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For an external problem in IRd(d = 2, 3) such that the unknown function satisfies the wave

equation outside a finite domain, we generate artificial boundary conditions transparent to

outgoing waves. These conditions permit an equivalent replacement of the original external

problem by the problem inside the artificial boundary which is a circle (d = 2) or a sphere

(d = 3). The questions of numerical implementation of the artificial conditions (that are

non-local in both space and time) are considered. Special attention is paid to the reduction of

necessary computational resources; in particular, a way of incorporating these conditions into

numerical methods which makes the computational formulae local in time is suggested. The

aspects of treating artificial boundaries of a non-spherical shape are discussed. Numerical

examples of two- and three-dimensional scattering problems demonstrate the accuracy of

proposed artificial boundary conditions.

1 Introduction

When numerically simulating physical processes that are connected with the propagation

of waves in the whole of space, it is necessary, as a rule, to surround the computational

domain by an artificial surface and there impose additional conditions for the unknown

functions. Clearly, these Artificial Boundary Conditions (ABC) must be transparent for

all waves going out to infinity, since the reflected waves will distort a simulation process.

Most known ways for generating ABCs for the wave equation use different approximate

approaches [1]–[6] (see also the review papers by Givoli [7] and Tsynkov [8]). As a result,

the conditions obtained are only transparent for waves with definite frequencies and/or

angles of incidence to the artificial boundary.

The ways of generating exact ABCs are not so numerous. Ting & Miksis [9] pro-

posed using Kirchhoff ’s integral formula to update the unknown function on the artificial

boundary (a numerical investigation of this approach was made by Givoli & Cohen [10]);

see also the review by Lyrintzis [11]. The Fourier method is used in [12]–[17] to obtain

exact ABCs on spherical and circular artificial boundaries: the three-dimensional case is

considered in [12]–[17]; the two-dimensional case in [14, 15]. The idea is to write out

exact conditions for each Fourier component of the unknown function on the artificial

boundary. Notice the approach proposed by Ryaben’kii [18, 19] describing an equivalent
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reduction of a difference boundary value problem (obtained from an original differential

problem) to an appropriate problem in a mesh subdomain.

Exact ABCs are evidently non-local in both space and time. Therefore, their numerical

implementation can be computationally expensive. Indeed, for each time step, the order

of the number of operations required by algorithms based on Kirchhoff’s formula is

greater so than that required by a simple explicit difference scheme for the wave equa-

tion in the computational domain [9]. Nevertheless, this approach is used for practical

calculations [20, 21, 11].

At the same time, the conditions proposed by Sofronov and Grote & Keller [12]–[17]

are such that the implementation formulae are local in time, and therefore they are

comparatively cheap. In [12]–[15], the non-local-in-time term of ABCs is represented by

convolution operators with respect to time, and special recurrence formulae are written out

to evaluate these convolutions. Note that similar results in generating effective transparent

conditions have been obtained by the author for the problem of transonic flow in wind

tunnels [22, 23]. In Grote & Keller [17], local-in-time formulae are obtained by step-by-

step solution of auxiliary Cauchy problems for systems of ordinary differential equations

on the boundary for each harmonic.

The aim of this paper is to review the results of earlier work [14, 15], and to check

our two- and three-dimensional artificial boundary conditions on test problems from

Grote & Keller [17] and the 2nd Computational Aeroacoustics Workshop on Benchmark

Problems [24]. In addition, we show that the conditions in Sofronov [12] and Grote &

Keller [16] are equivalent.

The outline of the paper is as follows. § 2 presents the formulation of the problem.

§ 3 and 4 give the theoretical background of the proposed boundary conditions. The

questions of their numerical implementation are described in § 5, and § 6 gives the

connection between conditions derived in Sofronov [12] and Grote & Keller [16]. The

numerical examples are presented in § 7, and we summarise the main issues in § 8.

2 Problem formulation

In IRd, d = 2, 3 we consider a time-dependent problem described by the scalar equation

Lv = g (2.1)

such that outside a bounded domain D ⊂ IRd

• the function g vanishes;

• the initial data v|t=+0 = vt|t=+0 = 0;

• the operator L is the wave operator, i.e. Lv ≡ vtt − c2∆v, where c = const. > 0 is the

propagation speed of waves, ∆ is the Laplacian.

The structure of the operator L inside the domain D does not matter for us: L can be

any (nonlinear) operator, but we assume that the problem (2.1) has a unique solution.

Equation (2.1) can arise, for example, in problems of acoustic and electromagnetic

scattering, fluid dynamics, elasticity, etc., i.e. in those problems where the unknown

function satisfies the wave equation outside a given domain.

https://doi.org/10.1017/S0956792598003507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003507


Artificial boundary conditions of absolute transparency 563

Lv = g

vtt − c2∆v = 0

D

S

Figure 1. Geometry and governing equations of the problem (2.1).

Denote by S a circle (if d = 2) or a sphere (if d = 3) strictly containing the domain D

(see Fig. 1).

Let us consider the following boundary-value problem concurrently with the original

one: {
Lṽ = g inside S

Tṽ = 0 on S
(2.2)

where T is a linear operator. Our aim is to generate the operator T so that these two

problems are equivalent, i.e. their solutions v and ṽ are identical inside S .

The condition Tṽ = 0 we call the Boundary Condition of Absolute Transparency

(BCAT). The word ‘absolute’ emphasizes the exact character of the conditions.

Note that when using mesh methods for a numerical solution of (2.1), a mesh with

a uniform (non-enlarged) spacing in the radial direction must be applied to accurately

approximate the waves outgoing to infinity. Therefore, the use of BCAT in numerical

methods can reduce computational costs because the size of a computation depends just

only on a minimal possible diameter of S .

3 The auxiliary problem

To generate the operator T in Eq. (2.2), let us consider the following auxiliary problem

for the wave equation outside the circle (or sphere if d = 3) of radius R:

utt − c2∆u = 0, r > R, t > 0

u|t=+0 = ut|t=+0 = 0, r > R

u|r=R = f(t);

(3.1)

f(t) is a given function, c = const > 0.

We solve this problem by using the Fourier method. Let us expand u in harmonics eimφ
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if d = 2:

u(r, φ, t) =

∞∑
m=−∞

vm(r, t)eimφ, (3.2)

or in spherical functions Y m
l (θ, φ) = P

|m|
l (cos θ)eimφ if d = 3:

u(r, θ, φ, t) =

∞∑
l=0

l∑
m=−l

vml (r, t)Y m
l (θ, φ). (3.3)

The function f is also represented by Fourier coefficients fm if d = 2, or by fml if d = 3.

