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In this paper, we study the existence of non-trivial solutions for the following class of
semilinear biharmonic problem with critical nonlinearity:

Δ2u + V (x)u = μK(x)f(u) + P (x)|u|2
∗∗−2u, x ∈ R

N , u ∈ D2,2(RN ).

Here Δ2u = Δ(Δu), N � 5, μ > 0 is a parameter, 2∗∗ = 2N/(N − 4) is the critical
Sobolev exponent, V (x) and K(x) are positive continuous functions that vanish at
infinity, f is a function with a subcritical growth and P (x) is a bounded,
non-negative continuous function. By working in weighted Sobolev spaces and using a
variational method, we prove that the problem has at least one non-trivial solution.

1. Introduction and main results

The main purpose of this paper is to discuss the existence of non-trivial solution
for the following class of semilinear biharmonic problem with critical nonlinearity

Δ2u + V (x)u = μK(x)f(u) + P (x)|u|2∗∗−2u, x ∈ R
N , u ∈ D2,2(RN ), (1.1)

where Δ2u = Δ(Δu), N � 5, μ > 0 is a parameter and 2∗∗ = 2N/(N − 4) is the
critical Sobolev exponent. The potential V and K : R

N → R are positive continuous
functions that vanish at infinity, f : R → R is a function with a subcritical growth
and P (x) � 0 is a bounded continuous function.

Over the last several decades, many authors have shown interest in second-order
elliptic differential equations in unbounded domains with critical growth. For exam-
ple, in the celebrated papers [17,18], Lions established a concentration–compactness
principle for some nonlinear elliptic equations in R

N and studied minimization prob-
lems associated with nonlinear elliptic equations in R

N with critical growth. Follow-
ing the ideas established by Lions and Brézis [8], a wide class of nonlinear critical
elliptic problems have been studied. The reader is referred to [10–13, 16, 23, 25, 26]
and references therein.

In particular, Deng et al . [13] established a complete non-compact expression for
the Palais–Smale (PS) sequences of the variational functional corresponding to

−Δu − μ
u

|x|2 + V (x)u = |u|2∗−2u + f(x, u), u ∈ H1(RN ), (1.2)

281
c© 2015 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210513001170 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001170


282 Y. Deng and W. Shuai

which included all the blow-up bubbles caused by critical exponents, the Hardy
term and unbounded domains. By using the non-compact expression for the Palais–
Smale sequences of the variational functional corresponding to (1.2), the existence
of positive solutions of (1.2) is obtained but they require the potential V (x) to be
non-vanishing at infinity.

An important class of problems associated with (1.2) is the zero mass case that
occurs with the potentials V (x) vanishing at infinity, that is,

lim
|x|→+∞

V (x) = 0.

A typical example is the equation

−Δu + V (x)u = K(x)f(u), x ∈ R
N , (1.3)

with lim|x|→+∞ V (x) = 0.
In [4], Ambrosetti et al . studied (1.3) with the zero mass case when

f(s) = sp with 2 < p <
N + 2
N − 2

and V , K satisfying the following assumptions.
V, K : R

N → R are smooth functions and there exist constants α, β, a, A, κ > 0
such that

a

1 + |x|α � V (x) � A and 0 < K(x) � κ

1 + |x|β ∀x ∈ R
N (V K)

and such that α and β verify

N + 2
N − 2

− 4β

α(N − 2)
< p if 0 < β < α or p > 1 when β > α.

The condition (V K) is interesting because Opic and Kufner [21] have showed that
it can be used to prove that the space E given by

E =
{

u ∈ D1,2(RN ) :
∫

RN

V (x)u2 dx < +∞
}

endowed with the norm

‖u‖2 =
∫

RN

(|∇u|2 + V (x)u2) dx

is compactly embedded into the weighted Lebesgue space

Lp+1
K (RN ) =

{
u : R

N → R | u is measurable and
∫

RN

K(x)|u|p+1 dx < +∞
}

.

In [3], Ambrosetti and Wang also considered the condition (V K) but the inequal-
ity on V was assumed only outside of a ball centred at origin.

In [1], Alves and Souto considered a more general condition on V (x) and K(x),
from which the space E can be compactly embedded into the weighted space.

In [6], Bonheure and Van Schaftingen introduced a new set of hypotheses on V (x)
and K(x) by using the Marcinkiewicz spaces Lr,∞(RN ) for r > 1, which permitted
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them to show continuous and compact embeddings from E into the weighted space
Lq

K(RN ) for some q > 1. Using the compactness results obtained in [1,3,6], one can
obtain the existence of positive solutions for (1.3) when f(s) is subcritical under
some assumptions on V (x) and K(x). For the critical case, we discussed a general
problem

−Δpu + V (x)|u|p−2u = K(x)f(u) + P (x)|u|p∗−2u, x ∈ R
N , u ∈ D1,p(RN ),

where Δpu = div(|∇u|p−2∇u), 1 < p < N , p∗ = Np/(N − p), V (x) and K(x)
are positive continuous functions that vanish at infinity, f is a function with a
subcritical growth and P (x) is a bounded non-negative continuous function. By
working in the weighted Sobolev spaces and using a variational method, we prove
that the problem has at least one positive solution (see [14]).

