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This paper is concerned with the periodic (in time) solutions to an one-dimensional
semilinear wave equation with x-dependent coefficients. Such a model arises from the
forced vibrations of a nonhomogeneous string and propagation of seismic waves in
nonisotropic media. By combining variational methods with saddle point reduction
technique, we obtain the existence of at least three periodic solutions whenever the
period is a rational multiple of the length of the spatial interval. Our method is
based on a delicate analysis for the asymptotic character of the spectrum of the
wave operator with x-dependent coefficients, and the spectral properties play an
essential role in the proof.
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1. Introduction

In this paper, we consider the existence of multiple periodic solutions to the
semilinear wave equation with x-dependent coefficients

ρ(x)utt − (ρ(x)ux)x = aρ(x)u+ f(t, x, u), t ∈ R, 0 < x < π, (1.1)

with the Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0, t ∈ R, (1.2)
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Existence of multiple periodic solutions to a semilinear wave equation 2587

and the periodic conditions

u(t+ T, x) = u(t, x), ut(t+ T, x) = ut(t, x), t ∈ R, 0 < x < π, (1.3)

where a > 0 is a constant and f is a given T -periodic function in time t.
Equation (1.1) originates from the forced vibrations of a bounded nonhomoge-

neous string and the propagation of seismic waves in nonisotropic media (see e.g.
[3–5,18–22,27,28] and references therein). More precisely, the vertical displace-
ment u(t, z) at time t and depth z of a plane seismic wave is described by the
equation

μ(z)utt − (ν(z)uz)z = 0 (1.4)

with some initial conditions in t and boundary conditions in z, where μ(z) is the
rock density and ν(z) is the elasticity coefficient. By the change of variable

x =
∫ z

0

(
μ(s)
ν(s)

)1/2

ds,

equation (1.4) is transformed into

ρ(x)utt − (ρ(x)ux)x = 0,

where ρ = (μν)1/2 is called the acoustic impedance function.
It is well known that the case of ρ ≡ C (a nonzero constant) corresponds to

the classical wave equation, which is called the one with constant coefficients for
distinguishing it from the one with x-dependent coefficients discussed here. The
problem of finding periodic solutions of nonlinear wave equation with constant
coefficients has received a great deal of attention since the original work [24] of
Rabinowitz. By using the variational methods, he obtained the existence of periodic
solutions for the weakly nonlinear homogeneous string whenever the period T is a
rational multiple of the length of the spatial interval. Thereafter, many authors, such
as Brézis, Chang, Nirenberg, etc., have used and developed the variational methods,
topological degree and index theory to obtain a lot of results on the existence and
multiplicity of periodic solutions for the problem with various nonlinearities (see
e.g. [1,6–8,10,12–17,25,26,29,30] and the references therein).

On the other hand, the problem of finding periodic solutions for the nonlinear
wave equation with x-dependent coefficients was studied by Barbu and Pavel in
[3–5] for the first time. In [5], Barbu and Pavel considered the existence and regu-
larity of periodic solutions for such wave equation with sublinear nonlinearity under
the Dirichlet boundary conditions. For the case the nonlinear term having power-law
growth, Rudakov [27] proved the existence of periodic solutions under the Dirichlet
boundary conditions. Later, Ji and his collaborators obtained some related results
for the general Sturm–Liouville boundary value problem [18,20], and periodic and
anti-periodic boundary value problem [19,21]. In [31], by using topological degree
methods, Wang and An obtained an existence result on periodic solution of the
problem with resonance and the sublinear nonlinearity. Afterwards, Ji and Li [22]
obtained an existence result of periodic solution for ηρ(x) = 0 under the Dirichlet
boundary conditions, which actually solves an open problem posted in [5]. Recently,
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Ji et al. [23] obtained the existence and multiplicity of periodic solutions for the
Dirichlet–Neumann boundary value problem of a wave equation with x-dependent
coefficients by using the Leray–Schauder degree theory. The restriction to such type
of boundary value problem is essentially due to the possible loss of the compactness
of the inverse operator on its range.

In this paper, we intend to pay close attention to the existence of multiple periodic
solutions of wave equation with x-dependent coefficients. By combining variational
methods with saddle point reduction technique, we obtain the existence of at least
three periodic solutions whenever the period is a rational multiple of the length of
the spatial interval. Our method is based on a delicate analysis for the asymptotic
character of the spectrum of the wave operator with x-dependent coefficients, and
the spectral properties play an essential role in the proof.

Denote f̃(t, x, u) = (f(t, x, u))/(ρ(x)). Throughout this paper, we assume T is a
rational multiple of π which can be rewritten as

T = 2π
p

q

for some relatively prime positive integers p and q. Moreover, we make the following
assumptions:

(A1) ρ(x) ∈ H2(0, π) satisfies ρ(x) > 0 for x ∈ [0, π], and

ρ0 = ess inf ηρ(x) > 0,

where

ηρ(x) =
1
2
ρ′′

ρ
− 1

4

(
ρ′

ρ

)2

.

(A2) f̃(t, x, u) ∈ C1(R× (0, π)× R), f̃(t+ T, x, u) = f̃(t, x, u), and

f̃(t, x, u) = o(|u|), as u→ 0 uniformly in (t, x), (1.5)

and f̃(t, x, u) is asymptotically linear in u at ∞ in the following sense: there
exists a constant b > 0 such that

f̃(t, x, u)− bu = o(|u|), as |u| → ∞ uniformly in (t, x). (1.6)

The rest of this paper is organized as follows. In § 2, we give some preliminaries
and state the main result. In § 3, we first characterize the solutions of problem
(1.1)–(1.3) as the critical points of the corresponding variational problem. Then,
with the aid of the saddle point reduction technique, we reduce the critical point of
the variational problem from an infinite dimensional space to a finite dimensional
subspace. In § 4, we prove that reduced functional satisfies the (PS)c condition for
any c ∈ R. In §§ 5 and 6, we devote to the proof of the bounds of reduced functional
and the main result, respectively.
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2. Preliminaries and main result

Set Ω = (0, T )× (0, π), and denote

Ψ = {ψ ∈ C∞(Ω) : ψ(t, 0) = ψ(t, π) = 0, ψ(0, x) = ψ(T, x), ψt(0, x) = ψt(T, x)}.
Let

Lr(Ω) =
{
u : ‖u‖rLr(Ω) =

∫
Ω

ρ(x)|u(t, x)|rdtdx <∞
}
, r � 1.

