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Abstract. In this paper we observe that one of our main results in ‘Optimal transport
and dynamics of circle expanding maps acting on measures’ [Ergod. Th. & Dynam. Sys.
33(2) (2013), 529–548] has an interesting consequence: an infinitesimal version of the
Furstenberg conjecture is false in a very strong way. More precisely, we find deformations
of the Lebesgue measure on the circle which are first-order invariant simultaneously for
all integer multiplications modulo 1. We also correct an error in a lemma of the mentioned
article. Both the proof and the statement must be corrected, but the main results of the
article are not affected.

1. An infinitesimal Furstenberg conjecture
1.1. Furstenberg conjecture. While circle expanding maps have in many respects
become toy models in the category of hyperbolic dynamical systems, a prominent question
concerning them is still open for over half a century.

CONJECTURE 1.1. (Furstenberg) If an atomless probability measure µ on the circle S1
=

R/Z is invariant under both

82 : x 7→ 2x mod 1 and 83 : x 7→ 3x mod 1,

then µ is equal to the Lebesgue measure λ.

In the above conjecture, one can replace 2 and 3 by two multiplicatively independent
integers. Even the above case is wide open in general, though a theorem of Rudolph asserts
that Furstenberg’s conjecture holds for measures µ having positive entropy for one of the
maps82 or83 [Rud90] (see also [Joh92]). Many other results related to this question can
be found in the literature, among which are [HS12, BLMV09]; the interested reader can
for example use the answers to the MathOverflow question [Math14] as pointers.
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1.2. A differential calculus perspective. In [Klo13], we started a study of the action of
circle expanding maps on the set of probability measure P(S1) in a differentiable setting
relying on optimal transport. This setting does not truly give P(S1) the structure of an
(infinite-dimensional) manifold, but it makes it possible to define differentiable maps and
their derivatives. The main result of [Klo13] is that the push-forward action on measures
8# of a C2 expanding circle map 8 is derivable at its absolutely continuous invariant
measure, with an explicit computation of its derivative. To see how relevant this result can
be in the context of the Furstenberg conjecture, let us consider how one can approach this
kind of problem in a differential geometric setting.

Furstenberg’s conjecture is a strong rigidity statement; in differential geometry, a
common strategy to attack such questions is to aim at weaker rigidity statements. A first
weakening would be to ask whether the point known to have a given property of interest
(here: λ) is, rather than unique, at least isolated among points with this property? If this
stays out of reach, then can we prove that it is not possible to deform this point, i.e. to
find a non-constant continuous path starting at this point inside the set defined by the given
property? A further weakening is to ask for first-order rigidity, i.e. to ask whether we
can use the tangent space and derivatives to prove that no C1 deformation can exist in
the considered set? In the case of the Furstenberg conjecture, we have a space P(S1) and
two rather rich subspaces, the sets of atomless invariant measures for 82 and 83. Let us
denote these sets of fixed measures by I2 and I3; then the conjecture is that I2 ∩ I3 = λ.
Imagine for a moment that I2 and I3 are some sort of differentiable submanifolds of P(S1);
then the various above weakenings of Furstenberg’s conjecture would take the form of the
following questions:

(1) is λ isolated in I2 ∩ I3?;
(2) is λ the sole point in its path-connected component inside I2 ∩ I3?;
(3) must a C1 curve starting at λ and lying inside I2 ∩ I3 be constant?

Finally, to provide a positive answer to this third weakening, the most common approach
would be to prove that the intersection I2 ∩ I3 is ‘first-order rigid’ at λ, in the sense that
the tangent spaces Tλ I2 and Tλ I3 intersect trivially.