However, there seems to be little progress on the existence of a non-trival solution
for the biharmonic equation (see, for example, (1.1)) with subcritical growth or
critical growth when the potential V (x) vanishes at infinity.

In this paper, we establish the existence of a non-trival solution of (1.1) with
critical nonlinearity and the potential V (x) vanishing at infinity. To this end, we
need some assumptions on V (x), K(x), f(s) and P (x).

As in [1], we say (V, K) ∈ K if the following conditions hold.

(i) V (x), K(x) > 0 for all x ∈ R
N and K(x) ∈ L∞(RN ).

(ii) If {An} ⊂ R
N is a sequence of Borel sets such that |An| � R for all n and

some R > 0, we have that

lim
r→+∞

∫
An∩Bc

r(0)
K(x) dx = 0 uniformly in n ∈ N. (K1)

(iii) One of the following conditions occurs:

K(x)
V (x)

∈ L∞(RN ) (K2)

or there is a p0 ∈ (2, 2∗∗) such that

K(x)
|V (x)|(2∗∗−p0)/(2∗∗−2) → 0 as |x| → +∞. (K3)

Related to the function f , we assume the following conditions.

(f1)

lim sup
s→0

f(s)
s

= 0 if (K2) holds

or

lim sup
s→0

f(s)
|s|p0−1 < +∞ if (K3) holds.
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(f2) f has a subcritical growth, that is,

lim sup
s→+∞

f(s)
|s|2∗∗−1 = 0.

(f3) There exists a θ ∈ (2, 2∗∗) such that

0 � θF (s) � sf(s) for all s ∈ R,

where F (u) =
∫ u

0 f(t) dt.

Moreover, as for the function P (x), we assume the following.

(P1) There is a point x0 such that

P (x0) = sup
x∈RN

P (x) > 0.

(P2) For x close to x0 we have

P (x) = P (x0) + O(|x − x0|τ ) as x → x0,

where τ � min{4, N − 4} is a real number.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that (V, K) ∈ K, f satisfies (f1)–(f3) and P (x) satisfies
(P1) and (P2). Then (1.1) has at least one non-trivial solution if μ, θ and N satisfy
one of the following three conditions:

(A1) N � 8, 2 < θ < 2∗∗ and μ > 0;

(A2) 4 < N < 8, 2∗∗ − 2 < θ < 2∗∗ and μ > 0;

(A3) 4 < N < 8, 2 < θ � 2∗∗ − 2 and μ is sufficiently large.

For the results concerned with fourth-order biharmonic equations involving criti-
cal Sobolev exponent on bounded domain, readers are referred to [2,9,15,19,20,22]
and references therein.

There are serious difficulties in trying to find the non-trivial solutions of (1.1)
by standard variational methods since the space D2,2(RN ) can not be embedded
into Lr(RN ) for r ∈ (2, 2∗∗) and the embedding D2,2(RN ) ↪→ L2∗∗

(RN ) is not com-
pact. Moreover, because the potential V (x) vanishes at infinity, there are also some
difficulties to be overcome in dealing with (1.1). In order to prove the existence
result, we first define the weight Sobolev space E and Lq

K(RN ) and then establish a
Hardy-type inequality involving V and K (see lemmas 2.1 and 2.2) as in [1]. Since
the embedding E ↪→ Lp∗

P (RN ) is still not compact, the method provided in [1] can
not be used directly. To overcome this lack of compactness, we imitate the method
in [8] by using the mountain pass theorem without (PS) condition, and the existence
of a non-trival solution of (1.1) is proved.

The rest of this paper is organized as follow. In § 2 we present some embedding
results that generalize the corresponding embedding results of [1]. In § 3 we prove
theorem 1.1.
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2. Some preliminary lemmas

In this section, we introduce some weighted Sobolev spaces and prove some embed-
ding theorems. To this end, we define the space

E :=
{

u ∈ D2,2(RN ) :
∫

RN

V (x)|u|2 dx < ∞
}

endowed with the norm

‖u‖ :=
( ∫

RN

(|Δu|2 + V (x)|u|2) dx

)1/2

.

Denote by Lq
K(RN ) the weighted Lebesgue space

Lq
K(RN ) =

{
u : R

N → R | u is measurable and
∫

RN

K(x)|u|q dx < +∞
}

endowed with the norm

‖u‖Lq
K(RN ) :=

( ∫
RN

K(x)|u|q dx

)1/q

.

E and Lq
K(RN ) are particular cases of weighted space and are discussed in [21].

The following two lemmas provide the continuous and compact embedding for E ↪→
Lq

K(RN ).

Lemma 2.1. Assume that (V, K) ∈ K. Then E can be continuously embedded in
Lq

K(RN ) for all q ∈ [2, 2∗∗] if (K2) holds. Moreover, E can be continuously embedded
in Lp0

K (RN ) if (K3) holds.