It is well known that Ψ is dense in Lr(Ω) for any r � 1, and L2(Ω) is a Hilbert
space with the inner product

〈u, v〉 =
∫

Ω

ρ(x)u(t, x)v(t, x)dtdx, ∀u, v ∈ L2(Ω).

We rewrite (1.1)–(1.3) on Ω in the following form

ρ(x)utt − (ρ(x)ux)x = aρ(x)u+ f(t, x, u), (t, x) ∈ Ω, (2.1)

u(t, 0) = u(t, π) = 0, t ∈ (0, T ), (2.2)

u(0, x) = u(T, x), ut(0, x) = ut(T, x), x ∈ (0, π). (2.3)

Definition 2.1. A function u ∈ Lr(Ω) is called a weak solution of problem (2.1)–
(2.3) if it satisfies∫

Ω

u(ρψtt − (ρψx)x)dtdx−
∫

Ω

ρ(au+ f̃(t, x, u))ψdtdx = 0, ∀ψ ∈ Ψ.

Define the linear operator L0 by

L0ψ = ρ−1 (ρψtt − (ρψx)x) , ∀ψ ∈ Ψ,

and denote its extension in L2(Ω) by L. It is known that L is a self-adjoint operator
(see [5]), and u ∈ L2(Ω) is a weak solution of problem (2.1)–(2.3) if and only if
Lu = au+ f̃ .

For the study of periodic solutions of problem (2.1)–(2.3), we need to use the fol-
lowing complete orthonormal system of eigenfunctions {φm(t)ϕn(x) : m∈Z, n∈N}
in L2(Ω) (see [32]), where

φm(t) = T−(1/2)eiμmt, μm = 2mπT−1, m ∈ Z,

and λn, ϕn(x) are given by the Sturm–Liouville problem

− (ρ(x)ϕ′
n(x))′ = λ2

nρ(x)ϕn(x), ϕn(0) = ϕn(π) = 0, n ∈ N. (2.4)

Lemma 2.2 ([5]). Assume that ρ(x) satisfies (A1), then the eigenvalues of problem
(2.4) have the form

λn = n+ θn with θn → 0 as n→∞,
where

0 <
ρ2

n
�
√
n2 + ρ0 − n � θn �

√
n2 + ρ1 − n � ρ1

2n
, (2.5)

and ρ1 = 2
π

∫ π

0
ηρ(x)dx, ρ2 =

√
ρ0 + 1− 1.
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By Lemma 2.2, the eigenvalues of operator L can be rewritten as

λnm = λ2
n − μ2

m = p−2(np+ θnp−mq)(np+ θnp+mq).

Thus, when np �= |m|q, it is easy to verify that |λnm| → ∞ as n,m→∞. On the
other hand, when np = |m|q, by (2.5) we have

2ρ2 ←
(ρ2

n

)2

+ 2ρ2 � λnm = θn(2n+ θn) � ρ1 +
( ρ1

2n

)2

→ ρ1,

as n→∞.
Denote the set of eigenvalues of operator L by

Λ(L) = {λnm : λnm = λ2
n − μ2

m}.

The above statement shows that Λ(L) has at least one accumulation point in
[2ρ2, ρ1]. Therefore, we have the following lemma.

Lemma 2.3. Let assumption (A1) hold. Then

(i) L has at least one essential spectral point, and all of them belong to [2ρ2, ρ1];

(ii) If λ ∈ Λ(L) and λ /∈ [2ρ2, ρ1], then λ is isolated and its multiplicity is finite.

If (a, b) ∩ Λ(L) �= ∅ and b satisfies ρ1 < a < b, by lemma 2.3, we can define

b− = max{λ ∈ Λ(L) : λ < b}, b+ = min{λ ∈ Λ(L) : λ > b}.

It is obvious that b− < b < b+.
Denote e = b+ − a. The main result of this paper is as follows.

Theorem 2.4. Assume a, b /∈ Λ(L), ρ1 < a < b+ − b, (a, b) ∩ Λ(L) �= ∅, and (A1)–
(A2) hold. If f̃ is increasing in u and there exists a constant κ > 0 such that

∂f̃

∂u
(t, x, u) � e− κ, ∀(t, x, u) ∈ R× (0, π)× R.

Then the problem (2.1)–(2.3) has at least three T-periodic solutions.

3. Variational problem and its reduction

In what follows, we always assume a, b satisfy the conditions in theorem 2.4. Since
a /∈ Λ(L) and a > ρ1, then there exists a constant δ > 0 such that

|λnm − a| � δ > 0, n ∈ N, m ∈ Z. (3.1)

We define the working space

E =
{
u ∈ L2(Ω) : ‖u‖2E =

∑
n,m

|λnm − a||αnm|2 <∞
}
,
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where αnm denote the Fourier coefficients of u ∈ L2(Ω), i.e.,

u =
∑
n,m

αnmϕn(x)φm(t), αnm =
∫

Ω

ρuϕnφmdxdt.