Substituting Eq. (3.2) (or (3.3)) for the problem (3.1), we see that each function w ≡ vm
(or w ≡ vml ) must be a solution of the problem

wtt − c2

rd−1
(rd−1wr)r +

c2

r2
λνw = 0, r > R, t > 0

w|t=+0 = wt|t=+0 = 0, r > R

w|r=R = f̂(t),

(3.4)

where λν = ν2, ν = |m|, f̂ = fm in the case d = 2; and λν = ν2 − 1
4
, ν = l + 1

2
, f̂ = fml

in the case d = 3.

Let us represent the solution of Eq. (3.4) by the convolution w(r, t) = f̂(t) ∗ Gν(r, t)
where Gν(r, t) is the Green’s function of the following problem

LνGν = 0, r > R, t > 0

Gν |t=+0 =
∂

∂t
Gν |t=+0 = 0, r > R

Gν |r=R = δ(t).

(3.5)

Here Lν is the differential operator of the problem (3.4) and δ(t) is the Dirac delta-function.

To find Gν let us use the Laplace transform technique. We write

gν(r, p) =L[Gν](r, p) ≡
∫ ∞

0

Gν(r, t)e
−ptdt,

the transform of Gν . Then the following problem arises for gν:

1

rd−1

d

dr

(
rd−1 d

dr
gν

)
−
(
p2

c2
+
λν

r2

)
gν = 0, r > R

gν |r=R = 1, gν |r→∞ = 0.

(3.6)

The solution of this problem is written by using Macdonald’s cylindrical functions Kν(z)

and has the form

gν(r, p) =

(
R

r

) d−2
2 Kν(pr/c)

Kν(pR/c)
.

Expressing Kν(z) in terms of Tricomi’s confluent hypergeometric function Ψ (ν+ 1
2
, 2ν+

1; 2z), we have

gν(r, p) =

(
R

r

)−ν+ d−2
2

exp

(
−pr − R

c

)
Ψ (ν + 1

2
, 2ν + 1; 2rp

c
)

Ψ (ν + 1
2
, 2ν + 1; 2Rp

c
)

=

(
R

r

) d−1
2

exp

(
−pr − R

c

)
+

(
R

r

) d−2
2

exp

(
−pr − R

c

)
ψν(r, p),

https://doi.org/10.1017/S0956792598003507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003507


Artificial boundary conditions of absolute transparency 565

Figure 2. The contour of integration.

where

ψν(r, p) ≡
(
R

r

)−ν Ψ (ν + 1
2
, 2ν + 1; 2rp

c
)

Ψ (ν + 1
2
, 2ν + 1; 2Rp

c
)
−
(
R

r

) 1
2

.

To find Gν(r, t) we have to apply the inverse Laplace transform to gν(r, p), i.e. to calculate

the integral

Gν(r, t) =
1

2πi

σ+i∞∫
σ−i∞

eptgν(r, p)dp.

Substituting the expression of gν(r, p) for this integral and using well-known properties of

the Laplace transform, we have

Gν(r, t) =

(
R

r

) d−1
2

δ

(
t− r − R

c

)
+

(
R

r

) d−2
2

θ

(
t− r − R

c

)
Fν

(
r, t− r − R

c

)
(3.7)

where

Fν(r, t) =
1

2πi

σ+i∞∫
σ−i∞

eptψν(r, p)dp;

θ(t) denotes the Heaviside function. We use contour integration [25] to calculate the

integral Fν(r, t), and consider a contour consisting of: (a) the segment [σ − iA, σ + iA];

(b) the arcs C+
B and C−B of the circle |p| = B; (c) the double-sided cut D+, D−; and (d)

the circle Cb, |p| = b – see Fig. 2 (the direction of integration is pointed by arrows).

Because of the asymptotic properties of Ψ (ν+ 1
2
, 2ν+ 1; 2z), function ψν(r, p) converges

uniformly to zero as |p| → ∞. Applying Jordan’s lemma, we see that the integrals along
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the arcs C+
B and C−B go to zero as B → ∞. The integral along the arc CB also vanishes

as b → 0 since ψν(r, p) is bounded as |p| → 0. Taking p = −s ± i0, s > 0 let us write the

integrals along the cut D+, D− in the form

I±ν = ∓ 1

2πi

∞∫
0

e−stψν(r,−s± i0)ds.

Using the residue theorem, we have

Fν(r, t) = I+
ν (r, t) + I−ν (r, t) +

J∑
j=1

epj tResψν(r, pj), (3.8)

where pj are the poles of ψν(r, p).

3.1 Two-dimensional case

Let us first consider the case d = 2. Here ν = |m|.
By using the specific expression for Ψ (|m|+ 1

2
, 2|m|+ 1; z) at integer |m| [26], we obtain

that the sum of integrals along the cut can be written in the form

I+
ν (r, t) + I−ν (r, t) = −1

π

( r
R

)|m| ∞∫
0

e−stIm
Ψ (|m|+ 1

2
, 2|m|+ 1; −2r

c
s+ i0)

Ψ (|m|+ 1
2
, 2|m|+ 1; −2R

c
s+ i0)

ds

= −1

π

c

2R

( r
R

)|m| ∞∫
0

exp
(
− c

2R
st
)
h|m|(r, s)ds, (3.9)

where

h|m|(r, s) = Im
Ψ (|m|+ 1

2
, 2|m|+ 1;− r

R
s+ i0)

Ψ (|m|+ 1
2
, 2|m|+ 1;−s+ i0)

(3.10)

and Imz denotes the imaginary part of z.

It is most likely that the latter integral (which is the Laplace transform of h|m|) does not

have an explicit quadrature. Therefore, we calculate it numerically when implementing

the condition of absolute transparency – see § 5. The following asymptotic property of

h|m|(r, s) makes this procedure computationally cheap.

Lemma The function h|m|(r, s) converges to Cre
−s as s→∞, where Cr is a constant depend-

ing on r.

Proof By using formulae relating Ψ (|m| + 1
2
, 2ν + 1; z) and Kummer’s confluent hyper-

geometric function Φ(|m|+ 1
2
, 2ν + 1; z) [26], we have

Ψ

(
|m|+ 1

2
, 2|m|+ 1;−s+ i0

)

= e−s
[
Ψ

(
|m|+ 1

2
, 2|m|+ 1; s

)
+

√
π(−1)|m|+1

4|m||m|! Φ

(
|m|+ 1

2
, 2|m|+ 1; s

)
i

]
.
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Because of the well-known asymptotic properties

Ψ

(
|m|+ 1

2
, 2|m|+ 1; s

)
∼ s−(|m|+ 1

2 )

and

Φ

(
|m|+ 1

2
, 2|m|+ 1; s

)
∼
( √

π

4|m||m|!
)−1

ess−(|m|+ 1
2 )

as s→∞, we have

h|m|(r, s) ∼
( r
R

)−(|m|+ 1
2 )

Im
e−rs/R + (−1)|m|+1i

e−s + (−1)|m|+1i

=
( r
R

)−(|m|+ 1
2 )

(−1)|m|+1e−s(1 + o(1)).

