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In many engineering systems operating with a working fluid, the best efficiency
is reached close to a condition of flow separation, which makes the prediction
of this condition very important in industry. Provided that wall-based quantities
can be measured, we know today how to obtain good predictions for two- and
three-dimensional steady and periodic flows. In these flows, the separation is defined
on a fixed line attached to a material surface. The last case to elucidate is the one
where this line is no longer attached to the wall but on the contrary is contained
within the flow. This moving separation is probably, however, the most common
case of separation in natural flows and industrial applications. Since this case has
received less attention during the past few years, we propose in this study to examine
some properties of moving separation in two-dimensional, unsteady flows where
the separation does not leave a signature on the wall. Since in this framework
separation can be extracted by using a Lagrangian frame where the separation profile
can be viewed as a hyperbolic unstable manifold, we propose a method to extract
the separation point defined by the Lagrangian saddle point that belongs to this
unstable manifold. In practice, the separation point and profile are initially extracted
by detecting the most attracting Lagrangian coherent structure near the wall, and they
can then be advected in time for subsequent instants. It is found that saddle points,
which initially act as separation points in the viscous wall flow region, remarkably
preserve their hyperbolicity even if they are ejected from the wall towards the inviscid
region. Two test cases are studied: the creeping flow of a rotating and translating
cylinder close to a wall, and the unsteady separation in the boundary layer generated
by a planar jet impinging onto a plane wall.

Key words: boundary layer separation, separated flows

1. Introduction

Boundary layer separation remains one of the most important unsolved, at least
partially, problems in fluid mechanics, and probably one of the most important
to solve considering its critical effects on many engineering systems. Since the
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pioneering work of Prandtl in 1904 on two-dimensional steady separation, a
considerable number of ideas have emerged to capture unsteady separation in two-
and three-dimensional flows.

A large number of studies have initially focused on solving boundary layer
equations, thus defining the separation as the state when the solution to these
equations becomes singular (Sears & Telionis 1975). This same postulate was also
used by Van Dommelen & Cowley (1990) to capture the unsteady boundary layer
separation but in Lagrangian coordinates, a representation that better reveals the nature
of separation and offers more advantages than in the Eulerian frame. However, the
occurrence of a singularity in the numerical integration of boundary layer equations
means that the approximation upon which they are based become invalid, and this is
not necessarily related to separation. The reader is referred to the recent reviews of
Ruban et al. (2011) and Cassel & Conlisk (2014) for further details.

A consensus on a general criterion to detect unsteady separation was not found
until the seminal work of Haller (2004), who provided a kinematic theory for
two-dimensional flows. In this entirely new, non-linear and Lagrangian approach,
separation appears as a material instability induced by an unstable manifold (defined
in finite or infinite time) that emanates from the wall at a boundary point. In forward
time, the unstable manifold attracts and ejects particles from the wall, and the theory
provides the location and shape of the separation profile. One of the most remarkable
results is that this approach can be applied to flows with general time dependence,
as well as in compressible flows, thus unifying prior works into a single theory and
extending them to cases not covered before.

Haller (2004) defined two types of separation. A fixed separation occurs when the
flow has a well-defined mean value, such as in periodic flows where the separation
characteristics are easy to obtain since integration in time is applied over one single
period. In this case, the boundary point of separation is not moving on the wall but
is fixed at a location where the backward-time average of the skin friction vanishes
(weighted by a function of the fluid density if compressibility effects are present). The
time dependence then appears only in the shape of the separation profile, mainly in
the angle of separation. These results have since been extended to three-dimensional
steady flows (Surana, Grunberg & Haller 2006), then to three-dimensional unsteady
flows (Surana et al. 2008).

The treatment of a moving separation is more delicate. This case occurs when the
separation point may move, or may appear and disappear in the flow. Since classical
invariant manifold theory cannot apply, Haller (2004) used finite-time unstable
manifolds (Haller 2000) to capture the moving point, thus yielding non-unique
moving separation profiles. In a further contribution, Surana & Haller (2008) proposed
a criterion to capture separation in slow–fast systems, where the mean and fluctuating
flow components are characterised by different time scales, such as in the wake of
a circular cylinder placed in a time-varying crossflow. In both works, the moving
separation point is defined at the location where the time-varying mean skin friction
vanishes, and requires the temporal mean flow components to be extracted first, which
is done numerically, for example by using wavelet-based denoising methods.

Despite the important potential impact of these recent works, very few studies
have focused on their experimental validation. We believe this is mainly due to two
reasons. The first one comes from difficulties in measuring required quantities. In the
case of fixed separation, while the time-independent location of the separation on the
wall is determined from time-averaged on-wall measurements of shear stress, pressure
and their spatial derivatives, the time-dependent separation profile (slope) inside the
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flow requires the knowledge of instantaneous values of these quantities. The wall
pressure signature is not so easy to obtain accurately if high frequencies are present
but this is feasible with carefully performed experimental procedures. In contrast, the
skin friction is still challenging to measure accurately, and moreover a high spatial
resolution is also needed to obtain the derivatives along the wall. To the authors’
knowledge, only one experimental study has been reported in the literature. Weldon
et al. (2008) studied a rotating cylinder whose axis can be oscillated parallel to a
wall, thus manipulating an unsteady separation. Under periodic, quasi-periodic and
random forcing, observations reveal that separation emanates from a fixed location on
the surface, its position and orientation over time being accurately predicted by the
theory. However, this unique example concerns a slow viscous flow in the quasi-steady
Stokes regime (based on the cylinder diameter and the circumferential velocity, the
Reynolds number Re is less than 1). Moreover, numerical simulations were used to
provide missing information that could not be obtained from experiments, which only
provided flow visualisations.

