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This article considers the asset price movements in a financial market when risky asset
prices are modeled by marked point processes. Their dynamics depend on an under-
lying event arrivals process, modeled again by a marked point process. Taking into
account the presence of catastrophic events, the possibility of common jump times
between the risky asset price process and the arrivals process is allowed. By set-
ting and solving a suitable control problem, the characterization of the minimal
entropy martingale measure is obtained. In a particular case, a pricing problem is
also discussed.

1. INTRODUCTION

This article deals with the problem of expected utility optimization with an application
to the structure of the minimal entropy martingale measure in a financial market for
which the assets prices are modeled by marked point processes. As observed,
for instance, in Prigent [24], intraday information on financial asset price quotes and
the increasing amount of studies on market microstructure show that prices are piece-
wise constant and jump at irregularly spaced random times in reaction to trades or to
significant new information. This is the reason why many authors believe that pure
jump processes might be more suitable for modeling the observed price or quanti-
ties related to the price. In fact, they believe that models that consider continuous
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trajectory processes, even if the presence of jumps is allowed, and not accounting for
the discreteness in the data, could lead to wrong conclusions and might need ad hoc
methods for rounding and estimation.

Several models in which the price process is a marked point process are available
in the literature; in addition to Prigent [24], we only quote Rogers and Zane [26],
Ridberg and Shephard [25], Frey [13], Frey and Runggaldier [14], Centanni and
Minozzo [7,8], Gerardi and Tardelli [18], Ceci [5], and the references therein. In order
to describe the amount of information received by the traders related to intraday market
activity, the activity of other markets, macroeconomics factors, or microstructure
rules, some of these references have introduced exogenous stochastic factors. For
instance, in Zariphopoulou [29], the fundamental assumption is that the dynamics of
the stock price depends on another process, referred to as a stochastic factor, which
is generally correlated with the underlying stock price. In all of these cases, the local
characteristics of the price process, such as the jump-intensity and the jump-size
distribution, depend on a latent process whose behavior has been described in different
ways by different authors.

In this article, we consider a financial market with a single risky asset and a bond.
As described in Section 2, the price S of the risky asset in units of the numeraire is a
stochastic process given by St = S0eYt , for S0 ∈ R

+. The logreturn price Y is a marked
point process whose local characteristics depend on the entire history up to time t of
a marked point process X . The processes X and Y are strictly correlated, since we
assume that they might have common jump times, which implies that the behavior of
X might be affected by trading activity. Furthermore, as in Gerardi and Tardelli [18],
we introduce a Markovian assumption.

In Section 3 we deal with the control problem that arises if we assume that
the investor seeks to maximize the expected utility from his terminal wealth when
an exponential utility function is chosen. Writing down the related Hamilton–Jacobi–
Bellmann equation, we provide a solution for it and we find the corresponding feedback
optimal strategy. This is a useful result, suitable for many applications. In particular, we
are interested in characterizing the minimal entropy martingale measure that plays an
important role in the utility indifference approach to valuation of derivatives (Frey [13],
Frittelli [16], Grandits and Rheinlander [20], and Delbaen, Grandits, Rheinlander,
Samperi et al. [9]).

In Section 4 we recall some general properties and we observe that, since in
the model studied in this article St is locally bounded, there exists a unique minimal
entropy martingale measure PE , locally equivalent to P, under the assumption that the
set of the equivalent martingale measures with finite entropy is nonempty (Frittelli
[16]). In the Appendix, we prove that this condition is accomplished. Consequently, in
this model, there exists a unique minimal entropy martingale measure PE , equivalent to
P, which we characterize by using a duality relation as the main tool. Duality methods
give a relation between the problem of maximization of the expected exponential utility
and the minimal entropy martingale measure.

Many articles deal with duality topics—for instance, the work Delbaen et al.
[9], Bellini and Frittelli [2], Biagini and Frittelli [3], and the references therein.
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The structure of the model studied in this article leads us to follow the method
presented in Biagini and Frittelli [3]. This method allows us to give the main
result of this article that is, an explicit representation of the density of the minimal
entropy martingale measure in terms of the solution of the Hamilton–Jacobi–Bellmann
equation.