The estimate (3.1) indicates ‖ · ‖E is a norm. Furthermore, E is a Hilbert space
equipped with the inner product 〈u, v〉0 =

∑
n,m |λnm − a|αnmβnm, where αnm and

βnm are the Fourier coefficients of u and v, respectively.
From (3.1), we have

‖u‖2L2(Ω) =
∑
n,m

|αnm|2 � δ−1
∑
n,m

|λnm − a||αnm|2 = δ−1‖u‖2E , (3.2)

which implies the continuous embedding E ↪→ L2(Ω). Moreover, for 1 � r � 2, the
continuous embedding L2(Ω) ↪→ Lr(Ω) implies that there exists a constant C =
C(r) such that

‖u‖Lr(Ω) � C‖u‖E , 1 � r � 2. (3.3)

Since a ∈ (ρ1, b
+ − b), then

e = b+ − a > b. (3.4)

If λnm > b, we have

λnm − a � e > b, n ∈ N, m ∈ Z. (3.5)

Define the energy functional

Φ(u) =
1
2
〈(L− a)u, u〉 −

∫
Ω

ρF̃ (t, x, u)dtdx, ∀u ∈ E, (3.6)

where F̃ (t, x, u) =
∫ u

0
f̃(t, x, s)ds. In addition, by (1.5) and the assumption on f̃ in

theorem 2.4 , it is easy to see F̃ (t, x, u) � 0 for any u ∈ R.
Consequently, Φ is a C1 functional on E and

〈Φ′(u), v〉 = 〈(L− a)u, v〉 −
∫

Ω

ρf̃(t, x, u)vdtdx, ∀u, v ∈ E. (3.7)

Then u is a weak solution of problem (2.1)–(2.3) if and only if Φ′(u) = 0. There-
fore, the solutions of problem (2.1)–(2.3) are characterized as critical points of the
functional Φ. Since f̃ is C1, then Φ is a C2 functional on E, and

〈Φ′′(u)w, v〉 = 〈(L− a)w, v〉 −
∫

Ω

ρ
∂f̃

∂u
(t, x, u)vwdtdx, ∀u, v, w ∈ E.

In particular,

〈Φ′′(u)v, v〉 = 〈(L− a)v, v〉 −
∫

Ω

ρ
∂f̃

∂u
(t, x, u)v2dtdx, ∀u, v ∈ E. (3.8)

It is not difficult to see that Φ is neither bounded from above nor from below,
which shows that we can not obtain the critical points of Φ by a simple minimization
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or maximization. Here we shall prove our main result by virtue of the following
saddle point reduction technique developed by Amann [1], Castro and Lazer [9],
and Arcoya and Costa [2], etc.

Lemma 3.1. Let H be a real Hilbert space with the norm ‖ · ‖H , Φ ∈ C1(H,R), and
H1, H2 and H3 be closed subset of H such that H = H1 ⊕H2 ⊕H3. If there exists
a constant γ > 0 satisfying

〈Φ′(u+ w + v1)− Φ′(u+ w + v2), v1 − v2〉
� −γ‖v1 − v2‖2H , ∀v1, v2 ∈ H1, u ∈ H2, w ∈ H3,

and

〈Φ′(u+ w1 + v)− Φ′(u+ w2 + v), w1 − w2〉
� γ‖w1 − w2‖2H , ∀v ∈ H1, u ∈ H2, w1, w2 ∈ H3.

Then

(i) There exists a unique continuous mapping h : H2 → H1 ⊕H3, such that

Φ(u+ h(u)) = max
v∈H1

min
w∈H3

Φ(u+ v + w) = min
w∈H3

max
v∈H1

Φ(u+ v + w);

(ii) Define Φ̃(u) = Φ(u+ h(u)) for any u ∈ H2, then Φ̃ ∈ C1(H2,R), and

〈Φ̃′(u), v〉 = 〈Φ′(u+ h(u)), v〉,∀u, v ∈ H2;

(iii) If u ∈ H2 is a critical point of Φ̃, then u+ h(u) is a critical point of Φ. On
the other hand, if u+ v is a critical point of Φ, then v = h(u) and u is a
critical point of Φ̃, where u ∈ H2, v ∈ H1 ⊕H3;

(iv) If Φ satisfies the Palais–Smale condition (PS)c at the level c ∈ R, then the
functional Φ̃ also satisfies the (PS)c condition.

By an observation of lemma 3.1, it needs to decompose the working space E into
suitable orthogonal subspaces. Noting a, b /∈ Λ(L) and a > ρ1, the working space
E can be decomposed into the following orthogonal subspaces

E1 = {u ∈ E : λnm < a, n ∈ N,m ∈ Z},
E2 = {u ∈ E : a < λnm < b, n ∈ N,m ∈ Z},
E3 = {u ∈ E : λnm > b, n ∈ N,m ∈ Z}.

Thus we write E = E1 ⊕ E2 ⊕ E3. Moreover, by (a, b) ∩ Λ(L) �= ∅ and lemma 2.3,
we have E2 �= ∅ and dim(E2) <∞.
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For any u ∈ E1, we write u =
∑

λnm<a αnmϕnφm, then

〈(L− a)u, u〉 = −
∑

λnm<a

|λnm − a||αnm|2 = −‖u‖2E . (3.9)

For any u ∈ E2 ⊕ E3, by a similar calculation we have

〈(L− a)u, u〉 = ‖u‖2E . (3.10)

With the help of (3.9) and (3.10), we have the following lemma.

Lemma 3.2. Let the assumptions in theorem 2.4 hold. Then there exists a constant
γ > 0 such that

〈Φ′(u+ v)− Φ′(u+ w), v − w〉 � −γ‖v − w‖2E , ∀u ∈ E2 ⊕ E3, v, w ∈ E1,

and

〈Φ′(u+ v)− Φ′(u+ w), v − w〉 � γ‖v − w‖2E , ∀u ∈ E1 ⊕ E2, v, w ∈ E3.

Proof. For any u, v, w ∈ E and s ∈ R, we have

〈Φ′(u+ v)− Φ′(u+ w), v − w〉 =
∫ 1

0

〈Φ′′(u+ w + s(v − w))(v − w), v − w〉ds.
(3.11)

From (3.8), we obtain

〈Φ′′(u+ w + s(v − w))(v − w), v − w〉 = 〈(L− a)(v − w), v − w〉

−
∫

Ω

ρ
∂f̃

∂u
(t, x, u+ w + s(v − w))(v − w)2dtdx. (3.12)

The assumption on f̃ in theorem 2.4 shows (∂f̃/∂u) � 0. For the case v, w ∈ E1,
u ∈ E2 ⊕ E3, by (3.9) we have

〈Φ′(u+ v)− Φ′(u+ w), v − w〉 � −‖v − w‖2E .
For the case v, w ∈ E3, u ∈ E1 ⊕ E2, by (3.10) we have

〈(L− a)(v − w), v − w〉 = ‖v − w‖2E . (3.13)

Moreover, since 0 � (∂f̃/∂u)(t, x, u) � e− κ, with the aid of (3.5), a direct
calculation yields∫

Ω

ρ
∂f̃

∂u
(v − w)2dtdx � (e− κ)‖v − w‖2L2(Ω) � (e− κ)

e
‖v − w‖2E . (3.14)

Inserting (3.13), (3.14) into (3.12), from (3.11) we have

〈Φ′(u+ v)− Φ′(u+ w), v − w〉 � κ

e
‖v − w‖2E .