As a consequence, separation criteria have mainly been validated only with
computational flow models. A large majority of studies used different variants of an
unsteady separation bubble model derived by Ghosh, Leonard & Wiggins (1998) or
other flow models derived from Taylor series expansion solutions of the Navier–Stokes
equation provided by the algorithm of Perry & Chong (1986) (Haller 2004; Kilic,
Haller & Neishtadt 2005; Surana et al. 2006). In a sense, since in these examples
the entire flow is computed from data at the wall, it seems reasonable to think that
this should also be the case for the separation that must leave an imprint on the
wall. More sophisticated flow models, obtained from full numerical solutions of the
Navier–Stokes equation, are used in Surana, Jacobs & Haller (2007) and Surana et al.
(2008), but none of them reflects flows dominated by vortex shedding and, as a
consequence, turbulence. As a modest contribution, we have adapted the formulae of
Haller (2004) in cylindrical coordinates to predict separation and attachment profiles
in the vicinity of a circular cylinder (Miron, Vétel & Garon 2015), confirming that
the alternated Kármán vortex street falls into the category of fixed separation, the
profiles of which are captured by the theory.

While separation can be easily captured from data of numerical simulations in
laminar flows, it turns out to be very challenging with turbulence: the flow behaviour
in the vicinity of boundaries should not be influenced by wall modelling, as is the
case in large eddy simulation, and for direct numerical simulation the computation
of separation characteristics requires long calculation times and therefore significant
computational resources to obtain statistical convergence of mean flow quantities.
This explains the second reason why so few studies have aimed at examining the
validity of the kinematic theory of separation through experiments: to date, most
flow visualisations seem to indicate that, with turbulence, flow separation is always
moving. We have, however, to consider that the region where the separation profile is
attached to the wall at a fixed point is so indistinguishably small that an experimental
detection is difficult to obtain (Weldon et al. 2008). Some scepticism is also present
when experimental measurements of the vanishing wall shear are found to be moving,
but this is related to the fact that in the aerodynamics community this criterion is
still often considered as the separation location, whereas it has been known from a
long time that vanishing wall shear ‘does not denote separation in any meaningful
sense in unsteady flow’ (Sears & Telionis 1975).

More importantly, it is probable that moving separation is more common than
fixed separation in unsteady flows, this latter phenomenon appearing exclusively in
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periodic and quasi-periodic flows. In turbulent flows, for instance, the time scale
of the smallest eddies is much lower than that of the coherent structures, which in
turn is much smaller than that of the mean flow, meaning that the separation point
is probably not fixed spatially. However, very few studies address the detection of
moving separation points. The theoretical background used in Haller (2004) and
Surana & Haller (2008) has two limitations. First, the flow is supposed to admit
fast temporal fluctuations superimposed on a slower time-varying flow, i.e. a mean
flow, that is extracted numerically (for example through a low-order polynomial
least-squares fit or a wavelet-based decomposition), but this time scale separation
is not clear in some flows, or does not exist at all. In turbulence, for instance, the
spectral content of velocity fluctuations is continuous. Second, the moving separation
is defined at the location where the wall shear of the mean flow vanishes, but as we
shall see, this is not always true.

The objective of this paper is to contribute to a better understanding of unsteady
moving separation. In particular, by defining the separation point as a point off
the wall acting as a Lagrangian saddle point that moves close to the wall, the
unstable manifold to which it belongs corresponds to the separation profile. To
detect separation, this profile is first captured by detecting a hyperbolic Lagrangian
coherent structure (LCS) in backward time. In two dimensions, this LCS represents
a material line that exhibits locally the strongest attraction from all nearby material
lines (Haller 2011). The position of the separation point can then be inferred from
the measurement of the Lagrangian rate of strain (see e.g. Haller 2002) along the
LCS. In a large variety of applications, the instantaneous rate of strain along LCSs
is examined to analyse different flow phenomena, such as the detection of hyperbolic
cores in two-dimensional turbulence (Mathur et al. 2007), the birth of secondary
vortices from hairpin vortices in turbulent boundary layers (Green, Rowley & Haller
2007) or the prediction of imminent shape changes in oil spills in the sea (Olascoaga
& Haller 2012). In Lekien & Haller (2008), the analysis of the rate of strain is also
used to detect separation on a slip boundary that replaces the LCS. They show that
the instantaneous value is not sufficient to build the detection criterion, especially
when random flow fluctuations and noise are present. Fortunately, as the boundary is
everywhere tangential to the local velocity vector, fluid trajectories in its vicinity can
be explicitly solved and integrated in time from on-wall flow quantities. This leads to
the computation of the backward-time average of the rate of strain that better reveals
the location of the separation point as well as the angle of the separation profile. We
show here that the reason why trajectories can be computed is that the boundary acts
as a natural material barrier, and we extend this tool to any material line evolving in
the interior of the flow to detect separation that occurs off the wall.

The paper is organised as follows. General observations on fixed and moving
separation phenomena are first described in § 2. Theoretical developments based on
previous studies are then detailed in § 3. This is followed by the presentation of the
results in § 4, namely the wall flow near a rotating and translating cylinder, and the
two-dimensional, planar impinging jet, before drawing the conclusion in § 5.

2. Examples of unsteady separation induced by a rotating cylinder

The base flow that is used in the first part of this article to illustrate the separation
phenomena is the two-dimensional velocity field of the creeping flow developing
around a rotating circular cylinder moving close to a plane wall (Klonowska-Prosnak
& Prosnak 2001). The solution, detailed in appendix A, was chosen over the
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x

y

R

FIGURE 1. Flow geometry and parameters of the rotating and translating cylinder
test case.

separation bubble model derived by Ghosh et al. (1998) because it is valid not
only in the vicinity of the wall but also everywhere inside the flow, a requirement
here since we shall see that the separation point is captured above the wall. Moreover,
this is a simple configuration where separation can be completely controlled.

The flow geometry is presented in figure 1. A cylinder of radius R, initially at
position xc = 0 and yc, rotates about its axis at a constant angular velocity Ω , which
leads to the appearance of a separation point at a position on the wall downstream
of the cylinder. By translating the cylinder on a line parallel to the wall following a
prescribed trajectory, the separation can be manipulated under different flow conditions.
Throughout the article, we use R= 1, yc = 2 and Ω = 1, and the cylinder velocity is
Uc=U0+β cosωt, where U0 is a constant translating velocity on which an oscillating
movement of angular frequency ω and amplitude β is superimposed. Before examining
the moving separation, the fixed separation is first investigated.

2.1. Fixed separation
If the cylinder oscillates without translation (U0= 0), the flow is periodic with period
T and falls into the category of fixed separation. The separation occurs at a point on
the wall where the skin friction, averaged over one time period, vanishes, and the
temporal separation profile can be computed using formulae given in Haller (2004).

