(ξσn − ξσn−1 )+,

where ( · )+ denotes the positive part.

Proof. Following the approach of [21, Lemma 4.1], A∞ may be expanded as

A∞ =
∫ σ1

0
eξt dt + eξσ1

(∫ σ2

σ1

eξt−ξσ1 dt + eξσ2−ξσ1

(∫ σ3

σ2

eξt−ξσ2 dt + · · ·

· · · + eξσN −ξσN−1

(∫ σN+1

σN

eξt−ξσN dt

)))
,

noting that σN+1 = ∞. By the definition of σn, we have∫ σn+1

σn

eξt−ξσn dt ≤
∫ σn+1

σn

exp ((K + ε)(t − σn) + A) dt ≤ eC,

which, when substituted into the expression for A∞, gives

A∞ ≤ eC + eξσ1 (eC + eξσ2−ξσ1 (eC + · · · + eξσN −ξσN−1 (eC))). (4.5)

Then, by considering the logarithms of both sides of (4.5) and repeatedly using the property
log (A + B) ≤ log (A) + log (B) whenever A, B> 2,

log (A∞) ≤ (N + 1)C +
N∑

n=1

(ξσn − ξσn−1 )+,

where we have made use of the fact that e(ξσn−ξσn−1 )+ ≥ 1 and eC > 2 in order to use the log
inequality. �

As a consequence of this lemma, the right tails of log (A∞) can be studied by considering the
evolution of the MAP between the stopping times {σn}n∈N. First we consider the J component.

Let (Kn)n∈N0 be the sequence of random variables, taking values in {+,−,∞}, such that
for each n ∈N, if σn <∞ then Kn = Jσn , otherwise Kn = ∞. For each α, β ∈ {+,−} we will
be interested in the number of times that {Kn}n∈N transitions from α to β. For this purpose,
define the random variable N(α, β) := ∑∞

k=1 1{Kk−1=α,Kk=β}. We also make use of the notation
f = o(g) for any two functions f , g : R+ →R+ such that limx→∞ f (x)/g(x) = 0.

Proposition 4.1. Suppose E[ξT2 ] ∈ ( − ∞, 0). Then the sequence (Kn)n∈N0 is a discrete-time
homogeneous Markov chain, with ∞ as an absorbing state. Moreover, if η is the stochastic
matrix of {Kn}n∈N and α, β, γ ∈ {+,−} with α �= β, then

ηα,γ → 0, Eα[N(α, γ )] ∼ ηα,γ and Eβ [N(α, γ )] = o(ηα,γ )

as A → ∞.

Proof. First we show that {Kn}n∈N is a Markov chain. If Kn−1 �= ∞, then by the Markov
additive property, since σn−1 is a stopping time, {ξσn−1+t − ξσn−1 | t ≥ 0} is independent of
Fσn−1 given Kn−1. Moreover, the random variable

�σn := σn − σn−1 = inf{t ≥ 0: ξt+σn−1 − ξσn−1 ≥ t(K + ε) + A}
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is a function of {ξt+σn−1 − ξσn−1 : t ≥ 0}. Thus the event {Kn = ∞} = {�σn = ∞} is indepen-
dent of Fσn−1 given Kn−1, and has the same law as the event {K1 = ∞} given K0.

Moreover, if �σn <∞ then Kn = Jσn = Jσn−1+�σn , hence Kn is a function of

{(ξσn−1+t − ξσn−1, Jσn−1+t) : t ≥ 0},
and so by the Markov additive property is independent of Fσn−1 given Kn−1 and has the same
distribution as K1 given K0. Hence the sequence (Kn)n∈N is a time homogeneous Markov chain.
By definition of σn, ∞ is clearly an absorbing state for (Kn)n∈N.

Now we consider the limiting behaviour of η as A → ∞. Let α, γ ∈ {+,−}. From the proof
of Lemma 4.3 we know that supt≥0 ξ̃t <∞ a.s., where ξ̃t := ξt − (K + ε)t. Thus

lim
A→∞ P

(
sup
t≥0

{ξt − (K + ε)t}> A

)
= lim

A→∞ P

(
sup
t≥0

ξ̃t > A

)
= 0.

However,

ηα,+ + ηα,− = Pα(σ1 <∞) = Pα

(
sup
t≥0

{ξt − (K + ε)t}> A

)

and, since ηα,γ is non-negative, this implies limA→∞ ηα,γ = 0.
Further assume that γ ∈ {+,−} and α �= β. Then it is easily seen that

Eθ [N(α, γ )] =
∞∑

n=1

Pθ (Kn = γ | Kn−1 = α) Pθ (Kn−1 = α) = ηα,γ (1{θ=α} + φσ (α)),

where φθ (α) := ∑∞
n=1 Pθ (Kn = α). Since ∞ is an absorbing state of the Markov chain (Kn)n∈N

and α �= β, for each n ∈N,

Pθ (Kn = α) = Pθ (Kn = α | Kn−1 = α) Pθ (Kn−1 = α)

+ Pθ (Kn = α | Kn−1 = β) Pθ (Kn−1 = β)

= ηα,αPθ (Kn−1 = α) + ηβ,αPθ (Kn−1 = β),

then summing up over n ∈N we have

φθ (α) = ηα,α(1{θ=α} + φθ (α)) + ηβ,α(1{θ=β} + φθ (β)),

and by symmetry

φθ (β) = ηβ,β(1{θ=β} + φθ (β)) + ηα,β (1{θ=α} + φθ (α)).