1.3. The infinitesimal Furstenberg conjecture. Since I2 and I3 are defined (if we forget
momentarily the atomless condition) as sets of fixed points for 82# and 83#, the first-
order rigidity question would reduce to ask whether the spaces E2, E3 ⊂ TλP(S1) of
invariant vectors for the derivatives Dλ82# and Dλ83# intersect trivially. Even if all the
above speculation turns out to be wrong (e.g. I2 and I3 could not be anything close to
submanifolds), this last question is perfectly defined in the differential setting alluded to
above, and can be considered an infinitesimal version of Furstenberg’s conjecture. The
main purpose of this paper is to prove that this question has a negative answer.

THEOREM 1.2. The vector space E2 ∩ E3 ⊂ TλP(S1) of tangent vectors at λ that are
simultaneously invariant under both Dλ82# and Dλ83# is infinite-dimensional.

The vector space
⋂
∞

d=2 Ed of tangent vectors at λ that are simultaneously invariant
under all the Dλ8d# is two-dimensional.
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In order to keep this paper short, and to avoid repetition, we refer to [Klo13] for the
definition of derivatives and tangent spaces in the set of measures; but such a result could
feel very abstract and potentially artificial, so let us give a direct corollary that contains no
reference to optimal transport or abstract differential geometric setting. The idea behind
this corollary goes back to an insight of Otto [Ott01] related to the point of view of
Benamou and Brenier [BB00] and developed in [AGS08]: by integration, smooth test
functions can serve as a kind of (weak) coordinates on P(S1); for simplicity, this corollary
is phrased in a restricted way, using only that

⋂
∞

d=2 Ed is not reduced to 0.

COROLLARY 1.3. There exists a path of probability measures (µt )t∈(−ε,ε) with µ0 = λ,
continuous in the weak topology, with µt atomless for almost all t , such that

d
dt

∫
S1
ψ0 dµt

∣∣∣∣
t=0
6= 0

for some smooth function ψ0 : S1
→ R, and

d
dt

∫
S1
ψ dµt

∣∣∣∣
t=0
=

d
dt

∫
S1
ψ d(8d#µt )

∣∣∣∣
t=0

for all smooth functions ψ : S1
→ R and all integers d ≥ 2.

Remark 1.4.
(1) The first condition ensures that µt depends significantly on t (in particular, it avoids

the degenerate and obvious choice µt ≡ λ), while the second condition expresses
that for small t , µt is ‘almost invariant’ under all the push-forward maps 8d#. Of
course, this condition can be rewritten

d
dt

∫
S1
ψ dµt

∣∣∣∣
t=0
=

d
dt

∫
S1
ψ ◦8d dµt

∣∣∣∣
t=0

.

(2) This corollary is intrinsically much weaker than the theorem, as differentiability in
the sense of Wasserstein distance implies differentiability of the integrals of test
functions, but the converse implication does not hold. For example, a curve of
the form (tµ+ (1− t)ν)t is usually not differentiable (or even rectifiable) in the
differential structure induced by W2, while the integral of any test function depends
affinely on t . Nevertheless, we do not know a simpler way to get Corollary 1.3
even when restricting d to {2, 3}. Even if the Furstenberg conjecture were false and
there were an atomless probability measure µ 6= λ invariant by82 and83, the curve
(tλ+ (1− t)µ)t would not work as these measures are not positive for negative t .

(3) One could try to extend this infinitesimal argument to the construction of families of
counter-examples to the Furstenberg conjecture: if one of the invariant vectors we
found could be extended to a vector field preserved by both 82 and 83, then the
integral curve issued from λ would be entirely made of invariant measures for both
82 and 83. However, it would be incredibly bold to conjecture this extension to be
possible: we do not even know whether 82# is differentiable at any non-absolutely
continuous measure. Note also that this extension cannot be expected at all for the full
semigroup N, as it is known that the Lebesgue measure is the only atomless measure
invariant under all 8d (this holds more generally for large enough sub-semigroups
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of N; see [EF10]). One can still dream of making this approach work for finitely
generated multiplicative sub-semigroups, as this case is very different from larger
sub-semigroups: in the former case, the remainder in the first-order Taylor formula
for 8d# at λ can be made uniform over the generators (for a fixed simultaneously
invariant tangent vector).