Proof. First we assume that (K2) holds. The proof is trivial if q = 2 or 2∗∗. Now
we prove that the embedding is true for q ∈ (2, 2∗∗) under the assumption (K2).
For fixed q ∈ (2, 2∗∗), define λ = (2∗∗ − q)/(2∗∗ − 2), and hence q = 2λ + (1 − λ)2∗∗

so we have that∫
RN

K(x)|u|q dx =
∫

RN

K(x)|u|2λ|u|(1−λ)2∗∗
dx

�
( ∫

RN

|K(x)|1/λ|u|2 dx

)λ( ∫
RN

|u|2∗∗
dx

)1−λ

�
(

sup
x∈RN

|K(x)|
|V (x)|λ

)( ∫
RN

V (x)|u|2 dx

)λ( ∫
RN

|u|2∗∗
dx

)1−λ

� C

(
sup

x∈RN

|K(x)|
|V (x)|λ

)(∫
RN

V (x)|u|2 dx

)λ(∫
RN

|Δu|2 dx

)(1−λ)2∗∗/2

� C

(
sup

x∈RN

|K(x)|
|V (x)|λ

)( ∫
RN

|Δu|2 + V (x)|u|2 dx

)λ+(1−λ)2∗∗/2

= C

(
sup

x∈RN

|K(x)|
|V (x)|λ

)( ∫
RN

|Δu|2 + V (x)|u|2 dx

)q/2

.
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Since K(x) ∈ L∞(RN ) and K/V ∈ L∞(RN ), we have that

‖u‖Lq
K(RN ) � C‖u‖ for q ∈ (2, 2∗∗).

Next, we suppose that (K3) holds. Using the same argument as above, we define
λ0 = (2∗∗ − p0)/(2∗∗ − 2), and hence p0 = 2λ0 + (1 − λ0)2∗∗ so that we have∫

RN

K(x)|u|p0 dx =
∫

RN

K(x)|u|2λ0 |u|(1−λ0)2∗∗
dx

�
( ∫

RN

|K(x)|1/λ0 |u|2 dx

)λ0
( ∫

RN

|u|2∗∗
dx

)1−λ0

�
(

sup
x∈RN

|K(x)|
|V (x)|λ0

)( ∫
RN

V (x)|u|2 dx

)λ0
( ∫

RN

|u|2∗∗
dx

)1−λ0

� C

(
sup

x∈RN

|K(x)|
|V (x)|λ0

)( ∫
RN

|Δu|2 + V (x)|u|2 dx

)p0/2

.

From (K3) we deduce that K(x)/|V (x)|(2∗∗−p0)/(2∗∗−2) ∈ L∞(RN ). It follows from
the above inequality that

‖u‖L
p0
K (RN ) � C‖u‖.

The proof of our lemma is completed.

Lemma 2.2. Assume that (V, K) ∈ K. Then E can be compactly embedded into
Lq

K(RN ) for all q ∈ (2, 2∗∗) if (K2) holds. Moreover, E can be compactly embedded
into Lp0

K (RN ) if (K3) holds.

Proof. The proof of this lemma is divided into two parts.
First we assume that the condition (K2) holds. For fixed q ∈ (2, 2∗∗) and given

ε > 0, there are 0 < s0 < s1 and C > 0 such that

K(x)|s|q � εC(V (x)|s|2 + |s|2∗∗
) + CK(x)χ[s0,s1](|s|)|s|2

∗∗ ∀s ∈ R. (2.1)

Hence,∫
Bc

r(0)
K(x)|u|q dx � εCQ(u) + C

∫
A∩Bc

r(0)
K(x)|u|2∗∗

dx ∀u ∈ E, (2.2)

where
Q(u) =

∫
RN

V (x)|u|2 dx +
∫

RN

|u|2∗∗
dx

and
A = {x ∈ R

N : s0 � |u(x)| � s1}.

If {vn} is a sequence such that vn ⇀ v in E, there is M1 > 0 such that∫
RN

(|Δvn|2 + V (x)|vn|2) dx � M1 and
∫

RN

|vn|2∗∗
dx � M1 ∀n ∈ N,

which gives that {Q(vn)} is bounded. On the other hand, setting

An = {x ∈ R
N : s0 � |vn(x)| � s1},
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the last inequality implies that

s2∗∗

0 |An| �
∫

An

|vn|2∗∗
dx � M1 ∀n ∈ N,

which gives that supn∈N |An| < +∞. Therefore, from (K1), there is an r > 0 such
that ∫

An∩Bc
r(0)

K(x) dx <
ε

s2∗∗
1

for all n ∈ N. (2.3)

From (2.2) and (2.3) we deduce that∫
Bc

r(0)
K(x)|vn|q dx � 2εCM1 + Cs2∗∗

1

∫
An∩Bc

r(0)
K(x) dx < (2CM1 + C)ε (2.4)

for all n ∈ N. Since q ∈ (2, 2∗∗) and K is a continuous function, it follows from
Sobolev embeddings on the bounded domain that

lim
n→+∞

∫
Br(0)

K(x)|vn|q dx =
∫

Br(0)
K(x)|v|q dx. (2.5)

Combining (2.4) and (2.5),

lim
n→+∞

∫
RN

K(x)|vn|q dx =
∫

RN

K(x)|v|q dx. (2.6)

which yields
vn → v in Lq

K(RN ) ∀q ∈ (2, 2∗∗).

