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Abstract

This paper focuses on the inference of modes for which a logic program is guaranteed to

terminate. This generalises traditional termination analysis where an analyser tries to verify

termination for a specified mode. Our contribution is a methodology in which components of

traditional termination analysis are combined with backwards analysis to obtain an analyser

for termination inference. We identify a condition on the components of the analyser which

guarantees that termination inference will infer all modes which can be checked to terminate.

The application of this methodology to enhance a traditional termination analyser to perform

also termination inference is demonstrated.
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1 Introduction

This paper focuses on the inference of modes for which a logic program is guaranteed

to terminate. This generalises traditional termination analysis where an analyser tries

to verify termination for a specified mode. For example, for the classic append/3

relation, a standard analyser will determine that a query of the form append(x, y, z)

with x bound to a closed list terminates and likewise for the query in which

z is bound to a closed list. In contrast, termination inference provides the result

append(x, y, z)← x∨z with the interpretation that the query append(x, y, z) terminates

if x or z are bound to closed lists. We refer to the first type of analysis as performing

termination checking and to the second as termination inference. We consider universal

termination using Prolog’s leftmost selection rule and we assume that unifications

do not violate the occurs check.

Several analysers for termination checking are described in the literature. We

note the TermiLog system described in Lindenstrauss and Sagiv (1997) and the

system based on the binary clause semantics described in Codish and Taboch
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(1999). Termination inference is considered previously by Mesnard and coauthors

(Mesnard, 1996; Mesnard and Neumerkel, 2001; Mesnard and Ruggieri, 2001). Here,

we make the observation that the missing link which relates termination checking

and termination inference is backwards analysis. Backwards analysis is concerned

with the following type of question: Given a program and an assertion at a given

program point, what are the weakest requirements on the inputs to the program

which guarantee that the assertion will hold whenever execution reaches that

point.

In a recent paper, King and Lu (2002) describe a framework for backwards analysis

for logic programs in the context of abstract interpretation. In their approach, the

underlying abstract domain is required to be condensing or equivalently, a complete

Heyting algebra. This property ensures the existence of a weakest requirement on

calls to the program which guarantees that the assertions will hold.

To demonstrate this link between termination checking and termination inference,

we apply the framework for backwards analysis described by King and Lu (2002)

to enhance the termination (checking) analyser described in Codish and Taboch

(1999) to perform also termination inference. We use the condensing domain Pos, of

positive Boolean formula, to express the conditions on the instantiation of arguments

which guarantee the termination of the program.

The use of a standard framework for backwards analysis provides a formal

justification for termination inference and leads to a simple and efficient implementa-

tion similar in power to that described in Mesnard and Neumerkel (2001). It also

facilitates a formal comparison of termination checking and inference. In particular,

we provide a condition on the components of the analyser which guarantee that

termination inference will infer all modes which termination checking can prove to

be terminating.

In the rest of the paper, section 2 provides some background and a motivating

example. Section 3 reviews the idea of backwards analysis. Section 4 illustrates how

to combine termination analysis with backwards analysis to obtain termination

inference and investigates their relative precision. Section 5 presents an experimental

evaluation. Finally, section 6 reviews related work and section 7 concludes. A

preliminary version of this paper appeared in Genaim and Codish (2001). Our imple-

mentation (Codish et al., 2002) can be accessed on the web. It supports termination

checking as described in Codish and Taboch (1999) and termination inference as

described in this paper.

2 Preliminaries and motivating example

We assume a familiarity with the standard definitions for logic programs (Lloyd,

1987; Apt, 1990) as well as with the basics of abstract interpretation Cousot and

Cousot (1977, 1992). This section describes the standard program analyses upon

which we build in the rest of the paper. For notation, in brief: variables in logic

programs are denoted as in Prolog (using the upper case) while in relations, Boolean

formula, and other mathematical context we use the lower case. We let x̄ denote a
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tuple of distinct variables x1, . . . , xn. To highlight a specific point in a program we

use labels of the form a©.

Size relations and instantiation dependencies rest at the heart of termination

analysis: size information to infer that some measure on program states decreases as

computation progresses; and instantiation information, to infer that the underlying

domain is well founded. Consider the recursive clause of the append/3 relation:

append([X|Xs], Y s, [X|Zs])← append(Xs, Y s, Zs). It does not suffice to observe that

the size of the first and third arguments decrease in the recursive call. To guarantee

termination one must also ensure that at least one of these arguments is sufficiently

instantiated in order to argue that this recursion can be activated only a finite

number of times.

Instantiation information is traditionally obtained through abstract interpretation

over the domain Pos which consists of the positive Boolean functions augmented

with a bottom element (representing the formula false). The elements of the do-

main are ordered by implication and represent equivalence classes of propositional

formula. This domain is usually associated with its application to infer groundness

dependencies where a formula of the form x ∧ (y→ z) is interpreted to describe

a program state in which x is definitely bound to a ground term and there exists

an instantiation dependency such that whenever y becomes bound to a ground

term then so does z. Similar analyses can be applied to infer dependencies with

respect to other notions of instantiation. Boolean functions are used to describe the

groundness dependencies in the success set of a program P as well as in the set of

calls which arise in the computations for an initial call pattern G. We denote these

approximations by [[P ]]sucpos and [[PG]]callspos respectively. The elements are of the form

p(x̄)←ϕ where p/n is a predicate defined in P and ϕ is a positive Boolean function

on x̄. For details on Pos see Marriott and Søndergaard (1993).

Size relations express linear information about the sizes of terms (with respect to

a given norm function) (De Schreye and Verschaetse 1995; Karr 1976). For example,

the relation x � z ∧ y � z describes a program state in which the sizes of the terms

associated with x and y are less or equal to the size of the term associated with z.