Figure 2 presents the results obtained with T = 1 and β = 6. The second-order
separation profile was obtained over time and compared to the instantaneous
streamline emanating from the instantaneous zero skin-friction point. We can note that
fluid particles, initially aligned with the wall, separate from it as they are advected
in time to form a spike that is located upstream of the actual separation point, which
indeed appears to be fixed. This contrasts with the position of the instantaneous zero
skin-friction point, which oscillates around the true separation point, thus illustrating
that the separation mechanism is not related to the Prandtl criterion. We may further
note that the prediction of a time-dependent separation profile agrees with the particle
motion close to the wall. As the distance from the wall increases, the prediction
degrades but we must note that the theory provides the separation profile in terms
of an approximation obtained from a series expansion in y. Only a second-order
separation profile has been computed here, and as a consequence a better agreement
would have been obtained by including higher order terms.

2.2. Moving separation
To generate a moving separation, the cylinder can be translated. As a first illustrative
example, the velocity of the cylinder is set to a constant value (U0= 0.3, β = 0) with
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 2. (Colour online) Fixed unsteady separation for the time-periodic flow with
U0= 0, ω= 2π and β = 6: (a) t= 0, (b) t= 3.2T , (c) t= 6.4T , (d) t= 9.6T , (e) t= 12.8T
and (f ) t= 16T . The Lagrangian separation profile (red) is shown with the instantaneous
streamline (grey) emanating from the zero skin-friction points. Fluid particles are initially
placed on material lines aligned with the wall using two different colours (blue and green)
depending on their location with regard to the predicted separation profile at the initial
time t= 0.

results presented in figure 3. Fluid particles are released from two lines parallel to the
wall at the initial time t= 0 (figure 3a). Their positions are then followed in time in a
reference frame moving with the cylinder. As for the fixed separation, they gradually
separate from the wall to form a spike whose location does not coincide with the
instantaneous zero skin-friction point. However, while particles located on the blue
lines are ejected away from the wall, particles that are initially located at a lower
transverse location (green lines) form a tip but stay close to the wall, from which
they are never ejected. This is the case even at large time instants, as for example at
t= 100 in figure 3(f ).

If we follow Surana & Haller (2008), there is no flow fluctuation in this example,
and hence separation is predicted to appear where the wall shear of the mean flow,
i.e. of the instantaneous flow here, vanishes, which is not observed as no separation
occurs near the zero skin-friction point. Moreover, it appears difficult to find a
criterion to detect separation using only quantities measured along the wall yet
results seem to go, at least qualitatively, in the direction of the Moore–Rott–Sears
(MRS) principle (Rott 1956; Sears 1956; Moore 1958), which states that unsteady
separation takes place at a point off the boundary. This latter criterion further states
that separation occurs at a moving point where the wall component of the shear
is zero, i.e. inside the boundary layer rather than on the wall, thus requiring the
velocity of the separation point to be known. However, in the example above, the
wall shear does not vanish anywhere in the vicinity of the spike formation, indicating
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(a)

(c)

(e)

(b)

(d )

( f )

FIGURE 3. (Colour online) Moving separation with U0 = 0.3 and β = 0. Material lines
(blue and green) initially aligned with the wall at t= 0 in (a) are then advected in time
and seen in a reference frame moving with the cylinder at times (b) t = 4, (c) t = 8,
(d) t = 12, (e) t = 16 and (f ) t = 100. Instantaneous streamlines are shown in red (note
that in (f ) the blue line shows material points that have been attracted and ejected from
the wall by separation, then wrapped around the cylinder and finally transported to its left
side; since other points are left behind the cylinder, they end up being disconnected from
the material line).

that, quantitatively, the MRS principle is not verified. However, the MRS principle
can only be applied in the context of boundary layer theory, i.e. in the asymptotic
limit when the Reynolds number Re→∞, which is not the case here. Therefore,
another detection criterion is required.

3. Detection of separation
Instead of seeking the separation point on a boundary, it appears unavoidable to

look for a point inside the flow, i.e. off the boundary. From observations of results
shown in figure 3, and in accordance with the MRS principle, the separation should
be more adequately described by a saddle point located above the wall (as sketched
in figure 4 and detailed below). This is the case, for example, for the flow around a
moving cylinder (see e.g. Koromilas & Telionis 1980).

3.1. Theoretical background
The theoretical background used in this study is based on the work of Haller &
Iacono (2003) and Lekien & Haller (2008). As presented in appendix B, these works
used a local change of coordinate, whose axes are the tangent and normal unit
vectors e(x(t), t) and n(x(t), t) to the local velocity vector, to study Lagrangian
hyperbolicity. For example, if we take at an arbitrary initial time a material line
that is everywhere tangent to e, we obtain a streamline. When advected in time, this
line is no longer everywhere tangent to e except in particular cases. In steady flows,
streamlines coincide with trajectories, so that the initial streamline is, at subsequent
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826 P. Miron and J. Vétel

FIGURE 4. Separation pattern defined around a Lagrangian saddle point of coordinates
xs= (xs, ys), including an attracting material line (unstable manifold) M (t) and a repelling
material line (stable manifold) N (t).

times, always tangent to e. As shown in appendix B, an interesting consequence
resulting from this property is that an infinitesimal perturbation to the trajectory of
a point belonging to the streamline can be explicitly computed in time (through the
term α in system (B 4) that vanishes), thus allowing the study of the stability of the
streamline. As a final result, the λ-criterion, which characterises the cumulative rate
of strain on the line instead of the instantaneous value of this quantity, can be used
to characterise different phenomena. In Haller & Iacono (2003), it serves to detect
high stretching regions in barotropic turbulence more efficiently than for example the
finite-time Lyapunov exponent. In the case of a boundary with slip velocity conditions,
the wall is always tangent to the velocity vectors, and therefore the λ-criterion can be
used to detect separation on free-slip walls, such as current separation on coasts from
surface ocean velocity data for applications in geophysics (Lekien & Haller 2008).