By setting γ = min{1, (κ/e)}, we arrive at the assertion. �

https://doi.org/10.1017/prm.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.25


2594 H. Wei and S. Ji

Lemma 3.2 verifies all the conditions in lemma 3.1. Therefore, there exists a
unique continuous mapping h : E2 → E1 ⊕ E3 such that

Φ̃(u) = Φ(u+ h(u)) = max
v∈E1

min
w∈E3

Φ(u+ v + w) = min
w∈E3

max
v∈E1

Φ(u+ v + w). (3.15)

Moreover, lemma 3.1 shows the reduced functional Φ̃ ∈ C1(E2,R), and u ∈ E2 is a
critical point of Φ̃ if and only if u+ h(u) is a critical point of Φ. Thus, the critical
points of Φ on the infinite dimensional space E are transformed into the ones of Φ̃ on
the finite dimensional subspace E2. In what follows, we shall apply the variational
methods to obtain critical points of the functional Φ̃ on E2.

4. Verification of the (PS)c condition

We will acquire the critical points of Φ̃ via variational methods, thus it is needed
to verify Φ̃ satisfies (PS)c condition for any c ∈ R. Furthermore, lemma 3.1 shows
that it suffices to verify that Φ satisfies (PS)c condition, which means, any sequence
{ui} ⊂ E satisfying Φ(ui)→ c and Φ′(ui)→ 0 as i→∞ has a convergent subse-
quence for any c ∈ R. To this goal, we need the following lemma which provides
two estimates for the quadratic forms on different subspaces of E.

Lemma 4.1. Let a, b satisfy the assumptions in theorem 2.4. Then there exist
γ1, γ2 > 0 such that

〈(L− a− b)u, u〉 � −γ1‖u‖2E , ∀u ∈ E1 ⊕ E2, (4.1)

〈(L− a− b)u, u〉 � γ2‖u‖2E , ∀u ∈ E3. (4.2)

Proof. On the one hand, for u ∈ E1 ⊕ E2, we write u =
∑

λnm<b αnmϕnφm. A direct
calculation yields

〈(L− a− b)u, u〉
=

∑
λnm<b

(λnm − a)|αnm|2 − b
∑

λnm<b

|αnm|2

�
∑

λnm<a

(λnm − a)|αnm|2 +
∑

a<λnm<b

(λnm − a)|αnm|2 − b
∑

a<λnm<b

|αnm|2.

In virtue of a < λnm < b, we have 0 < λnm − a < b−. Thus, we have

1
b−

∑
a<λnm<b

|λnm − a||αnm|2 �
∑

a<λnm<b

|αnm|2.

Therefore,

〈(L− a− b)u, u〉

� −
∑

λnm<a

|λnm − a||αnm|2 −
(
b

b−
− 1
) ∑

a<λnm<b

|λnm − a||αnm|2

� −γ1‖u‖2E ,
where γ1 = min{1, (b/b−)− 1}. Noting 0 < b− < b, it follows γ1 > 0.
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On the other hand, for u ∈ E3, we write u =
∑

λnm>b αnmϕnφm. Observing
λnm > b, from (3.5), we obtain

1
e

∑
λnm>b

|λnm − a||αnm|2 �
∑

λnm>b

|αnm|2.

Therefore,

〈(L− a− b)u, u〉 =
∑

λnm>b

|λnm − a||αnm|2 − b
∑

λnm>b

|αnm|2

�
(

1− b

e

) ∑
λnm>b

|λnm − a||αnm|2.

Let γ2 = 1− (b/e), by (3.4), it follows γ2 > 0. Therefore

〈(L− a− b)u, u〉 � γ2‖u‖2E .
The proof is completed. �

Lemma 4.2. Let the assumptions in theorem 2.4 hold. If {ui} ⊂ E satisfies Φ(ui)→
c and Φ′(ui)→ 0 as i→∞, then there exists a constant C̃ > 0 independent of i
such that ‖ui‖E � C̃.

Proof. Split ui = u+
i + u−i , where u+

i ∈ E3 and u−i ∈ E1 ⊕ E2, i = 1, 2, . . ..

(i) For u+
i ∈ E3, since Φ′(ui)→ 0 as i→∞, from (3.7), we have

o(1)‖u+
i ‖E � 〈Φ′(ui), u+

i 〉 = 〈(L− a)u+
i , u

+
i 〉 −

∫
Ω

ρf̃(t, x, ui)u+
i dtdx

= 〈(L− a− b)u+
i , u

+
i 〉 −

∫
Ω

ρ(f̃(t, x, ui)− bui)u+
i dtdx. (4.3)

From (4.2), we obtain

〈(L− a− b)u+
i , u

+
i 〉 � γ2‖u+

i ‖2E . (4.4)

On the other side, the condition (1.6) shows that for any ε > 0, there exists
a constant C = C(ε) > 0 such that

|f̃(t, x, ui)− bui| < ε|ui|+ C. (4.5)

Therefore, by Hölder inequality and (3.2), (3.3), a direct calculation yields∣∣∣∣∫
Ω

ρ(f̃(t, x, ui)− bui)u+
i dtdx

∣∣∣∣ � ε‖u+
i ‖L2(Ω)‖ui‖L2(Ω) + C‖u+

i ‖L1(Ω)

� ε

2δ
‖u+

i ‖2E +
ε

2δ
‖ui‖2E + C‖u+

i ‖E , (4.6)

for some constant C independent of i.
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Inserting (4.4), (4.6) into (4.3), we obtain(
γ2 − ε

2δ

)
‖u+

i ‖2E −
ε

2δ
‖ui‖2E − C‖u+

i ‖E � 0. (4.7)

(ii) For u−i ∈ E1 ⊕ E2, by (4.1), we have 〈(L− a− b)u−i , u−i 〉 � −γ1‖u−i ‖2E .