Solving this system gives

φθ (α) = 1{θ=α}(ηα,α(1 − ηβ,β ) + ηβ,αηα,β ) + 1{θ=β}ηβ,α
(1 − ηα,α)(1 − ηβ,β ) − ηβ,αηα,β

,

and thus

Eθ [N(α, γ )] = ηα,γ (1{θ=α}(1 − ηβ,β ) + 1{θ=β}ηβ,α)

(1 − ηα,α)(1 − ηβ,β ) − ηβ,αηα,β
,
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from which the two asymptotic results for Eθ [N(α, γ )] are a consequence of the limiting
behaviour of η. �

In the next lemma we consider the evolution of ξ between the stopping times {σn}n∈N,
conditioned on the values of {Kn}n∈N.

Lemma 4.5. Suppose that E[ξT2 ] ∈ ( − ∞, 0) and m, n ∈N with m< n. Then, conditionally on
Km−1, Km, Kn−1, and Kn, the increments ξσm − ξσm−1 and ξσn − ξσn−1 are independent. If α, β ∈
{+,−}, then conditional on the event {Kn−1 = Km−1 = α; Kn = Km = β}, the increments ξσm −
ξσm−1 and ξσn − ξσn−1 are equal in distribution and independent. Furthermore, for any l ∈N

such that m �= l and any bounded continuous function f : R→R+, we have

E[f (ξσm − ξσm−1 ) | σ (Km−1,Km,Kl−1,Kl)] =E[f (ξσm − ξσm−1 ) | σ (Km−1,Km)].

Proof. First suppose that m< l. Then we have

E[f (ξσm − ξσm−1 ) | σ (Km−1,Km,Kl−1,Kl)]

=
∑

γ,δ∈{+,−}
1{Kl−1=γ,Kl=δ}

E[f (ξσm − ξσm−1 ); Kl−1 = γ,Kl = δ | σ (Km−1,Km)]

P(Kl−1 = γ,Kl = δ | σ (Km−1,Km))
.

It follows that, by using the tower property and the fact that (Kk)k∈N is a Markov chain, we
have

E[f (ξσm − ξσm−1 ); Kl−1 = γ,Kl = δ | σ (Km−1,Km)]

=E[f (ξσm − ξσm−1 ) E[1{Kl−1=γ,Kl=δ} |Fσm] | σ (Km−1,Km)]

=E[f (ξσm − ξσm−1 ) E[1{Kl−1=γ,Kl=δ} | σ (Km)] | σ (Km−1,Km)]

= P(Kl−1 = γ,Kl = δ | σ (Km−1,Km))E[f (ξσm − ξσm−1 ) | σ (Km−1,Km)],

which, when substituted into the previous equation, gives

E[f (ξσm − ξσm−1 ) | σ (Km−1,Km,Kl−1,Kl)]

=
∑

γ,δ∈{+,−}
1{Kl−1=γ,Kl=δ} E[f (ξσm − ξσm−1 ) | σ (Km−1,Km)]

=E[f (ξσm − ξσm−1 ) | σ (Km−1,Km)].

Now suppose m> l, and through a direct application of the Markov additive property we
have

E[f (ξσm − ξσm−1 ) | σ (Kl−1,Kl,Km−1,Km)]

=
∑

α∈{+,−}
1{Km=α}

E[f (ξσm − ξσm−1 ); Km = α | σ (Kl−1,Kl,Km−1)]

P(Km = α | σ (Kl−1,Kl,Km−1))

=
∑

α∈{+,−}
1{Km=α}

E[f (ξσm − ξσm−1 ); Km = α | σ (Km−1)]

P(Km = α | σ (Km−1))

=E[f (ξσm − ξσm−1 ) | σ (Km−1,Km)].

https://doi.org/10.1017/jpr.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.24


1102 L. ALILI AND D. WOODFORD

To see the independence of increments, suppose that f , g : R→R+ are bounded continuous
functions, and then

E[f (ξσn − ξσn−1 )g(ξσm − ξσm−1 ) | σ (Km−1,Km,Kn−1,Kn)]

=
∑

α∈{+,−}
1{Kn=α}

E[f (ξσn − ξσn−1 )g(ξσm − ξσm−1 ); Kn = α | σ (Km−1,Km,Kn−1)]

P(Kn = α | σ (Km−1,Km,Kn−1))
.