This formula proves our lemma with Cr = (−1)|m|+1
(
r
R

)−(|m|+ 1
2 )

. q

Denote by z
|m|
j , j = 1, 2, ..., J , the roots of the Tricomi’s function Ψ (|m|+ 1

2
, 2|m|+ 1; z).

From the relationship Kν(z) =
√
π(2z)νe−zΨ (ν+ 1

2
, 2ν+1; 2z), we see that the values 0.5z

|m|
j

are the roots of the Macdonald’s function. It is known [27] for ν = |m| that the roots

of the Macdonald’s function are simple and complex conjugate. Their number J = |m| if

|m| is even, and J = |m| − 1 otherwise, i.e. J = 2
[ |m|

2

]
, where [a] denotes the entire part

of a. Therefore, by using the formula for the residue in the case of a simple pole, and

substituting pj = cz
|m|
j /(2R), we rewrite the third term of (3.8) by

J∑
j=1

epj tResψν(r, pj) =
c

2R

( r
R

)|m| 2[ |m|2

]∑
j=1

e
cz
|m|
j

2R t
Ψ (|m|+ 1

2
, 2|m|+ 1; r

R
z
|m|
j )

Ψ ′(|m|+ 1
2
, 2|m|+ 1; z

|m|
j )

, (3.11)

where Ψ ′ denotes the derivative of Ψ with respect to the argument.

Substituting (3.8), (3.9) and (3.11) for (3.7) and convolving the Green’s function Gν(r, t)

with f̂(t), we obtain the following solution of the problem (3.4) for the two-dimensional

case:

w(r, t) =

(
R

r

)1/2

f̂

(
t− r − R

c

)

+
c

2R

( r
R

)|m| t− r−R
c∫

0

f̂(t′)

−1

π

∞∫
0

exp

(
−s
(
t− r − R

c
− t′
))

h|m|(r, s)ds

 dt′

+
c

2R

( r
R

)|m| t− r−R
c∫

0

f̂(t′)


2
[ |m|

2

]∑
j=1

exp

(
cz
|m|
j

2R

(
t− r − R

c
− t′
))

a
|m|
j (r)

 dt′. (3.12)

Here h|m|(r, s) is defined by (3.10);

a
|m|
j (r) ≡ Ψ (|m|+ 1

2
, 2|m|+ 1; r

R
z
|m|
j )

Ψ ′(|m|+ 1
2
, 2|m|+ 1; z

|m|
j )

;

https://doi.org/10.1017/S0956792598003507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003507


568 I. L. Sofronov

z
|m|
j are the roots of Ψ (|m| + 1

2
, 2|m| + 1; z); the third term is omitted if |m| = 0 or

|m| = 1.

3.2 Three-dimensional case

Consider now the case d = 3. Here ν = l+ 1
2
. For ν = l+ 1

2
, the confluent hypergeometric

function is expressed in the terms of the Laguerre polynomial L(α)
n (z) [26], and has the

form

Ψ (l + 1, 2l + 2; z) =
(2l)!

l!
z−(2l+1)L

(−2l−1)
l (z).

Therefore, the function ψν(r, p) is univalent, and the integrals along the cut D+, D− are

mutually annihilated.

As a result, only the third term remains in Eq. (3.8). Transforming this term in a

similar way as was done for the two-dimensional case, and convolving Green’s function

(3.7) with f̂, we find the following formula for the solution of the problem (3.4) in the

three-dimensional case:

w(r, t) =
R

r
f̂

(
t− r − R

c

)

+
c

2R

(
R

r

)l+1
t− r−R

c∫
0

f̂(t′)


l∑

j=1

exp

(
czlj

2R

(
t− r − R

c
− t′
))

alj(r)

 dt′. (3.13)

Here

alj(r) =
L

(−2l−1)
l

(
r
R
zlj
)(

L
(−2l−1)
l

(
zlj

))′
(the prime denotes the derivative with respect to the argument); zlj are the roots of

Laguerre polynomial L(−2l−1)
l (z); the second term is omitted if l = 0.

By substituting Eq. (3.12) with w ≡ vm, f̂ ≡ fm and (3.13) with w ≡ vml , f̂ ≡ fml for the

series (3.2) and (3.3), respectively, we obtain the formal solution of the auxiliary problem

(3.1).

4 Conditions of absolute transparency

Denote by Q the operation of Fourier expansion of an arbitrary function defined on the

circle (d = 2) or on the sphere (d = 3) in the series (3.2) or (3.3), respectively, i.e. Q is the

operator generating the set of Fourier coefficients according to the following formulae:

vm(r, t) =
1

2π

∫ 2π

0

u(r, φ, t)e−imφdφ, for d = 2 (4.1)

and

vml (r, t) =
2l + 1

4π

(l − m)!

(l + m)!

∫ 2π

0

∫ π

0

u(r, θ, φ, t)Y m
l (θ, φ) sin θdθdφ, for d = 3. (4.2)
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We denote by Q−1 the inverse operator, i.e. the operator of summation according to

Eq. (3.2) or Eq. (3.3).

Let us write the operator T for d = 2 in the form of

T = Q−1
{Tm

}
Q, (4.3)

and for d = 3 in the form of

T = Q−1
{Tm

l

}
Q, (4.4)

and define the operators
{Tm

}
and

{Tm
l

}
as block-diagonal ones with block operators

Tm for d = 2 and Tm
l for d = 3 acting independently on each Fourier coefficient with the

index (m) and multi-index
(
m
l

)
, respectively.

Let us consider first the case d = 2. The formula (3.12) gives the solution of the Dirichlet

problem (3.4) with f̂ = w|r=R . Denoting ε = r − R, we have from Eq. (3.12):

1

ε

(
w(R + ε, t)−

√
R

R + c
w
(
R, t− ε

c

))

=
c

2R

(
R + ε

R

)|m| t− ε
c∫

0

w(R, t′)

−1

π

∞∫
0

exp
(
−s
(
t− ε

c
− t′
)) 1

ε
h|m|(R + ε, s)ds

+

2
[ |m|

2

]∑
j=1

exp

(
cz
|m|
j

2R

(
t− ε

c
− t′
))1

ε
a
|m|
j (r)

 dt′.

Taking the limit as ε→ +0, we find

Tmw = 0 (4.5)

with the operator Tm defined by

Tmw ≡ ∂

∂t
w +

c√
r

∂

∂r
(
√
rw)−

t∫
0

E(2)
m (r, t− t′)w(r, t′)dt′,

where the kernel of the convolution has the form

E(2)
m (r, t) =

c2

2r2

(−1)|m|
∞∫

0

e−stds
π2 I2

m(s/2) + K2
m(s/2)

+

2
[ |m|

2

]∑
j=1

e
cz
|m|
j
2r tz

|m|
j

 ;

the last term in E(2)
m (r, t) is omitted if |m| = 0 or |m| = 1. Here Im(s) is the Bessel function of

an imaginary argument, and Km(s) is Macdonald’s function. The formulae for evaluating

the limit of the term 1
ε
h|m|(R + ε, s) are given in the Appendix.