Next we suppose that (K3) holds. It is important to observe that for each x ∈ R
N

fixed, the function
g(s) = V (x)s2−p0 + s2∗∗−p0 ∀s > 0

has Cp0V
(2∗∗−p0)/P (2∗∗−2)(x) as its minimum value, where

Cp0 =
(

2∗∗ − 2
2∗∗ − p0

)(
p0 − 2

2∗∗ − p0

)(2−p0)/(2∗∗−2)

.

Hence,

Cp0V
(2∗∗−p0)/(2∗∗−2)(x) � V (x)s2−p0 + s2∗∗−p0 ∀x ∈ R

N and s > 0.

It follows from assumption (K3) that for given ε ∈ (0, Cp0), there is r > 0 large
enough such that

K(x)|s|p0 � Cε(V (x)|s|2 + |s|2∗∗
) ∀s ∈ R and |x| � r,

which leads to∫
Bc

r(0)
K(x)|u|p0 dx � Cε

∫
Bc

r(0)
(V (x)|u|2 + |u|2∗∗

) dx ∀u ∈ E.

If {vn} is a sequence such that vn ⇀ v in E, there is M1 > 0 such that∫
RN

V (x)|vn|2 dx � M1 and
∫

RN

|vn|2∗∗
dx � M1 ∀n ∈ N
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and so ∫
Bc

r(0)
K(x)|vn|p0 dx � 2εCM1 ∀n ∈ N. (2.7)

Since p0 ∈ (2, 2∗∗) and K is a continuous function, it follows from Sobolev embed-
dings on the bounded domain that

lim
n→+∞

∫
Br(0)

K(x)|vn|p0 dx =
∫

Br(0)
K(x)|v|p0 dx. (2.8)

From (2.7) and (2.8),

lim
n→+∞

∫
RN

K(x)|vn|p0 dx =
∫

RN

K(x)|v|p0 dx, (2.9)

which implies that
vn → v in Lp0

K (RN ).

This completes our proof.

Lemma 2.3. Suppose that f satisfies (f1) and (f2) and (V, K) ∈ K. Let vn be a
sequence such that vn ⇀ v in E. Then

lim
n→+∞

∫
RN

K(x)F (vn) dx =
∫

RN

K(x)F (v) dx (2.10)

and

lim
n→+∞

∫
RN

K(x)f(vn)vn dx =
∫

RN

K(x)f(v)v dx. (2.11)

Proof. We only give the proof of (2.10) but (2.11) can be proved in the same way.
We begin the proof by assuming that (K2) occurs. From (f1) and (f2), we deduce

that for fixed q ∈ (2, 2∗∗) and given ε > 0, there is C > 0 such that

K(x)F (s) � εC(V (x)|s|2 + |s|2∗∗
) + CK(x)|s|q ∀s ∈ R. (2.12)

From lemma 2.2, ∫
RN

K(x)|vn|q dx →
∫

RN

K(x)|v|q dx

and there is r > 0 such that∫
Bc

r(0)
K(x)|vn|q dx < ε ∀n ∈ N. (2.13)

Since {vn} is bounded in E, there is M1 > 0 such that∫
RN

V (x)|vn|2 dx � M1 and
∫

RN

|vn|2∗∗
dx � M1 ∀n ∈ N.

It follows from (2.12) and (2.13) that∣∣∣∣
∫

Bc
r

K(x)F (vn) dx

∣∣∣∣ < (2CM1 + C)ε ∀n ∈ N. (2.14)
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Next we assume that (K3) holds. Repeating the same arguments explored in the
proof of lemma 2.2, we have, for given ε > 0 small enough, that there is r > 0 large
enough such that

K(x) � ε(V (x)|s|2−p0 + |s|2∗∗−p0) ∀s ∈ R and |x| > r.

From (f1) and (f2), for the given ε > 0, we have

F (s) � C|s|p0 + ε|s|2∗∗ ∀s ∈ I,

where I = {x ∈ R
N : |s| < s0 or |s| > s1}.

Since K(x) ∈ L∞(RN ), for all s ∈ I and |x| > r we have

K(x)|F (s)| � CK(x)|s|p0 + εK(x)|s|2∗∗

� Cε(V (x)|s|2−p0 + |s|2∗∗−p0)|s|p0 + ε‖K(x)‖L∞(RN )|s|2
∗∗

� εC(V (x)|s|2 + |s|2∗∗
).

Therefore, for any u ∈ E, we have the following estimate∫
Bc

r(0)
K(x)F (u) dx � εCQ(u) + C

∫
A∩Bc

r(0)
K(x) dx,

where
Q(u) =

∫
RN

V (x)|u|2 dx +
∫

RN

|u|2∗∗
dx

and
A = {x ∈ R

N : s0 � |u(x)| � s1}.

