@ CrossMark

J. Appl. Prob. 58, 1086-1113 (2021)
doi:10.1017/jpr.2021.24

ON THE FINITENESS AND TAILS OF PERPETUITIES UNDER A
LAMPERTI-KIU MAP

LARBIALILL," ™" AND
* kkk
DAVID WOODFORD, University of Warwick

Abstract

Consider a Lamperti—Kiu Markov additive process (/, &) on {4, —} x RU {—o0}, where
J is the modulating Markov chain component. First we study the finiteness of the expo-
nential functional and then consider its moments and tail asymptotics under Cramér’s
condition. In the strong subexponential case we determine the subexponential tails of
the exponential functional under some further assumptions.
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1. Introduction and preliminaries

Let E:= {4, —} and suppose (F;):>0 is a filtration. A pair of processes (/, &) taking values
in E x RU {—o0} with lifetime x is a Lamperti—-Kiu Markov additive process (MAP) with
respect to (F;);>o if, for any continuous bounded functionf: £ x R — R*, (z,y) €E x R and
s, t >0, we have

EZ,)’[f(J[-‘rSa s — &)t +s< x | Fl ZEJ,,O[f(JSa &) < X]]l{l<)(}7 (1.D)

where P, is the law of (J, §) started at (z,y) and E_ , is the corresponding expectation. For
all > y, the process & is in the cemetery state —oo, whilst J continues as a Markov chain. A
detailed account of MAPs is given in [2, Chapter XI] whilst a more general definition is given
in [1, Section 3, Definition 1]. Note that (J; exp (&), t > 0) is a cadlag multiplicative process
taking values in R* := R\ {0} and so, following [7], we refer to it as a Lamperti—Kiu process.
There is a well-known construction of a Lamperti—Kiu process given in [7, Theorem 6(i)].
Let £* be two Lévy processes, let ¢* be two exponentially distributed random variables with
rates ¢+, and let UT be two random variables taking values in R. Then consider sequences
EFNcr0.1.2...1 €T )ken, and (UF Ky of independent and identically distributed (i.i.d.)
copies of éi, ;i, and UF, respectively. Under Py ,, i.e. assuming (Jo, &) = (o, x), for each
keNlet ek =gk ¢k =¢vk and UK = U"K, where y = o( — 1)¥. Finally, let x be an expo-
nentially distributed random variable of rate g € [0, oo) independent of the rest of the system,
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where ¢ = 0 is interpreted to mean x = oco. Then, for # > 0 and x € R* := R\{0}, set
Yii=xJrexp (&), t<x (1.2)

with

Ni—1
&= 5711\? + Z (ééck + Uk) and J;:=o(— DV,
k=0

where, forn € N,

To:=0, T,:= ;k, Ni:= max{T,, <t} and m;:=1t—Ty,
mGNU

using the notation No :={0, 1,2 ---}. Then (¥, > 0) is a Lamperti—Kiu process and (J, &)
is the corresponding MAP. Conversely, any Lamperti—Kiu process has such a decomposition,
which we will refer to as the Lamperti—Kiu decomposition. We will refer to x as the lifetime
of the Lamperti—Kiu process.

We study the standard and signed exponential functionals of (Y;, > 0) defined, respec-
tively, by

o0 o0
Aoo 1= / exp(§)dt and By := / Y, dt. (1.3)
0 0

Recall that a perpetuity is a security where a stream of cashflows is paid indefinitely, such as
consols issued by the Bank of England. Under the MAP model, we suppose that the cashflows
are paid continuously at a rate ¢; := exp (& + rf) at time ¢ > 0, where r is the rate of interest.
Each element of E corresponds to a market state (for example, its states may refer to a bear or
bull market), where the state at time # > 0 is given by J;. The value of the perpetuity is given
by Axo.

It was shown in [7] that A is the first hitting time of zero by an associated self-similar
Markov process (ssMp). Indeed, consider the Lamperti—-Kiu MAP (J, &) from (1.1), and for
« € (0, co) define the time transformation

(1) = inf{uzo: /u exp (wéy) dszt}.
0

Then the process ng) = Jr(ex-)X €Xp (Ez(1jx|-o), for £ < |x|* fooo exp (&) ds and x € R*, is
a self-similar Markov process of index « taking values in R* and started at x. That is, X is a
cadlag Markov process such that, for all ¢ > 0 and x € R*, it satisfies

(X, 120) EX, 12 0),

where £ means equality in law. Moreover, any self-similar Markov process taking values
in R* of index o can be constructed in this way. The first hitting time of zero by X is
fooo exp (a&;) ds, which equals As, when o = 1. Many papers are devoted to the study of the
Lamperti transform of self-similar Markov processes. For example see [5], [7], [17], [20],
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and [19]. Other applications of MAPs and their exponential functionals include multi-type
self-similar fragmentation processes and trees; for example see [27].

The focus of this paper is on the finiteness and right tails of Ay, and Bs. The right tails
of a distribution determine which positive moments exist and whether it is a member of the
classes of heavy-tailed, long-tailed, or subexponential distributions. These classes of heavy-
tailed distribution are of particular interest to us because of their applications in finance, risk
theory, and insurance (see e.g. [13], [24], and [25]). Empirical data often shows realised market
returns to be heavy-tailed (see [8] and [14]). This motivates both considering Lamperti—Kiu
processes with Lamperti—Kiu components that are heavy-tailed and studying A as an example
of a heavy-tailed distribution.

For Lévy processes, which are MAPs where E is a singleton set, the theory of the exponen-
tial functional is well developed. Several results on the moments and tails of the exponential
functional, including random affine equations, are collected in the survey [6]. Under Cramér’s
condition, with Cramér number 6, it is shown that the right tails are polynomial with order —6.
More recently, [23] provided a complete description at the logarithmic level of the asymptotic
of the right tail and, under Cramér’s condition, the derivatives of the density. In the heavy-
tailed case, Cramér’s condition fails and different methods are needed. In this case, the right
tails of Ao have been studied in, for example, [21], [22], [23], and [26]. The case of a MAP is
studied in [ 18] where, under a Cramér-type condition with Cramér number 6 € (0, 1), moments
of order s € (0, 1 + 0) are shown to exist and satisfy a recurrence relation. This leads to poly-
nomial tails similar to the Lévy case. The same recurrence relation is shown in [27] for the
case when the additive component is not increasing. Other properties, including the finiteness
and integer moments of the exponential functional of non-increasing MAPs, are also given
in [27].

We will use the law of large numbers and Erickson’s law of large numbers for when the
mean is undefined [10], to give a characterisation of the finiteness of A,. Then we show
that, for a Lamperti—Kiu MAP, both A, and B satisfy a random affine equation. Under a
Cramér-type condition, we show that the conditions of the implicit renewal theorems of [12]
and [16] hold, and hence we are able to determine the right tails of Ay, and Bso. In the heavy-
tailed cases, when Cramér’s condition does not hold, a different approach to studying the tails
of A 1s required. We define a Lamperti—Kiu process to be of strong subexponential type
when Y7, is long-tailed and one of the Lamperti—Kiu components, El(i) or U™, is strong
subexponential and has right tails that asymptotically dominate the right tails of the other
Lamperti—Kiu components. By careful consideration of an embedded Markov chain, we are
able to overcome the lack of independent increments of § and provide a generalisation of the
subexponential results of [21] to Lamperti—Kiu processes of strong subexponential type. This
provides an asymptotic expansion of the right tails of A, to show that Ay, is long-tailed and
log (Axo) is subexponential.

This paper is organised as follows. In Section 2 we give necessary and sufficient conditions
for the standard and signed exponential functionals A, and B, respectively, to be finite. In
Section 3 we look at the random affine equation approach to studying the moments and tails
of Ax and By, under Cramér’s condition and the assumption that Y7, does not have a lattice
distribution. In Section 4 we study the tails of Ao, when the Lamperti—Kiu process is of strong
subexponential type.
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2. Finiteness of A, and B,

Let us keep the mathematical setting of the Introduction, where (Y3, ¢t > 0) is the Lamperti—
Kiu process defined in (1.2) associated with the Lamperti—-Kiu MAP (J, &) given, for a fixed
t>0,by & := log|Y;| and J; := sgn (Y;).

If possible, define K € RU {—o0, +00} by

]E[ETz] q_ + + . q+ B B -
E[T2] 61++61*( 671+ g BV ]H_q*—i-q*( 5, 1+4q E[UD,

where we allow K to take the values +00 and —oo but if both E[ max (§7,, 0)] = oo and
E[ max ( — éfz, 0)] = oo we say that K is undefined.