Moreover, noting that

o(1)‖u−i ‖E � 〈−Φ′(ui), u−i 〉

= −〈(L− a− b)u−i , u−i 〉+
∫

Ω

ρ(f̃(t, x, ui)− bui)u−i dtdx,

a similar calculation as the one in (4.6) yields∣∣∣∣∫
Ω

ρ(f̃(t, x, ui)− bui)u−i dtdx
∣∣∣∣ � ε

2δ
‖u−i ‖2E +

ε

2δ
‖ui‖2E + C‖u−i ‖E . (4.8)

Consequently, (
γ1 − ε

2δ

)
‖u−i ‖2E −

ε

2δ
‖ui‖2E − C‖u−i ‖E � 0. (4.9)

Let γ0 = min{γ1, γ2}. Since E1, E2 and E3 are orthogonal subspaces of E, we
have ‖ui‖2E = ‖u+

i ‖2E + ‖u−i ‖2E . Therefore, by the fact ‖u+
i ‖E + ‖u−i ‖E �

√
2‖ui‖E ,

the sum of (4.7) and (4.9) yields(
γ0 − 3ε

2δ

)
‖ui‖2E − C‖ui‖E � 0. (4.10)

Taking ε ∈ (0, (2δγ0)/3) in (4.10), we know there exists a constant C̃ > 0 indepen-
dent of i such that ‖ui‖E � C̃. We arrive at the result. �

Since E = E1 ⊕ E2 ⊕ E3, we can rewrite E = E1 ⊕ E⊥
1 for simplicity, where

E⊥
1 = E2 ⊕ E3 = {u ∈ E : λnm > a, n ∈ N,m ∈ Z}.

Denote

E0 = {u ∈ L2(Ω) : pn = q|m|, n ∈ N,m ∈ Z}.

Remark 4.3. Under the assumptions of theorem 2.4, the lemma 2.3 shows E0 is an
infinite dimensional subspace spanned by the eigenfunctions ϕnφm for pn = q|m|.
Moreover, it is easy to see that dim(E⊥

1 ∩ E0) <∞ and dim(E1 ∩ E0) =∞.

Proposition 4.4. For 1 � r � 2, the embedding

E �E0 ↪→ Lr(Ω), (4.11)

is compact.

Proof. For u ∈ E � E0, it can be expanded as u =
∑

n,m αnmϕnφm for pn �= q|m|.
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The fact ‖u‖E = (
∑

n,m |λnm − a||αnm|2)1/2 shows that the mapping

I0 : u =
∑
n,m

αnmϕnφm �→ {|λnm − a|1/2αnm}

is continuous from E � E0 to l2.
Since |λnm − a| → ∞ as n,m→∞, it follows that the mapping

I1 : {|λnm − a|1/2αnm} �→ {αnm}

is compact from l2 to l2.
Since ϕnφm is a complete orthonormal sequence of L2(Ω), then the mapping

I2 : {αnm} �→ u =
∑
n,m

αnmϕnφm

is continuous from l2 to L2(Ω).
Consequently, the mapping

I2I1I0 : E �E0 → L2(Ω)

is compact. Furthermore, for 1 � r � 2, the continuous embedding L2(Ω) ↪→ Lr(Ω)
implies that the embedding E � E0 ↪→ Lr(Ω) is compact. �

Lemma 4.5. Let the assumptions of theorem 2.4 hold. Then Φ satisfies the (PS)c

condition for any c ∈ R.

Proof. For any c ∈ R, assume {ui} ⊂ E satisfies Φ(ui)→ c and Φ′(ui)→ 0 as
i→∞. Since E is a Hilbert space, by lemma 4.2, we have ui ⇀ u as i→∞ for
some u ∈ E. Decompose ui = vi + yi + wi + zi and u = v + y + w + z, where v, y,
w, z are the weak limits of {vi}, {yi}, {wi}, {zi} respectively, and vi, v ∈ E⊥

1 � E0,
yi, y ∈ E⊥

1 ∩ E0, wi, w ∈ E1 � E0, zi, z ∈ E1 ∩ E0.

(i) For vi, v ∈ E⊥
1 � E0, from (3.10) we have

‖vi − v‖2E = 〈(L− a)(vi − v), vi − v〉
= 〈(L− a)vi, vi − v〉 − 〈(L− a)v, vi − v〉. (4.12)

In virtue of vi ⇀ v in E and E ↪→ L2(Ω), we have vi ⇀ v in L2(Ω) along
with a subsequence of {vi}. In fact, by proposition 4.4, we also have vi → v
in L2(Ω). We still use {vi} to denote the subsequence for convenience. Thus,
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it follows

〈(L− a)v, vi − v〉 → 0, as i→∞. (4.13)

On the other hand, noting vi, v ∈ E⊥
1 � E0 and ui = vi + yi + wi + zi, we

have ui − vi ∈ (E⊥
1 � E0)⊥. Thus

〈(L− a)(ui − vi), vi − v〉 = 0.

By (3.7), we have

〈(L− a)vi, vi − v〉 = 〈(L− a)ui, vi − v〉

= 〈Φ′(ui), vi − v〉+
∫

Ω

ρf̃(t, x, ui)(vi − v)dtdx. (4.14)

Since Φ′(ui)→ 0 as i→∞, we have

〈Φ′(ui), vi − v〉 → 0, as i→∞. (4.15)

By (4.5) and Hölder inequality, a direct calculation yields∣∣∣∣∫
Ω

ρf̃(t, x, ui)(vi − v)dtdx
∣∣∣∣

� (b+ ε)‖ui‖L2(Ω)‖vi − v‖L2(Ω) + C‖vi − v‖L1(Ω).