2. Proofs
Given the results of [Klo13], the only merit of Theorem 1.2 is its statement: its proof is
completely straightforward.

Proof of Theorem 1.2. We only need to look closely at the expressions of Ld := Dλ8d#.
As indicated in the proof of [Klo13, Proposition 4.4], setting ck(x)= cos(2πkx) and
sk(x)= sin(2πkx), we have

Ld(ck)= Ld(sk)= 0

when k is not a multiple of d , and

Ld(cmd)= dcm, Ld(smd)= dsm

when m is a positive integer. Note that the union of (ck)k≥1 and (sk)k≥1 is a Hilbert basis
of TλP(S1).

It follows that the 1-eigenspace Ed of Ld is generated by the functions∑
m≥0

d−mcdm j and
∑
m≥0

d−msdm j ,

where j runs over positive integers not multiples of d.
Taking intersections, we first see that E2 ∩ E3 is generated by the functions∑

n,m≥1

2−n3−mc2n3m j and
∑

n,m≥1

2−n3−ms2n3m j ,

where j is any positive integer prime with 6. In particular, E2 ∩ E3 is infinite-dimensional.
We also get that

⋂
d≥2 Ed is generated by∑

p≥1

p−1cp and
∑
p≥1

p−1sp

and is thus two-dimensional. Note that these functions are indeed in L2(λ), and therefore
represent tangent vectors at λ. �

The proof of the corollary is also easy; it relies mostly on the following pointwise
version of the continuity equation. We do not claim any novelty in the lemma below, but
still provide a simple proof of the simple case we need.

LEMMA 2.1. Assume that (µt )t is a curve of probability measures on S1 which is
differentiable at 0 with tangent vector v ∈ Tµ0P(S1), in the sense that

W2(µt , µ0 + tv)= o(t)

(be reminded that µ0 + tv := (Id+tv)#µ0 is the image of tv by the exponential map
at µ0).
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Then, for all smooth functions ψ , we have

d
dt

∫
ψ dµt

∣∣∣∣
t=0
=

∫
ψ ′v dµ0.

Note that this lemma is mostly relevant in the case when µ0 is regular in the sense of
Gigli (i.e. in dimension one, atomless) since then all ‘tangent vectors’ at µ0 are indeed
represented by a vector field v ∈ L2(µ0). In a more general manifold, the same result
would hold with ψ a compactly supported function, and ∇ψ instead of ψ ′.

Proof. First, we observe that, denoting by 5t an optimal transport plan from µt to
µ0 + tv, we have∣∣∣∣∫ ψ dµt −

∫
ψ d(µ0 + tv)

∣∣∣∣ = ∣∣∣∣∫ ψ(x) d5t (x, y)−
∫
ψ(y) d5t (x, y)

∣∣∣∣
≤

∫
|ψ(x)− ψ(y)| d5(x, y)

≤ sup(ψ ′)
∫

d(x, y) d5(x, y)

≤ sup(ψ ′)
(∫

d(x, y)2 d5(x, y)
)1/2(∫

1 d5(x, y)
)1/2

= sup(ψ ′)W2(µt , µ0 + tv)

= o(t),

so that we can use µ0 + tv to estimate the derivative of the integral of ψ .
Next, we have∫

ψ d(µ0 + tv)−
∫
ψ dµ0 =

∫
(ψ ◦ (Id+tv)− ψ) dµ0

=

∫
(ψ(x + tv(x))− ψ(x)) dµ0

=

∫ (
tψ ′(x)v(x)+

1
2
ψ ′′(cx )t2v(x)2

)
dµ0

= t
∫
ψ ′v dµ0 + O(t2).

Note that the finiteness of ‖v‖L2(µ0)
is part of the definition of the tangent space at µ0.