Here, the problem is reversed. The material line is not imposed but on the contrary
is what we are looking for. Figure 4 presents schematically the trajectories of fluid
particles around a Lagrangian saddle point moving close to a wall. The separation
point, located at xs, is the intersecting point between an attracting material line M (t),
which coincides with the separation profile, and a repelling material line N (t),
corresponding to an unstable and a stable manifold, respectively. Since M (t) is a
material line, by defining e(t0) (respectively n(t0)) as unit vectors along and tangent
(respectively normal) to M (t0) (i.e. not necessarily aligned with the local velocity
vectors) at an arbitrary initial time t0, then M (t) remains everywhere tangent to the
family of unit vectors e(t) by advection in time. To simplify, if at t0 a small element
of this line is ξ(t0)= ξ(t0)e(t0), then ξ(t) is always on this line for t > t0, i.e.

ξ · n= 0 and
d
dt
(ξ · n)= 0, (3.1a,b)

which gives, using the linearised flow (B 1),

〈n, (∇u)e〉x(t) − n · ė|x(t) = 0. (3.2)

Since (3.2) simply means α(t)= 0, we are in the situation where the λ-criterion can
be used to detect separation. By setting e = (cos θ, sin θ) and n = (−sin θ, cos θ),
(3.2) also provides an equation for θ(t) depending on the spatial derivatives of velocity
components:

θ̇ = vx cos2 θ − uy sin2 θ + (vy − ux) cos θ sin θ. (3.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.461


Towards the detection of moving separation in unsteady flows 827

For example, in the case of a separation point fixed on a wall, N (t) would be the
wall boundary (y=0), and in the case of an incompressible flow, at the wall we would
have ux =−vy = 0 and vx = 0. This would lead to

d
dt

(
1

tan θ

)
= uy, (3.4)

which is the result obtained by Haller (2004).
In the case of the cylinder translating at a constant velocity U0 described in § 2.2,

since the flow is steady in the frame moving with the cylinder, the separation point
and profile should also be steady in this reference frame. As a consequence, the
separation point has a constant streamwise velocity U0 and zero transverse velocity.
Since the streamlines have a reflectional symmetry about the vertical axis passing
through the centre of the cylinder, on this axis we have v = 0, which indicates a
probable location of the separation point (xs = xc). Equation (A 1) was then solved
with u = U0 and v = 0 to find the coordinate ys of the separation point. As for the
separation line, θ̇ = 0, and since at the separation point we have ux= vy= 0 due again
to the reflectional symmetry of the streamlines, (3.3) gives

tan θ =±
(
vx

uy

)1/2

. (3.5)

In the reference frame moving with the cylinder the flow is steady, the separation
point has zero relative velocity components, and then also corresponds to a critical
point according to the concepts of Perry & Chong (1987). As a consequence, the slope
angle given by (3.5) corresponds to the direction of the eigenvectors of the velocity
gradient tensor.

Figure 5 presents the separation mechanism by advecting fluid particles initially
located in an elliptical region centred on the predicted separation point. In the close
vicinity of the saddle point, particles’ trajectories remain tangent to the stable and
unstable manifolds as they are convected by the mean flow. Particles in the upper
quadrant are ejected from the wall while in the lower quadrant they are attracted
towards the wall. This example, however, is quite classical since the streamline
pattern, coincident with particle trajectories since the flow is steady in the frame of
reference linked to the cylinder, is the standard pattern induced by a convected vortex
close to a wall (Doligalski, Smith & Walker 1994). If the flow displays an arbitrary
time dependence, streamlines have no relationship to Lagrangian material lines, which
therefore need to be detected. This is examined in the next subsection.

3.2. Initial conditions
Before capturing the separation point, the unstable manifold at time t0, M (t0), is
first extracted by detecting hyperbolic Lagrangian coherent structures (LCSs) in the
vicinity of the wall. Hyperbolic LCSs were traditionally defined geometrically as local
maximising curves (defined as ridges) of the finite-time Lyapunov exponent (FTLE)
field with particular properties, but it has been shown since that such definitions
are inadequate (see, e.g., the recent review of Haller 2015, for details). Recently,
Haller (2011) refined the definition of LCSs and proposed a more consistent and
convenient way to extract them based on their physical properties. With this new
approach, a hyperbolic LCS is locally the strongest repelling or attracting material
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 5. (Colour online) Prediction of moving separation with U0 = 0.3 and β = 0:
(a) t = 0, (b) t = 0.8, (c) t = 1.6, (d) t = 2.4, (e) t = 3.2 and (f ) t = 4.0. Particles
(seen in a reference frame moving with the cylinder) are released with a colour (blue or
green) depending on their initial location relative to the red straight lines that correspond
to the tangent to the stable and unstable manifolds predicted by (3.5). Grey lines are
instantaneous streamlines (computed in the moving frame) passing close to the separation
point.

line over a finite time interval (note that a geodesic theory, generalising the concept
of LCSs to hyperbolic, elliptic and parabolic material lines, is presented in Haller &
Beron-Vera (2012), but in the remainder of the paper the term LCS will refer to a
hyperbolic LCS as other types will not be used). More precisely, the LCS is captured
by maximising a finite-time normal repulsion measure over all nearby material lines.
Therefore, if we adopt this definition, M (t0) can be seen as a hyperbolic material
line computed in backward time. The numerical algorithm followed here to extract
LCSs is fully detailed in Farazmand & Haller (2012). Briefly, we compute strainlines
that, by definition, are material lines that are everywhere tangent to the field of unit
eigenvectors associated with the smaller eigenvalue field of the Cauchy–Green strain
tensor. In practice, strainlines are simply computed as trajectories of the eigenvector
field for a given time, in a way similar to the computation of streamlines from the
velocity field. The procedure starts with the selection of initial coordinates that verify
two criteria. The first criterion ensures that the normal repulsion rate computed along
the LCS (defined in Haller 2011) is larger than the tangential stretching rate, and the
second that it reaches locally a maximum relative to other material lines. Strainlines
are then integrated until either the boundary of the domain is reached or one of
the criteria fails during the integration. From all initial grid points respecting these
conditions, a family of Lagrangian coherent structures is first obtained, typically
a few hundred in complex flows and high mesh density. In fact, many of those
structures are very close to each other and differ only because of their different
initial position and the numerical errors introduced during the integration. To filter
out similar LCSs and facilitate the analysis, the average values of the FTLE over
all candidates are compared against each other in a closed circular region (typically
define by a small radius). Those with the highest values are selected and others
discarded. In our case, this method effectively decreases the number of LCSs by
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more than one order of magnitude (for further technical details, see Farazmand &
Haller 2012). Once a material line is extracted, its evolution can be followed in time
by advecting fluid particles that compose it; this is performed in the present study by
using a fifth-order explicit Runge–Kutta integration scheme. This computation can be
implemented without difficulty because the forward time advection of an attracting
LCS is numerically stable.