A Lamperti—Kiu process Y will be called degenerate if Y is such that lim sup,_, ., |&] < oo.
This can be shown to be equivalent to the case when either Y has a finite lifetime or E,i =0 for
allt>0and UT = —U~ is deterministic, hence

o X if Top <t < Tor41 for some k € Ny,
Y, =
xexp (UE" (X)) if Togpt1 <t < Toky2 for some k € No,

for all > 0 and x € R*.

When K is defined and Y has an infinite lifetime from [2, Proposition 2.10] and [2, Corollary
2.8], it is known that almost surely lim,_, o 7~ '& = K. Also, if K = 0 and Y is non-degenerate,
then lim,_, o £ '& =0, lim inf,_, oo & = —00, and lim sup,_, , & = oo, almost surely.

In the case when K is undefined, we will use Erickson’s theorem [10, Theorem 2], which
provides a strong law of large numbers for a random walk with an undefined mean. The
following lemma provides an analogous result to Erickson’s theorem for MAPs.

First we define

0 X
m_(x) = / Pler, <y)dy, mo()i= /0 P(er, > y) dy

—X

and

o0 0
L= [ oBenean. L= [ P .
0

m_(x) —oo M-(|X[)
Then the long-term behaviour of (§;, ¢ > 0) is described by the following lemma.

Lemma 2.1. Suppose that K is undefined. Then at least one of 1+ and I_ equals infinity, and
almost surely we have:

(1) limsup,_, o, 1~1& = oo ifand only if 1. = 00,

(i) lim;_ o0 & =00 if and only if Iy = 0o and I < o0,
(ili) liminf,_, o t~'& = —o0 if and only if I = oo,
(iv) limy_ o0 t~1& = —o0 if and only if I, < 00 and I = oc.

Proof. Consider the sequence {7, },en as the random walk

éTQn = Z (éTZk - §T2k72)7

k=1
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and notice that &7, — &7, £ &7, has an undefined mean, for each n € N. Then Erickson’s
theorem for random walks with undefined mean [10, Theorem 2], and the remark that follows
it, states that either I, = 0o or /_ = 0o or both hold, proving the first statement of the lemma.
Furthermore, the following statements hold:

(1) limsup,,_, o n_ISTZn =00 a.s. if and only if I+ = oo,

(2) lim,— o n~'&r,, = 00 a.s. if and only if 7, = oo and I_ < oo,
(3) liminf,_oo n~'&r,, = —00 a.s. if and only if I_ = oo,

4) lim,— n_1$T2n = —oo a.s. if and only if /1 < oo and /_ = oo,

and similar statements hold for {7T2,+1},eN-

Since [E[T>] <oo, it is immediate that if limsup,_, . n’ISTZn =00 a.s., then
lim sup,_, o, t’lét =00 a.s. If liminf,_, nilérz)l = —00 a.s., then liminf,_, o flé, = -0
a.s., hence the ‘if” direction of statements (i) and (iii) holds. To prove the ‘only if” direction of
(1) and (iii), we must first prove (ii) and (iv).

Consider (iv) and notice that the ‘only if* direction is an immediate consequence of state-

ment (4) above. Now suppose I < oo and /_ =o0. Then limsup,_, n_léfzn = —00 a.s.
and lim sup,,_, n’l.;frb,+1 = —00 a.s., hence limsup,_, ., n~'&r, = —00 a.s. also. Suppose
for a contradiction there exists an R > 0 such that lim sup,_, o, #~'& > —R > —00 a.s. Since
limy,— oo n~ T}, = %E[Tz] a.s. and limsup,,_, o, n’lérn = —o0 a.s., there exists some N € N
such that for all n > N we have T), > 1 and

51, <—2R as.

Ty

Define a sequence (7,),cN of times and (x,,),en of values such that, for each n € N, we have

Ty =sup{te [Ty, Tys1): &= sup és}
SE[Tyn, Ty41)

and
Xy =supl{é&;: t € [Ty, Ty1)}.

Since lim sup,_, o, t~1& > —R a.s., there is an increasing sequence of times (s,)ney such that
s;lésn > —Ra.s. foreach n € Nand lim,,_, o 5, = 00. Then we may take a subsequence (s/,),eN
such that there is at most one element of the sequence (s},)nen in each interval [T}, Tn+1] and
Js, is constant.

Let (tx,)nen be a subsequence of (7,en) such that k, > N and ), € [Tk,, Tk, +1] for each
n € N. Then, for each n € N, we have

Xk, = & > —Rs, > —RT}, 11,
whilst &7, ,, < —2RT},+1 and Ty,+1 > 1, therefore
X, — &1y, +1 > RTg,+1 > R
almost surely. However, for each n € N, by the Lamperti—Kiu decomposition,

{n,+ — &1y, 1 < Tipy+1 — T, }
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is a Lévy process, so, by splitting at the last time of the maximum [4, Chapter VI, Theorem 5],
Xk, — &1y,4, 1s independent of xg, and has the same distribution as xo — &7, , hence its distribu-
tion does not depend on R. This contradicts the fact that it only has support on (R, 00). Hence
I+ < 00 and K undefined imply that lim;—, o t’lét = —o0 a.s. and so the ‘if” direction of (iv)
holds. By applying similar arguments to —&;, statement (iii) of the lemma also holds.

To prove the ‘only if’ direction of (i), suppose /4 < co. Since K is undefined, by [10,
Theorem 2] and the remark that follows it, we have /_ = co. Then, by statement (iv), we have
limy_ o0 1~ '& = —00 a.s. Hence lim Sup;_, o0 t~1& = oo a.s. only if I, = 0o. The argument for
(iii) is analogous. 0

The following theorem shows that in the infinite lifetime case, the convergence and finite-
ness of As, and B, are fully characterised by K when this is defined and by the finiteness of
I otherwise.

Theorem 2.1. Suppose Y has an infinite lifetime. Then A converges a.s. if and only if Boo
converges a.s. Moreover, Ax, and B converge almost surely if and only if either K is defined
and K <0 or K is undefined and I+ < oo.

Before proving Theorem 2.1, we prove the following preliminary lemma.
Lemma 2.2. Iflim sup,,_, o, &7, = 00 a.s., then both Ay, and B, diverge a.s.

Proof. If limsup,_, ., é7,, =00 a.s., then there exists a strictly increasing sequence
{tn}nen C N such that exp (.;?Tm) > 1 a.s. for all n € N. First, by considering A, and using
the Markov property for the second inequality, we have

7"

T2z, 42 2

exp ( ,(”)) dr.

Aoo == Z €Xp (gTZrn) /
n=0 T

2t

oxp (& — &y, ) dt> ) /0
n=0

Since the terms of this series form an i.i.d. sequence with strictly positive values, the series
must diverge.
f . ee} Tony2 :
Similarly, B, converges a.s. only if the sum )~ sz Jr exp (§;) dt converges a.s., which
- n
implies the a.s. convergence to zero of the subsequence

T2Tn+2
/ Jyexp (&) dr
T

2ty

Tory42
=CeXp (%-TQ,” )‘/ Jl‘ exp (él‘ - éTan) dt
T2rn

>

Toey+2
/ Jyexp & — &n,, ) di
T

2ty

Then, by using the Markov property, B, converges a.s. only if

3"
‘ / T exp (™) dt| > 0 as.
0

as n — oo. This convergence is impossible since we are dealing with an i.i.d. sequence that
does not converge to zero in distribution. U

https://doi.org/10.1017/jpr.2021.24 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2021.24

1092 L. ALILI AND D. WOODFORD

Proof of Theorem 2.1. We will consider the cases when K is defined and undefined
separately.

1. Suppose that K is defined and K < 0. Then recall that lim,_, o '& =K a.s. as t — oo. If
—o00<K<O0letk= %K and if K = —oo let k = —1. Then a.s. there exists a finite 7 > 0 such

that & < kt <O for all > T. Thus Ay < fOT exp (&) dt+ klekl < 0o a.s., and by absolute
convergence it is then immediate that B, also converges a.s.