Now the claimed equality follows readily from these two estimates. �

Proof of Corollary 1.3. Let v ∈
⋂

d≥2 Ed be a non-zero tangent vector at λ invariant under
all the Dλ8d#, and define µt = λ+ tv.

By definition of the tangent space at λ,
∫
v dλ= 0, so that v has a well-defined

antiderivative. Let ψ0 be a smooth approximation of one of its antiderivatives, so that∫
ψ ′0v dλ'

∫
v2 dλ is non-zero.

Then the pointwise continuity equation implies that

d
dt

∫
ψ0 dµt

∣∣∣∣
t=0
=

∫
ψ ′0v dλ 6= 0.
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Moreover, the invariance of v means that the curve (8d#µt ) is also differentiable at t = 0,
with tangent vector v. In consequence, we get for all smooth functions ψ :

d
dt

∫
ψ d(8d#µt )

∣∣∣∣
t=0
=

∫
ψ ′v dλ=

d
dt

∫
ψ dµt

∣∣∣∣
t=0

.

The weak continuity of (µt ) is obvious, and the fact that µt is atomless for almost all t
was proved in [Klo13]. �

3. Corrigendum
The proof of [Klo13, Lemma 4.2] is flawed: the Wasserstein distance between ρλ and
ρ̄λ is independent of t , so that the right-hand side of the first inline equation should be
εt + 2−3/2ε rather than (1+ 2−3/2)εt . This mistake can be corrected by estimating how
well a piecewise-constant density with k pieces of equal length can approximate the given
density. Then the issue is moved to the main argument: in order to ultimately get a o(t)
remainder, we need to take advantage of the presence of many overlaps (as in [Klo13,
Figure 2]), which only exist if k increases not too fast with respect to t . This can be ensured
by adding a regularity hypothesis.

LEMMA 3.1. (Corrected version of [Klo13, Lemma 4.2]) Given a Hölder continuous and
positive density ρ, vector fields v1, . . . , vn ∈ L2(ρλ) and positive numbers α1, . . . , αn

summing up to 1, one has

W
(
ρλ+ t

∑
i

αivi ,
∑

i

αi (ρλ+ tvi )

)
= o(t).

The positivity assumption may not be necessary, but at the very least simplifies the
proof. Note that in [Klo13], we only used Lemma 4.2 for positive C1 densities, so all main
results stand without modification as soon as we prove the corrected lemma.

Proof. We prove the case n = 2, since the general case can then be deduced by induction.
Let ε be any positive number, and consider vector fields v̄i (i = 1, 2) that are constant on

the intervals [ j/k1, ( j + 1)/k1) for some k1 and all j < k1 and such that ‖v̄i − vi‖L2(ρλ)

≤ ε. Note that k1 and the v̄i are chosen to depend only on ε, not on t ; in particular,
‖v̄1 − v̄2‖∞ is finite and independent of t .

Now consider any value of t , to be taken small enough a few times below. Let k = k(t)
be a multiple of k1 having the magnitude of (1/t)1/(1+β/2), where β is the Hölder exponent
of ρ, say kt1/(1+β/2)

∈ [1, 2].
We define ρ̄ as the density that is constant on each I j = [ j/k, ( j + 1)/k), of value

ρ̄ j := k
∫

I j
ρ dλ. Denoting by C the Hölder constant of ρ, we get

‖ρ − ρ̄‖∞ ≤ Ck−β .

We denote by v̄i ( j) the value of v̄i on I j ; observe that when t is small, these values are the
same on many successive intervals since k is much larger than k1.

Let us first bound above W(ρλ, ρ̄λ). We consider the monotone rearrangement fixing 0
as transport plan; by definition of ρ̄, it preserves each Ii . To simplify notation, let us bound
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the cost due to the mass located in I0, the other intervals behaving in exactly the same way.
The cumulative distribution functions of ρλ and ρ̄λ are given by

F(x)=
∫ x

0
ρ dλ and G(x)= x ρ̄0.