Similarly, a relation of the form z = x+ y describes a state in which the sum of the

sizes of the terms associated with x and y is equal to the size of the term associated

with z. Here the variables represent sizes and hence are implicitly constrained to

be non-negative. Several methods for inferring size relations are described in the

literature (Benoy and King, 1996; Brodsky and Sagiv, 1989; Cousot and Halbwachs,

1978; De Schreye and Verschaetse, 1995). They differ primarily in their approach to

obtaining a finite analysis as the abstract domain of size relations contains infinite

chains. For a survey on termination analysis of logic programs see De Schreye and

Decorte (1994).

Throughout this paper we will use the so-called term-size norm for size relations

for which the corresponding notion of instantiation is groundness. We base our

presentation on the termination (checking) analyser described in Codish and Taboch

(1999), although we could use as well almost any of the alternatives described in the

literature. This analyser is based on a bottom-up TP like semantics which makes

loops observable in the form of binary clauses. This provides a convenient starting
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point for termination inference as derived in this paper. We denote the abstraction

of this semantics for a program P over the domain of size relations as [[P ]]binsize. Each

element of [[P ]]binsize represents a loop and is of the form p(x̄)← π, p(ȳ) where π is a

conjunction of linear constraints. In the examples these are represented as lists of

constraints.

We proceed to demonstrate our approach by example in four steps:

Step 1 Consider the append/3 relation.

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

append([],Ys,Ys).

Termination checking reports a single abstract binary clause:

append(A,B,C) :- [D<A, F<C, B=E], append(D,E,F).

indicating that subsequent calls append(A,B, C) and append(D,E, F) in a computa-

tion, involve a decrease in size for the first and third arguments (D < A and F < C)

and maintain the size of the second argument (B = E). To guarantee that this loop

may be traversed only a finite number of times, it is sufficient to require that either

A or C be sufficiently instantiated. This can be expressed as a Boolean condition:

append(x, y, z)← (x ∨ z).
Backwards analysis is now applied to infer the weakest conditions on the program’s

predicates which guarantee this condition. For this example the inference is complete

and we have derived the result: append(x, y, z)← x∨ z interpreted as specifying that

append(x, y, z) terminates if x or z are bound to ground terms.

Step 2 Consider the use of append/3 to define list membership. Adding the following

clause to the program introduces no additional loops:

member(X,Xs) :- append(A,[X|B],Xs).

Backwards analysis should specify the weakest condition on member(X,Xs) which

guarantees the termination condition A∨Xs for append(A, [X|B], Xs). This is obtained

through projection which for backwards analysis is defined in terms of universal

quantification as ∀A.(A∨Xs). The resulting Boolean precondition is: member(x, y)← y

indicating that member(x, y) terminates if y is ground.

Step 3 We now add to the program a definition for the subset/2 relation:

subset([X|Xs],Ys) :- member(X,Ys), subset(Xs,Ys).

subset([],Ys).

Termination checking reports an additional loop:

subset(A,B) :- [B=D,C<A], subset(C,D).

which will be traversed a finite number of times if A is sufficiently instantiated. For

the first clause to terminate both loops must terminate: for append/3 in the call
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to member(X,Y s) and for subset/2 in the call to subset(Xs, Y s). So both Xs and

Y s must be instantiated which implies that both arguments of subset/2 should be

ground inputs. Namely, subset(x, y)← x ∧ y.

Step 4 This step demonstrates that the precondition on a call in a clause body may

be (partially) satisfied by answers to calls which precede it. Consider adding to the

program a clause:

s(X,Y,Z) :- a© append(X,Y,T), b© subset(T,Z).

which defines a relation s(x, y, z) such that the set z contains the union of sets x

and y. The preconditions for termination derived in the previous steps specify the

conditions x∨t and t∧z at points a© and b© respectively. In addition, from a standard

groundness analysis we know that on success append(x, y, t) satisfies (x∧ y)↔ t. So,

instead of imposing on the clause head both conditions from the calls in its body,

as we did in the previous step, we may weaken the second condition in view of

the results from the first call. Namely (((x ∧ y) ↔ t)→ t ∧ z). Now the termination

condition inferred for s(x, y, z) is ∀t.((x ∨ t) ∧ (((x ∧ y)↔ t)→ t ∧ z))≡ x ∧ y ∧ z.
In general, the steps illustrated above, though sufficient for these simple examples,

do need to be applied in iteration. In the next section we describe more formally

the steps required for backwards analysis.

3 Backward analysis

This section presents an abstract interpretation for backwards analysis using the

domain Pos distilled from the general presentation given in King and Lu (2002).

Clauses are assumed to be normalised and contain assertions so that they are of the

form h(x̄)← µ 	 b1, . . . , bn where µ is a Pos formula, interpreted as an instantiation

condition that must hold when the clause is invoked, and bi is either an atom, or a

unification operation.

The analysis associates preconditions, specified in Pos, with the predicates of the

program. Initialised to true (the top element in Pos) these preconditions become

more restrictive (move down in Pos) through iteration until they stabilise. At each

iteration, clauses are processed from right to left using the current approximations

for preconditions on the calls together with the results of a standard groundness

analysis to infer new approximations for these preconditions.

For the basic step, consider a clause of the form: p← . . . a©, q, b© . . . and assume

that the current approximation for the precondition for a predicate q is ϕq , the

success of q is approximated by ψq , and that processing the clause from right to

left has already propagated a condition eb at the point b©. Then, to insure that eb
will hold after the success of q, it suffices to require at a© the conjunction of ψq
with the weakest condition σ such that (σ∧ψq)→ eb. This σ is precisely the pseudo-

complement Giacobazzi and Scozzari (1998) of ψq with respect to eb, obtained as

ψq→ eb. So propagating one step to the left gives the condition ea = ϕq ∧ (ψq→ eb).