Next we consider the case when either K > 0 or both K =0 and Y is non-degenerate. Then,
by [15, Proposition 9.14], lim sup,,_, o, &7, = 00 a.s., so the result follows from Lemma 2.2. If
K =0 and Y is degenerate, then, since Y has an infinite lifetime, we have

{0 if Tox <t < Toxy for k € Ny,

Ul if Top+1 <t < Tojy2 for k € Np.
Thus, for all # > 0, we have
¥ > min (1, exp (U"):=v=>0,

S0 Aso = 00 a.s. Also, By can be written as the sum

Ton+1 Tont2
/ Jy e dt+/ Jre & dt) JOZ exp UJ°)§2”+1)
T, T,

2n n+1

o]

BOO=Z(

n=0
and since ¢2" — exp (U’0)¢2"+! does not converge to zero in distribution, By, must a.s. diverge.

2. Suppose that K is undefined. From [10, Theorem 2] we know that if I, =oo then
lim sup,,_, o, &7, = 00 a.s. Hence, by using Lemma 2.2, both A, and B, diverge a.s.

If I+ < oo, then since K is undefined, as a consequence of [10, Theorem 2], /_ = 0o and so
by Lemma 2.1 we have lim sup,_, o, t~1& = —00 a.s. Then, by the argument of case 1 above,
both As and By, converge a.s. as desired. O

3. Moments and tail asymptotics of A, and B,

Throughout this section we assume the Lamperti—Kiu process has an infinite lifetime. For
z € C suppose the characteristic exponents ¥4 (z) := log (E[ exp (z&§ li)]) and Laplace trans-
forms G*(z) := E[ exp (zU%)] exist and are finite. Then the matrix exponent of Y is defined

to be
Vi@ 0 -4+  ¢:GT (@
F(z):= + ,
© ( 0 wz)) (qG@ —q- )

and from [2, XI.2b] it is known that, for /, j € {+, —} and z € C,
E[ez&; Jt :] | J() = l] = (CIF(Z))IJ.. (31)

Then let A(z) denote the eigenvalue of F(z) with largest real part. Using Perron—Frobenius
theory, it is shown in [18, Proposition 3.2] that such an eigenvalue is guaranteed to be simple,
real, and continuous as a function of z. From [18, Proposition 3.4] we also know that A(z)
is convex when considered as a map A: R — R. Provided F' exists in a neighbourhood of
zero, from [2, Corollary 2.9] it is known that K = A’(0) € [ — 00, 00], where the derivative is
considered on this restriction.
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It can be shown that the integrals Ay, and By, are the solutions of random affine equations.
We will assume g, g— > 0 so that 7> < oo and note that 73 is independent of Yy. Then, for
any T € [0, oo], define the random variables

T T
Ar = q/ e dr and Br:= q/ J, e dt,
0 0

and notice that Aso =limy_, o0 A7 and By = lim7_, o B7. Similarly, due to the result in [5,
Section 4.3], by the Markov additive property

BOO :BT2 + YTZBOO7

where By is an independent copy of Bso.
Notice that Y7, has the same sign as Yy and that |Y7,| is independent of Jy because of its
symmetry in the components of the decomposition of Y. Similarly

AOO :AT2 + YT2A007

where A, is an independent but identically distributed copy of A« and is independent of Y7,
and Ar,.

The following results are generalisations of [5, Corollary 5] to Lamperti—Kiu processes
using the implicit renewal theorems given in [12, Theorem 4.1] and [16, Theorem 5]. In the
case of a Lévy process, it has been shown in [23] that the coefficient c4 of the proposition
below can be found explicitly by evaluating a Bernstein-gamma function.

Proposition 3.1. Suppose Y is an infinite lifetime Lamperti—Kiu process with K < 0 and there
is a k > 0 such that F(k) exists, A(k) =0 and

E[|Y7,|“ log™ |Y7,]] < 0. (3.2)
If Yr, does not have a lattice distribution, then there exist constants cx, cg, cg € R such that
ca = lim “P(Ax > 1), cg = lim *P(Boo > 1) and cp:= lim *P(Bo < —1),
11— 00 11— 00 1—00
and therefore Aso, Boo have moments of order s € Ct := {xe C: R(x) >0} if and only if
0 <N(s) < k.

Proof. Since the proposition assumes (3.2), the result is an immediate consequence of [12,
Theorem 2.3] and [16, Section 4, Theorem 5] provided that

E[log |Y7,|1 <0, 3.3)
E[|Yr,|“1=1, (3.4)

0 <E[|A7,|*] < o0, (3.5)
0 <E[|B7,|“]1 < o0. (3.6)

We now prove that under the conditions of the proposition each of these equations holds.
To show (3.3), we expand log | Y7, | to get

1 1 11
Ellog |Y7,[1= —El§ 1+ —E[¢ |+ E[UT]+E[U"] = (— + —)K,
q q 9+ 49—

and since qul + qjl > 0, (3.3) follows from the assumption K < 0.
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Since det (F(2))= W 1(z) — ¢ () — ¢ ) —q"q~G(z2)G () and by the assumption
that 0 is an eigenvalue of F(k), we have

+t -G-
qG(K)><qG(K)>
1= . 3.7
<¢+(K)—q+ V() — g~ G-D
Let u(z) be the other eigenvalue of F(z). Then, for all real z € (0, «), by assumption, u(z) <
M(z) <0andso 0 < u(z)A(z) =det (F(z)). Rearranging this gives W) — q+)(1//_(z) —q)>

0, so wi(z) — qjE has no roots in (0, «). Since wi(O) — qjE < 0, by continuity, I/Ji(z) — qjE <0
for all z € (0, k). By independence and using (3.7), we get

E[|Y7,]“1=El exp (¥ T ()¢ HIGT (k) El exp (¥~ (k)¢ DG (k) =1,

and hence (3.4) holds.
Using independence and the inequality (a + b)* < 2%(a* + b*) for a, b, x > 0, we get

1 4.2

27 E[|Ar,|“] SEI:(/O exp(ésl)ds> j| +E[exp(x(§£l + Ul))] IE|:</O exp (£2) ds) :|

From [5] it is known that
Tt X
E[(/ exp(ési)ds) i| <00
0

for all x € (0, 00) such that ¥*(x) — g* < 0. This follows from the fact that f(f - exp (£5)ds
is the exponential functional of the Lévy process £*) sent to the cemetery state —oo at an
independent, exponentially distributed time of rate g*. Then, since we have already seen that
YE (k) — gt <0, it follows that

+

IE|:</Z exp(ési) ds)Ki| < 00.
0

By the assumption that F(x) exists, we have E[ exp («k Ui)] < oo, whilst E[ exp (Kéi)] < 00

follows easily from E[ exp (Ké,i)] =exp (ty¥+(«)) for t > 0. Hence E[|B7, |“] < E[|AT,[“] < 00
and so equations (3.5) and (3.6) hold. ]

Remark 3.1. In the case when G* are continuous, (3.2) is automatic. Indeed, by continuity,
we can pick € > 0 such that ¥ (k + €) — g < 0 and G (k + €) < co. Then, from the proof
of (3.4), we obtain

+Gt -G~
E[IYT2|K+e]=( g Gtk +e) )(qq G (k +e€) )<

gt =yt +e)/\g =¥ (k+e)
Since log (x)* < x€ for all x > R, for some sufficiently large R > 0 we have

E[|Y7,|* log Y 1=El|Yr,|“ log Y1 ; |Y1,| < RI+E[| Y1, | log Y. 5 | Y1, | > R]
<R+ E[|Y7, ]

< OoQ.

Hence (3.2) holds.
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4. Subexponential tails of A o

When the conditions of Proposition 3.1 do not hold, a different approach to the investigation
of the tails and moments of A, is required. In Proposition 3.1 it is assumed that F(x) exists,
which requires that positive exponential moments of & must exist. This is a condition that does
not necessarily hold in general, and in particular, when &7, is heavy-tailed.

In this section we will define Lamperti—Kiu processes of strong subexponential type and
study the right tails of the exponential functional of such processes. The main result of this
section is Theorem 4.1, which shows, under some conditions, that the exponential functional,
Ao, 1s itself long-tailed and log (Ao) is subexponential.

First we will prove two preliminary lemmas in Section 4.1. In Section 4.2 a framework is
presented for bounding log (A« ) by considering a piecewise linear bound for {&: > 0} with
a.s. finitely many discontinuities. Finally, in Section 4.3, we define Lamperti—Kiu processes of
strong subexponential type and use the framework from Section 4.2, in conjunction with the
subexponential properties, to obtain the right tails of Ax,. Interestingly, the resulting tails are
of a very different nature to those considered under Cramér’s condition.