Treating the three-dimensional case (d = 3) in a similar way, we obtain that Eq. (3.13)

yields the equality

Tm
l w = 0, (4.6)
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where

Tm
l w ≡ ∂

∂t
w +

c

r

∂

∂r
(rw)−

t∫
0

E
(3)
l (r, t− t′)w(r, t′)dt′, (4.7)

E
(3)
l (r, t) =

c2

2r2

l∑
j=1

exp

(
czlj

2r
t

)
zlj ,

the function E(3)
l (r, t) = 0 if l = 0. Note that Tm

l does not depend on the superscript m.

According to Watson [27], the roots of Kν(z), ν > 0, have negative real parts which

implies the stability of the evaluation of convolution operators in Eqs. (4.5) and (4.6)

while numerical implementing BCAT.

Having generated the operator T in this way, we formulate the following theorem

about the equivalence of problems (2.1) and (2.2).

Theorem 1. The solution v of the problem (2.1) is also the solution of the problem (2.2);

2. Let ṽ be a solution of the problem (2.2) and ṽ = ṽt = 0 at r > R, t = 0. Suppose also that

this function is twice-differentiable up to S . Then ṽ can be extended outside S to a solution

of the problem (2.1).

Proof In the first part of the theorem we have to prove only that Tv = 0 on S , since

the governing equation is the same for both problems inside S . This equality follows

immediately from the way of constructing T taking account that v is the solution of the

auxiliary problem (3.1) due to conditions (1)–(3) of problem (2.1).

Let us prove the second part of the theorem. Take f = ṽ|S in problem (3.1). Then

Eqs. (3.2), (3.12) (or (3.3), (3.13)) give v satisfying the statement of the theorem for r > R.

Considering now v as the definition of ṽ outside S , we denote the whole of this function by

ṽ. According to the construction, ṽ is continuous at r = R and satisfies the wave equation

at r = R − 0 and at r > R. It remains to prove that it also satisfies the wave equation at

r = R.

Since Eq. (4.5) (or (4.6)) is the corollary of Eq. (3.12) (or (3.13)), then Tṽ = 0 at

r = R + 0. Using the theorem condition Tṽ = 0 at r = R − 0, and the continuity of

ṽ, we have ∂ṽ
∂r
|R−0 = ∂ṽ

∂r
|R+0, i.e. ṽ has continuous derivatives at r = R. Let us write the

wave equation in polar (if d = 2) or spherical (if d = 3) coordinates. From the fact that

continuously-differentiable function ṽ satisfies this equation from the right and from the

left of the point r = R, we obtain ∂2 ṽ
∂r2 |R−0 = ∂2 ṽ

∂r2 |R+0. Thus, ṽ has continuous derivatives at

least up to the second order at r = R and it satisfies the wave equation for r = R− 0 and

r > R ; therefore it satisfies the wave equation also at r = R. q

5 Application of conditions of absolute transparency in numerical methods

It is clear that a straightforward use of the operators (4.3), (4.4) is only possible in the case

of spherical meshes near the external boundary of a computational domain. Moreover,

different numerical schemes for the governing equation inside the computational domain
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Figure 3. The location of domains.

(explicit or implicit ones) can influence the discretization of (4.3), (4.4). Therefore, we

propose another approach to generate the desired numerical conditions. The idea is to

use the representation formulae (3.12), (3.13) to calculate the solution on the external

boundary in terms of the solution inside the computational domain. Such an approach

does not depend on the method of evaluating the solution in D, and permits us to treat

both spherical and non-spherical meshes: as we will see, the difference consists only of an

additional interpolation procedure for the last case. Note that, although discretization of

(3.12), (3.13) can be made with any desired accuracy, it makes no sense to take it higher

than the accuracy of the numerical method used inside the computational domain; in

what follows, we describe the approximation having the second-order discretization error.

For the problem (2.1), let us consider an auxiliary domain D1 and d-dimensional ball B

of a radius R (see Fig. 3) such that the following three assumptions are valid:

(1) D ⊆ B ⊂ D1;

(2) we have a numerical method of step-by-step time integration of equation (2.1) in

the domain D1 with the Dirichlet condition v = vb on the boundary of D1 (here vb
is a given function);

(3) the distance between the surfaces of B and D1 is greater than the value cτmax, where

τmax is the maximal time step achieved in the process of numerical solution of the

problem in the domain D1.
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Let MD be a mesh in the domain D1 for the proposed numerical method. Denote by

vn the solution on the nth time level, i.e. at t = tn. Our aim is to calculate the value vb on

the (n + 1)st time level in terms of vn by using the explicit formulae for the solution of

the auxiliary problem (3.1).

We subdivide this calculation into three stages described below. § 5.1 contains the

formulae for the three-dimensional case. The two-dimensional case is considered in § 5.2.

In § 5.3, we discuss the necessary computational resources for the case of spherically-

shaped artificial boundaries.

5.1 Three-dimensional case

Stage 1

Let B1 be a ball of radius R1 with the same centre as B such that D1 ⊆ B1. Introduce a

spherical mesh between the surfaces of B and B1:

ri = R + ihr, hr = (R1 − R)/I, i = 0, 1, ..., I; (5.1)

θj = (j + 1
2
)hθ, hθ = π/J, j = 0, 1, ..., J − 1;

φk = khφ, hφ = 2π/K, k = 0, 1, ..., K − 1,

where I, J, K are natural numbers.

To approximate the operators Q and Q−1 (see (4.2) and (3.3)), we use the Difference

Spherical Functions (DSF) technique introduced by Ryaben’kii & Sofronov [28] (see

also [29]). These DSFs are the eigenfunctions of a central-difference counterpart of the

Beltrami operator on the mesh {θj , φk} and they form an orthonormal basis of dimension

J × K . Each DSF with fixed indexes converges to the appropriate spherical function as

the mesh parameters J and K increase. Efficient numerical procedures for calculating and

exploring DSFs are proposed in Ryaben’kii & Sofronov [28].

Let us fix a number L, L 6 J 6 K/2, and consider the subspace of difference spherical

functions {Y l,m
JK (θj , φk)} with the set of indexes M = {l = 0, 1, ..., L;m = −l, ..., l}.

At this stage, we first interpolate the discrete function vn from the mesh MD onto

the spherical mesh {θj , φk} at r = R and obtain a function vn(θj , φk). Then we expand

vn(θj , φk) in DSFs:

cml =

J∑
j=0

K∑
k=0

Y
l,m
JK (θj , φk)v

n(θj , φk) sin θj hθ hφ.