Then, by the tower property, we get

E[f (ξσn − ξσn−1 )g(ξσm − ξσm−1 ); Kn = α | σ (Km−1,Km,Kn−1)]

=E[g(ξσm − ξσm−1 )E[f (ξσn − ξσn−1 ); Kn = α |Fσn−1 ] | σ (Km−1,Km,Kn−1)]

=E[g(ξσm − ξσm−1 )E[f (ξσn − ξσn−1 ); Kn = α | σ (Kσn−1 )] | σ (Km−1,Km,Kn−1)]

=E[f (ξσn − ξσn−1 ); Kn = α | σ (Kσn−1 )]E[g(ξσm − ξσm−1 ) | σ (Km−1,Km)].

Plugging this into the previous equation yields

E[f (ξσn − ξσn−1 )g(ξσm − ξσm−1 ) | σ (Km−1,Km,Kn−1,Kn)]

=
∑

α∈{+,−}
1{Kn=α}

E[f (ξσn − ξσn−1 ); Kn = α | σ (Kσn−1)]

P(Kn = α | σ (Km−1,Km,Kn−1))

×E[g(ξσm − ξσm−1 ) | σ (Km−1,Km)]

=E[g(ξσm − ξσm−1 ) | ×σ (Km−1,Km)]

×
∑

α∈{+,−}
1{Kn=α}

E[f (ξσn − ξσn−1 ); Kn = α | σ (Kσn−1 )]

P(Kn = α | σ (Kn−1))

=E[g(ξσm − ξσm−1 ) | σ (Km−1,Km)] E[f (ξσn − ξσn−1 ) | σ (Kσn−1,Kσn)]. �

4.3. Lamperti–Kiu processes of strong subexponential type

Strong subexponential distributions are a widely studied class of heavy-tailed distributions,
because of their mathematical tractability and their appearance in empirical data. We will use
[11] as a reference to the background theory of subexponential distributions, within which
further discussion of the use of these distributions can be found.

For a probability distribution Q : R+ → [0, 1], define Q̄(x) := q1 − Q(x) for all x ∈R+.
Then, if Q ∗ Q(x)/Q(x) → 2 as x → ∞, we say that Q is a subexponential distribution. It can be
shown (see e.g. [11]) that all subexponential distributions are also long-tailed. The distribution
Q is a strong subexponential distribution if it also satisfies the property that

lim
x→∞

1

Q̄(x)

∫ x

0
Q̄(x − y) Q̄(y) dy = 2m,

where m =E[X+] and X is a random variable with distribution Q. We will refer to a ran-
dom variable with a (strong) subexponential distribution as a (strong) subexponential random
variable.

Let S denote the set of real-valued subexponential random variables and let S∗ denote the
subset of S comprising strong subexponential random variables.
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For a random variable X, recall the definitions

GX(x) :=
∫ ∞

x
P(X> u) du and HX(x) := min (1,GX(x)).

If HX is a subexponential distribution then we write X ∈ SI , and from [11, Theorem 3.27]
we have S∗ ⊂ SI .

For ease of notation, we also define the integrated tails H(x) := HξT2
(x) and, for each α ∈

{+,−}, define
Hξα := H

ξ
(α)
ζα

and H(α) := Hξα + HU−α .

Let us introduce a subset of components of the Lamperti–Kiu decomposition given by L :=
{ξ (+)
ζ+ , ξ

(−)
ζ− ,U+,U−}.

For any functions f , g : R+ →R+, we write f = O(g) if lim supx→∞ f (x)/g(x) ∈R.

Definition 4.1. We will say that a Lamperti–Kiu process is of strong subexponential type if
ξT2 is long-tailed and there exists X ∈ L such that X ∈ S∗ and for all W ∈ L \ {X} we have
P(W > x) = O(P(X> x)).

If a Lamperti–Kiu process is of this type, there is a heaviest-tailed component of the
Lamperti–Kiu decomposition and it is strong subexponential. Denote this component by X ∈ L.
Let B ⊆ {+,−} be the set of all β ∈ {+,−} such that

lim sup
x→∞

HX(x)−1H(β)(x) �= 0.

Then, for any b ∈ B and β ∈ {+,−} \ B, we have H(β)(x) = o(H(b)(x)) as x → ∞.
By the closure properties of S∗ [11, Corollary 3.16], it follows that ξT2 is also strong

subexponential with tails and integrated tails, respectively, given, as x → ∞, by

P(ξT2 > x) ∼
∑

β∈{+,−}

(
P
(
ξ

(β)
ζβ
> x

)+ P(Uβ > x)
)

and

H(x) ∼
∑

β∈{+,−}
H(β)(x) ∼

∑
β∈B

H(β)(x).

Recall from Section 2 that K := E[ξT2 ]/E[T2], and hence, when E[ξT2 ] �= 0, it follows that
K �= 0. The main result of this section, which extends [21, Section 4, p. 166] to Lamperti–Kiu
processes, is the following result.

Theorem 4.1. Suppose that Y is a Lamperti–Kiu process of strong subexponential type such
that E[ξT2 ] ∈ ( − ∞, 0). Then

P(A∞ > x) ∼ H( log (x))

E[T2]|K| , as x → ∞. (4.6)

Furthermore, A∞ is long-tailed and log (A∞) is subexponential.