4.1. Preliminary results

We will need the following lemma, which bounds the probability distribution of the supre-
mum of a Lévy process over an exponentially distributed interval of time in terms of the
distribution of the Lévy process at the end of the interval. It is a variation of [28, Lemma
1], where the time interval considered was fixed.

Lemma 4.1. Let X be a Lévy process, let T be an independent exponentially distributed random
variable, and suppose 0 < uy < u. Then

IP’( sup Xs > u

0<s<rt

)SP(XrZu—uo)

P(X; > —uop) ’ “1

Proof. Let S, := inf{r > 0: X; > u}. Then, since X, > u, by independence of increments of
X and the memoryless property of T, we have

PSy < 73Xy <u—up) <P(Sy <13 X: — X5, < —up)
=P(S, <1;X; < —up)
=P(Sy < 1) P(X: < —up),

where X and 7 are independent and identically distributed copies of X and 7, respectively. Then
(4.1) can be obtained by rearranging the inequality

P(Sy < 1) <PX: > u—up) +P(S, < 73 X¢ <u—up)
<PX: > u—up) +P(Sy < 1) P(X: < —up). U

We now consider long-tailed distributions. Let Q: RT — [0, 1] be a probability distribution
and Q(x) := 1 — Q(x) for all x e RT. Then Q is a long-tailed distribution if Q(x + y)/Q(x) —
1 as x — oo, for any y € R™. For any two functions f, g: RT™ — R, we will write f ~ g if
lim,_, » f(x)/g(x) = 1 and say that f and g are asymptotically equivalent.
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For a random variable X, we define the functions
o
Gx(x):= / P(X >u)du and Hx(x):= min(1l, Gx(x))
X

and refer to Hy as the integrated tail of X.

In the next lemma we show that the integrated tail of a long-tailed random variable is asymp-
totically equivalent to an infinite series. This will be used in Lemma 4.6 to show the asymptotic
equivalence of the integrated tail Gy and an infinite series that we will construct.

Lemma 4.2. Suppose K +¢€ <0 and that X is a long-tailed random variable, which is
independent of (Tan)nen. Then the integrated tail of X has the asymptotics

00 (e.¢]
/ P(X > u)du ~E[T>]|K + €| ZP(X>x—(K+6)T2n). 4.2)
x n=0
Proof. By splitting the interval (0, co) into a disjoint union, we can write
—To(n+1)(K+€)

Gx(x)=2/ P(X > u; +x) duj.
n=0

—Ton(K+e)

Then, by using the change of variables u = —(K + €)~luj, we get
e Ton+1)
Gx(x)=2/ P(X > —(K 4 €)u +x) |K + €| du.
n=0 Y T2n
By independence of {7>,},cn and X, we can shift the domain of integration to obtain

X Do —Ton
Gx(X)=Z/ PX >x— (K+€)(w+T2,) | T2n) K + €] du.
0
n=0

Taking expectations and noting that the left-hand side is not random, that T>(,+1) — T2, é T,
and that T5(,4-1) — T2, is independent of 75, gives

0 T
Gx() = K +¢ ZE[/ B> x— (K+ )+ To) | Tzn)du},
n=0 0

where 7> is an independent and identically distributed copy of T>. This can be written in the
integral form

GX(x)=|K+6|Z/OOO]P’(T26 ds)/os /OOOIP(TZ,,Edv)]P’(X>x—(K+e)(u+v))du.
n=0

(4.3)

Let § > 0; then, since X is long-tailed, for all s > 0 there exists R(s) > 0 such that, whenever
z>R(s)and y € [0, —s(K + €)],

PX>z+y)
(1—5)§W§(1+5),
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and since —v(K + €) > 0 for v > 0, we have for all x > R(s) and u € [0, s]

PX >x—(K+¢€)(v+u))
(1=9)= P(X > x — (K + €)v) =1 +9).

To show the lower bound we use this inequality within the last two integrals of (4.3) to obtain,
for x > R(s),

/S/ P(Tr, € dv) P(X >x— (K+€)(u+v))du
o Jo

z/s /OOIP’(Tznedv)(l—8)P(X>x—(K+e)v)du.
0 Jo

Then, evaluating the integrals and noticing that the integrand is constant with respect to u gives,
for x > R(s),

N o
/ / P(Ty, e dv)PX >x— (K4 €)u+v)du=>s(1 —8§PX >x— (K + €)Ta,).
0 Jo
Now consider some [ > 0 and suppose x > R([), so that x > R(s) for any s € [0, []. Then
o N o
/ P(T> € ds) / / P(T7, e dv) P(X >x — (K4 €)(u+v))du
0 0 Jo

1
> / P(T5 € ds)s(1 — 8) P(X > x — (K + €)Tay)
0
=(1-8PX>x—(K+e)ToE[T; T <Il.

Since [ > 0 and 6 > 0 are arbitrary and 75 is integrable, we can take [ sufficiently large to obtain
E[T; T, <11 > (1 — 8)E[T>] and thus

/00 P(Tzeds)/s /00 P(T, € dv)P(X >x — (K4 €)(u+v))du
0 0 JO
> (1-8)*P(X > x — (K + €)T2,) E[T3].

If this is substituted into the expression for Gy for x > R(/), we have

Gx(0) = (1 —8)*|K + €| E[T2] ) P(X > x— (K +€)Tan).
n=0

For the upper bound, since —(K + €)u > 0 for u > 0,

T
]E[/ PX >x — (K +e)u+Tan) | 0(T2n)) du} <E[D]1PX > x — (K + €)T2),
0

which, substituted into the expression for Gy, gives, for all x > 0,
o
Gx(x) <E[T2]IK + €| Y P(X > x — (K + €)Ta,).
n=0

Combining the upper and lower bounds gives (4.2). (|
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4.2. Framework for an upper bound of log (A )

We now develop a framework for bounding log (A« ) whenever E[£7,] € (— o0, 0). This
will be used in the strong subexponential setting of Section 4.3 to obtain the right tails of Ax.
This framework consists of constructing a series of stopping times between which & is bounded
from above. By studying the properties of these stopping times and the behaviour of & at those
times, we can begin to understand log (Aso).

For € € (0, —K) and sufficiently large A € R, define a sequence of stopping times by o := 0
and

op = inf{t >0,_1: & — éa,l_] > (K+e)(t—o,-1)+A},
for each n € N, with the convention inf (&) = oo, and setting o, = 00 if 0,1 = co. Then also
define

N:= max{neNy|o, <oo} and p,:= P(o, <00|0o,—1 <00).
The next lemma concerns the finiteness of N.

Lemma 4.3. IfE[é7,] < O, then there exists an A* > 0 such that, for all A > A*, N is a.s. finite.

Proof. Define a new MAP {(/;, 5,): t > 0} by setting é, = & — (K+e)t. Foreachn e N,

I_Pn:P< sup ét_éo,l,l <Alop-i <OO>7

>0,

then, since 0,,—1 is a stopping time, using the Markov additive property and summing over the
events {J,, _, =j} forje {+, —},

l—pn= Z P/(SUP gt <A) P, =1

jet+—p =0
By the strong law of large numbers,

lim & =lim (& —(K+e))=K—(K+e)=—€ <0 as.
t—00 t—00

and hence there a.s. exists 7 > 0 such that if > T then & < 0. From this we can conclude that
Sup;s( £ = max (0, SUP;ef0.7] &) < 00, since the supremum of a cadlag process over a compact
interval is bounded.

This implies that there exists an A* > 0 such that for all A > A* we have P(sup,..q &>A)<
1. From this, we conclude N < oo a.s., since -

n n
P(N >n)=][Pox <o0| o1 <00) < max Pj<sup & <A> ) (4.4)
k=1 jett= 120

O
Since there are conditions for N to be finite, we can bound log (A ) by using the stopping
times {0, },eN to split the process {&;: > 0} into a finite number of bounded sections.

Define the constant
oA
C:.= log( >,
K + €|

and by taking A > A* sufficiently large we can ensure e > 2. Then we have the following
upper bound for log (Ax).
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Lemma 4.4. IfE[é7,] <0, then

N
10gAce N+ DC+ Y (55, — &5, )7

n=1
where (-)T denotes the positive part.