As a result, we have the set of coefficients denoted by {cml (R, tn)}, (ml ) ∈ M; the coefficient

cml (R, tn) corresponds to the spherical function Y m
l .

Stage 2

Denote by I0 a value of i such that rI0 is the maximal radius of a sphere belonging strictly

to the domain D1. In the second stage, we calculate cml (r, t) for each
(
m
l

) ∈ M in the points

r = rI0 , rI0+1, · · · , rI , t = tn+1 on the basis of its values at r = R, t = 0, t1, · · · , tn.
Let Hi = ihr, i = I0, · · · , I. Denote by κ > 0 an integer such that tn−κ−1 +Hi/c < tn+1 6
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Figure 4. Calculation of cml (R +Hi, tn−κ +Hi/c).

tn−κ + Hi/c (see Fig. 4). Assumption 3 for the domain D1 and the ball B ensures the

existence of such a κ.

Calculate first the value cml (R +Hi, tn−κ +Hi/c). Since the function cml (r, t) must satisfy

problem (3.4) with f̂(t) ≡ cml (R, t), we use (3.13) to represent the solution. Rearranging the

operations of summation and integration in (3.13), we obtain

cml (R +Hi, tn−κ +Hi/c) =
R

R +Hi

cml (R, tn−κ) +

l∑
j=1

dlj(Hi)q
l
j(tn−κ),

where

dlj(Hi) =
c

2R

(
R

R +Hi

)l+1 L
(−2l−1)
l

(
R+Hi

R
zlj
)(

L
(−2l−1)
l

(
zlj

))′ ,
qlj(tn−κ) = qlj(tn−κ−1) exp

(
αljτn−κ

)
+ slj(tn−κ), qlj(0) = 0, (5.2)

τn−κ = tn−κ − tn−κ−1, αlj = czlj/(2R),

slj(tn−κ) =

tn−κ∫
tn−κ−1

cml (R, t) exp[αlj(tn−κ − t)]dt.

Recall that no calculations of dlj , q
l
j are required for l = 0.

https://doi.org/10.1017/S0956792598003507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003507


574 I. L. Sofronov

To calculate the values slj(tn−κ), it is necessary to interpolate the discrete function cml (R, t)

on the interval (tn−κ−1, tn−κ) by using its values at the points t = 0, t1, · · · , tn. We use here

the simple linear interpolation. Therefore, we have

slj(tn−κ) = cml (R, tn−κ)
eα

l
j τn−κ − 1

αlj

+[cml (R, tn−κ)− cml (R, tn−κ−1)]
(1− αljτn−κ)eαlj τn−κ − 1

(αlj)
2τn−κ

.

The values cml (R +Hi, tn−κ−1 +Hi/c) are calculated in the same way.

Finally, we obtain the desired value cml (R + Hi, tn+1) by the linear interpolation of

cml (R +Hi, tn−κ +Hi/c) and cml (R +Hi, tn−κ−1 +Hi/c).

The evaluations described in this stage are made for all indexes
(
m
l

) ∈ M.

Note that the recurrence relations (5.2) are used to calculate the values of qlj(tn−κ).
Moreover, the values qlj(tn−κ) and slj(tn−κ) do not depend on the parameter Hi.

Thus although the operatorT is non-local in time, the proposed implementation of the

discrete formulae is local in time due to the recurrence relations for the functions qlj(tn−κ).
This remarkable property is corollary of the fact that the kernels E(3)

l (r, t) of convolutions

in T are finite sums of exponentials.

Remark. Linear interpolation has been used for calculating slj(tn−κ) and cml (R + Hi, tn+1).

It gives an error O(τ2). To get a higher accuracy, one may apply here a quadratic or cubic

interpolation by using the points at t = tn−κ−2 or at t = tn−κ−2, tn−κ−3, respectively. In

our test calculations, quadratic interpolation is used.

Stage 3

In the final stage, we calculate finite series on DSFs (difference counterparts of (3.3),

l = 0, 1, ..., L) with coefficients cml (ri, tn+1),
(
m
l

) ∈ M obtained for each sphere r = ri, i.e. we

calculate

vb(ri, θj , φk) =
∑
l,m∈M

cml (ri, tn+1)Y l,m
JK (θj , φk), i = I0, · · · , I.

Thus we have the values of vb on the mesh {ri, θj , φk}. By interpolating these values into

points {r, θ, φ} of the mesh MD belonging to the surface of D1, we find the updated

function vb.

Remark. To reduce computational costs, it is preferable to generate a mesh {ri} using the

set of Chebyshev nodes instead of the simplest uniform mesh (5.1).

Note that minimal computational costs for implementing BCAT are achieved if D1 = B1,

and the surface of B is one of the coordinate surfaces of the mesh MD .

5.2 Two-dimensional case

Consider now the additional constructions required to the implementation of BCAT for

the two-dimensional case. We see that the first and the third terms in (3.12) are similar
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to (3.13). Therefore, their implementation is done in the same way as for the three-

dimensional case – see § 5.1 (naturally, with the use of functions {sinmφ, cosmφ} instead

of spherical functions).

Extra constructions are necessary only for the second term in (3.12). We approximate the

integral in braces by a sum. For this purpose, we make the substitution s = α tan σ where

α is a positive number, σ ∈ [0, π/2] and introduce a grid 0 = σ0 < σ1 < · · · < σJ̃q = π/2

with J̃q intervals on the segment [0, π/2]. Due to the fast decay of h|m|(r, s), see the Lemma

in § 3, we use a uniform grid: σj+1 − σj = π/(2J̃q). Applying the trapezoid rule, we have

the following expression for the integral:

−1

π

∞∫
0

exp

(
−s(t− r − R

c
− t′)

)
h|m|(r, s)ds

≈ α

2J̃q

J̃q−1∑
j=0

′
exp

(
−sj(t− r − R

c
− t′)

)
h|m|(r, sj)
cos2( jπ

2J̃q
)
, (5.3)

sj = α tan

(
jπ

2J̃q

)
.

Here the prime (
′
) for the sum indicates that the term at j = 0 is multiplied by 0.5.

In this procedure, the second term in (3.12) is like the third one, and therefore we can

treat it by the same way.

To choose optimal parameters α and J̃q in (5.3), we investigated numerically the

behaviour of the function

h̃|m|(σ) =
h|m|(r, α tan σ)

cos2 σ

as m varies. It was found that the resolution of the graph of h̃|m|(σ) on a uniform mesh

σi seems to be best if α ≈ 30. It was also found that the domain of essential values of

h̃|m|(σ) is highly isolated for large m (see Fig. 5); moreover, this domain is narrower and

narrower and is moved to the right as |m| increases. Therefore, the contribution of the

second term in (3.12) is less and less as |m| → ∞. The most accurate approximation in

(5.3) is required only for several small values of |m| = 0, 1, ....