Now consider a clause h(x̄)← µ	b1, . . . , bn with an assertion µ ∈ Pos. Assume that

the current approximation for the precondition of h(x̄) is ϕ and let ψi and ϕi denote
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respectively the approximation of the success set of bi (obtained through standard

groundness analysis) and the current precondition for bi (1 � i� n). Backwards

analysis infers a new approximation ϕ′ of the precondition for h(x̄) by consecutive

application of the basic step described above. We start with en+1 = true and through

n steps (with i going from n to 1) compute a condition ei = ϕi ∧ (ψi→ ei+1) which

should hold just before the call to bi. After computing e1 we take e0 = µ ∧ e1 and

project e0 on the variables x̄ of the head by means of universal quantification. The

new condition is finally obtained through conjunction with the previous condition

ϕ. Namely, ϕ′ = ϕ ∧ ∀̄x̄. e0.
There is one subtlety in that Pos is not closed under universal quantification. To

be precise, elimination of x from σ ∈ Pos is defined as the largest element in Pos

which implies ∀x.σ. When ∀x.σ is not positive then the projection gives false which

is the bottom element in Pos.

Example 3.1

Consider the clause

subset(A,B) :- e0© A 	 e1© A=[X|Xs], e2© B=Ys,
e3© member(X,Ys), e4© subset(Xs,Ys) e5©.

where the assertion A states that the first argument must be ground and the success

patterns (derived by a standard groundness analysis) and the current approximation

of the preconditions are (respectively):

Ψ =

{
member(x, y)← (y → x)

subset(x, y)← (y → x)

}
Φ =

{
member(x, y)← y

subset(x, y)← x

}
.

Starting from e5 = true, the conditions e4, . . . , e1 are obtained by substituting in

ei = ϕi ∧ (ψi→ ei+1) as illustrated in the following table:

i ϕi ψi ei = ϕi ∧ (ψi → ei+1)

4 Xs Y s→ Xs true

3 Y s X → Xs Y s ∧ (X → Xs)

2 true B ↔ Y s (B ↔ Y s)→ (Y s ∧ (X → Xs))

1 true A↔ (X ∧Xs) (A↔ (X ∧Xs))→ (B ↔ Y s)→ (Y s ∧ (X → Xs))

We now obtain e0 as A ∧ e1 and projecting e0 to the variables in the head gives

∀Xs,Y s, X .(e0) = A ∧ B. Which leads to the new precondition subset(x, y)← x ∧ y.

In King and Lu (2002), the authors formalise backwards analysis as the greatest

fixed point of an operator over Pos. In our implementation (Codish et al., 2002)

backwards analysis is realised as a simple Prolog interpreter which manipulates

Boolean formula using a package for binary decision diagrams written by Armstrong

and Schachte (used in Armstrong et al. (1998) and described in Schachte (1999)).

4 From termination checking to termination Inference

Termination checking aims to determine if a program is guaranteed to terminate

for a specified mode. Termination inference aims to infer a set of modes for which
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the program is guaranteed to terminate. To be precise, we introduce the following

definition and terminology.

Definition 4.1 (Mode)

A mode is a tuple of the form p(m1, . . . , mn) where mi (1 � i� n) is either b

(“bound”) or f (“free”). We can view a mode as a call pattern p(x̄)←ϕ where

ϕ = ∧
{
xi

∣∣xi = b ∧ (1 � i� n)
}
.

Given a norm function, we say that a program terminates for a mode p(m1, . . . , mn)

if it terminates for all initial queries p(t1, . . . , tn) such that for 1 � i� n, mi = b implies

that ti is rigid with respect to the given norm.

This section describes how an analyser for termination inference can be derived

from an analyser for termination checking together with a component for backwards

analysis. We first describe in section 4.1 the activities performed by an analyser for

termination checking. Then, in section 4.2 we explain how some of these activities

are combined with a backwards analysis component to obtain an analyser for

termination inference. Finally, in section 4.3, we compare the precision of termination

checking and inference.

4.1 Termination checking

Termination checking involves two activities: first, the loops in the program are

identified and characterised with respect to size information; and second, given the

mode of an initial query, it is determined if for each call pattern in a computation

and for each loop, some measure on the sizes of some of the sufficiently instantiated

arguments in the call decrease as the loop progresses.

In the analyser described in Codish and Taboch (1999) these activities are per-

formed in two phases. The first (goal independent) phase computes a set of abstract

binary clauses [[P ]]binsize which describe, in terms of size information, the loops in the

program P . The second (goal dependent) phase determines a set of call patterns

[[PG]]callspos for a initial mode G and checks that for each call in [[PG]]callspos and each

corresponding loop in [[P ]]binsize there exists a suitable well-founded decreasing measure.

The next definitions provide the notions required to state the theorem which follows

(reformulating Proposition 6.5 in Codish and Taboch (1999)) to provide a sufficient

termination (checking) condition.

Definition 4.2 (Decreasing arguments set)

A set of arguments I = {xi1 , . . . , xik}⊆ x̄ is decreasing for an abstract binary clause

β = p(x̄)← π, p(ȳ) if there exist coefficients a1, . . . , ak such that π |= a1xi1 + · · ·+
akxik > a1yi1 + · · ·+ akyik . The set of all decreasing sets of arguments for β is

denoted by D(β).