Proof. Following the approach of [21, Lemma 4.1], A, may be expanded as

o1 o) 03
Aoo :/ e%—t dt+ efal (/ eSt_E“l dt+ 6502 _S(rl </ eft_faz dt+ e
0 o] 02
ON+1
V. +e‘§0N*SUN_| </ " eSt*SUN dt))),
ON

noting that oy = co. By the definition of o,, we have
Opt1 On+1
/ 518 dr < / exp (K + €)(t — 0,) + A) dr <€,
op On

which, when substituted into the expression for A, gives
Aoo <€ 51 (e€ 4 &b 501 (€ 4 - - .  efon TEow-1(e€))). (4.5)

Then, by considering the logarithms of both sides of (4.5) and repeatedly using the property
log (A + B) <log (A) + log (B) whenever A, B > 2,

N
10g (Aoo) SN+ DC+ Y (65, — &5, )",

n=1

where we have made use of the fact that o %01 " > 1 and €€ > 2 in order to use the log
inequality. 0

As a consequence of this lemma, the right tails of log (A«) can be studied by considering the
evolution of the MAP between the stopping times {0, },en. First we consider the J component.

Let (Ky)nen, be the sequence of random variables, taking values in {+, —, oo}, such that
for each n € N, if 0, < oo then K, = J,,, otherwise K,, = 0o. For each «, B € {4+, —} we will
be interested in the number of times that {K,},cN transitions from « to B. For this purpose,
define the random variable N(«, B) := > ro Lik, ,=a.k;=p}- We also make use of the notation
f =o(g) for any two functions f, g: R* — R* such that lim,_, o, f(x)/g(x) = 0.

Proposition 4.1. Suppose E[&r,] € (— 00, 0). Then the sequence (K,)ncn, is a discrete-time
homogeneous Markov chain, with oo as an absorbing state. Moreover, if n is the stochastic
matrix of {Ky}nen and a, B, y € {+, —} with a # B, then

Na,y = 0, Eo[N(a, Y)]~0a,, and Eg[N(a, y)]l=o0(q,y)
as A — oo.

Proof. First we show that {K,},cn is a Markov chain. If K,,_1 # oo, then by the Markov
additive property, since o,_1 is a stopping time, {&, ,4:—&,, , |t>0} is independent of
Fo,_; given K,,_1. Moreover, the random variable

Aoy =0y —oy1=inf{t >0: &6, | — &5, =K +€)+ A}
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is a function of {£44, |, —&5,_, : t = 0}. Thus the event {K,, = oo} = {Ao,, = 00} is indepen-
dent of | given K,,_1, and has the same law as the event {K; = oo} given Kj.
Moreover, if Ao, < oo then K, =J,, =Jo, 40, hence K, is a function of

(o, 141 =606, s Jo,_14+0): =0},

and so by the Markov additive property is independent of F,; _, given K,,_; and has the same
distribution as K given Kj. Hence the sequence (K},),cN is a time homogeneous Markov chain.
By definition of ¢, 0o is clearly an absorbing state for (K,),eN-

Now we consider the limiting behaviour of n as A — oo. Let o, y € {4, —}. From the proof
of Lemma 4.3 we know that sup,-. é, < 00 a.s., where éf, = & — (K +¢€)t. Thus

lim P(sup{ét—(l(—i—e)t} >A) = lim P(sup§,>A) =0.

A—00 >0 A—00 t>0

However,

Ne,+ + Na,— = Py(0] <00) =Py (Sup{& — (K + o)t} >A)

>0

and, since 7q,, is non-negative, this implies lima_ oo 74,y =0.
Further assume that y € {+, —} and o # . Then it is easily seen that

Eg[N(et, )1 =) Po(Ky =y | Ku1 =) Py(Kn—1 = &) = (L9=a) + ¢0 (@),
n=1

where ¢g () := Z;’;l Pg (K, = «). Since 0o is an absorbing state of the Markov chain (K},),eN
and o # B, foreachn e N,

Po(Kn=a)=Pg(Kp=a | K, 1 =) Pe(Ky—1 =)
+Py(Kp=0a | Ky—1 =B)Py(Kn—1=B)
=N,oPo(Kn—1 = a) + ng o Po(Kn—1 = B),

then summing up over n € N we have

Pg(a) = Na,a(Lip=a} + () + 1g.a(Lig=p) + ¢o(B)),

and by symmetry

Po(B) =np p(Lig=p) + ®o(B)) + Ne.p(L{o=a} + ¢o(x)).

Solving this system gives

Lip=a}(Ma,a (1 — np.8) + 1p.aNa,p) + Lio=p}18.a

Po(a) = (I = na,a)(1 = np.) — N.aNa.p

and thus

Na,y (Lig=c}(1 — g p) + Lio=p}1p,a)

Eg[N(a, )=
(I = Na,e)(1 = 1p.8) — Np.aMa.p
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from which the two asymptotic results for Eg[N(«, )] are a consequence of the limiting
behaviour of 7. O

In the next lemma we consider the evolution of & between the stopping times {0y },eN,
conditioned on the values of {K},},eN.

Lemma 4.5. Suppose that E[é7,] € (— 00, 0) and m, n € N withm < n. Then, conditionally on
K1, K, Ky—1, and Ky, the increments &;,, — &5, _, and &,, — &, are independent. If o, B €
{+, =}, then conditional on the event {K,,—_ = K;y—1 = o; K, = K, = B}, the increments &;,, —
&5, and &, — &, | are equal in distribution and independent. Furthermore, for any | € N
such that m # 1 and any bounded continuous function f: R — R, we have

Elf(¢5,, — &,,-1) | 0 (Kin—1, Kin, Ki—1, KD1 = Elf 0,, — &0,,_1) | 0 (Kin—1, Ki)].

Proof. First suppose that m < [. Then we have

Elf (s, — &0,_1) | 0 (Ki—1, Kin, Ki—1, K]
Elf o, — &0,_1): Ki-1 =y, Ki=38 | 0(Kin—1, Kin)]
= Z Lk, =y K=} _ _

y.8e{+,—}

It follows that, by using the tower property and the fact that (Ky)ien is @ Markov chain, we
have

Elf s, —&o,_1): Kic1 =y, Ki=680(Kin—1, Kin)]
=E[f(&, —&,,_ ) Ellix,_,=y k=8) | Fonl| 0 (Kmn-1, K]
=Elf (&, — é0,_1) ElLix,_=y.k=8) | 0 (Kn)] | 0 (Kin—1, Kin)]
=PKi—1=vy,Ki=8|0(Kn-1, Kn) Elf &, — &0,,1) | 0 (Kin—1, K],

which, when substituted into the previous equation, gives

Elf s, — &o,_1) | 0(Kin—1, Kin, K1—1, K]
= > Lk imyki=s) Elf Gy, — o) | 0 (Kot K]
y.8e{+,—}
= E[f(";:am - ";:am,l) | o (Kin—1, K]

Now suppose m > [, and through a direct application of the Markov additive property we
have

E[f(glfm - gUm_]) | U(Kl—lv Klv Km—la Km)]
_ Z 1 E[f(";:crm _%-(rm,l);Km:Ot | o(Ki-1, K1, Kin—1)]
ton=er P(Ky = | 0 (Ki—1, Ki, K1)

ael{+,—}
_ Z 1 E[f(éam - %-O'm_| ); K =a | o(Kp—1)]
- =) P(Kp = | 0(Kp_1))

aef{+,—}
= E[f(gam - gam_1) | o (Kim—1, Km)].
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To see the independence of increments, suppose that f, g: R — RT are bounded continuous
functions, and then

E[f(éon - ";:a,,,l )g(";:crm - éom,l) | o (Kin—1, K, Kn—1, Ki)]

_ Z 1 E[f(éon - ";:cr,,,l)g(";:am - ";:crm,l)§ Ky=aloKu—1, Kn, Kpn—1)]
- tn=er P(Ky = | 0 (K1 K Kn—1)) '

aef{+,—}
Then, by the tower property, we get
E[f(";:an - éon,l)g(éom - ";:crm,l)§ Ky=aloKn—1, Kn, Kn—1)]
= E[g(gum - éa,,l_|)E[f($Un - 50,1_1); Ky=ao ]:U,,_|] | o0 (Kin—1, Kin, Kn—1)]

= E[g(gom - ";:am,l ) E[f(éon - ";:a,,,l ) Kn=a| G(Ko,lfl)] | o (Kim—1, Kin, Kn—1)]
= E[f(";:a,, - éon,lﬁ Ky =« G(Ka,,,l )] E[g(";:am - ";:am,l) | o (Kin—1, Kin)].