The proof of Theorem 4.1 requires a number of intermediary lemmas. These lemmas are
stated with proofs below, followed by the proof of Theorem 4.1 at the end of this section.
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Set Zn := ξσn − ξσn−1 for each n ≥ 1. We are now in a position to consider the asymptotic
behaviour of the survival function of Zn conditioned on Kn−1 and Kn, under the assumptions
of Theorem 4.1. Recall that for α ∈ {+,−}, H(α) = Hξα (x) + HU−α (x).

Lemma 4.6. Suppose that Y is a Lamperti–Kiu process of strong subexponential type such that
E[ξT2 ] ∈ ( − ∞, 0), and fix α, β ∈ {+,−}. Then, if β ∈ B, for each n ∈N,

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

H(β)(x)
≤ 1

η(α,β)|K + ε|E[T2]
.

Furthermore, if β ∈ {+,−} \ B and b ∈ B, then, for each n ∈N,

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

H(b)(x)
= 0.

Proof. Suppose that x> A, let u0 ∈ (0, x − A), and fix α, β ∈ {+,−}. For ease of notation,
let σ := σ1. Then, since

P(Zn > x | Kn−1 = α,Kn = β) = Pα(ξσ > x | σ <∞, Jσ = β),

we have

P(Zn > x | Kn−1 = α,Kn = β) = 1

η(α,β)

∞∑
m=0

Pα(ξσ > x; Tm ≤ σ < Tm+1; Jσ = β).

To bound the elements of the sum, first consider the strict inequality Tm <σ < Tm+1 for some
m ∈N; then

Pα(ξσ > x; Tm <σ < Tm+1; Jσ = β) ≤ Pα

(
sup

Tm<u<Tm+1

ξu > x; ξTm < (K + ε)Tm + A; JTm = β

)
,

and using the Lamperti–Kiu decomposition followed by Lemma 4.1, we have

Pα(ξσ > x; Tm <σ < Tm+1; Jσ = β) ≤ Pα

(
sup

0<u<ζ̃β

ξ̃ (β)
u > x − (K + ε)Tm − A; JTm = β

)

≤
Pα

(
ξ̃

(β)
ζ̃β

≥ x − (K + ε)Tm − A − u0; JTm = β
)

P
(
ξ

(β)
ζβ

≥ −u0
)

where ξ̃ (β) and ζ̃β are independent copies of the Lévy process ξ (β) and the exponential random
variable ζβ , respectively.

In the case when σ = Tm,

Pα(ξσ > x; Tm = σ ; Jσ = β) ≤ Pα(ξTm > x; ξTm− ≤ (K + ε)Tm + A; JTm = β)

≤ Pα(ξTm − ξTm− > x − (K + ε)Tm − A; JTm = β)

= Pα(U(−β) > x − (K + ε)Tm − A; JTm = β).
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If α = β then there must be an even number of changes of J before σ , so there exists m ∈N

such that σ ∈ [T2m, T2m+1). Hence combining the two results above gives

P(Zn > x | Kn−1 = α,Kn = β) ≤ 1

η(α,β)

( ∞∑
m=0

Pα

(
ξ̃

(β)
ζ̃β

≥ x − (K + ε)T2m − A − u0
)

P
(
ξ

(β)
ζβ
>−u0

)
+

∞∑
m=0

Pα(U(−β) ≥ x − (K + ε)T2m − A − u0)

)
.

If α �= β then there is an odd number of changes in J before time σ . However, T2m+1 ≥ T2m,
so the inequalities can be weakened to give the same result as the α = β case.

For ease of notation define

Qβ (u0) := P
(
ξ

(β)
ζβ

≥ −u0
)≤ 1.

If ξ (β)
ζβ

is long-tailed, we can use Lemma 4.2 to obtain the asymptotic approximation

∞∑
m=0

Pα

(
ξ̃

(β)
ζ̃β

≥ x − (K + ε)T2m − A − u0
)∼ Gξβ (x)

|K + ε|E[T2]
,

as x → ∞. Similarly, if U(−β) is long-tailed we have

∞∑
m=0

Pα(U(−β) > x − (K + ε)T2m − A − u0) ∼ GU(−β) (x)

|K + ε|E[T2]
,

as x → ∞. We will consider separately the cases where both of the asymptotics hold, exactly
one holds, or neither hold.

In the case when both ξ (β)
ζβ

and U(−β) are subexponential (and hence are long-tailed) for all
δ > 0, there exists an R> 0 such that, for all x> R,

P(Z(α,β) > x)

Gξβ (x) + GU(−β) (x)
≤ 1

(Gξβ (x) + GU(−β) (x))η(α,β)

×
(

(1 + δ)Gξβ (x)

Qβ (u0)|K + ε|E[T2]
+ (1 + δ)GU(−β) (x)

|K + ε|E[T2]

)

≤ (1 + δ)

η(α,β)Qβ (u0)|K + ε|E[T2]
,

where the second inequality holds since Qβ (u0)< 1. Since δ was arbitrary, taking the lim sup
as x → ∞ yields

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

Gξβ (x) + GU(−β) (x)
≤ 1

η(α,β)Qβ (u0)|K + ε|E[T2]
.