Knowing the geometry of the LCS, the separation point can be obtained by seeking
the hyperbolic (saddle) point that belongs to M (t0), i.e. the point with the highest
tangential rate of strain (or lowest normal rate of strain). In practice, the λ exponent,
defined by (B 10), is computed for all points of the LCS over the time interval [t0, t]
and xs(t0) is obtained where λ shows a maximum, which can be detected whenever
the integration time is long enough. Note that, since at t0 the LCS is defined by the
desired number of points, an adequate precision on the initial unit vectors can be
obtained to compute the initial value of λ. However, when the LCS is advected in
time, this precision can decrease as particles separate from each other. This difficulty
is avoided by using (3.3) instead to compute the exact angle in time, since θ(t) can
be simply obtained from knowledge of its initial value and of the spatial derivatives
of velocity. This contrasts with previous methods used in the literature (see e.g.
Farazmand & Haller 2012; Olascoaga & Haller 2012) that require the computation
of the gradient of the flowmap at each time instant. Finally, once the maximum of λ
is extracted at t, the location of the separation point xs(t0) can be traced backward
in time, as well as the initial separation angle θs(t0).

4. Results
The detection of the separation point and angle shown in the previous section will

be illustrated on two different flows. The general procedures will be detailed in § 4.1
with a rotating cylinder that can translate and oscillate in a direction parallel to a plane
wall, and will then be applied to a vortical flow in § 4.2.

4.1. The rotating and translating cylinder
The first example considered here corresponds to the Stokes flow introduced in
§ 2.2, defined by a translating and rotating cylinder, but with, in addition, a periodic
perturbation with β = 0.5 and ω = 2π/5. The extraction of the separation point and
angle at t= 0 is presented in figure 6. The FTLE field, computed in backward time,
is shown in figure 6(a) and clearly highlights the existence of a LCS emanating from
the wall that wraps around the cylinder. The Cauchy–Green strain tensor computed
to obtain the FTLE field was then used to extract the exact geometry of the LCS
obtained from the algorithm presented in Farazmand & Haller (2012). In this simple
flow, only one LCS was extracted. This is a particular case since generally a large
number of hyperbolic lines are obtained (see § 4.2). As can be seen, the line is indeed
localised close to the extrema of the FTLE field, with a spatial resolution as high as
desired. Figure 6(b) shows the computation of λ along the LCS when advected in
time as a function of the initial curvilinear coordinate s and the integration time t.
With increasing time, a maximum clearly appears that can be traced back to t = 0
to find the initial location of the saddle point on the LCS, which corresponds to the
separation point. This point is found at s= 0, i.e. at x= 0 on the LCS identified in
figure 6(a). This confirms that the separation point is clearly located above the wall.

Once the initial location and angle of the separation point are known, its evolution
in time can be predicted. Results are presented in figure 7. As observed, fluid
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FIGURE 6. (Colour online) Extraction of the separation point and angle for the flow
with U0 = 0.3, β = 0.5 and ω = 2π/5. In (a), contours of the FTLE field are visualised
(levels increase from blue to white) together with the LCS (red) extracted at t = 0 with
the algorithm presented in Farazmand & Haller (2012). λ = ∫ t

0 S‖(τ ) dτ , computed as a
function of s, the initial curvilinear coordinate on the LCS at t = 0 normalised by the
length of the LCS, is visualised in (b) through isocontours (from blue to white). The origin
of s corresponds to the point on the LCS in (a) where x= 0.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 7. (Colour online) Prediction of moving separation with U0 = 0.3, β = 0.5 and
ω= 2π/5: (a) t= 0, (b) t=T/5, (c) t= 2T/5, (d) t= 3T/5, (e) t= 4T/5 and (f ) t=T . The
legend is the same as in figure 5. The dotted line indicates the trajectory of the separation
point.

particles globally follow the trajectory of the separation point without crossing the
predicted separation profile in the close vicinity of the separation point (this is not
the case in the periphery because the profile is approximated by the tangent defined
at the separation point). One can note that the trajectory of the separation point is
disconnected from that of the cylinder, i.e. the separation point does not move with
the cylinder but oscillates close to it following an ellipsoidal path. In contrast, the
Eulerian saddle point, as identified in figure 5(a), is always located on the vertical
axis passing through the cylinder centre due again to the reflectional symmetry of
streamlines about the vertical axis passing through the cylinder centre. This illustrates
that in the current example an Eulerian-based approach cannot be used to capture
unsteady separation that is Lagrangian by nature.
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FIGURE 8. (Colour online) Tracking of the separation point and of the separation profile
over time. In (a), the coordinates of the separation point are plotted in different ways, and
in particular are compared to those of the cylinder. (b) Shows the position of the LCS and
of the cylinder for three time instants in a reference frame moving at the velocity U0. The
separation point is indicated by the circles and the theoretical prediction of the slope of
the separation profile at the separation point is indicated in red: ——, t= 0; – – –, t= 1.0;
· · · · · ·, t= 2.4.

Further details on the separation point kinematics are provided in figure 8. In
figure 8(a), it can be observed that the position xs differs from the linear motion U0t
by only a small value. In figure 8(b), the separation point and angle are visualised in
a frame moving at a velocity U0 for three time instants. One can note that the angle
of separation changes over time but only slightly. These results are consistent with
those obtained for the fixed separation in the sense that the Lagrangian saddle points
exhibit fewer oscillations than their Eulerian counterpart.

4.2. The impinging jet
The flow detailed in the previous section is a quite simple Stokes flow. To increase the
level of complexity, we study here the vortical flow generated by the impingement of
a laminar jet on a plane wall perpendicular to the main jet velocity. This configuration
has been the subject of many studies due to its fundamental and industrial importance,
especially in cooling or heating systems. The most active research topic probably
concerns the local maxima of the Nusselt number observed at two different radial
locations when the plate is heated, the origin of which has been discussed in numerous
works (see e.g. Dairay et al. 2015, for a recent literature review).