Plugging this into the previous equation yields

E[f(éon - éon,l)g(éom - ";:am,l) | o(Kn—1, Kin, Kn—1, K)]

_ Z E[f(";:a,, - éon,lﬁ Ky=o] G(Ka,,,l)]
- Er=e) Ky = | oK1, Ks K1)

ael{+,—}
X E[g(éam - éam_|) | o0 (Kin—1, K]
= E[g(gam - éa,,l_|) | X0 (Kp—1, Kin)]

E[f(gan - éa,l_] ); Ky =a| U(KU,,_| )]
x 20 ia) P(K, = | 6(Kn_1))

ae{+,—}

= ]E[g(éam - éam_|) | o (Kn—1, Kin)] E[f(éan - EU,,_|) | U(KU,,_| s KU,,)]~ O

4.3. Lamperti—Kiu processes of strong subexponential type

Strong subexponential distributions are a widely studied class of heavy-tailed distributions,
because of their mathematical tractability and their appearance in empirical data. We will use
[11] as a reference to the background theory of subexponential distributions, within which
further discussion of the use of these distributions can be found.

For a probability distribution Q: R — [0, 1], define Q(x) = gl — Q(x) for all xe R™.
Then, if Q * O(x) /@(x) — 2 as x — 00, we say that Q is a subexponential distribution. It can be
shown (see e.g. [11]) that all subexponential distributions are also long-tailed. The distribution
Q is a strong subexponential distribution if it also satisfies the property that

1 X -
lim —— - dy=2m,
Jim oo fo Ox—y)0(y)dy=2m

where m =E[XT] and X is a random variable with distribution Q. We will refer to a ran-
dom variable with a (strong) subexponential distribution as a (strong) subexponential random
variable.

Let S denote the set of real-valued subexponential random variables and let S* denote the
subset of S comprising strong subexponential random variables.
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For a random variable X, recall the definitions
o
Gx(x) = / P(X >u)du and Hyx(x):= min (1, Gx(x)).
X

If Hx is a subexponential distribution then we write X € Sy, and from [11, Theorem 3.27]
we have S* C S;.

For ease of notation, we also define the integrated tails H(x) := Hérz (x) and, for each o €
{+, —}, define

He, == Hféa) and H® .= He¢, +Hy_,.

Let us introduce a subset of components of the Lamperti—Kiu decomposition given by L :=
g e Ut )
For any functions f, g: Rt — R™, we write f = O(g) if lim sup,_, o, f(x)/g(x) € R.

Definition 4.1. We will say that a Lamperti—Kiu process is of strong subexponential type if
£r, is long-tailed and there exists X € L such that X € §* and for all W e L\ {X} we have
P(W > x) = O(P(X > x)).

If a Lamperti—Kiu process is of this type, there is a heaviest-tailed component of the
Lamperti—Kiu decomposition and it is strong subexponential. Denote this componentby X € L.
Let B C {4, —} be the set of all € {+, —} such that

lim sup Hx(x) "H®) (x) £ 0.

X—>00

Then, for any b € B and g8 € {+, —} \ B, we have HP)(x) = O(H(b)(x)) as x — 00.
By the closure properties of S* [11, Corollary 3.16], it follows that &7, is also strong
subexponential with tails and integrated tails, respectively, given, as x — 00, by

P, >x) ~ Z (P(ééf) > x) + P(UP > x))
Bef+,—}
and
Hx~ Y HP@~Y HPw).
Bel{+,—-} BEB

Recall from Section 2 that K := [E[&7,]/E[72], and hence, when E[£7,] # 0, it follows that
K # 0. The main result of this section, which extends [21, Section 4, p. 166] to Lamperti—Kiu
processes, is the following result.

Theorem 4.1. Suppose that Y is a Lamperti—Kiu process of strong subexponential type such
that E[é7,] € (— 00, 0). Then

_ H(log (x))

Pl >0~ k)

as x — o0. (4.6)

Furthermore, A is long-tailed and log (Axo) is subexponential.

The proof of Theorem 4.1 requires a number of intermediary lemmas. These lemmas are
stated with proofs below, followed by the proof of Theorem 4.1 at the end of this section.
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Set Z, := &5, — &,,_, for each n> 1. We are now in a position to consider the asymptotic
behaviour of the survival function of Z, conditioned on K,,_; and K,,, under the assumptions
of Theorem 4.1. Recall that for @ € {+, —}, H® = H,(x) + Hy_,,(x).

Lemma 4.6. Suppose that Y is a Lamperti—Kiu process of strong subexponential type such that
E[ér,]1 € (=00, 0), and fix o, B € {4+, —}. Then, if B € B, for eachn € N,

. P(Z,>x|Ky—-1=a, K, =p) 1
lim sup < .
00 H®)(x) n@P)|K 4 €| E[T>]

Furthermore, if B € {4+, —} \ B and b € B, then, for eachn € N,

. P(Zy > x| Kn—1 =0, Ky = B)
lim sup =

0.
X— 00 H® (x)

Proof. Suppose that x > A, let up € (0, x — A), and fix «, B € {4, —}. For ease of notation,
let 0 := o7. Then, since

PZ,>x|Kpn1=a, K, =B)=Py(és >x]0 <00, Jo =),

we have
o0
1
PZ> x| K=o Kn =)= o D Pulto > x:Tw <0 < Typis o =p).
m=0

To bound the elements of the sum, first consider the strict inequality 7, < o < T;,+1 for some
m € N; then

Pylés >xTn <0 <Tpg1;J6 =B) < IP’a< sup Ev>x €1, <(K+e)Ty+AsJr, = ,3),

Tn<u<Tipy

and using the Lamperti—Kiu decomposition followed by Lemma 4.1, we have

Po(Es > X T <0 < Tni13Jo =ﬁ)§IP’a< sup EP) > x— (K + )T, — A3 Jr,, =ﬁ>
0<u<2ﬁ

Pa(égf’ >x — (K4 )Ty — A — ug; J,, = )

P&, > —uo)

where £ and 5;3 are independent copies of the Lévy process &) and the exponential random
variable g, respectively.
In the case when o =Ty,

Poléo >x;Tn=0:;J6 =0) < Pa(%—Tm > X5 ";:Tmf <(K+e)Ty, +A§JTm =B)
<Pyé7, —b1,— >x— K+ )T}y —AsJ1, = B)
=Py (UP > x — (K +e)T,, — A; Jr, = B).
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If @ = B then there must be an even number of changes of J before o, so there exists m € N
such that ¢ € [T, Tom+1). Hence combining the two results above gives

o Pa(ééf) > x — (K + €)Tom — A — ug)

1

P(Z, > x| Kp—1=0, Ky =) < (Z
(a.B) (02))

n@h \ P(g;, > —uo)

o0
+ Z Pu(UP >x — (K4 €)Tam — A — uo)).

m=0

If o # B then there is an odd number of changes in J before time o. However, T2;,+1 > Tom,
so the inequalities can be weakened to give the same result as the « = § case.
For ease of notation define

Qp(uo) := P(ééf) > —up) < 1.

If éé’: )is long-tailed, we can use Lemma 4.2 to obtain the asymptotic approximation

T
< > X — — — ~_r @@
[ & >x—( )Tom uo |K+6|E[T2]’
m=0
as x — oo. Similarly, if UP) is long-tailed we have
o
_ Gye-px)
P (P —(K Ty — A — ~ Ui’
Z ol >x—(K+€)Toun uo) K+ ¢| BT

m=0

as x — oo. We will consider separately the cases where both of the asymptotics hold, exactly
one holds, or neither hold.