Since {vn} is bounded in E, there is M1 > 0 such that∫
RN

V (x)|vn|2 dx � M1 and
∫

RN

|vn|2∗∗
dx � M1.

Thus, ∫
Bc

r(0)
K(x)F (vn) dx � 2CM1ε + C

∫
An∩Bc

r(0)
K(x) dx,

where
An = {x ∈ R

N : s0 � |vn(x)| � s1}.

Repeating the same arguments used in the proof of lemma 2.2, it follows that∫
An∩Bc

r(0)
K(x) dx → 0 as r → +∞

and so, for n large enough,∣∣∣∣
∫

Bc
r(0)

K(x)F (vn) dx

∣∣∣∣ � C(2M1 + 1)ε. (2.15)

From (2.14) and (2.15), we need to show that

lim
n→+∞

∫
Br(0)

K(x)F (vn) dx =
∫

Br(0)
K(x)F (v) dx.
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However, this limit follows by using a compactness lemma of Strauss [24, com-
pactness lemma 2, p.156]: Br(0) is a bounded domain, |vn|L2∗∗ (Br(0)) is bounded
and (f2), together with the convergence almost everywhere, imply the limit as
required.

3. The proof of theorem 1.1

In this section, we prove the existence of a non-trivial solution of (1.1) by the
mountain pass lemma [8] without (PS) condition. The basic arguments are adapted
from [1,8, 9, 19].

The variational functional associated with (1.1) is given by

I(u) =
1
2

∫
RN

(|Δu|2 + V (x)u2) dx − μ

∫
RN

K(x)F (u) dx

− 1
2∗∗

∫
RN

P (x)|u|2∗∗
dx ∀u ∈ E. (3.1)

From the conditions on f(s) and lemmas 2.1 and 2.2, the functional I is well defined
and I ∈ C1(E, R). Its Gateaux derivative is given by

I ′(u)v =
∫

RN

(ΔuΔv + V (x)uv) dx − μ

∫
RN

K(x)f(u)v dx −
∫

RN

P (x)|u|2∗∗−2uv dx

(3.2)
for all u, v ∈ E. It is then easy to check that the critical points of I are weak
solutions of (1.1).

Since E can be embedded into Lq
K(RN ) continuously for some q (see lemma 2.1),

we can verify that the functional I exhibits the mountain pass geometry.

Lemma 3.1. The functional I satisfies the following two conditions:

(i) there exist α, ρ > 0 such that I(u) > α for all ‖u‖ = ρ;

(ii) there exists an e ∈ E such that ‖u‖ > ρ and I(e) < 0.

As a consequence of lemma 3.1 and the mountain pass lemma [8], for the constant

c0 = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)) > 0, (3.3)

where

Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) 	= 0, I(γ(1)) < 0}

there exists a (PS)c0 sequence {un} in E at the level c0, that is,

I(un) → c0 and I ′(un) → 0 as n → +∞. (3.4)

Lemma 3.2. The sequence {un} in (3.4) is bounded in E.

https://doi.org/10.1017/S0308210513001170 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210513001170


Non-trivial solutions for a semilinear biharmonic problem 291

Proof. From (f3) we have

I(un) − 1
θ
I ′(un)un =

(
1
2

− 1
θ

)
‖un‖2 +

1
θ
μ

∫
RN

K(x)(f(un)un − θF (un)) dx

+
(

1
θ

− 1
2∗∗

) ∫
RN

P (x)|un|2∗∗
dx

�
(

1
2

− 1
θ

)
‖un‖2

.

Since I(un) → c0 and I ′(un) → 0 as n → +∞, we obtain that {un} is bounded
in E.

Using a standard argument, it follows that there is a u ∈ E such that (up to a
subsequence)

un ⇀ u in E,

un → u in Lr
loc(R

N ) for all 2 � r < 2∗∗,

un → u almost everywhere in R
N .

⎫⎪⎬
⎪⎭ (3.5)

In the following we prove that u must be a non-trivial solution of (1.1). To this
end, we exploit the fact that the critical equation

Δ2u = |u|2∗∗−2u in R
N

has positive solutions

uε(x) =
CNε(N−4)/2

(ε2 + |x − x0|2)(N−4)/2 , CN = [(N − 4)(N − 2)N(N + 2)](N−4)/8,

for any x0 ∈ R
N and ε > 0. Furthermore,∫

RN

|Δuε|2 dx =
∫

RN

|uε|2
∗∗

dx = SN/4,

where S denotes the best constant for the embedding D2,2(RN ) ↪→ L2∗∗
(RN ),

namely,

S := inf
u∈D2,2(RN )

{ ∫
RN

|Δu|2 dx,

∫
RN

|u|2∗∗
dx = 1

}
.