Note that by definition D(β) is closed under extension. Namely, if I ∈ D(β) and

I ′ ⊇ I then I ′ ∈ D(β) (simply map coefficients for the arguments in I ′ \ I to 0).

Definition 4.3 (Instantiated arguments set)

We say that a set of arguments I ⊆ x̄ is instantiated in a call pattern κ = p(x̄)←ϕ

if ϕ |= ∧
{
x

∣∣x ∈ I }
. We denote by Iϕ the set of all arguments instantiated in κ.
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Theorem 4.1 (Termination condition)

Let P be a logic program and G an initial call pattern. If for each call pattern κ =

p(x̄)←ϕ ∈ [[PG]]callspos and corresponding binary clause β = p(x̄)← π, p(ȳ) ∈ [[P ]]binsize
there exists a set of arguments I ⊆ x̄ which is instantiated in κ and decreasing for

β then P terminates for G.

Example 4.1

The analysis of the append/3 relation (detailed in Section 2) for the initial mode

G≡ append(b, b, f) gives:

[[P ]]binsize =
{
append(A, B, C)← [D < A, F < C, B = E], append(D, E, F)

}
[[PG]]callspos =

{
append(A, B, C)← A ∧ B

}
The termination condition holds for this single binary clause and call pattern with

I = {A} as well as with I = {A,B}.

We now focus in on that component of the termination checker that checks if the

termination condition is satisfied for a call pattern p(x̄)←ϕ and a corresponding

binary clause β. We denote by CHK(I, β) the decision procedure which is at the heart

of this component and determines if some subset of I is decreasing for β. Since any

decreasing and instantiated enough set of arguments is a subset of Iϕ, the analyser

will typically invoke CHK(Iϕ, β).

For the correctness of termination checking, CHK(I, β) must be sound but need

not be complete. Namely if CHK(I, β) reports “yes” then I must be a decreasing set

of arguments for β. The termination analyser described in Codish and Taboch (1999)

applies a simple (and fast) decision procedure which is not complete but works well

in practise. For a call p(x̄)←ϕ with instantiated variables Iϕ = {xi1 , . . . , xik} and

a matching binary clause p(x̄)← π, p(ȳ) the system checks if π |= yi1 + · · ·+ yik �
xi1 + · · ·+ xik (recall that all of the variables are non-negative). If not, then it reports

“yes” because it must be the case that for some 1 � j� k, yij < xij and hence the

singleton {xij} is a decreasing argument set.

A complete procedure for CHK (denoted SVG) is described in Sohn and van

Gelder (1991) and discussed also in Mesnard and Neumerkel (2001). There the

authors observe that checking the satisfiability of the non-linear constraint system

π ∧ ∃a1, . . . , ak.(a1xi1 + · · ·+ akxik > a1yi1 + · · ·+ akyik ), for coefficients a1, . . . , ak , is

equivalent to checking that of the dual constraint system which is linear. See the

references above for details. The TerminWeb analyser (Codish et al., 2002) offers the

optional use of this procedure.

4.2 Termination inference

Our approach to termination inference proceeds as follows: (1) The first phase of the

termination checker is applied to approximate the loops in the program as binary

clauses with size information ([[P ]]binsize); (2) Each loop in [[P ]]binsize is examined to

extract an initial (Boolean) termination assertion on the instantiation of arguments

of the corresponding predicate which guarantee that the loop can be executed

only a finite number of times; and (3) Backwards analysis is applied to infer the
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weakest constraints on the instantiation of the initial queries to guarantee that these

assertions will be satisfied by all calls.

Intuitively, an initial termination assertion for a predicate p(x̄) is a Boolean

formula constructed so as to guarantee that each binary clause has at least one set

of arguments which is instantiated enough and decreasing. To this end, the best we

can do for a given binary clause β is to require the instantiation of the variables

in (at least) one of the decreasing sets of arguments in D(β) (a disjunction). This

gives the most general initial termination assertion for β. For a predicate in the

program, the assertions for all of its binary clauses must hold (a conjunction). In

practise, an analyser for termination inference involves a component INF(β) which

approximates D(β) (from below) for an abstract binary clause β. For the correctness

of termination inference, INF(β) must be sound but need not be complete. Namely

it may return a subset of D(β). Of course if it is complete (i.e. computes D(β))

then the inference will be more precise. Given such a procedure INF(β), the initial

termination assertions are specified as follows:

Definition 4.4 (Initial Termination Assertion)

Let P be a logic program. The initial termination assertions for a binary clause

β ∈ [[P ]]binsize, and a predicate p/n ∈ P are given as:

µ(β) =
∨

I∈INF(β)

(
∧
x∈I
x

)
µ(p(x̄)) =

∧
β∈B

µ(β)

where B⊆ [[P ]]binsize is the set of binary clauses for p(x̄) in [[P ]]binsize.

Note that we can assume without loss of generality that INF is closed under

extension as the assertions µ(β) are invariant to the addition of extending sets of

arguments.

Example 4.2

Consider as P the split/3 relation (from merge sort):

split([],[],[]).

split([X|Xs],[X|Ys],Zs) :- split(Xs,Zs,Ys).

The binary clauses obtained by the analyser of Codish and Taboch (1999) are:

β1 = split(x1, x2, x3)← [y1 < x1, y3 < x2, x3 = y2], split(y1, y2, y3).

β2 = split(x1, x2, x3)← [y1 < x1, y2 < x2, y3 < x3], split(y1, y2, y3).

β3 = split(x1, x2, x3)← [y1 < x1, y3 < x2, y2 < x3], split(y1, y2, y3).