The geometry, while simple, exhibits a lot of complex mechanisms. One of them
concerns the formation of an unsteady separation phenomenon. As schematically
presented in figure 9, when a primary vortex (PV) created in the mixing layer of the
jet approaches the wall, an adverse pressure gradient is induced close to the wall,
yielding the formation of a shear layer. This shear layer is unstable, and leads to
the generation of a secondary vortex (SV), counter-rotating with the primary vortex
(a thorough understanding of this phenomenon is detailed in Dairay et al. (2015)).
Simultaneously, an unsteady separation is generated in the near region of the wall,
which then moves downstream with the primary vortex. This scenario, while periodic,
involves a separation that appears and disappears, and therefore falls into the category
of moving separation according to Haller (2004). In the experiments conducted by
Didden & Ho (1985) on a forced jet, it is found that the wall shear stress is at any
time positive in the vicinity of the secondary vortex formation, thus invalidating the
use of the zero skin-friction point to detect separation.
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PV
SV

FIGURE 9. Physical mechanism of the unsteady separation in an impinging jet with PV
and SV denoting the primary and the secondary vortex, respectively (adapted from Didden
& Ho 1985).

In the present study, post-processing tools presented in previous sections are applied
to the case of a two-dimensional, planar impinging jet. Flow conditions are simple but
sufficient to be dynamically relevant to an unsteady separation. The flow arrangement
is similar to the one shown in figure 9, i.e. the jet is vertical and oriented towards
the bottom. The finite element method was used to compute the velocity fields.
The distance between the jet nozzle and the plane wall is 10D, where D is the jet
width. The computational domain is 50D in the axial direction parallel to the plate,
symmetrical about the jet centreline, and 10D in the transverse direction. A no-slip
boundary condition is imposed on the wall and on the upper boundary. At the exit
sections, an outflow condition that minimises the influence of the domain truncation
is imposed (Dong, Karniadakis & Chryssostomidis 2014). To trigger the jet instability,
a hyperbolic tangent velocity profile (shown in figure 9) is imposed at the jet nozzle:

U(x)=−Ua

2

[
1+ tanh

(
5− 10|x|

D

)]
, (4.1)

where x= 0 is located on the symmetry axis of the jet and Ua is the velocity on the
jet axis. The mesh, composed of Q2–Q1 elements, is refined as we approach the wall.
The Reynolds number is defined by Re=UaD/ν, where ν is the kinematic viscosity,
and is fixed at Re= 500.

Figure 10 shows a view of the flow region where secondary vortices are generated.
In figure 10(a), the primary vortices are highlighted by negative vorticity contours
(counter-clockwise rotation), while their passage close to the wall generates a local
shear layer of vorticity with the opposite sign (clockwise rotation). When the shear
layer instability is sufficiently developed, secondary vortices appear downstream and
lift up from the wall, generating an unsteady separation.

Figure 10(b) shows contours of the FTLE field together with extracted LCSs using
the algorithm detailed in Farazmand & Haller (2012). We can note that the LCSs are
not necessarily ridges of the FTLE field, and conversely, local maxima of the FTLE do
not necessarily correspond to a LCS (Haller 2011). However, as indicated by contours
of the average FTLE along LCSs, most attracting LCSs are close to local maxima of
the FTLE. These LCSs are dynamically linked to the formation and development of
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(a)

(b)

FIGURE 10. (Colour online) Visualisation of the region impinged on by the vertical
jet. (a) Contours of the out-of-plane vorticity (the blue and red colours correspond
to a clockwise and a counter-clockwise rotation, respectively). (b) LCS material lines
coloured by the FTLE averaged along each line (values increase from light to dark red)
superimposed on the FTLE contours (increasing from blue to white).

vortices seen in figure 10(a). In particular, two of them, denoted as γ1 and γ2, are
detected close to the wall, and contain a section that is adjacent to the wall.

The analysis of LCSs highlighted in figure 10 can be further deepened in
figure 11(a), which presents the evolution of λ computed on γ1 as a function of
the integration time. As t increases, a first point on γ1, noted pγ1

1 , is detected. If
t is further increased, a second point (pγ1

2 ), located upstream of pγ1
1 , emerges, and

then a third point (pγ1
3 ), located upstream of the first two. As longer integration

times are required to extract characteristic points, figure 11(b) shows a plot similar
to figure 11(a) except that the instantaneous value of the tangential strain rate is
visualised instead of its time integral. Contrary to pγ1

1 which shows a positive strain
rate throughout its trajectory, S‖ changes sign twice for pγ1

2 during an initial period
of time before being detected. This period is even longer for pγ1

3 , for which S‖
experiences many sign changes. This indicates that λ does not have a monotonic
variation in time and thus explains why a long integration time is necessary for its
detection.

Figure 11(c,d) show the same results as in figure 11(a,b) but for the second LCS
γ2 (visualised in figure 10b). The same trends can be observed, with the detection
of four saddle points on the material line (pγ2

1 –pγ2
4 ). As for γ1, the first point is

characterised by a positive rate of strain through its whole history while the others
experience several sign changes. A remarkable feature of these points is that the
hyperbolicity persists for a long time and even if they are ejected from the wall. As
another example, λ of γ3, a LCS detected far from the wall (see figure 10b), was
computed in the same manner as for the other LCSs. Results, shown in figure 11(e,f ),
also reveal that the saddle point keeps its characteristics even when advected with
the vortices in the interior of the flow.
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FIGURE 11. (Colour online) Contours of λ= ∫ t
0 S‖(τ ) dτ (a,c,e) and instantaneous values

of the tangential strain rate S‖ (b,d,f ) as a function of the normalised curvilinear coordinate
s (same definition as in the legend of figure 6, oriented from left to right) and the
integration time t. (a and b) correspond to the LCS identified by γ1 in figure 10(b),
(c and d) to γ2 and (e and f ) to γ3. Red crosses indicate the instants from which S‖
at the points pγj

i preserves a positive sign.