In the case when exactly one of ξ (β)
ζβ

and U−β is subexponential, it asymptotically dominates

the other as x → ∞, since Y is of strong subexponential type. Suppose that it is ξ (β)
ζβ

that is
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subexponential and note that the following argument is symmetric in ξ (β)
ζβ

and U(−β). For all

δ > 0, there exists δ̂ > 0 such that δ̂(1 + δ̂)< δ/2, and an R> 0 such that for all x> R and
n ∈N,

Pα(U(−β) > x − (K + ε)T2n − A − u0) ≤ δ̂Pα
(
ξ̃

(β)
ζ̃β

≥ x − (K + ε)T2n − A − u0
)
.

Thus, for all x> R, for suitably large R,

∞∑
m=0

Pα(U(−β) > x − (K + ε)T2m − A − u0) ≤ δ̂(1 + δ̂)Gξβ (x)

|K + ε|E[T2]
,

which gives for x> R

P(Zn > x | Kn−1 = α,Kn = β)

Gξβ (x) + GU(−β) (x)
≤ 1

η(α,β)Gξβ (x)

(
(1 + δ/2)Gξβ (x)

|K + ε|E[T2]Qβ (u0)
+ (δ/2)Gξβ

|K + ε|E[T2]

)

≤ 1 + δ

η(α,β)|K + ε|E[T2]Qβ (u0)
.

Therefore, since δ > 0 was arbitrary, we may take the lim sup first as δ→ 0 and then as x → ∞
to obtain

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

Gξβ (x) + GU(−β) (x)
≤ 1

η(α,β)|K + ε|E[T2]Qβ(u0)
.

Finally, we consider the case when neither is subexponential. Since Y is of strong subexpo-
nential type, the tails of ξ̃ (β)

ζ̃β
and U(−β) are dominated by the tails of at least one of either ξ̃ (b)

ζ̃b

or U(−b). Denote the dominating random variable by X and let W ∈ {ξ̃ (β)
ζ̃β
,U(−β)

}
. Following

the above calculation, for all δ > 0 there exists an R> 0 such that for any x> R and n ∈N,

Pα(W ≥ x − (K + ε)T2n − A − u0) ≤ δPα(X > x − (K + ε)T2n − A − u0).

Then, by using the results of the previous two cases, for suitably large R> 0 we have

∞∑
n=0

Pα(W ≥ x − (K + ε)T2n − A − u0) ≤ δ(1 + δ)GX(x)

|K + ε|E[T2]Hb(u0)
.

Hence, for x> R,

P(Zn > x | Kn−1 = α,Kn = β)

Gξ−b(x) + GU(b) (x)
≤ 2δ(1 + δ)

η(α,β)|K + ε|E[T2]Qb(u0)

so, as x → ∞, since δ > 0 was arbitrary,

P
(
Z(α,β) > x

)= o(Gξb(x) + GU(−b) (x)).

Since all the components of the Lamperti–Kiu decomposition are finite, for sufficently large
x we have G(·)(x) = H(·)(x). Hence, in the first two cases, we obtain

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

Hξβ (x) + HU(−β) (x)
≤ 1

η(α,β)Q(u0)|K + ε|E[T2]
.
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As we are taking the limit x → ∞, we may also take u0 → ∞ and use the fact that Q(u0) → 1
to obtain

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

Hξβ (x) + HU(−β) (x)
≤ 1

η(α,β)|K + ε|E[T2]
,

whilst in the third case

lim sup
x→∞

P(Zn > x | Kn−1 = α,Kn = β)

Hξ−β (x) + HU(β) (x)
= 0.

This completes the proof. �

The following lemma provides a way to use a bound on a random variables distribution
function to produce an inequality between random variables.

Lemma 4.7. Suppose Z is a real-valued random variable with tail P(Z ≥ x) that is bounded
above by some function F(x) such that 1 − F(x) is a true distribution function. Then there
exists a random variable X, which is a function of Z and an independent uniformly distributed
random variable, such that Z ≤ X and P(X ≥ x) = F(x).

Proof. Let P(x) := P(Z ≥ x) and V ∼ Unif(0, 1) be independent of Z. We will use the nota-
tion P(x+) := limy↓x P(y), which exists for all x ≥ 0 since P is non-increasing and bounded
from below. Define the random function U : R+ → [0, 1] by setting U(x) := P(x) − V(P(x) −
P(x+)). Let x1 < x2; then since P is non-increasing, P(x+) ≤ U(x) ≤ P(x) for all x ∈R and

U(x2) ≤ P(x2) ≤ P(x+
1 ) = P(x1) − 1(P(x1) − P(x+

1 )) ≤ U(x1),

hence U is also non-increasing.
Furthermore, suppose U(x1) = U(x2) for some x1 < x2. Then P(x+

1 ) ≤ U(x1) = U(x2) ≤
P(x2) ≤ P(x+

1 ), where the last inequality is because P is non-increasing and so P(x+
1 ) = P(x2).