In the case when both ééﬂ ) and UCP) are subexponential (and hence are long-tailed) for all
6 > 0, there exists an R > 0 such that, for all x > R,

P(Z@A) > x) _ 1
Gy () + Gye-p() ~ (Gey(x) 4+ Gyp (x))n P
o ( (1 +8)Gg(x0) (1 +5)GU<ﬁ)(x)>
0po)|K + €| E[T>] |K + €| E[T>]

- (1+9)
~ n@PQp(uo)IK + €| E[T2]

where the second inequality holds since Qg(ug) < 1. Since § was arbitrary, taking the lim sup
as x — oo yields

. P(Z, > x| Kn—1 =a, K, = B) 1
lim sup < .
X—00 Ggﬂ x)+ Gyep(x) n(“’ﬁ)Qﬁ(uoﬂK + €| E[T2]

In the case when exactly one of & ;f ) and U_ p 1s subexponential, it asymptotically dominates

the other as x — oo, since Y is of strong subexponential type. Suppose that it is Eéf ) that is
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subexponential and note that the following argument is symmetric in ééf ) and UP). For all
6 > 0, there exists 8 >0 such that 3(1 + 3) < 6/2, and an R > 0 such that for all x> R and
nelN,

Pa(UP > x — (K +)Ton — A — up) < 6Pa () 2 x = (K + €)T20 — A — o).
B

Thus, for all x > R, for suitably large R,

8(148)Gey ()

o0
P U(_ﬂ)>x— K+e)lyy, —A—u) < ————,
Z o ( )Tom 0) < TE T

m=0
which gives for x > R
P(Zy > x| Kn—1 =, K = ) 1 (1+38/2)Gg,(x) (8/2)Ge
Gy (%) + Gy-p (x) ~ n@P G, (x) ( |K + €| E[T210p(u0)  |K + €] E[T2]>
- 1+6
~ n@P|K + €| E[T2]1Qp(uo)

Therefore, since § > 0 was arbitrary, we may take the lim sup first as 6 — 0 and then as x — oo
to obtain

. IED(Zn>x|1<n—l=05a1<n218) 1
lim sup < .
x—>00 Gey () + Gye-p () NP K + €| E[T210p(uo)

Finally, we consider the case when neither is subexponential. Since Y is of strong subexpo-
nential type, the tails of § éﬁ ) and U—P) are dominated by the tails of at least one of either §§b)
B b

or U™ Denote the dominating random variable by X and let W € {égﬂ), UP}. Following
s

the above calculation, for all § > 0 there exists an R > 0 such that forany x > Randn € N,
Po(W=x—(K+€)Ton —A—up) <Po(X >x— (K+ €)Ton — A — uo).
Then, by using the results of the previous two cases, for suitably large R > 0 we have

> 8(1 + 8)Gx(x)

P,(W>x—(K+¢€)Tr, — A — < .
g «Wzx= (Kt T “0) = K €| EIT> ) Hy (o)

Hence, for x > R,
P(Z,>x|Kp1 =a, K, =p) - 25(1+6)
Ge_,(x) + Gyw(x) ~ n@PIK + €| E[T2]0p(uo)

0, as x — 00, since § > 0 was arbitrary,
P(ZP) > x) = o(Gg, (x) + Gyn (x)).

Since all the components of the Lamperti—Kiu decomposition are finite, for sufficently large
x we have G(.)(x) = H(,)(x). Hence, in the first two cases, we obtain
. PZy> x| Kn—1 =0, Ky =B) 1
lim sup < .
x—>00 He, (%) + Hy-p)(x) n@PQ(uo) K + €| E[T2]
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As we are taking the limit x — 0o, we may also take 1y — oo and use the fact that Q(ug) — 1
to obtain
. P(Z, > x|Ky—1 =0a, K, = B) 1
lim sup < )
*—>00 He, (x) + Hy-p (%) n@AIK + €| E[T>]

whilst in the third case

. P(Zy > x| Kn—1=a, K, = B)
lim sup =

0.
x—>00 Hg_,(x) + Hyp(x)

This completes the proof. (|

The following lemma provides a way to use a bound on a random variables distribution
function to produce an inequality between random variables.

Lemma 4.7. Suppose Z is a real-valued random variable with tail P(Z > x) that is bounded
above by some function F(x) such that 1 — F(x) is a true distribution function. Then there
exists a random variable X, which is a function of Z and an independent uniformly distributed
random variable, such that Z < X and P(X > x) = F(x).

Proof. Let P(x) := P(Z > x) and V ~ Unif(0, 1) be independent of Z. We will use the nota-
tion P(xT) := limy » P(y), which exists for all x> 0 since P is non-increasing and bounded
from below. Define the random function U: R — [0, 1] by setting U(x) := P(x) — V(P(x) —
P(xT)). Let x| < x2; then since P is non-increasing, P(x™) < U(x) < P(x) for all x € R and

U(x2) < P(x2) < P(x]) = P(x1) — 1(P(x1) — P(x])) < U(x1),

hence U is also non-increasing.

Furthermore, suppose U(x1) = U(x) for some x| <x>. Then P(xT) <Ux)=Ux) <
P(x) < P(xf), where the last inequality is because P is non-increasing and so P(xT) = P(x0).
If P(x‘f) = P(x1), then we have P(xp) = P(x1). Otherwise we have

U(x1) > P(x[) = P(x2) > U(xy).

This is a contradiction. Hence, if x; < x> and U(x1) = U(xy), then P(xf“) = P(x;) = P(x») a.s.,
soP(x; <Z <x)=0.
From this we can now conclude that, for all x € R, we have

PUGR =Ux)=P(Z=x)+P(Z<x;UZ)=U(x)
=Px) +P(Z <x; U(Z) = U(x)).
However, by the above calculation, we get
P(Z < x; U(Z) = U(x)) < P(Z < x; P(Z) = P(x)) =0

and hence, for all x € R, we have P(U(z) < U(x)) = P(x).
Now let ¢ € [0, 1] and suppose that there exists x € RT with P(x™) = P(x) = ¢, so

P(U(Z) < g) = P(U(Z) < P(x))
—P(UZ) < UW) =gq.
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If there is not such an x, then, since lim,. o, P(x)=1 and lim,_~, P(x) =0, there
exists x € R* such that g € [P(x"), P(x)). For any y > x, we have U(y) < P(y) < P(x™), so
U(y) ¢ (P(x"), P(x)) and similarly, for any y < x, we have U(y) > U(y") > P(x), so U(y) ¢
(P(x™), P(x)). Hence U(Z) € (g, P(x)) C (P(x™), P(x)) implies Z = x.

Next we want to consider P(P(x) = U(Z); Z # x). Notice that if z > x then U(z) < P(xT) <
P(x) and so P(P(x) = U(z); Z > x) =0. If z < x and P(x) = U(2), then P(x) = U(z) > P(z") >
P(x) and so P(x) = P(z"). However, if there is a discontinuity point y € [z, x), then U(z) >
P(z")>P(y) > P(y") > P(x) so P(P(x)=U(z);Z<x)=0, and we conclude that P(z)=
P(z) = P(x) and hence P(P(x) = U(Z); Z # x) =0.

From this and since V is uniformly distributed on [0,1], we have

PU2) € (g, P6)]) =P(Z=x) P(Ux) € (g, P&0)]) + P(Z # x; U(Z) = P(x))
q—Puh) P(x) — P(X*))

— <V <

P(x) — P(x*) P(x) — P(x")

_ Pt
— (P — P

and hence

P(U(Z2) = q) =P(U(2Z) < P(x)) = P(U(Z) € (¢, P(x)])
(PX) —¢q)

=P(x) — (P(x) — P(x+))m =q.

Hence U(Z) is uniformly distributed on [0,1]. Using [9, Proposition 3.1], the random variable
defined by X := U~ (Z) := inf{x € RT | F(x) < U(Z)} has the distribution F. Moreover, since
F(x) > P(x) for all x e R, we have

F(Z)= P(Z) > P(Z) = V(P(Z) — P(Z")) = U(Z)
and, since F is non-increasing, we have X = inf{x e R* | F(x) < U(Z)} > Z, as required. = [J
We are now able to derive the upper bound of Theorem 4.1.

Lemma 4.8. If Y is a Lamperti—Kiu process of strong subexponential type, then the right tail
of A satisfies
. P(log (Ax) > x) 1
lim sup < )
X—>00 H(x) |K|E[T3]

where H is the integrated tail from Theorem 4.1.

A4.7)

Proof. Fix o € {+, —} and let 8, > 0. For sufficiently large A > 0, by Proposition 4.1, we
know E, [N(et, 8)1/7%P) < 1{y—a) + 2. Now fix such an A > 0 and let §; > 0.

From Lemma 4.4 we have log (Ax) <(N + 1)C + vazl Zl.+.