In virtue of vi → v in L2(Ω) and the continuous embedding L2(Ω, ρ) ↪→
L1(Ω), we obtain vi → v in L1(Ω). Therefore,∣∣∣∣∫

Ω

ρf̃(t, x, ui)(vi − v)dtdx
∣∣∣∣→ 0, as i→∞. (4.16)

Inserting (4.15), (4.16) into (4.14), we have

〈(L− a)vi, vi − v〉 → 0, as i→∞. (4.17)

Finally, substituting (4.17), (4.13) into (4.12), we have

‖vi − v‖E → 0, as i→∞. (4.18)

(ii) For yi, y ∈ E⊥
1 ∩ E0, since dim(E⊥

1 ∩ E0) <∞ and yi ⇀ y in E, then there
exists a subsequence of {yi} which strongly converges to y in E. The
subsequence is still denoted by {yi}.

(iii) For wi, w ∈ E1 � E0, by (3.7) and (3.9) we obtain

‖wi − w‖2E = −〈(L− a)(wi − w), wi − w〉

= −〈Φ′(ui), wi − w〉 −
∫

Ω

ρf̃(t, x, ui)(wi − w)dtdx

+ 〈(L− a)w,wi − w〉.
A similar calculation as the one in (i) yields

‖wi − w‖E → 0, as i→∞. (4.19)
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(iv) Since zi ∈ E1 ∩ E0, then the compact embedding (4.11) is invalid. In addition,
since dim(E1 ∩ E0) =∞, we can not extract a strong convergence subse-
quence of {zi} similar to {yi}. In what follows, with the aid of the monotone
method, we prove zi → z as i→∞ in E.

Since Φ′(ui)→ 0 and zi ⇀ z in E, we have

‖zi − z‖2E = −〈(L− a)(zi − z), zi − z〉

= −〈Φ′(ui), zi − z〉 −
∫

Ω

ρf̃(t, x, ui)(zi − z)dtdx+ 〈(L− a)z, zi − z〉

� −
∫

Ω

ρf̃(t, x, ui)(zi − z)dtdx+ o(1). (4.20)

Denote f̃(ui) = f̃(t, x, ui) for simplicity. We rewrite
∫
Ω
ρf̃(t, x, ui)(zi − z)dtdx in

the form of inner product and decompose it as follows∫
Ω

ρf̃(t, x, ui)(zi − z)dtdx (4.21)

= 〈f̃(ui), zi − z〉
= 〈f̃(ui)− f̃(ũi + z), zi − z〉+ 〈f̃(ũi + z)− f̃(u), zi − z〉

+ 〈f̃(u), zi − z〉, (4.22)

where ũi = vi + yi + wi.
Since f̃ is increasing in u, then

〈f̃(ui)− f̃(ũi + z), zi − z〉 � 0. (4.23)

To continue the discussion, by (4.5), we have f̃ : u �→ f̃(t, x, u) is continuous from
L2(Ω) to L2(Ω). Moreover, from the proof of (i)–(iii), we have ũi → ũ in E, where
ũ = v + y + w. The inequality (3.2) shows ũi → ũ in L2(Ω). Thus

〈f̃(ũi + z)− f̃(u), zi − z〉 → 0, as i→∞. (4.24)

Consequently, since zi ⇀ z in L2(Ω), by (4.20), (4.23) and (4.24), we have

‖zi − z‖E → 0, as i→∞.

We arrive at the result. �

5. Bounds of the reduced functional

The following three lemmas are concerned with the bounds of the reduced functional
Φ̃ and play an important role in the proof of theorem 2.4.
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Lemma 5.1. Let the assumptions of theorem 2.4 hold. Then

(i) there exists a constant M > 0, such that Φ̃(u) < M , ∀u ∈ E2;

(ii) there exists a constant R̃ > 0 such that Φ̃(u) � 0 for u ∈ E2 with ‖u‖E � R̃.

Proof. For u ∈ E2, from (3.15), we have

Φ̃(u) = min
w∈E3

max
v∈E1

Φ(u+ v + w) � max
v∈E1

Φ(u+ v),

where

Φ(u+ v) =
1
2
〈(L− a− b)(u+ v), u+ v〉 −

∫
Ω

ρ

(
F̃ (t, x, u+ v)− b

2
(u+ v)2

)
dtdx.

(5.1)
By (4.5), it follows

|F̃ (t, x, u+ v)− b

2
(u+ v)2| � ε|u+ v|2 + C|u+ v|. (5.2)

Inserting (5.2) into (5.1), by (4.1), it follows

Φ(u+ v) � −γ1

2
‖u+ v‖2E +

∫
Ω

ρ(ε|u+ v|2 + C|u+ v|)dtdx

� −γ1

2
‖u+ v‖2E + ε‖u+ v‖2L2(Ω) + C‖u+ v‖L1(Ω),

for some constant C depending on ε.
Taking ε = (δγ1/4) in above inequality, by (3.2) and (3.3), we obtain

Φ(u+ v) � −γ1

4
‖u+ v‖2E + C‖u+ v‖E . (5.3)

Therefore, the estimate (5.3) shows there exists M > 0 such that Φ(u+ v) � M
and the assertion (i) is proved.

By the fact ‖u+ v‖2E = ‖u‖2E + ‖v‖2E and ‖u+ v‖E � ‖u‖E + ‖v‖E , from (5.3),
we have

Φ(u+ v) � −γ1

4
‖u‖2E + C‖u‖E +

(
−γ1

4
‖v‖2E + C‖v‖E

)
� −γ1

4
‖u‖2E + C‖u‖E + C0,

where C0 = maxs�0{−(γ1/4)s2 + Cs}. Thus, there exists a constant R̃ > 0 such
that Φ(u+ v) � 0 for ‖u‖E � R̃. We conclude the assertion (ii). �

Lemma 5.2. Let the assumptions of theorem 2.4 hold. Then for any R1 > 0, there
exists a constant τ1 depending on R1 such that

Φ̃(u) � τ1, ∀u ∈ E2 ∩BR1 ,

where BR1 = {u ∈ E : ‖u‖E < R1}.

https://doi.org/10.1017/prm.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.25


Existence of multiple periodic solutions to a semilinear wave equation 2601

Proof. For u ∈ E2, by (3.15), we have

Φ̃(u) = max
v∈E1

min
w∈E3

Φ(u+ v + w) � min
w∈E3

Φ(u+ w),

where

Φ(u+ w) =
1
2
〈(L− a− b)(u+ w), u+ w〉

−
∫

Ω

ρ

(
F̃ (t, x, u+ w)− b

2
(u+ w)2

)
dtdx. (5.4)

Since E2 and E3 are orthogonal subspaces of E, we have

〈(L− a− b)(u+ w), u+ w〉 = 〈(L− a− b)u, u〉+ 〈(L− a− b)w,w〉.