For small enough R > 0, define a cut-off function ψ(x) ∈ C∞
0 (RN ) such that

supt{ψ} ∈ B2R(x0), ψ(x) ≡ 1 in BR(x0), 0 � ψ(x) � 1 in B2R(x0) and |∇ψ| �
C/R. Define

wε(x) = ψ(x)uε(x), (3.6)

vε(x) = wε(x)
[ ∫

RN

P (x)w2∗∗

ε (x) dx

]−1/2∗∗

, (3.7)

Vmax := max
x∈B2R(x0)

V (x),
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and

Kmin := min
x∈B2R(x0)

K(x).

By direct calculation, we have the inequality∫
BR(x0)

|Δwε|2 dx

=
∫

BR(x0)
|Δuε|2 dx

=
∫

BR(x0)
|uε|2

∗∗
dx −

∫
∂BR(x0)

∂(Δuε)
∂n

uε dS +
∫

∂BR(x0)

∂uε

∂n
(Δuε) dS

�
∫

BR(x0)
|uε|2

∗∗
dx

and by the assumption on P (x), we also have

P (x0)
∫

BR(x0)
|uε|2

∗∗
dx �

∫
BR(x0)

P (x)|uε|2
∗∗

dx + O(ετ ). (3.8)

Simple calculations also show that∫
RN \BR(x0)

|uε|2
∗∗

dx = O(εN ),

Aε :=
∫

RN \BR(x0)
|Δwε|2 dx = O(εN−4),

∫
RN

|vε|2 dx =

{
O(εγ), if N � 5, N 	= 8,

O(εγ | ln ε|), if N = 8
(3.9)

as ε → 0, where γ = min{4, N − 4}. Since

S =
[ ∫

RN

|uε|2
∗∗

dx

]4/N

,

we have that∫
RN

|Δwε|2 dx =
∫

BR(x0)
|Δwε|2 dx + Aε

�
∫

BR(x0)
|uε|2

∗∗
dx + Aε

� S

[ ∫
BR(x0)

|uε|2
∗∗

dx

]2/2∗∗

+ Aε

� S[‖P (x)‖L∞(RN )]
−2/2∗∗

[ ∫
BR(x0)

P (x)|uε|2
∗∗

dx

]2/2∗∗

+ O(ετ ) + O(εN−4). (3.10)

Note that the last inequality is from (3.8).
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Set Vε ≡
∫

RN |Δvε|2 dx since, for small ε > 0, say ε � ε0, it is easy to see that

∫
BR(x0)

P (x)|wε|2
∗∗

dx � Cε0

for some positive constant Cε0 . It follows from (3.10) and the definition of Vε that

Vε � S[‖P (x)‖L∞(RN )]
−2/2∗∗

+ O(ετ ) + O(εN−4). (3.11)

Lemma 3.3. Assume that (V, K) ∈ K, that f satisfies (f1)–(f3) and that P (x)
satisfies (P1) and (P2). There then exists a u0 ∈ E \ {0} such that

0 < sup
t�0

I(tu0) <
2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 (3.12)

if one of the assumptions (A1), (A2) and (A3) holds.

Proof. We now consider

I(tvε) =
t2

2

∫
RN

(|Δvε|2 + V (x)|vε|2) dx − μ

∫
RN

K(x)F (tvε) dx

− t2
∗∗

2∗∗

∫
RN

P (x)|vε|2
∗∗

dx

=
t2

2
Vε +

t2

2

∫
B2R(x0)

V (x)|vε|2 dx − μ

∫
B2R(x0)

K(x)F (tvε) dx − t2
∗∗

2∗∗ .

By assumptions (f1) and (f2), we can easily verify that limt→+∞ I(tvε) = −∞
for all ε > 0 and supt�0 I(tvε) > 0 is attained by some tε > 0.

We claim that there are two positive constants A1, A2 independent of ε such that
A1 < tε < A2 for small ε > 0.

In fact, since I(tεvε) = supt�0 I(tvε), and hence dI(tvε)/dt|t=tε
= 0, we have

that

tε

∫
B2R(x0)

(|Δvε|2 + V (x)|vε|2) dx − μ

∫
B2R(x0)

K(x)f(tεvε)vε dx

− t2
∗∗−1

ε

∫
B2R(x0)

P (x)|vε|2
∗∗

dx = 0. (3.13)

If there is a sequence tεn → +∞ as εn → 0+, by (3.13) we get

tεn

∫
B2R(x0)

(|Δvεn |2 + V (x)|vεn |2) dx � (tεn)2
∗∗−1

∫
B2R(x0)

P (x)|vεn |2∗∗
dx.

This is impossible because 2∗∗ − 1 > 1.
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Similarly, we suppose that there is a sequence t′εn
→ 0 as εn → 0+. Firstly, if

(K2) holds, from (f1) and (f2), for all δ > 0 there exists Cδ > 0 such that∫
RN

K(x)f(t′εn
vεn)vεn dx

� δt′εn

∫
RN

K(x)|vεn |2 dx + Cδ(t′εn
)2

∗∗−1
∫

RN

K(x)|vεn |2∗∗
dx

� δCt′εn

∫
RN

(|Δvεn |2 + V (x)|vεn |2) dx + Cδ(t′εn
)2

∗∗−1
∫

RN

K(x)|vεn |2∗∗
dx.