The monotone rearrangement is given on I0 by the map T = G−1
◦ F , so that the

contribution of I0 to its cost is∫ 1/k

0
|T (x)− x |2ρ(x) dx =

∫ 1/k

0

∣∣∣∣ 1
ρ̄0

∫ x

0
ρ dλ−

1
ρ̄0

∫ x

0
ρ̄0 dλ

∣∣∣∣2ρ(x) dx

≤

∫ 1/k

0

∣∣∣∣ 1
ρ̄0

∫ x

0
|ρ − ρ̄0| dλ

∣∣∣∣2ρ(x) dx

≤

∫ 1/k

0

C2x2

ρ̄2
0k2β

ρ(x) dx

≤
C2

ρ̄0k3+2β .

Since the mass lying in I0 is ρ̄0/k (for both densities), the ratio cost per mass is bounded
above by

C2

ρ̄2
0k2+2β

≤
C2

(min ρ)2 k2+2β .

Since this holds in all intervals Ii , the overall cost is bounded by the same value, so that

W(ρλ, ρ̄λ)≤
C

min ρ
1

k1+β .

The same argument also yields

W(ρλ+ v, ρ̄λ+ v)≤
C

min ρ
1

k1+β

for any vector field v which is constant on each I j : indeed, if5 is a transport plan from ρλ

to ρ̄λ, then (Id+v, Id+v)#5 is a transport plan from ρλ+ v to ρ̄λ+ v whose cost is not
greater than the cost of 5 (for each bit of mass moved from x to T (x) by 5, this new plan
moves the same amount of mass from x + v(x) to T (x)+ v(T (x)); the hypothesis that v
is constant on each I j then ensures that v(T (x))= v(x)). Applying this to v = t

∑
αi v̄i ,

we get

W
(
ρλ+ t

∑
αi v̄i , ρ̄λ+ t

∑
αi v̄i

)
≤

C
min ρ

1
k1+β .

Applying the same reasoning to each v = t v̄i separately and concatenating the
corresponding transport plan also yields

W
(∑

αi (ρλ+ t v̄i ),
∑

αi (ρ̄λ+ t v̄i )
)
≤

C
min ρ

1
k1+β .

We can now use the main idea of the original lemma [Klo13, Figure 2] to get the bound

W
(
ρ̄λ+ t

∑
αi v̄i ,

∑
αi (ρ̄λ+ t v̄i )

)
≤ t3/2k1/2

‖v̄1 − v̄2‖
3/2
∞ .
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Indeed, for each I j the construction pictured in Figure 2 in [Klo13] gives a
transport plan from (Id+ t (α1v1( j)+ α2v2( j)))#ρ̄ jλ|I j to α1(Id+ tv1( j))#ρ̄ jλ|I j +

α2(Id+ tv2( j))#ρ̄ jλ|I j whose cost is at most t3ρ̄ j |v̄1( j)− v̄2( j)|3 for a contribution to
the mass of ρ̄ j/k.

The last estimates we need are

W
(
ρλ+ t

∑
αivi , ρλ+ t

∑
αi v̄i

)
≤ εt

and
W
(∑

αi (ρλ+ t v̄i ),
∑

αi (ρλ+ tvi )
)
≤ εt.

They are both obtained, as in the original proof, by observing that for any measure µ
and any vector fields v, v̄ in L2(µ), the transport plan (Id+v, Id+v̄)#µ has cost exactly
‖v − v̄‖L2(µ).

Using the triangle inequality to combine all these estimates, we get

W
(
ρλ+ t

∑
αivi ,

∑
αi (ρλ+ tvi )

)
≤ 2εt + t3/2k1/2

‖v̄1 − v̄2‖
3/2
∞ +

2C
min ρ

1
k1+β

= 2εt + O(t (4+3β)/(4+β))+ O(t (2+2β)/(2+β))= o(t). �
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