By (4.2), we have 〈(L− a− b)w,w〉 � γ2‖w‖2E . Moreover, noting 〈(L− a)u, u〉 =
‖u‖2E , by (3.2), we obtain

|〈(L− a− b)u, u〉| � ‖u‖2E + b‖u‖2L2(Ω) �
(

1 +
b

δ

)
‖u‖2E = C1‖u‖2E ,

where C1 = 1 + (b/δ). Thus, we have

〈(L− a− b)(u+ w), u+ w〉 � γ2‖w‖2E − C1‖u‖2E . (5.5)

On the other hand, a similar calculation as the one in (5.2) yields∣∣∣∣F̃ (t, x, u+ w)− b

2
(u+ w)2| � ε|u+ w|2 + C|u+ w

∣∣∣∣ . (5.6)

Inserting (5.5), (5.6) into (5.4) and taking ε = (δγ2/4), from (3.2) and (3.3), we
have

Φ(u+ w) � γ2

2
‖w‖2E −

C1

2
‖u‖2E −

δγ2

4
‖u+ w‖2L2(Ω) − C‖u+ w‖L1(Ω)

� γ2

2
‖w‖2E −

C1

2
‖u‖2E −

γ2

4
(‖u‖2E + ‖w‖2E)− C(‖u‖E + ‖w‖E)

� −
(
C1

2
+
γ2

4

)
‖u‖2E − C‖u‖E + C2,

where C2 = mins�0{(γ2/4)s2 − Cs}.
For any R1 > 0, the above estimate shows Φ̃(u) � τ1 = −((C1/2) + (γ2/4))R2

1 −
CR1 + C2 for any ‖u‖E < R1. The proof is completed. �

Lemma 5.3. Let the assumptions of theorem 2.4 hold. Then there exist two constants
τ2 > 0 and R2 > 0 such that Φ̃(u) � τ2, for any u ∈ E2 with ‖u‖E = R2.
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Proof. Firstly, for any u ∈ E2, w ∈ E3, by (3.6), we have

Φ(u+ w) =
1
2
〈(L− a)(u+ w), u+ w〉 −

∫
Ω

ρF̃ (t, x, u+ w)dtdx. (5.7)

Since E2 and E3 are orthogonal subspaces of E, from (3.10), we obtain

〈(L− a)(u+ w), u+ w〉 = ‖u‖2E + ‖w‖2E . (5.8)

In addition, it is easy to see∫ 1

0

∫ 1

0

s
∂f̃

∂ξ
(u+ sθw)w2dθds =

∫ 1

0

wf̃(u+ sw)ds− f̃(u)w

= F̃ (u+ w)− F̃ (u)− f̃(u)w,

where f̃(ξ) = f̃(t, x, ξ) and F̃ (ξ) = F̃ (t, x, ξ). Thus,

F̃ (u+ w) =
∫ 1

0

∫ 1

0

s
∂f̃

∂ξ
(u+ sθw)w2dθds+ f̃(u)w + F̃ (u). (5.9)

In what follows, we estimate the upper bound of
∫
Ω
ρF̃ (u+ w)dtdx. The equation

(5.9) shows that it needs to estimate the upper bounds of the following three terms:∫
Ω

ρ

(∫ 1

0

∫ 1

0

s
∂f̃

∂ξ
(u+ sθw)w2dθds

)
dtdx,

∫
Ω

ρf̃(u)wdtdx,
∫

Ω

ρF̃ (u)dtdx.

(i) For w ∈ E3, the fact |λnm − a| � e shows ‖w‖2L2(Ω) � (1/e)‖w‖2E . Observing

0 � (∂f̃/∂u)(t, x, u) � e− κ, we obtain

0 �
∫

Ω

ρ

(∫ 1

0

∫ 1

0

s
∂f̃

∂ξ
(u+ sθw)w2dθds

)
dtdx � e− κ

2e
‖w‖2E . (5.10)

(ii) Fix r > 1, by the assumptions (1.5) and (1.6), we obtain that for any ε > 0,
there exists a constant C = C(ε, r) > 0 such that

|f̃(u)| � ε|u|+ C|u|r, ∀ (t, x, u) ∈ Ω× R. (5.11)

Therefore, a direct calculation yields∣∣∣∣∫
Ω

ρf̃(u)wdtdx
∣∣∣∣ � ε‖u‖L2(Ω)‖w‖L2(Ω) + C‖u‖rL2r(Ω)‖w‖L2(Ω)

� ε

2
‖u‖2L2(Ω) + C‖u‖2r

L2r(Ω) + ε‖w‖2L2(Ω).

Since dim(E2) <∞, then all norms of E2 are equivalent. Thus there exists a
constant C > 0 such that ‖u‖2r

L2r(Ω) � C‖u‖2r
E . Since ‖w‖2L2(Ω) � (1/e)‖w‖2E ,

by (3.2), we have∣∣∣∣∫
Ω

ρf̃(u)wdtdx
∣∣∣∣ � ε

2δ
‖u‖2E + C‖u‖2r

E +
ε

e
‖w‖2E . (5.12)

https://doi.org/10.1017/prm.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.25


Existence of multiple periodic solutions to a semilinear wave equation 2603

(iii) Since dim(E2) <∞, there exists a constant C > 0 such that ‖u‖r+1
Lr+1(Ω) �

C‖u‖r+1
E . Thus, by (3.2) and (5.11), a direct calculation yields∣∣∣∣∫

Ω

ρF̃ (u)dtdx
∣∣∣∣ � ε

2δ
‖u‖2E + C‖u‖r+1

E , (5.13)

for some constant C depending on ε and r.