Here, β1 represents the size information corresponding to passing one time through

the loop defined by the second clause; β2 the information corresponding to any

even number of times through the loop; and β3 any odd number of times (greater

than 1).

Let S↑ denote the closure of a set S under extension with respect to the variables

of interest. Assuming that INF(β1) = INF(β3) = {{x1}, {x2, x3}}↑ (note that y1 < x1

and y2 + y3 < x2 + x3) and INF(β2) = {{x1}, {x2}, {x3}}↑ (note that y1 < x1, y2 <

x2, y3 < x3), we have µ(β1) = µ(β3) = x1 ∨ (x2 ∧ x3); and µ(β2) = x1 ∨ x2 ∨ x3. The
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assertion for split/3 is: µ(split(x1, x2, x3)) = µ(β1) ∧ µ(β2) ∧ µ(β3) = x1 ∨ (x2 ∧ x3).

Backwards analysis starting from this assertion infers the termination condition

x1 ∨ (x2 ∧ x3) for split(x1, x2, x3).

The result of backwards analysis is a positive Boolean formula for each predicate

describing the conditions under which a corresponding initial query terminates.

The following definition specifies how the initial modes for terminating queries are

derived from this formula.

Definition 4.5 (Terminating mode)

Let P be a logic program. We say that p(m1, . . . , mn) is terminating for p(x1, . . . , xn)

defined in P if the conjunction ∧{xi | mi = b} implies the condition inferred by

termination inference for p(x̄).

Example 4.3

Consider again the split/3 relation given in Example 4.2 for which we inferred

µ(split(x1, x2, x3)) = x1 ∨ (x2 ∧ x3). Both split(b, f, f) and split(f, b, b) are terminating

modes because x1 and (x2 ∧ x3) imply x1 ∨ (x2 ∧ x3).

The correctness of the method described follows from the results of Codish and

Taboch (1999) and King and Lu (2002).

Theorem 4.2

Let INF be a sound procedure, P a logic program and p(m̄) a terminating mode for

p(x̄) inferred by termination inference. Then P terminates for p(m̄).

Proof

Let G = p(̄t) be an initial query described by the inferred terminating mode p(m̄).

The correctness of backwards analysis garantees that when executing G, any call to

a predicate q/n satisfies the assertions inferred for q/n. From the specification of the

initial termination assertion (Definition 4.4) we know that µ(q(x̄)) |= µ(β) for each

β = q(x̄)← π, q(ȳ) ∈ [[P ]]binsize. Hence, at least one set of arguments for β is decreasing

and sufficiently instantiated. This means that the termination condition of Theorem

4.1 holds. �

In the analyzer for termination inference implemented in the context of this work

(Codish et al., 2002) we adopt for INF a fast though incomplete procedure. Given a

binary clause β = p(x̄)← π, p(ȳ) the procedure works as follows where we denote the

arguments of p(x̄) as I = {1, . . . , n}: First, it computes the set I′ = {i | π |= xi > yi}
which includes all argument positions that are decreasing. Each singleton subset of

I′ is reported by the procedure to be a decreasing set of arguments; Second, it

checks if the sum of the non-decreasing arguments is decreasing. Namely, if

π |= Σ
i∈I\I′

xi > Σ
i∈I\I′

yi

If so, then it reports that I \I′ is a decreasing set of arguments.

Performing step 2 does appear to make a difference. This simplistic approach

works well in practice for the standard benchmarks and guarantees scalability
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of the analysis. For example consider the binary clause β1 from Example 4.2.

The only decreasing singleton is {x1} and the set of all non-decreasing arguments{
x2, x3

}
is also decreasing, this enables the detection of the terminating mode

split(x1, x2, x3)← x2 ∧ x3.

In Mesnard and Neumerkel (2001), the authors adopt a complete algorithm for INF

which they call Extended SVG. Similar to SVG the authors consider the dual (linear)

constraint system of the form π∧(a1xk1
+ · · ·+ akxki > a1yk1

+ · · ·+ akyki ). But instead

of checking for satisfiability, they look for the smallest subsets
{
xk1
, · · · xki

}
⊆ x̄ for

which the constraint system is satisfiable. This is done by projecting the system π ∧
(a1x1 + · · ·+ anxn > a1y1 + · · ·+ anyn) on the variables a1, . . . , an and systematically

trying to bind some of the ai’s to zero. In general this can require an exponential

number of steps. However, the author’s experimentation indicates that the algorithm

works well in practise. See the reference above for details.

4.3 Precision of termination checking vs. inference

To compare the precision of an analyser for termination checking with one for

termination inference the relevant question is: Is there some mode which can be

checked to be terminating which is not inferred to be terminating (or vice versa)?

In particular we would like to compare the precision of our own two analysers for

checking and inferring termination as well as with the cTI analyser for termination

inference. In the next section we provide an experimental comparison for both

efficiency and precision. Here we are concerned with a theoretical comparison.

To keep all else the same, we will assume that the analysers being compared

obtain the same approximations of a program’s loops ([[P ]]binsize in our terminology)

and use the Pos domain to approximate instantiation information. For our two

analysers these assumptions are of course true as we use the same component to

compute [[P ]]binsize.

Given that all other parameters in the analysers are the same, it is the relation

between the precision of the specific choices for the procedures CHK and INF

which determine the relevant precision of termination checking and termination

inference. The comparison for a given choice of CHK and INF is done by considering

for each abstract binary clause β the sets INF(β) and
{
I
∣∣CHK(I, β) = “yes”

}
. If

these sets are equal for all β then we say that CHK and INF are of the same

accuracy. In particular if both CHK and INF are complete then they are of the

same accuracy, As we have already noted, cTI employs an INF procedure which is

complete and TerminWeb applies CHK and INF procedures which are sound but not

complete.