If P(x+
1 ) = P(x1), then we have P(x2) = P(x1). Otherwise we have

U(x1)> P(x+
1 ) ≥ P(x2)>U(x2).

This is a contradiction. Hence, if x1 < x2 and U(x1) = U(x2), then P(x+
1 ) = P(x1) = P(x2) a.s.,

so P(x1 ≤ Z < x2) = 0.
From this we can now conclude that, for all x ∈R, we have

P(U(z) ≤ U(x)) = P(Z ≥ x) + P(Z < x; U(Z) = U(x))

= P(x) + P(Z < x; U(Z) = U(x)).

However, by the above calculation, we get

P(Z < x; U(Z) = U(x)) ≤ P(Z < x; P(Z) = P(x)) = 0

and hence, for all x ∈R, we have P(U(z) ≤ U(x)) = P(x).
Now let q ∈ [0, 1] and suppose that there exists x ∈R+ with P(x+) = P(x) = q, so

P(U(Z) ≤ q) = P(U(Z) ≤ P(x))

= P(U(Z) ≤ U(x)) = q.
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If there is not such an x, then, since limx→−∞ P(x) = 1 and limx→∞ P(x) = 0, there
exists x ∈R+ such that q ∈ [P(x+), P(x)). For any y> x, we have U(y) ≤ P(y) ≤ P(x+), so
U(y) /∈ (P(x+), P(x)) and similarly, for any y< x, we have U(y) ≥ U(y+) ≥ P(x), so U(y) /∈
(P(x+), P(x)). Hence U(Z) ∈ (q, P(x)) ⊂ (P(x+), P(x)) implies Z = x.

Next we want to consider P(P(x) = U(Z); Z �= x). Notice that if z> x then U(z) ≤ P(x+)<
P(x) and so P(P(x) = U(z); Z > x) = 0. If z< x and P(x) = U(z), then P(x) = U(z) ≥ P(z+) ≥
P(x) and so P(x) = P(z+). However, if there is a discontinuity point y ∈ [z, x), then U(z) ≥
P(z+) ≥ P(y)> P(y+) ≥ P(x) so P(P(x) = U(z); Z < x) = 0, and we conclude that P(z) =
P(z+) = P(x) and hence P(P(x) = U(Z); Z �= x) = 0.

From this and since V is uniformly distributed on [0,1], we have

P(U(Z) ∈ (q, P(x)]) = P(Z = x) P(U(x) ∈ (q, P(x)]) + P(Z �= x; U(Z) = P(x))

= P(Z = x) P

(
q − P(x+)

P(x) − P(x+)
< V ≤ P(x) − P(x+)

P(x) − P(x+)

)
+ 0

= (P(x) − P(x+))
q − P(x+)

P(x) − P(x+)
,

and hence

P(U(Z) ≤ q) = P(U(Z) ≤ P(x)) − P(U(Z) ∈ (q,P(x)])

= P(x) − (P(x) − P(x+))
(P(x) − q)

P(x) − P(x+)
= q.

Hence U(Z) is uniformly distributed on [0,1]. Using [9, Proposition 3.1], the random variable
defined by X := U−(Z) := inf{x ∈R+ | F(x)<U(Z)} has the distribution F. Moreover, since
F(x) ≥ P(x) for all x ∈R+, we have

F(Z) ≥ P(Z) ≥ P(Z) − V(P(Z) − P(Z+)) = U(Z)

and, since F is non-increasing, we have X = inf{x ∈R+ | F(x)<U(Z)} ≥ Z, as required. �

We are now able to derive the upper bound of Theorem 4.1.

Lemma 4.8. If Y is a Lamperti–Kiu process of strong subexponential type, then the right tail
of A∞ satisfies

lim sup
x→∞

P( log (A∞)> x)

H(x)
≤ 1

|K|E[T2]
, (4.7)

where H is the integrated tail from Theorem 4.1.

Proof. Fix σ ∈ {+,−} and let δ2 > 0. For sufficiently large A> 0, by Proposition 4.1, we
know Eσ [N(α, β)]/η(α,β) ≤ 1{σ=α} + δ2. Now fix such an A> 0 and let δ1 > 0.

From Lemma 4.4 we have log (A∞) ≤ (N + 1)C +∑N
i=1 Z+

i .
For each i ∈N, we have a tail estimate for Z+

i , given (Kn)n∈N0, from Lemma 4.6, which,
used in conjunction with Lemma 4.7, gives the existence of random variables Xi(k) for each
k ∈ ∪n∈N{+,−}n with k0 = σ such that:

(1) each Xi(k) is a function of Zi and a random variable independent of the rest of the system,

(2) Xi(k) ≥ (Z+
i + C)1{N=n; (K0,...,Kn)=k},

(3) Xi(k) has tails given by min (1,H(ki)(x)(η(ki−1,ki)|K + ε|E[T2]|)−1) if ki ∈ B and tails
which are o( min (1,H(b)(x))) for b ∈ B if ki /∈ B.

https://doi.org/10.1017/jpr.2021.24 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.24


On the finiteness and tails of perpetuities under a Lamperti–Kiu MAP 1109

Then, summing up over the sample paths of (Kn)n∈N0 , we have the upper bound

Pσ

( N∑
i=1

Z+
i + C> x

)
≤
∑
n∈N

∑
k∈{+,−}n+1

k0=σ

Pσ

( n∑
i=1

Xi(k)> x; N = n; (K0, . . . ,Kn) = k

)
.