Taking δ = 1/2C, it follows from (3.13) that

t′εn

2

∫
RN

(|Δvεn |2 + V (x)|vεn |2) dx

� Cδ(t′εn
)2

∗∗−1μ

∫
RN

K(x)|vεn |2∗∗
dx + (t′εn

)2
∗∗−1

∫
RN

P (x)|vεn
|2∗∗

dx.

This is also impossible because 2∗∗ − 1 > 1.
Next, we suppose that (K3) holds. By (f1), (f2), there is a constant C̃ > 0, such

that∫
RN

K(x)f(t′εn
vεn

)vεn
dx

� (t′εn
)p0−1

∫
RN

K(x)|vεn |p0 dx + C̃(t′εn
)2

∗∗−1
∫

RN

K(x)|vεn |2∗∗
dx.

It again follows from (3.13) that

t′εn

∫
RN

(|Δvεn
|2 + V (x)|vεn |2) dx

� (t′εn
)p0−1μ

∫
RN

K(x)|vεn |p0 dx + C̃(t′εn
)2

∗∗−1μ

∫
RN

K(x)|vεn |2∗∗
dx

+ (t′εn
)2

∗∗−1
∫

RN

P (x)|vεn |2∗∗
dx,

which is also impossible because p0 > 2 and 2∗∗ − 1 > 1. So the proof of our claim
is completed.

Since 0 < A1 < tε < A2 < ∞, together with the definitions of Vmax and Kmin,
we have,

I(tvε) =
t2

2

∫
RN

(|Δvε|2 + V (x)|vε|2) dx − μ

∫
RN

K(x)F (tvε) dx

− t2
∗∗

2∗∗

∫
RN

P (x)|vε|2
∗∗

dx

=
t2

2
Vε +

t2

2

∫
B2R(x0)

V (x)|vε|2 dx − μ

∫
B2R(x0)

K(x)F (tvε) dx − t2
∗∗

2∗∗
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� t2ε
2

Vε +
t2ε
2

∫
B2R(x0)

V (x)|vε|2 dx − μ

∫
B2R(x0)

K(x)F (tεvε) dx − t2
∗∗

ε

2∗∗

� t2ε
2

Vε +
t2ε
2

Vmax

∫
B2R(x0)

|vε|2 dx − μKmin

∫
B2R(x0)

F (tεvε) dx − t2
∗∗

ε

2∗∗ .

Since (t2/2)Vε − t2
∗∗

/2∗∗ � (2/N)V N/4
ε , for all t � 0, we deduce from (3.9) and

(3.11) that

sup
t�0

I(tvε) = I(tεvε)

� 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 + O(ετ ) + O(εN−4)

+
t2ε
2

Vmax

∫
B2R(x0)

|vε|2 dx − μKmin

∫
B2R(x0)

F (tεvε) dx

� 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 − μKmin

∫
B2R(x0)

F (tεvε) dx

+

{
O(εγ), if N � 5, N 	= 8,

O(εγ | ln ε|), if N = 8,
γ = min{4, N − 4}. (3.14)

By (f3), we have that
F (s) � Csθ

for s > 0. Therefore,∫
B2R(x0)

F (tεvε) dx � C

∫
B2R(x0)

(tεvε)θ dx � CAθ
1

∫
BR(x0)

(vε)θ dx.

It follows from (3.14) that

sup
t�0

I(tvε) � 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 − μKminCAθ

1

∫
BR(x0)

(vε)θ dx

+

{
O(εγ), if N � 5, N 	= 8,

O(εγ | ln ε|), if N = 8,
γ = min{4, N − 4}

� 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4

− μCεN−(N−4)θ/2
∫ R/ε

0

(
1

(1 + t2)(N−4)/2

)θ

tN−1 dt

+

{
O(εγ), if N � 5, N 	= 8,

O(εγ | ln ε|), if N = 8,
γ = min{4, N − 4}. (3.15)

Case 1 (assumption (A1) holds). For N � 8, θ > 2 and μ > 0, we deduce that
N − (N − 4)θ/2 < γ = 4 and

0 < C1 �
∫ R/ε

0

(
1

(1 + t2)(N−4)/2

)θ

tN−1 dt < ∞.
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It follows from (3.15) that

sup
t�0

I(tvε) <
2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 (3.16)

if ε > 0 is sufficiently small.

Case 2 (assumption (A2) holds). For 4 < N � 8, θ > 2∗ − 2 = 8/(N − 4) and
μ > 0, we deduce that N − (N − 4)θ/2 < γ = N − 4 and

0 < C1 �
∫ R/ε

0

(
1

(1 + t2)(N−4)/2

)θ

tN−1 dt < ∞.

The inequality (3.16) again follows from (3.15) if ε > 0 is sufficiently small.