The following theorem states that if CHK and INF are of the same accuracy then

termination checking and inference report equivalent results.

Theorem 4.3

Let Atc and Ati be analysers for checking and inferring termination based on

procedures CHK and INF of the same accuracy and assume that these analysers

approximate loops and instantiation information in the same way. Assume also that
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Ati is based on backwards analysis. Then,Atc reports that P terminates for a mode

p(m̄) if and only if p(m̄) is inferred by Ati.

Proof

Let us first make two simple observations concerning backwards analysis:

- (BA1): Let P be a logic program, G = q(m̄) an initial call pattern, ψq =

∧
{
xi

∣∣mi = b
}

and P ′ a logic program with assertions defined by introducing

to the clauses in P the call patterns from [[PG]]callspos as initial assertions:

P ′ =

{
h(x̄)← ϕ 	 body

∣∣∣∣h(x̄)← body ∈ P ,
h(x̄)← ϕ ∈ [[PG]]callspos

}
.

Then, if q(x̄)←ϕq is the result of backwards analysis of P ′ for q(x̄), then

ψq |= ϕq .

- (BA2): Let P1 be a logic program with assertions and let q(x̄)←ϕ1 be the

result of backwards analysis of P1 for q/n. Let P2 be a program obtained by

replacing an assertion µ1 in P1 by an assertion µ2 such that µ1 |= µ2 and let

q(x̄)←ϕ2 be the result of backwards analysis of P2 for q/n. Then ϕ1 |= ϕ2.

⇒ Let G = q(m̄) be a mode for which Atc proves termination, we show that

G is inferred by Ati. Denote ψq = ∧
{
xi

∣∣mi = b
}

and let p(x̄)←ϕ ∈ [[PG]]callspos

and β≡ p(x̄)← π, p(ȳ) ∈ [[P ]]binsize. Consider the set Iϕ of variables instantiated in ϕ.

CHK(Iϕ, β) answers “yes” because Atc proves termination and by the assumption

that CHK and INF are of the same accuracy, Iϕ ∈ INF(β). Hence, by Definition 4.4,

∧Iϕ |= µ(p(x̄)). By Definition 4.3 ϕ |= ∧Iϕ, so we have ϕ |= µ(p(x̄)) (*). Let q(x̄)←ϕq
be the result of backwards analysis for P with call patterns from [[PG]]callspos as initial

assertions. By observation (BA1) q(x̄)←ϕq is the call pattern from q/n and hence

ψq |= ϕq (because G is one of the call patterns for q/n).

Now by (*), the termination assertions (µ(p(x̄))) are more general than the call

patterns (ϕ) and hence by observation (BA2) ψq implies the result of backwards

analysis with termination assertions replacing call patterns. In particular this is the

case for q(x̄) and so G is inferred by Ati to be a terminating mode for P .

⇐ Let G be a terminating mode inferred by Ati, we show that Atc proves termina-

tion of G. For this we show that for any p(x̄)←ϕ ∈ [[PG]]callspos and β≡ p(x̄)← π, p(ȳ) ∈
[[P ]]binsize there exists a decreasing set of arguments which is also instantiated enough:

From the correctness of backwards analysis we know that ϕ |= µ(p(x̄)) |= µ(β),

and since µ(β) was constructed in order to guarantee that at least one decreasing

arguments set for β is instantiated enough, so there exists I ′ ∈ INF(β) such that

I ′ ⊆ Iµ(β)⊆ Iϕ. Since INF(β) can be assumed without loss of generality to be extensive

Iϕ ∈ INF(β) and according to the accuracy requirements CHK(Iϕ, β) answers “yes”.

So the termination condition holds and Atc proves termination for G. �

In the case of our analysers, using the fast versions of CHK and INF, checking is

always as precise as inference. This follows as a simple result from the definitions
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of CHK and INF. However, inference may be weaker than checking. The benchmark

program rev_interleave in Table 1 demonstrates this case. Enhancing our ana-

lysers with SVG and Extended SVG for CHK and INF respectively, would result in

analysers which infer and check the same sets of modes. This because both SVG and

Extended SVG are complete and hence of the same accuracy. Note that we cannot

make such a comparison for termination inference as implemented in cTI because

it is based on a different technique for inferring termination conditions. While this

technique seems equivalent to backwards analysis, to make a formal comparison we

would need to prove that it supports the two claims (BA1) and (BA2).

5 Experimental results

This section describes an evaluation comparing our termination inference and

termination checking analysers. We also compare our analyser for termination

inference with the cTI (Mesnard and Neumerkel, 2001) analyzer. For the experiments

described, our analyser runs SICStus 3.7.1 on a Pentium III 500MHZ machine with

128MB RAM under Linux RedHat 7.1 (kernel 2.4.2-2). The cTI analyser runs

SICStus 3.8.4 on an Athlon 750MHz machine with 256MB RAM. The timings for

cTI are taken from Mesnard and Neumerkel (2001).

Table 1 indicates analysis times in seconds for three blocks of programs. The first

two blocks correspond respectively to the programs from Tables 2 and 5 in Mesnard

and Neumerkel (2001). The third block contains two programs included to make

a point detailed below. The analysis parameters are the same as those reported in

Mesnard and Neumerkel (2001) – term-size norm with widening applied every third

iteration, except for the programs marked by a � for which the list-length norm is

applied and widening is performed every fourth iteration. The columns in the table

indicate the cost for:

Joint: The activities common to termination checking and inference: prepro-

cessing (reading, abstraction, computing sccs, printing results), size ana-

lysis (to approximate binary clauses) and groundness analysis (to approx-

imate answers). Note that in TerminWeb, the checking component uses

groundness analysis as described in Codish and Demoen (1995) while the

inference component uses a faster BDD based analyser. For the sake of

comparison we consider the timing of the BDD based analyser for both

checking and inference.