An overview of the full separation mechanism is finally presented in figure 12. The
advection of LCSs γ1 and γ2 is visualised in time together with the characteristic
points extracted in figure 11. Figure 12(a) corresponds to the initial time shown in
figure 10. In figure 12(b), we can note that γ2 is clearly stretched around points pγ2

1 to
pγ2

3 . This is still the case between figures 12(b) and 12(c) except for point pγ2
3 , which

has experienced a sign inversion of the tangential strain rate since its two neighbouring
points moved closer to it instead of moving away from it as between figures 12(a) and
12(b), and as was more formally indicated in figure 11(d). Between figures 12(c) and
12(d), the neighbouring points of pγ2

1 still move away from it, which confirms that S‖
is always positive in figure 11(d), but the point pγ2

2 has experienced a sign inversion.
Figure 12(d) corresponds to the time instant for which the strain rate of pγ2

2 becomes
positive and preserves its sign, as indicated by a red cross in figure 11(d). This is the
condition that we use to define a separation point. For subsequent times (figure 12e–g),
we can indeed note that the separation point lifts up from the wall and is advected
with the vortices, visualised by the roll-up of the γ2 curve. The characteristic points
pγ1

1 –pγ1
3 extracted on γ1 can also be tracked in time in figure 12. While S‖ is positive

for the furthest downstream point (pγ1
1 ) during the entire time sequence shown, it is

observed that the tangential strain rate of the second point pγ1
2 experiences several

sign changes before keeping a positive value from t= 29.65 (figure 12f, and see also
figure 11b), which defines the time at which the separation can be defined. We can
then verify that this position is very close to that of pγ2

2 in figure 12(d), i.e. of the
previous separation detected on the second LCS γ2. A brief instant after the lift-up of
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FIGURE 12. (Colour online) Advection in time of LCSs γ1 (dotted line) and γ2 (solid line)
detected in figure 10. The characteristic points extracted in figure 11 are simultaneously
followed in time at t= 10.05 (a), t= 14.95 (b), t= 18.25 (c), t= 21.05 (d), t= 25.45 (e),
t= 29.65 (f ), t= 30.95 (g) and t= 40.65 (h). In all plots, the three points of γ1 (pγ1

1 –pγ1
3 )

are marked in green while the four points of γ2 (pγ2
1 –pγ2

4 ) are marked in red. Orange points
are points close to the characteristic points of γ2 that are used to indicate if locally we
have a stretching or a compression. Time instants where S‖ becomes positive correspond
to red crosses in figure 11.

pγ1
2 from the wall seen in figure 12(f ), we observe that of pγ2

3 in figure 12(g), again at
a close location. Finally, figure 12(h) shows data at approximately one vortex shedding
period after the instant shown in figure 12(g). We can observe that the most upstream
saddle point of each LCS lifts up from the wall at the same instant as they are very
close to each other (in reality there is a delay but it is so small that both separations
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are indicated on the same subfigure). Again, the locations of pγ1
3 and pγ2

4 before being
ejected from the wall are very close to that of pγ2

3 seen in figure 12(g).
These results show that the separation in the boundary layer developing on the wall

occurs on saddle points located on LCSs moving above the wall. The bifurcations
of these points from negative to positive strain rates are directly associated to the
lift-up of secondary vortices, which confirms the scenario proposed by Didden & Ho
(1985) to describe the unsteady separation at the wall. A direct consequence of this
process is that a thin region exists close to the wall where the fluid is not entrained
within the flow but on the contrary can even be directed towards the wall, at least
for a finite time. This reflects results obtained in El Hassan et al. (2012) where
cross-correlations between wall shear stress, measured with the polarographic method,
and vorticity, obtained from particle image velocimetry, were marked by a change of
behaviour between the main flow and a very thin fluid layer in the near-wall region.

5. Conclusion

In this article, we construct a tool to detect moving separation based on post-
processing of velocity fields. Separation points are defined as saddle points off the
wall and can be detected by analysing an exponent (similar to a finite-time Lyapunov
exponent) that cumulates the history of the strain rate along their unstable manifolds.
This has been used before to detect separation on slip boundaries to which the
criterion was applied, but we show that the tool can also be applied to any material
line within the flow. In particular, we use recent developments on LCS detection to
select a family of material lines with highest normal repulsion rate (Haller 2011). It
is found that separation points are indeed located on these material lines and can be
subsequently followed in time by the advected flow.

An analytical Stokes flow, where a separation is generated by a cylinder rotating
about its axis and moving parallel to a wall, is first examined. If the cylinder has a
pure oscillating motion, the flow is periodic and can be predicted with the exact theory
of unsteady separation (Haller 2004). In the case where the cylinder translates with
a non-periodic motion, it is found that separation does not leave an imprint on the
wall so that wall-based quantities cannot be used to reveal the phenomenon. Instead,
the separation point coincides with a Lagrangian saddle point that can be captured
on a hyperbolic Lagrangian coherent structure located along the wall but inside the
flow. This was the general idea of the MRS principle; however, this latter criterion
cannot detect Lagrangian saddle points since it is based on Eulerian quantities. On
the other hand, the MRS principle can be applied only to infinite Reynolds number
flows, which means that the criterion is not invalidated in this study. The location and
angle of separation, defined by the tangent to this LCS, can be predicted provided that
they are known at an initial time, and the recipe can be generalised to any arbitrary
motion of the cylinder.

To validate the methods for more complex flows exhibiting vortex development, the
unsteady moving separation appearing in the vicinity of a wall impinged on by a
two-dimensional planar jet is investigated. Results obtained from the rotating cylinder
are confirmed in the sense that separation can indeed be localised on saddle points
that cyclically appear on most attracting material lines located above the wall. These
separation points are then ejected in the interior of the flow and travel with vortices
that also lift up from the wall.