In our numerical experiments, it was decided to fix the number of integration points

Jq = 32 and to make the location of the integration interval depend on m, i.e. to

locally refine the integration points. Figures 5 and 6 clarify this rule (left: graph of

h̃|m|(σ) =
h|m|(r,30 tan σ)

cos2 σ
, m = 32, r/R = 1.005, on the whole interval [0, π/2]; right: close up

of this function on the interval of integration (due to a local refinement, the hypothetical

value of J̃q in (5.3) for this example is estimated as J̃q = 500)).

5.3 Computational resources required for BCAT on the spherical boundary

Consider first the question of ‘how many harmonics should one take to match a given

mesh in the computational domain’. Let N be the number of grid intervals around the

circle. Take a single harmonic exp(iMφ). The approximation error of the second-order

difference counterpart to the angular derivative ∂2/∂φ2 in the wave operator for this
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Figure 5. Function h̃32(σ), σ ∈ (0, π/2).
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Figure 6. Function h̃32(σ) on its interval of

integration, number of integration points Jq =

32.

function is, evidently, O(N−2M4). If we neglect this harmonic in the boundary condition,

the error is O(1). These two errors must correspond to each other, i.e. const.N−2M4 ∼ 1.

Therefore, we have the estimate M ∼ √N for a maximal reasonable value of M. The

same estimate L ∼ √N is valid for the maximal value of index l in the three-dimensional

case when considering the mesh N × 2N on the sphere.

Two-dimensional case. For each harmonic with the number m we have to calculate: (a) the

inner product and the recovering formula (according to Fourier transform); (b) the sum

of m terms; and (c) the quadrature sum of Jq terms. Thus the total number of operations

at a current time level is estimated as O(
√
N(N + Jq)). Since we keep O(m) quantities for

each m-th harmonic in the procedure of recurrence calculation with respect to time, the

necessary storage is O(N + Jq
√
N).

Three-dimensional case. The analogous estimates give O(N3) for the number of operations,

and O(N
√
N) for the storage.

Assuming that the volume of the grid in the computational domain is O(N2) and

O(N3) for the two- and three-dimensional cases, respectively, we see that BCAT requires

negligible computational resources compared with those in the computational domain

except for the number of operations in the three-dimensional case.

6 Relation between three-dimensional BCAT and conditions [16]

In this section, we show that conditions proposed in Sofronov [12] and Grote & Keller [16]

are equivalent.

Let us fix the index l > 0, denote by u(r, t) the corresponding Fourier coefficient uml (r, t),

and consider its governing equation:[
∂2

∂t2
− ∂2

∂r2
− 2

r

∂

∂r
+
l(l + 1)

r2

]
u = 0, r > 0.
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In this case, the condition [16] at r = a, with a = 1 for simplicity, has the form:(
∂

∂t
+
∂

∂r

)
[ru] = f(t) (6.1)

where the right-hand side is evaluated by

f(t) ≡ −(−1)l
l∑

j=1

jγljw
(l−j)(t),

w(l−j) ≡ dl−j

dtl−j
w, γlj =

(l + j)!

(l − j)!j!2j , γl0 = 1,

and function w is the solution of the following Cauchy problem:

w(l) +

l∑
j=1

γljw
(l−j) = (−1)lu(1, t), t > 0

w(0) = w(1)(0) = ... = w(l−1)(0) = 0.

 (6.2)

Let us prove that f can be written out in the explicit form

f(t) =

t∫
0

E
(3)
l (1, t− t′)u(1, t′)dt′

where E(3)
l is from (4.7). Consider the Laplace transform of f. Denote g(p) = L[w](p).

Hence

L[f](p) = −(−1)l

 l∑
j=1

jγljp
l−j
 g(p) = −(−1)lpl−1y′lyl(p−1)g(p) (6.3)

where y′l is the derivative of the Bessel polynomial

yl(z) =

l∑
j=0

γljz
j .

Now apply the Laplace transform to (6.2). We havepl +

l∑
j=1

jγljp
l−j
 g(p) = (−1)lL[u](p)

or

plyl(p
−1)g(p) = (−1)lL[u](p). (6.4)

It follows from (6.3), (6.4) that

L[f](p) = −(−1)lpl−1y′l(p−1)(−1)lp−ly−1
l (p−1)L[u](p)

= −p−1y′l(p−1)y−1
l (p−1)L[u](p).

Denote by bj , j = 1, ..., l, the roots of the Bessel polynomial; hence

L[f](p) = −p−1

 l∑
j=1

yl(p
−1)

p−1 − bj

 y−1
l (p−1)L[u](p) =

 l∑
j=1

1

bj

1

p− 1
bj

L[u](p).
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Inverting the Laplace transform, we obtain

f(t) =

 l∑
j=1

1

bj
et/bj∗

 u(1, t).

The Bessel polynomials are expressed in terms of the Laguerre polynomials L(−2l−1)
l , cf.

§ 3.2, by the following formula:

yl(z) = zl
(2l)!

l!2l
L

(−2l−1)
l (2/z).

Therefore bj = 2/zlj . Thus we see that the non-local terms in boundary conditions (4.6)

at c = 1 and (6.1) are the same, i.e. the conditions are equivalent.

7 Numerical examples

7.1 Tests for separate Fourier harmonics

To validate the formulae described in Stage 2 of § 5.1, we consider the following set

of one-dimensional initial boundary-value problems for the coefficients v at spherical

harmonics Y m
l with different values l = 0, 1, ... :

∂2v

∂t2
− 1

r

∂2(rv)

∂r2
+
l(l + 1)

r2
v = 0, r > a, t > 0

v|t=+0 = ω(r), r > a
∂v
∂t
|t=+0 = 0, r > a

v|r=a = 0, t > 0,

where ω(r) is an initial function of ‘cap’ type:

ω(r) =

[
exp

( −4(r−(a+b)/2)2

(b−a)2/4−(r−(a+b)/2)2

)
, a < r < b

0, r > b
.

This problem is approximated by a difference one with a central-difference leap-frog

scheme on the mesh

ri = a+ ih, i = 0, 1, · · · , h = (1− a)/I, a = 0.25, b = 0.75

tn = nτ, n = 0, 1, · · · , τ = Ch, C = 0.5.

To check the accuracy of the difference counterpart to BCAT, two initial boundary value

problems are considered simultaneously for each parameters l and I: the problem on

the interval a < r < 1 with BCAT at r = 1; and the problem on the semi-axis r > a

without any boundary condition at the right or, in other words, with the Free Condition

(FC). Both solutions, SBCAT and SFC , are calculated till the time t = 2. Figure 7 shows

the solutions and the difference between them at the intermediate time t = 1; here the

parameter l = 3.

Denote ε = max
t∈(0,2)

|SFC − SBCAT | at r = 1. Table 1 shows the values of log4 ε for different

variants.