Case 3 (assumption (A3) holds). For 4 < N � 8, 2 < θ � 2∗ − 2 = 8/(N − 4), we
take μ = ε−4 so that N − (N − 4)θ/2 − 4 < γ = N − 4. Since∫ R/ε

0

(
1

(1 + t2)(N−4)/2

)θ

tN−1 dt � C > 0

it follows from (3.15) that

sup
t�0

I(tvε) � 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4

− ε−4CεN−(N−4)θ/2
∫ R/ε

0

(
1

(1 + t2)(N−4)/2

)θ

tN−1 dt + O(εN−4)

� 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 − CεN−(N−4)θ/2−4 + O(εN−4)

<
2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4 (3.17)

if ε > 0 is sufficiently small.
Now the inequality (3.12) follows from (3.16) and (3.17) by taking u0 = vε with

ε > 0 sufficiently small.

The proof of theorem 1.1. The conditions for the mountain pass lemma [8] are sat-
isfied by lemma 3.1. By (3.1)–(3.4), we have

I(un) =
1
2

∫
RN

(|Δun|2 + V (x)|un|2) dx − μ

∫
RN

K(x)F (un) dx

− 1
2∗∗

∫
RN

P (x)|un|2∗∗
dx

= c0 + on(1) (3.18)

and

I ′(un)un =
∫

RN

(|Δun|2 + V (x)|un|2) dx − μ

∫
RN

K(x)f(un)un dx

−
∫

RN

P (x)|un|2∗∗
dx

= on(1)‖un‖. (3.19)
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Define vn = un − u. Then, from (3.5), lemma 2.3 and the Brézis–Lieb lemma [7],

I(un) = I(u) +
1
2

∫
RN

(|Δvn|2 + V (x)|vn|2) dx − 1
2∗∗

∫
RN

P (x)|vn|2∗∗
dx (3.20)

and

I ′(un)un =
∫

RN

(|Δun|2 + V (x)|un|2) dx − μ

∫
RN

K(x)f(un)un dx

−
∫

RN

P (x)|un|2∗∗
dx

=
∫

RN

(|Δu|2 + V (x)|u|2) dx − μ

∫
RN

K(x)f(u)u dx −
∫

RN

P (x)|u|2∗∗
dx

+
∫

RN

(|Δvn|2 + V (x)|vn|2) dx −
∫

RN

P (x)|vn|2∗∗
dx + on(1). (3.21)

Since I ′(un) → 0 as n → ∞ and by (3.5) again, we obtain

I ′(un)u =
∫

RN

(|Δu|2 + V (x)u2) dx − μ

∫
RN

K(x)f(u)u dx

−
∫

RN

P (x)|u|2∗∗
dx + on(1). (3.22)

By (3.21) and (3.22), we have
∫

RN

(|Δvn|2 + V (x)|vn|2) dx −
∫

RN

P (x)|vn|2∗∗
dx → 0 as n → ∞ (3.23)

and

I(u) =
1
2

∫
RN

(|Δu|2 + V (x)u2) dx − μ

∫
RN

K(x)F (u) dx − 1
2∗∗

∫
RN

P (x)|u|2∗∗
dx

=
1
2
μ

∫
RN

K(x)f(u)u dx − μ

∫
RN

K(x)F (u) dx

+
(

1
2

− 1
2∗∗

) ∫
RN

P (x)|u|2∗∗
dx

� 0. (3.24)

Without loss of generality we can suppose that∫
RN

(|Δvn|2 + V (x)|vn|2) dx → � as n → ∞ (3.25)

and from (3.23) ∫
RN

P (x)|vn|2∗∗
dx → � as n → ∞. (3.26)
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We also have by Sobolev’s inequality that∫
RN

|Δvn|2 dx � S

( ∫
RN

|vn|2∗∗
dx

)2/2∗∗

� S[‖P (x)‖L∞(RN )]
−2/2∗∗

( ∫
RN

P (x)|vn|2∗∗
dx

)2/2∗∗

. (3.27)

Combining (3.25)–(3.27), if � > 0, we have

� � SN/4[‖P (x)‖L∞(RN )]
(4−N)/4. (3.28)

Taking the limit in (3.20) as n → +∞, we have

c0 � 2
N

� � 2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4. (3.29)

On the other hand, from (3.3) and lemma 3.3, we have

c0 <
2
N

SN/4[‖P (x)‖L∞(RN )]
(4−N)/4.

For a contradiction, show that � = 0. Thus,

I(u) = c0 > 0 and I ′(u) = 0,

i.e. u is a non-trivial solution of (1.1). The proof is complete.

Remark 3.4. Applying theorem 1.1 to the case in which P (x) = 1, we obtain the
following corollary.

Corollary 3.5. Assume that (V, K) ∈ K and that f satisfies (f1)–(f3). Then the
biharmonic problem

Δ2u + V (x)u = μK(x)f(u) + |u|2∗∗−2u, x ∈ R
N , u ∈ D2,2(RN ), N � 5, (3.30)

has at least one non-trivial solution u such that 0 < I(u) < (2/N)SN/4 if one of
the assumptions (A1), (A2) and (A3) holds.
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7 H. Brézis and E. Lieb. A relation between pointwise convergence of functions and conver-
gence of functionals. Proc. Am. Math. Soc. 88 (1983), 486–490.
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