For ease of notation, let η̄= maxα,β∈{+,−} ηα,β , η= minα,β∈{+,−} ηα,β , and d ∈ (0, (1 −
2η̄)/2η̄).

For each α, β ∈ {+,−}, n ∈N and k ∈ {+,−}n+1 such that k0 = σ , let

nα,β(k) :=
n∑

i=0

1{ki−1=α,ki=β}.

Then, by Lemma 4.5, given the event {N = n; (K0, . . . ,Kn) = k}, the sum

Yα,β (k) :=
n∑

i=1

Xi1{ki−1=α,ki=β}

is a sum of nα,β(k) i.i.d. random variables, and hence, in the case β ∈ B, from Kesten’s bound
[11, Theorem 3.34],

Pσ

( n∑
i=1

Xi(k)1{ki−1=α,ki=β} > x | N = n; (K0, . . . ,Kn) = k

)

≤ c(d)(1 + d)nα,β (k)
Pσ (X1((α, β))> x)

≤ c(d)(1 + d)nF(x)

η|K + ε|E[T2]
.

In the case β /∈ B, since Y is of strong subexponential type, for any b ∈ B,

Pσ

( n∑
i=1

Xi(k)1{ki−1=α,ki=β} > x | N = n; (K0, . . . ,Kn) = k

)

≤ Pσ

( n∑
i=1

Wi1{ki−1=α,ki=β} > x | N = n; (K0, . . . ,Kn) = k

)

≤ c(d)(1 + d)nH(x)

η|K + ε|E[T2]
,

where for each i ∈N the random variable Wi depends only on Xi(k) and has the distribution of
X1((α, b)). We can now use Corollaries 3.16 and 3.18 in [11, Chapter 3, p. 52] to sum the Yα,β
and obtain the bound

Pσ

( n∑
i=1

Xi(k)> x | N = n; (K0, . . . ,Kn) = k

)

= Pσ

( ∑
α,β∈{+,−}

n∑
i=1

Xi(k)1{ki−1=α,ki=β} > x | N = n; (K0, . . . ,Kn) = k

)

≤ 4c(d)(1 + d)nH(x)

η|K + ε|E[T2]
.
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Using the bound on the distribution of N from (4.4), we see that there is an M ∈N such that
E[η−14c(d)(1 + d)N; N >M] ≤ δ1 for sufficiently small d. This then gives

Pσ

( N∑
i=1

Xi((Kn)n∈N)> x; N >M

)
≤ δ1H(x)

|K + ε|E[T2]
.

Moreover, by [11, Corollary 3.16], for all n ≤ M and k ∈ {+,−}n+1 with k0 = σ there exists
Rn,k > 0 such that, for all x> Rn,k,

Pσ

( n∑
i=1

Xi(k)> x | N = n; (K0, . . . ,Kn) = k

)

≤
((

1 + δ1

2

) ∑
α∈{+,−}

∑
β∈B

nα,β (k)
Hβ (x)

η(α,β)|K + ε|E[T2]

)
∗̄Pσ

( n∑
i=1

1{ki /∈B}Xi(k)> x

)
(x),

where for two survival functions F̄ and Ḡ we write F̄∗̄Ḡ for the survival function of the
convolution of the distribution functions F := 1 − F̄ and G := 1 − Ḡ. Then, since

Pσ (1{ki /∈B}Xi(k))> x) = o(Hβ(x)) for any β ∈ B,

by [11, Corollary 3.18] we have

Pσ

( n∑
i=1

Xi(k)> x | N = n; (K0, . . . ,Kn) = k

)

≤ (1 + δ1)
∑

α∈{+,−}

∑
β∈B

nα,β(k)
Hβ (x)

η(α,β)|K + ε|E[T2]
.

Since there are finitely many such pairs (n,k) with n ≤ M, we can take R := maxn≤M Rn,k

so that for all x> R we get

M∑
n=1

∑
k∈{+,−}n+1

k0=σ

Pσ

( n∑
i=1

Xi(k)> x; N = n; (K0, . . . ,Kn) = k

)

≤ (1 + δ1)
M∑

n=1

∑
k∈{+,−}n+1

k0=σ

∑
α∈{+,−}

∑
β∈B

nα,β(k)
H(β)(x)

η(α,β)|K + ε|E[T2]

× Pσ (N = n; (K0, . . . ,Kn) = k)

= (1 + δ1)
∑

α∈{+,−}

∑
β∈B

Eσ [nα,β(k); N ≤ M]
H(β)(x)

η(α,β)|K + ε|E[T2]

≤ (1 + δ1)

|K + ε|E[T2]