We see distinctly the quadratic decay of the error ε for the generated difference

counterpart of BCAT.
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Solution with the free

condition at the right (SFC )

Solution with BCAT at r=1 (SBCAT )

Difference (SBCAT − SFC )

artificial
boundary

-0.005
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-0.5
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0
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0

Amplitude

0.5
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Figure 7. Amplitudes of solutions and difference between them at t = 1 (variant with parameters

l = 3, I = 20).

Table 1. Three-dimensional case, value of log4 ε.

l = 1 l = 2 l = 3 l = 6

I=20 −4.35 −4.23 −4.16 −4.01

I=40 −5.53 −5.56 −5.52 −5.34

I=80 −6.66 −6.57 −6.54 −6.40

I=160 −7.64 −7.56 −7.53 −7.40

The same test was done for the two-dimensional wave equation. The only difference

was in the construction of BCAT and in the governing equation for v:

∂2v

∂t2
− 1

r

∂

∂r

(
r
∂v

∂r

)
+
m2

r2
v = 0.

Figure 8 shows the values of log4 ε versus m for different grid parameters I . At each

fixed m the error ε decays quadratically while doubling I . The parameter Jq (see § 5.2)

was Jq = 32 for all the calculations.

To check the numerical stability of BCAT for a long time, the calculations for several

numbers of l and m were continued till time t = 20. No problems with stability were

observed.
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Figure 8. Error ε = max
t∈(0,2)
|SFC − SBCAT | versus |m| for grids with I = 40, 80, 160, 320.

7.2 Test examples in three-dimensions

We check the properties of BCAT for three-dimensional problems on the same test

examples that are used by Grote & Keller [17]. The following geometry is considered (see

Fig. 9): S is the scattering sphere, rS = 0.5; B\S is the computational domain, rB = 1; G

is the ball with a non-zero source g in the wave equation utt − ∆u = g, rG = 0.15, the

centre xG of G is at r = 0.75, θ = 0.

The function g has the form

g(x, t) =

{
β sin(ωt) sin2(1− |x− xG|/rG)π/2, if x ∈ G
0, otherwise.

The initial data are homogeneous: u = ut = 0 at t = 0.

We use the spherical system of coordinates (r, θ, φ) to solve this problem numerically.

Since the solution does not depend on φ, the coordinates (r, θ) are only considered. We

introduce a uniform spherical mesh shifted from the poles:

ri = rS + ihr, hr = (rB − rS )/I, i = 0, 1, ..., I;

θj = (j + 1
2
)hθ, hθ = π/J, j = 0, 1, ..., J − 1;
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S

G

B

Figure 9. Computational domain B\S and source domain G.

and discretize the wave equation in the following way:

un+1
i,j − 2uni,j + un−1

i,j

τ2
− 1

r2
i

r2
i+0.5(uni+1,j − uni,j)− r2

i−0.5(uni,j − uni−1,j)

h2
r

− 1

r2
i

1

sin θj

sin θj+0.5(uni,j+1 − uni,j)− sin θj−0.5(uni,j − uni,j−1)

h2
θ

= g(tn, ri, θj)

where n = 1, 2, ...; i = 1, ..., I − 1; j = 1, ..., J − 1; ri±0.5 = ri ± 0.5hr; θj±0.5 =

θj ± 0.5hθ; uni,j ≡ u(tn, ri, θj).
The boundary condition at the scatterer is un1,j − un0,j = 0; the initial conditions are

u0
i,j = u1

i,j = 0.

At rI = rB we impose our BCAT that must provide transparency of the boundary ∂B

for outgoing waves. The procedure is following. Let L be a maximal value of index l in

the calculation formulae for discrete BCAT – see § 5.1 (here M = {0, 1, ..., L}). Denote by

[unI−1]L the projection of a discrete function unI−1 onto subspace of DSFs with indexes from

M. We apply BCAT for [unI−1]L, and calculate the function [un+1
I ]L. For a ‘non-smooth’

remainder part vnI = unI − [unI ]L we apply a discrete counterpart of the commonly used

boundary condition

vt + vr +
1

r
v = 0 (7.1)

and obtain the function vn+1
I . The result function un+1

I = [un+1
I ]L + vn+1

I . We shall denote

such condition by BCAT(L). Note that it corresponds to the condition NR1(L) introduced

by Grote & Keller [17]. Clearly, BCAT(0) coincides with (7.1).

To compare our solution with the solution of the problem in the infinite domain IR3\S ,

we extend the mesh up to r = 5 and solve the problem for this large domain as well. The

solution in the large domain gives us the ‘exact’ solution in the computational domain

B\S up to the time level t = 8 (after this moment, the reflections from the external

boundary r = 5 reach the ball B).
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Figure 10. Three-dimensional case. Error εL
for different grids, ω = 0.25.
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Figure 11. Three-dimensional case. Error εL
for different grids, ω = 1.
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Figure 12. Three-dimensional case. Solutions

uex(t), u0(t), u26(t) at r = 1, θ = 0; grid 20 ×
121; ω = 0.25.
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Figure 13. Three-dimensional case. Errors

ε0(t), ε26(t); grid 20× 121; ω = 0.25.

Denote by

εL(t) = ‖uex(t)− uL(t)‖L2(B\S) (7.2)

the L2-error between exact solution uex and solution uL with BCAT(L). Introduce also

εL = max
t∈(0,8)

εL(t).

Figures 10 and 11 show the maximal error εL versus L for three meshes I × J (left:

for ω = 0.25 in the source function; right: for ω = 1). We see that for each mesh size,

the error decreases if the number L increases till some fixed value. Therefore, we find

that the accuracy of the discrete counterpart of BCAT corresponds to the accuracy of the

difference scheme near L = 23, 25, 29 for grids 10× 61, 20× 121, 40× 241, respectively.

Due to applying the BCAT instead of condition (7.1), the accuracy of the calculations

increases for considered grids 300, 1400, 5800 times, respectively (for ω = 0.25).

Figure 12 shows the behaviour of solutions for ω = 0.25 at the point r = 1, θ = 0; grid

is 20×121, β = 2000. The exact solution and the solution with condition (7.1) (BCAT(0))
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Figure 14. Three-dimensional case. Solutions

uex(t), u0(t), u26(t) at r = 1, θ = π; grid 20 ×
121; ω = 1.
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Figure 15. Three-dimensional case. Errors

ε0(t), ε26(t); grid 20× 121; ω = 1.

differ essentially from each other. At the same time, the difference between the exact

solution and the solution with BCAT(26) cannot be distinguished on the graph. Figure 13

gives the value of εL(t) versus t. The results corresponding to ω = 1 at the observation

point r = 1, θ = π are shown in Figures 14 and 15.