Inf: The activities specific to termination inference: computing initial instanti-

ation assertions as specified in Definition 4.4 (about 90%) and performing

backwards analysis (about 10%).

Check: The additional activities specific to termination checking for a single one

of the top-level modes inferred to terminate.

Total Inf: The total analysis time for inference using our analyser (Joint + Inf).

cTI: The total analysis time for inference using cTI (timings as reported in

Mesnard and Neumerkal (2001)).
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Table 1. Experimental results

Program Joint Inf Check Total Inf cTI

permute 0.13 0.01 0.04 0.14 0.15

duplicate 0.03 0.00 0.02 0.03 0.05

sum1 0.05 0.01 0.02 0.06 0.18

merge 0.19 0.02 0.04 0.21 0.26

dis-con 0.09 0.01 0.04 0.10 0.24

reverse 0.07 0.01 0.02 0.08 0.08

append 0.06 0.00 0.00 0.06 0.09

list 0.03 0.00 0.00 0.03 0.01

fold 0.05 0.01 0.02 0.06 0.10

lte 0.07 0.00 0.02 0.07 0.13

map 0.05 0.00 0.02 0.05 0.09

member 0.05 0.00 0.00 0.05 0.03

mergesort 0.44 0.02 0.06 0.46 0.43

mergesort� 1.00 0.02 0.10 1.02 0.57

mergesort ap 0.63 0.04 0.30 0.67 0.79

mergesort ap� 1.32 0.03 0.30 1.35 0.92

naive rev 0.10 0.00 0.02 0.10 0.12

ordered 0.03 0.00 0.00 0.03 0.04

overlap 0.06 0.00 0.02 0.06 0.05

permutation 0.12 0.01 0.04 0.13 0.15

quicksort 0.39 0.04 0.12 0.43 0.39

select 0.10 0.00 0.01 0.10 0.08

subset 0.11 0.00 0.02 0.11 0.09

sum2 0.08 0.01 0.02 0.09 0.12

ann 4.69 0.33 0.60 5.02 5.01

bid 0.68 0.06 0.18 0.74 0.79

boyer 2.70 0.05 0.14 2.75 3.53

browse 1.01 0.15 0.37 1.16 1.81

credit 0.49 0.05 0.15 0.54 0.61

peephole 4.59 0.09 0.58 4.68 12.08

plan 1.08 0.04 0.20 1.12 0.71

qplan 11.04 0.54 3.43 11.58 7.30

rdtok⊕ 2.93 0.17 0.40 3.10 2.92

read� 4.55 0.07 0.17 4.62 6.87

warplan⊕ 2.66 0.17 0.26 2.83 3.18

loop� 0.04 0.00 0.03 0.04 -

rev interleave�⊗ 0.21 0.02 0.03 0.23 -

Regarding precision For the first block of programs we infer exactly the same

termination conditions as cTI. For the second block (of larger programs), we infer

the same number of terminating predicates as does cTI, except for the last three

programs where a “⊕” indicates that we infer termination for more predicates than

does cTI and a “�” vice-versa. These differences stem from the fact that the two

analysers are based on slightly different components for approximating loops. For
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all programs, in the first two blocks, our termination checker verifies termination

for the same set of modes as our termination inference infers. Note that for the

second block of programs we count only the number of terminating predicates to be

consistent with the experiments reported for cTI in Mesnard and Neumerkel (2001).

The two programs in the third block demonstrate how the precision of the CHK

and INF affect the precision of the analysis. Here � indicates that inference with

Extended SVG is more precise than inference with our simplified INF procedure,

and ⊗ indicates that our termination checking gives a more precise result than our

termination inference – this is due to the fact that our choice of CHK and INF are

not complete (as described in section 4.3).

Regarding timings The comparison of the columns Total Inf and cTI indicate that

TerminWeb and cTI are comparable for termination inference. We note that the

published results for cTI are obtained on a different machine, the two analyzers

are implemented using different versions of Sicstus Prolog and they use different

libraries for manipulating constraints. For arithmetic constraints, TerminWeb uses

the clp(R) library while cTI uses the clp(Q) library. The prior is more efficient but

may loose precision. For Boolean constraints, TerminWeb uses the BDD library

described in Schachte (1999), while cTI uses the Sicstus clp(B) library. The prior

is considerably faster. More interesting is to notice the comparison of columns

Inf and Check which indicates that the cost of inferring all terminating modes at

once (computing assertions and apply backards analysis) is typically faster than

performing a termination check for a single mode.

6 Related work

This paper draws on results from two areas: termination (checking) analysis

and backwards analysis. It shows how to combine components implementing

these so as to obtain an analyser for termination inference. Termination checking

for logic programs has been studied extensively (see for example the survey

De Schreye and Decorte (1994)). Backwards reasoning for imperative programs

dates back to the early days of static analysis and has been applied extensively

in functional programming. Applications of backwards analysis in the context of

logic programming are few. For details concerning other applications of backwards

analysis, see King and Lu (2002). The only other work on termination inference

that we are aware of is that of Mesnard and coauthors. The implementation of

Mesnard’s cTI analyser is described in Mesnard and Neumerkel (2001) and its

formal justification is given in Mesnard and Ruggieri (2001).