∑
α∈{+,−}

∑
β∈B

Eσ [nα,β(k)]H(β)(x)

η(α,β) .
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Next, by our choice of A we have Eσ [n(α, β)]/η(α,β) ≤ 1σ=α + δ2 and thus

M∑
n=1

∑
k∈{+,−}n+1

K0=σ

Pσ

( n∑
i=1

Xi(k)> x; N = n; (K0, . . . ,Kn) = k

)

≤ (1 + δ1)

|K + ε|E[T2]

∑
α∈{+,−}

∑
β∈B

(1{σ=α} + δ2)H(β)(x)

= (1 + δ1)

|K + ε|E[T2]
(1 + 2δ2)

∑
β∈B

H(β)(x)

≤ (1 + δ1)2

|K + ε|E[T2]
(1 + 2δ2)H(x),

where the last inequality holds for sufficiently large x since Y is of strong subexponential type.
Hence, for all x> R, we have

Pσ

( N∑
i=1

(Z+
i + C)> x

)
≤ (1 + δ1)2(1 + 2δ2)

|K + ε|E[T2]
F(x) + δ1H(x)

|K + ε|E[T2]
,

and so from the definition of lim sup,

lim sup
x→∞

Pσ (C +∑N
i=1 (Z+

i + C)> x)

H(x − C)
≤ 1 + 2δ2

|K + ε|E[T2]
.

However, because H is long-tailed, limx→∞ H(x − C)/H(x) = 1 and therefore

lim sup
x→∞

Pσ (C +∑N
i=1 (Z+

i + C)> x)

H(x)
≤ 1 + 2δ2

|K + ε|E[T2]
.

Then, by comparison,

lim sup
x→∞

Pσ ( log (A∞)> x)

H(x)
≤ 1 + 2δ2

|K + ε|E[T2]
,

and since both ε and δ2 were arbitrary, the result follows. �

It remains to show that the lower bound for lim infx→∞ P(A∞ > x) also holds. To this end,
for each x ∈R, define the stopping time

τd(x) := inf{T2n | n ∈N, ξT2n ≥ x}
and notice that τd(x)<∞ if and only if supn∈N ξT2n ≥ x. Furthermore, Jτd(x) = J0 whenever
τd(x)<∞. Since ξT2 is strong subexponential, its integrated tail, H, is subexponential and
thus, by [29, Theorem 1(ii)], P(τd(x)<∞) is also subexponential. Then, by considering the
random walk (ξT2n )n∈N in the place of (ξn)n∈N in the proof of [21, Lemma 4.3], we find that for
every y> 0

lim
x→∞ P(ξτd(x) − x> y | τd(x)<∞) = 1. (4.8)
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We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. Equation (4.6) of Theorem 4.1 follows from inequality (4.7) of
Lemma 4.8 and the inequality

lim inf
x→∞

P( log (A∞)> x)

H(x)
≥ 1

|E[ξT2 ]| = 1

E[T2]|K| ,

which we will now prove.
The following inequality is immediate:

P( log A∞ > x) ≥ P

(
log

(∫ ∞

τd(x)
|Yt| dt

)
> x; τd(x)<∞

)
.

Applying the Markov additive property and recalling Jτd(x) = J0 gives

P( log A∞ > x) ≥ P(ξτd(x) + log (Â∞,J0 )> x | τd(x)<∞) P(τd(x)<∞),

where Â∞,j is an independent and identically distributed copy of A∞ with Ĵ0 = j. Then, by
applying (4.8), we have

lim inf
x→∞

P( log A∞ > x)

H(x)
≥ lim inf

x→∞
P(τd(x)<∞)

H(x)
= lim inf

x→∞
P( supn∈N ξ (T2n) ≥ x)

H(x)
.

However, ξT2n is a sum of the random variables ξT2m − ξT2(m−1) , which are i.i.d. copies of ξT2 .
Since Y is of strong subexponential type, the integrated tail, H, of ξT2 is long-tailed, and we
can apply Veraverbeke’s theorem [29, Theorem 1(i)] to conclude that

lim inf
x→∞

P( supn∈N ξ (T2n) ≥ x)

H(x)
≥ 1

|E[ξT2 ]| = 1

|K|E[T2]
. �

Remark 4.1. The results of this paper are presented only for settings where |E| = 2. However,
they can easily be extended to the case of any finite E provided the modulating Markov chain
J is irreducible. In the proofs, extensive use is made of the fact that JT2n = J0 for all n ∈ N. To
extend this to the case |E|> 2, we replace {T2n}n∈N with the sequence of return times to J0 of
J, which have finite expectation. In the case |E| = ∞, two further difficulties arise, which may
prevent an extension of the results. Firstly, even if J is a recurrent Markov chain, it may be
the case that the expected return time of J is infinite. Secondly, arguments that rely on taking
maxima or sums over the elements of E are no longer valid. The reader may also be interested
by the work in [3], where a necessary and sufficient condition for finiteness of

∫∞
0 eξs dηs

is given, where (ξ, η) is a bivariate Markov additive process with some modulating Markov
chain J.
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