7.3 Test examples in two-dimensions

The first test has the same setup as for the three-dimensional case, i.e. θ is now the polar

angle and we denote it by φ; parameter β = 200 for the source g. Due to the symmetry,

we consider the problem in the half-plane x > 0, i.e. |φ| 6 π/2. The mesh for the variable

φ is

φj = π/2− jhφ, hφ = π/J, j = 0, ..., J,

and the wave equation is discretized by

un+1
i,j − 2uni,j + un−1

i,j

τ2
− 1

ri

ri+0.5(uni+1,j − uni,j)− ri−0.5(uni,j − uni−1,j)

h2
r

− 1

r2
i

uni,j+1 − 2uni,j + uni,j−1

h2
φ

= g(tn, ri, φj).

Again our discrete artificial boundary condition BCAT(M) consists of a ‘smooth’ part

that treats a fixed number M of Fourier coefficients according to formulae of § 5.2, and

a ‘non-smooth’ part that treats the remainder by the known condition

vt + vr +
1

2r
v = 0 (7.3)

For convenience, we will denote the condition (7.3) by BC0 and the corresponding error

in (7.2) by ε0. Note that (7.3) does not coincide with BCAT(0), i.e. with condition (4.5)

when m = 0.

Figures 16–21 show the results of the two-dimensional calculations that correspond to

https://doi.org/10.1017/S0956792598003507 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003507


584 I. L. Sofronov

1e-5

1e-4

1e-3

1e-2

1e-1

1

0 5 10 15 20 25

E
r
r
o
r

M

10x61
20x121
40x241

Figure 16. Two-dimensional case. Error εM
for different grids, ω = 0.25.

1e-5

1e-4

1e-3

1e-2

1e-1

1

0 5 10 15 20 25

E
r
r
o
r

M

10x61
20x121
40x241

Figure 17. Two-dimensional case. Error εM
for different grids, ω = 1.
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Figure 18. Two-dimensional case. Solutions

uex(t), u0(t), u20(t) at r = 1, φ = π/2; grid

20× 121; ω = 0.25.
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Figure 19. Two-dimensional case. Errors

ε0(t), ε20(t); grid 20× 121; ω = 0.25.

the three-dimensional test problem formulations described in the previous item. Here the

optimal values of M are 17, 19, 22 for grids 10× 61, 20× 121, 40× 241, respectively.

The second test example corresponds to one of the benchmarks from [24]. The scatterer

is the circle rS = 0.5. The unknown function v (pressure) satisfies the two-dimensional

wave equation and has the following initial condition at t = 0:

v = 2−
(x−4)2+y2

0.04 .

To calculate the solution, we close the computational domain by a circular artificial

boundary with rB = 5 and use a uniform polar mesh 180 × 500, so hr = 4.5/180, hφ =

π/500, τ = 0.0015. The ‘exact’ solution until t = 10 for r 6 5 is calculated by using a larger

domain with the external circular boundary r = 10. Figure 22 shows v(t) at r = 5, φ = π/2

for different parameters M in BCAT(M). The graph of solution with BCAT(63) coincides

practically with the graph of the exact solution. Figure 23 shows the L2-error εM(t) defined

by (7.2). The fragment of the solution along the segment 0.5 6 r 6 5, φ = π/2 at t = 7 is
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Figure 20. Two-dimensional case. Solutions

uex(t), u0(t), u20(t) at r = 1, φ = −π/2; grid

20× 121; ω = 1.
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Figure 21. Two-dimensional case. Errors

ε0(t), ε20(t); grid 20× 121; ω = 1.0.
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Figure 22. Exact solution and solution with condition (7.3), BCAT(31), and BCAT(63) versus t at

the point r = 5, φ = π/2.

given in Fig. 24; we can see that only in the vicinity of r = 4.4 is the difference between

the exact solution and the solution with BCAT(63) visible.

8 Conclusion

Exact artificial boundary conditions, BCAT, for both two- and three-dimensional wave

equation are described. The conditions permit us to reduce free-space scattering problems

to problems in finite (truncated) domains. The corresponding operators have an explicit

form with a non-local part consisting of the Fourier transform with respect to space

variables and convolutions with respect to time.

An efficient numerical implementation of BCAT is proposed. The method permits us to
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Figure 23. Errors ε0(t), ε31(t), ε63(t).
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Figure 24. Exact solution and solutions with

conditions (7.3), BCAT(31), and BCAT(63) ver-

sus r at φ = π/2, t = 7.

evaluate the convolution integrals by recurrence formulae with respect to time. As a result,

additional computational costs on the boundary of a domain, which are required while

using BCAT, are at least not greater than that inside the domain. Besides, the method

treats the general case of non-spherical meshes.

The equivalence of BCAT in three space dimensions and the nonreflecting boundary

conditions [16] is proved. It is worth noting that, unlike the condition [16], the numerical

implementation of BCAT covers two space dimensions and non-spherical computational

domains.

The calculation of test scattering problems presented above and in [17] demonstrate

the high superiority of exact ABCs based on the Fourier method for spherical and polar

grids. The numerical investigation of our conditions coupled with a Cartesian mesh in the

computational domain is planned.
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Appendix

We give here the calculation of the limit used for deriving E(2)
m (r, t).

lim
ε→0

1

ε
h|m|(R + ε, s) = lim

ε→0

1

ε
Im
Ψ (|m|+ 1

2
, 2|m|+ 1;−s+ ε

R
s+ i0)

Ψ (|m|+ 1
2
, 2|m|+ 1;−s+ i0)

= lim
ε→0

1

ε
e−

ε
R
sIm

CmΦ(∗; s+ ε
R
s)i+Ψ (∗; s+ ε

R
s)

CmΦ(∗; s)i+Ψ (∗; s)

= lim
ε→0

1

ε
e−

ε
R
sCm

Φ(∗; s+ ε
R
s)Ψ (∗; s)−Ψ (∗; s+ ε

R
s)Φ(∗; s)

C2
mΦ

2(∗; s) +Ψ 2(∗; s)
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= Cm
s

R

Φ′(∗; s)Ψ (∗; s)−Ψ ′(∗; s)Φ(∗; s)
C2
mΦ

2(∗; s) +Ψ 2(∗; s)

= Cm
s

R

Γ (2|m|+ 1)

Γ (|m|+ 1
2
)

ess−(2|m|+1)

C2
mΦ

2(∗; s) +Ψ 2(∗; s)

= (−1)|m|+1es
s−2|m|

R

1

s−2|m|es
[
π I2

m(s/2) + 1
π
K2
m(s/2)

]
= (−1)|m|+1 1

R

π

π2 I2
m(s/2) + K2

m(s/2)
.

Here Cm =
√
π(−1)|m|+1

4|m| |m|! , Γ (x) is the Gamma-function. To simplify the formulae, the asterisk

‘∗’ is used instead of the combination of symbols ‘|m|+ 1
2
, 2|m|+ 1’.
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