This study is not a new theory but rather gathers findings from several theoretical
works in order to deepen the understanding of moving separation. Here we can
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predict separation at an arbitrary time provided that we know the separation point
and profile at an initial time. A self-consistent theory would be required to fully
predict the unsteady separation disregarding these initial conditions, or even to fill the
gap between finite Reynolds number flows and the asymptotic theory, for example in
the context of the MRS principle. This is probably not unrealisable, but contrary to
the case of the separation fixed on a wall, the difficulty here lies in the additional
capture of the unknown separation geometry. Two other important aspects have to be
considered to obtain a reliable prediction tool. The first one concerns the capture of
the separation that should be based on past flow history, and the second relates to
quantities that can be measured at the wall. Here, saddle points of material lines are
captured in forward time. This could have been done in backward time but in this
way the advection of an attracting LCS is numerically unstable, which requires the
implementation of additional specific numerical methods. Concerning wall-based data,
we can note that Lagrangian saddle points are very close to the wall in the case of
the impinging jet. In flows with higher Reynolds numbers, this region is very thin so
that a linearised flow, based on wall quantities, could be envisaged.
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Appendix A
Klonowska-Prosnak & Prosnak (2001) provided the solution to the problem of a

creeping flow around a fixed rotating circular cylinder close to an infinite plane wall
moving at a constant velocity. A similar flow was solved by Hackborn, Ulucakli &
Yuster (1997) where the cylinder is confined between two parallel infinite walls. While
an analytical solution is provided, one term of the stream function is based on an
integral with an infinite upper limit, which requires a numerical procedure that can be
time-consuming, which is why the solution of Klonowska-Prosnak & Prosnak (2001)
was preferred here.

The original solution considered the wall at a strictly positive ordinate. This solution
has been simplified here and extrapolated by setting the wall at y= 0. If u and v are
the velocity components in the axial and transverse directions, then the solution is
given by the following complex function (with i=√−1):

u(z)− iv(z) = − Uw

2 log(a)

[
2 log

( |ζ |
a

)
+ µ

2ζ
(z∗ − z)(ζ − i)2

]
+ σ(ζ − i)2

[
iµz∗

2

(
a
ζ 2
+ 1

a

)
− i
ζ

(
a+ 1

a

)
+ 1

2a

(
a2

ζ 2
− 1
)]

+ σ
[

a+ 1
a
+ i
(

a
ζ ∗
− ζ

∗

a

)]
, (A 1)

where
z= x+ iy, ζ = ζ (z)= 1+ iµz

i+µz
, (A 2a,b)

with the star denoting the complex conjugate. The constants a, µ and σ in (A 1) are
obtained from the geometry and the kinematics of the cylinder:

a= R+ yc −
√

y2
c − R2

R+ yc +
√

y2
c − R2

, (A 3)
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µ= 1√
y2

c − R2
, (A 4)

σ = a
a2 − 1

(
− Uw

2 log a
+ 2Ωa2

µ(a2 − 1)2

)
, (A 5)

where Uw is the velocity of the wall and R is the radius of the cylinder initially
centred at (0, yc) with angular velocity Ω . As in this study we consider only fixed
walls, the frame moving with the wall is used as the reference frame. By taking
x − Uwt instead of x as the axial coordinate and u − Uw instead of u in (A 1), we
obtain the flow for a cylinder moving at Uc =U0 =−Uw. If, in addition, we want to
impose an oscillation on the cylinder, then we use the superposition principle since
(A 1) is a solution of the Stokes (linear) equation. To obtain this, we add to (A 1)
the velocity field of a uniform flow oscillating in time with velocity −β cos(ωt). In
the frame moving with the wall, the velocity field remains unchanged, and only a
change of coordinate is necessary, i.e. x − Uwt + β sin(ωt)/ω is used instead of x,
which results in a flow developing close to a fixed wall around a moving cylinder of
velocity Uc =U0 + β cos(ωt).

Appendix B
An infinitesimal perturbation ξ to the trajectory x(t, x0) = (x(t, x0), y(t, x0)) is

described by the following linearised flow:

ξ̇ =∇u(x(t, x0), t)ξ , (B 1)

where u= (u, v) is the velocity vector defined at time t and at the initial position x0,
which will be omitted to simplify the notation. Following Haller & Iacono (2003),
Lekien & Haller (2008) introduced a local coordinate system aligned to the local
velocity vector to transform (B 1) into a system that can be solved explicitly. Here,
we consider the more general case where the coordinate system has arbitrary axes
defined by the tangent unit vector e(x(t), t) and the normal unit vector n(x(t), t). With
the transformation matrix T (x(t), t) defined by

T = [e(x, t) n(x, t)], (B 2)

the coordinates ξ along x(t) are changed to the coordinates η= (η1, η2) aligned with
e and n:

ξ = T (x, t)η (B 3)

and the linearised flow (B 1) is transformed into

η̇=
(

S‖(t) γ (t)
α(t) S⊥(t)

)
η. (B 4)

In the new system (B 4),

S‖ = 〈e, (∇u)e〉x(t) = 〈e, Se〉x(t) (B 5)

is the tangential rate of strain along the trajectory x(t), S being the deformation tensor.
The normal rate of strain is

S⊥ = 〈n, (∇u)n〉x(t) =−S‖ + δ(t) with δ(t)=∇ · u|x(t) (B 6)
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and the antidiagonal terms are

γ (t)= 〈e, (∇u)n〉x(t) + n · ė|x(t) (B 7)

and
α(t)= 〈n, (∇u)e〉x(t) − n · ė|x(t). (B 8)

If the local coordinate system is aligned with the local velocity vector, e is defined
as u/|u|, and α(t) becomes

α(t)=− u⊥ · ut

|u|2
∣∣∣∣

x(t)
, (B 9)

where u⊥ is a vector orthogonal to u. In Haller & Iacono (2003), steady and slowly
varying velocity fields are studied, so that α(t) = 0 or is negligible, and the system
(B 4) becomes upper diagonal and can therefore be integrated. In Lekien & Haller
(2008), this system is used to describe the separation on a slip boundary. Since the
boundary is fixed, ut is parallel to u, and α vanishes again. Therefore, in both cases,
the line {η2= 0} is an invariant subspace for (B 4), which means that a vector initially
tangent to e remains tangent for all t. The stability of the line {η2=0} can be obtained
from the evolution of η2 in time. By defining

λ(t0, t)=
∫ t

t0

S‖(τ ) dτ , (B 10)

we obtain, for an incompressible flow,

η2(t)= η2(t0)e−λ(t0,t) (B 11)

which indicates that for λ> 0 (λ< 0), the line {η2= 0} attracts (repels) over the time
interval [t0, t].
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