Therefore, the sum of (5.10), (5.12) and (5.13) yields∣∣∣∣∫
Ω

ρF̃ (u+ w)dtdx
∣∣∣∣ � ε

δ
‖u‖2E + C‖u‖r+1

E + C‖u‖2r
E +

e− κ+ 2ε
2e

‖w‖2E . (5.14)

Consequently, inserting (5.8) and (5.14) into (5.7) and taking ε =
min{(δ/4), (κ/4)}, we have

Φ(u+ w) �
(

1
2
− ε

δ

)
‖u‖2E − C‖u‖r+1

E − C‖u‖2r
E +

(
1
2
− e− κ+ 2ε

2e

)
‖w‖2E

=
(

1
2
− ε

δ

)
‖u‖2E − C‖u‖r+1

E − C‖u‖2r
E +

(
κ− 2ε

2e

)
‖w‖2E .

� 1
4
‖u‖2E − C‖u‖r+1

E − C‖u‖2r
E . (5.15)

Finally, since r > 1, then φ(s) = (1/4)s2 − Csr+1 − Cs2r attains the local min-
imum at s = 0. Therefore there exist two constants R2 > 0 and τ2 > 0 such that
φ(R2) � τ2. Since Φ̃(u) � min

w∈E3
Φ(u+ w), from (5.15), we obtain Φ̃(u) � τ2 with

‖u‖E = R2. �

6. Proof of theorem 2.4

With the above lemmas in hand, we give the proof of theorem 2.4.

Proof. Let R2 and τ2 be the constants in lemma 5.3 and BR2 = {u ∈ E2 :
‖u‖E < R2}.

Firstly, by lemma 5.1, we know Φ̃ is bounded from above. Let β1 = supu∈E2
Φ̃(u).

By lemmas 3.1 and 4.5, Φ̃ satisfies (PS)β1 condition. Thus, there exists a critical
point u1 ∈ E2 such that Φ̃(u1) = β1 and Φ̃′(u1) = 0.

Secondly, recall F̃ (t, r, u) � 0 for any u ∈ R, then for any v ∈ E1, from (3.9), we
obtain

Φ(v) =
1
2
〈(L− a)v, v〉 −

∫
Ω

ρF̃ (t, x, v)dtdx � 0.

Therefore, we have

Φ̃(0) = min
w∈E3

max
v∈E1

Φ(v + w) � max
v∈E1

Φ(v) � 0. (6.1)

Noting that 0 ∈ BR2 and taking R1 = R2 in lemma 5.2, in virtue of lemmas 5.2, 5.3
and Φ̃(0) � 0, we obtain the reduced functional Φ̃ that attains its infimum in BR2 .
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Let β2 = infu∈BR2
Φ̃(u), then lemmas 3.1 and 4.5 show that Φ̃ satisfies the (PS)β2

condition. Thus, there exists u2 ∈ E2 such that Φ̃′(u2) = 0 and Φ̃(u2) = β2.
Now we claim u1 and u2 are two different critical points in E2. Observing that

0 ∈ BR2 , the following inequality

β2 = inf
u∈BR2

Φ̃(u) � Φ̃(0) � 0 < τ2 � inf
‖u‖E=R2

Φ̃(u) � sup
u∈E2

Φ̃(u) = β1 (6.2)

shows u1 �= u2.
If Φ̃ possesses another local maximum point which is different from u1, then there

exist at least three critical points of Φ̃.
Otherwise, if u1 is the unique local maximum point of Φ̃. We shall prove that

there exists a critical point of mountain-pass type which is different from u1 and u2.
Taking u0 ∈ E2 with ‖u0‖E = 1, by lemma 5.1, there exists R̃ > R2 such that

Φ̃(R̃u0) � 0. Moreover, one of the fact holds: for any s ∈ [0, 1], either sR̃u0 �= u1 or
−sR̃u0 �= u1.

Case 1 : if sR̃u0 �= u1 for any s ∈ [0, 1], by lemma 5.3 and (6.1), we obtain

max{Φ̃(0), Φ̃(R̃u0)} � 0 < τ2 � inf
‖u‖E=R2

Φ̃(u).

Let

c+ = inf
g∈Δ+

max
s∈[0,1]

Φ̃(g(s)),

where Δ+ = {g ∈ C([0, 1], E2) : g(0) = 0, g(1) = R̃u0}. In addition, we have Φ̃
which is C1 functional and satisfies (PS)c+ condition. By mountain pass lemma
[11], we obtain a critical point u+

3 satisfying Φ̃(u+
3 ) = c+ and Φ̃′(u+

3 ) = 0. Obviously,
c+ � τ2 > 0.

It is easy to see that sR̃u0 ∈ Δ+ for any s ∈ [0, 1]. Therefore, the assumption
sR̃u0 �= u1 implies

c+ � max
s∈[0,1]

Φ̃(sR̃u0) < sup
u∈E2

Φ̃(u) = β1.

Thus, the following inequalities

β2 = inf
u∈BR2

Φ̃(u) � 0 < τ2 � c+ < sup
u∈E2

Φ̃(u) = β1

show u1 �= u2 �= u+
3 .

Case 2 : similarly, if −sR̃u0 �= u1 for any s ∈ [0, 1], we have

c− = inf
g∈Δ−

max
s∈[0,1]

Φ̃(g(s))

is the critical value of Φ̃, where Δ− = {g ∈ C([0, 1], E2) : g(0) = 0, g(1) = −R̃u0}.
Therefore, there exists u−3 ∈ E2 satisfying Φ̃(u−3 ) = c− and Φ̃′(u−3 ) = 0. Further-
more, we have u1 �= u2 �= u−3 .

Consequently, by lemma 3.1, we obtain the functional Φ that has at least three
critical points. The proof is completed. �
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