The two techniques (cTI and ours) appear to be equivalent. The real difference

is in the approach. Our analyser combines termination checking and backwards

analysis to perform termination inference. This is a “black-box” approach which

simplifies design, implementation and formal justification. The implementation reuses

the TerminWeb code and an implementation of the backwards analysis algorithm

described and formally justified in King and Lu (2002).
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Both systems compute the greatest fixed point of a system of recursive equations.

In our case the implementation is based on a simple meta-interpreter written in

Prolog. In cTI, the implementation is based on a µ-calculus interpreter. In our

case this system of equations is set up as an instance of backwards analysis hence

providing a clear motivation and justification Mesnard and Ruggieri (2001).

7 Conclusion

We have demonstrated that backwards analysis provides a useful link relating

termination checking and termination inference. This leads to a better under-

standing of termination inference and simplifies the formal justification and the

implementation of termination inference. We demonstrate this by enhancing the

analyser for termination checking described in Codish and Taboch (1999) to

perform also termination inference. We also identify a simple condition which

guarantees that termination inference can infer all provably terminating modes

when the corresponding analysers make use of the same underlying analyses for size

relations and instantiation dependencies.

Acknowledgements

We thank Andy King, Fred Mesnard and Cohavit Taboch for the useful discussions,

as well as the exchange of code and benchmarks.

References

Apt, K. R. 1990. Introduction to logic programming. In Handbook of Theoretical Computer

Science, J. van Leeuwen, Ed. Vol. B: Formal Models and Semantics. Elsevier, Amsterdam

and The MIT Press, Cambridge, 495–574.

Armstrong, T., Marriott, K., Schachte, P. and Søndergaard, H. 1998. Two classes of

Boolean functions for dependency analysis. Science of Computer Programming 31, 1, 3–45.

Benoy, F. and King, A. 1996. Inferring argument size relationships with CLP(R). In Sixth

International Workshop on Logic Program Synthesis and Transformation (LOPSTR’96).

204–223.

Brodsky, A. and Sagiv, Y. 1989. Inference of monotonicity constraints in Datalog programs.

In Proceedings of the Eighth ACM SIGACT-SIGART-SIGMOD Symposium on Principles of

Database Systems. 190–199.

Codish, M. and Demoen, B. 1995. Analysing logic programs using “prop”-ositional logic

programs and a magic wand. J. Logic Program. 25, 3 (December), 249–274.

Codish, M., Genaim, S. and Taboch, C. 2002. TerminWeb: A Termination Analyzer for

Logic Programs. http://www.cs.bgu.ac.il/~mcodish/TerminWeb.

Codish, M. and Taboch, C. 1999. A semantic basis for the termination analysis of logic

programs. The Journal of Logic Programming 41, 1, 103–123.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proc. 4th ACM

Symp. Principles of Programming Languages. ACM Press, New York, 238–252.

Cousot, P. and Cousot, R. 1992. Abstract interpretation and application to logic programs.

The Journal of Logic Programming 13, 2–3, 103–179.

https://doi.org/10.1017/S1471068404002236 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002236


Inferring termination conditions 91

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the Fifth Annual ACM Symposium on Principles

of Programming Languages. 84–96.

De Schreye, D. and Decorte, S. 1994. Termination of logic programs: the never-ending

story. The Journal of Logic Programming 19 & 20, 199–260.

De Schreye, D. and Verschaetse, K. 1995. Deriving linear size relations for logic programs

by abstract interpretation. New Generation Computing 13, 02, 117–154.

Genaim, S. and Codish, M. 2001. Inferring termination conditions for logic programs using

backwards analysis. In Proceedings of the Eighth International Conference on Logic for

Programming, Artificial Intelligence and Reasoning, R. Nieuwenhuis and A. Voronkov, Eds.

Lecture Notes in Artificial Intelligence, vol. 2250. Springer-Verlag, 681–690.

Giacobazzi, R. and Scozzari, F. 1998. A logical model for relational abstract domains.

ACM Transactions on Programming Languages and Systems 20, 5, 1067–1109.

Karr, M. 1976. Affine relationships among variables of a program. Acta Informatica 6,

133–151.

King, A. and Lu, L. 2002. A Backward Analysis for Constraint Logic Programs. Theory and

Practice of Logic Programming 2, 4–5 (July), 517–547.

Lindenstrauss, N. and Sagiv, Y. 1997. Automatic termination analysis of logic programs.

In Proceedings of the Fourteenth International Conference on Logic Programming, L. Naish,

Ed. The MIT Press, Leuven, Belgium, 63–77.

Lloyd, J. W. 1987. Foundations of Logic Programming , second ed. Springer-Verlag, Berlin.

Marriott, K. and Søndergaard, H. 1993. Precise and efficient groundness analysis for logic

programs. ACM Letters on Programming Languages and Systems 2, 1–4, 181–196.

Mesnard, F. 1996. Inferring left-terminating classes of queries for constraint logic programs.

Proc. of JICSLP’96 , 7–21.

Mesnard, F. and Neumerkel, U. 2001. Applying static analysis techniques for inferring

termination conditions of logic programs. In Static Program Analysis Symposium, P. Cousot,

Ed. Lecture Notes in Computer Science, vol. 2126. Springer, 93–110.

Mesnard, F. and Ruggieri, S. 2001. On proving left termination of constraint logic programs.

Tech. rep., Universite de La Reunion.

Schachte, P. 1999. Precise and efficient static analysis of logic programs. Ph.D. thesis, The

University of Melbourne, Australia.

Sohn, K. and van Gelder, A. 1991. Termination detection in logic programs using argument

sizes. In Intl. Symp. on Principles of Database Systems. ACM Press, 216–226.

https://doi.org/10.1017/S1471068404002236 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002236