For each i € N, we have a tail estimate for Zl-‘|r , given (K)yen,, from Lemma 4.6, which,
used in conjunction with Lemma 4.7, gives the existence of random variables X;(k) for each
k € Uyen{+, —}" with ky = o such that:

(1) each X;(k) is a function of Z; and a random variable independent of the rest of the system,

(2) Xi(k) > (Z" + OV LiNen: (Ko..... Kn)y—k}»

(3) X;(k) has tails given by min (1, H&)(x)(n*i-1-k)|K 4 €| E[T>]])~") if k; € B and tails
which are o( min (1, H®)(x))) for b € B if k; ¢ B.
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Then, summing up over the sample paths of (K},),cn,, we have the upper bound

N n
]P’U<ZZiJr+C>x) <> > IP’U<ZX,'(k)>x;N=n;(K0,...,Kn)=k>.

i=1 neN gef4, —yrtl i=1
ko=0o

For ease of notation, let 7 =maxy ge(+,—} Na, B> Q:mina,ﬁe{ﬂ,} Na,p> and d € (0, (1 —

2m)/20).
Foreacho, g €{+, —},neNand k € {+, —y+1 guch that ky = o, let

n
nap®) =Y Lt =aki=p)-
i=0
Then, by Lemma 4.5, given the event {N = n; (Ko, . .., K,;) =k}, the sum

n
Yo pK) =Y Xil{t, =aki=p)

i=1
is a sum of ny g(k) i.i.d. random variables, and hence, in the case 8 € B, from Kesten’s bound
[11, Theorem 3.34],

P, (Z X)Lk, =aki=p) > X | N =n; (Ko, . . ., Kp) =k>
i=1
< cd)(1+d)"* VP, (X1 (@, B)) > x)
_cad +d)"Fx)
K +e€|E[T2]

In the case B ¢ B, since Y is of strong subexponential type, for any b € B,

n
Po <Z Xi(K) Lk =a.ki=p) > X | N =n; (Ko, ..., Kn) = k)
i=1

n
=Ps <Z Wil 1=a.ki=p) > x| N =n; (Ko, ..., Kp) = k)
i=1
_ @+ d)"H(x)
~ nlK+€|E[Ty]
where for each i € N the random variable W; depends only on X;(k) and has the distribution of

X1((et, b)). We can now use Corollaries 3.16 and 3.18 in [11, Chapter 3, p. 52] to sum the Y, g
and obtain the bound

]P’U<ZX,~(k)>x|N=n;(K0,...,K,,):k)
i=1

n
=Pa< D D X0l =aki=p) > x| N=n;(Ko, ..., Kn) =k)

o, fe{+.—} i=I
_ 41 +d)'H()
n|K + €| E[T2]
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Using the bound on the distribution of N from (4.4), we see that there is an M € N such that
Eln~'4c(d)(1 + dN; N > M] < 8 for sufficiently small d. This then gives

(ZX ((Kn)neN) >x; N > M) M

i=1

Moreover, by [11, Corollary 3.16], foralln <M and k € {4, — V141 with kg = o there exists
Ry« > 0 such that, for all x > Ry, &,

IP’J<ZXi(k)>x|N=n;(K0, ...,Kn)zk)

i=1

HP () o (3
((1+ ) >0 nap (aﬁ)IKJFGIE[Tz])*]P’a(;11{ki¢B}Xi(k)>x)(x)7

ae{+,—) BeB

where for two survival functions F and G we write F*G for the_ survival function of the
convolution of the distribution functions F := 1 — F and G := 1 — G. Then, since

Po (1 (¢ Xi(k)) > x) = o(HP (x)) for any 8 € B,

by [11, Corollary 3.18] we have

]P’U<ZXi(k)>x|N=n;(Ko,...,K,,):k)
i=1

HP (x)
<(1438) Z Z”Oﬂﬁ() n@P|K + €| E[T>]

ae{+,—} peB

Since there are finitely many such pairs (n,k) with n <M, we can take R := max, <y Ry k
so that for all x > R we get

M n
Z Z PU(ZX,'(k)>x;N=n;(K0,...,Kn)zk)

n=1 k6{+,7}"+1 i=1
ko=0o

HP(x)

<(1+51)Z > 2 Z”aﬁ()(aﬂ)|K+e|E[T2]

n=1 ge(4,—)+1 ae{+,—} peB
k() o}

X Ps(N=n; (Ko, ..., K,)=k)

H(ﬁ)(x)
=(1+68) Eq [ng,p(k); N < M]
(1+51> Z Z na,s<k>H<ﬂ>(x>
(@.p) :
~ K + €| E[T»] vl n(e.p
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Next, by our choice of A we have E, [n(«, ,3)]/77(“”3) < ly=¢ + 82 and thus

M n
Z Z ]P’(,(ZX,'(k) >x;N =n; (Ko, .. .,K,,):k)

n=1 k6{+,7}"+1 i=1

Ko=0
e D X
< (Ljo=a) + 62)HP ()
K+l Eln] A b
(1+61)
= 142 H®
K el B T 5»% @)
(1+81)?
———— (1 +262)H
< |K+e|]E[T2]( +252)H(x),

where the last inequality holds for sufficiently large x since Y is of strong subexponential type.
Hence, for all x > R, we have

N 2
n (I4+681)°(1+268) S1H(x)
11»(,(2:(2,. +C)>x>§ e e+

i=1

and so from the definition of lim sup,

, Po(C+ YN, (Z+0)>x) 14268
lim sup < .
100 H(x—C) K + €| E[T,]

However, because H is long-tailed, lim,_, oo H(x — C)/H(x) = 1 and therefore

fmogy PPCH Y ZF +O>0 1425
el H(x) = K + €| ElT2]°

Then, by comparison,

. Py (log (Aso) > X) 1426,
lim sup < >
x—>00 H(x) |K + €| E[T2]

and since both € and §, were arbitrary, the result follows. O

It remains to show that the lower bound for lim inf,_, .o (A > x) also holds. To this end,
for each x € R, define the stopping time

1q(x) ;= inf{T2, | neN, &, > x}

and notice that 74(x) < oo if and only if sup,.y &r,, > x. Furthermore, J,) =Jo whenever
74(x) < 00. Since &7, is strong subexponential, its integrated tail, H, is subexponential and
thus, by [29, Theorem 1(ii)], P(z4(x) < 00) is also subexponential. Then, by considering the
random walk (£7,, )nen in the place of (§,),¢cn in the proof of [21, Lemma 4.3], we find that for
everyy >0

lim P(&,, ) — x>y | Ta(x) < 00) = 1. (4.8)
X—> 00
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We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. Equation (4.6) of Theorem 4.1 follows from inequality (4.7) of
Lemma 4.8 and the inequality

.. P(log(Ax) > x) 1 1
lim inf > = )
X—00 H(x) |Elér,]l  E[T2]IK]

which we will now prove.
The following inequality is immediate:

o0
P(logAs >x)z]P’<log</ |Y,|dt> > X; rd(x)<oo>.
T,

d(x)

Applying the Markov additive property and recalling J,y = Jo gives
P(10g Aoe > ) = P(Er,(0) +10g (Aoo,sy) > X | Ta(x) < 00) P(ra(x) < 00),

where Aoo,j is an independent and identically distributed copy of Ao, with Jo =j. Then, by
applying (4.8), we have

P(logA P P Trn) >
liminf P(log A > x) > lim inf Plra(x) <o0) _ liminf (sup,en §(T2n) = x)'
ree H(x) X—00 H(x) X—00 H(x)

However, &7, is a sum of the random variables &7, — &r,,_,,, which are i.i.d. copies of &r,.
Since Y is of strong subexponential type, the integrated tail, H, of &7, is long-tailed, and we
can apply Veraverbeke’s theorem [29, Theorem 1(i)] to conclude that

lim inf P(sup,en §(T2n) = X) > 1 _ 1 ' 0
X=00 H(x) [E[é7, 1l K| E[T2]

Remark 4.1. The results of this paper are presented only for settings where |E| = 2. However,
they can easily be extended to the case of any finite £ provided the modulating Markov chain
J is irreducible. In the proofs, extensive use is made of the fact that J7,, = Jy for alln e N. To
extend this to the case |E| > 2, we replace {T>,},en With the sequence of return times to Jy of
J, which have finite expectation. In the case |E| = oo, two further difficulties arise, which may
prevent an extension of the results. Firstly, even if J is a recurrent Markov chain, it may be
the case that the expected return time of J is infinite. Secondly, arguments that rely on taking
maxima or sums over the elements of E are no longer valid. The reader may also be interested
by the work in [3], where a necessary and sufficient condition for finiteness of fooo ebs dn;
is given, where (&, ) is a bivariate Markov additive process with some modulating Markov
chain J.
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