Finally, Section 5 is devoted to the problem of pricing of a European contin-
gent claim when the agents can observe only the behavior of the price process.
The problem of defining the arbitrage-free price in a model with restricted information
arises, and many approaches to a solution are possible. The discussion in Gombani,
Jaschke, and Runggaldier [19] suggests a choice similar to that followed in Ceci and
Gerardi [6] and in Frey and Runggaldier [15]. This choice consists of characterizing
the martingale measures with respect to the filtration Ft and defining the price of the
claim as the expectation conditioned to the observations, under a suitable martingale
measure, which, in this article, is the minimal entropy martingale measure. Under an
additional assumption on the structure of the model, we reduce the problem of pric-
ing under restricted informations to a filtering problem. The general case appears too
abstract and it is briefly discussed in Section 5.3. Thus, in Section 5.2, we restrict our-
selves to the case in which Y is discrete-valued. The Kushner–Stratonovitch equation
is written down, uniqueness of its solution is proven, and a recursive computation of
the filter is provided.

In Section 6 we are concerned about the existence and characterization of risk-
neutral measures that is, probability measures equivalent to P, under which the price
process is a local martingale. We discuss their characterization in the framework of
this model, taking into account the incompleteness of the market due to the presence
of infinitely many jumps of the price process.

Because we are mainly interested in the minimal entropy martingale measure,
to verify the existence of risk-neutral measures with finite entropy, we characterize
the minimal martingale measure for this model, and we prove that it is a probabil-
ity measure with finite relative entropy with respect to P. The minimal martingale
measure has been studied by many authors with regard to the topic of hedging of
contingent claims in incomplete markets (Follmer and Schweizer [12], Prigent [24],
and Schweizer [28]).

In the literature, the continuous paths processes have been frequently consid-
ered. For a marked point process, the minimal martingale measure approach has been
discussed, for instance, in Prigent [24]. Sufficient conditions for its uniqueness and
existence can be found in Follmer and Schweizer [12], Ansel and Stricker [1],
and Schweizer [28].

2. THE MODEL

On a filtered probability space, (�, F , {Ft}t≥0, P), where {Ft}t≥0 satisfies the usual
conditions, we consider a market model with a single risky asset S and a nonrisky asset.
The price of the risky asset, discounted with respect to the price of the bond, is a process
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S having the form St = S0 exp {Yt}, with S0 ∈ R
+. The logreturn price Y is assumed

to be a nonexplosive R-valued marked point process with initial condition Y0 = 0,
characterized by the sequence {τ Y

n , Yτ Y
n

− Yτ Y
n −}n≥1, where {τ Y

n }n≥1 is a nondecreasing
sequence of stopping times. This means that the trajectories of the price of the stock
are piecewise constant, and changes occur only at random times.

The dynamics of the logreturn price depends on an exogenous process X, repre-
senting the amount of news reaching the market.We believe that it is sensible to assume
that X is a nonexplosive marked point process, taking values in a finite set X ⊂ R,
with initial condition X0 = 0 and nonnegative jump sizes. The process X is charac-
terized by the sequence {τn, Xτn − Xτn−}n≥1 where, again, {τn}n≥1 is a nondecreasing
sequence of stopping times.

Next, we will describe the joint dynamics of the processes X and Y . First,
we describe the link between trading frequencies and arrivals of news to the mar-
ket. To this end we define the point process counting the jump times of Y up to
time t as

Nt =
∑
n≥1

1τ Y
n ≤t . (2.1)

We assume that it admits a (P, Ft)-intensity λt , whose structure, similar to that given
in Centanni and Minozzo [7,8] and Gerardi and Tardelli [18], is

λt = a(t) + bz0e−kt + b
∑
i≥1

(Xτi − Xτi−1)e
−k(t−τi)1τi≤t , (2.2)

with b and k real positive parameters and a(·) measurable a R
+-valued deterministic

function, verifying

0 ≤ a(t) ≤ a < +∞.

Equation (2.2) has a natural and intuitive interpretation. The arrival of a news reaching
the market, represented by a positive jump size of X at a random time τn, produces a
sudden increase in the trading activity. Successively, a progressive normalization of
the market occurs, with a speed expressed by k. Finally, a(·) describes the activity
of the market in the absence of random perturbations. By adequately choosing the
function a(·), we would also be able to take into account deterministic features such
as seasonalities.

Assuming z0 strictly positive, we get that λt is strictly positive. In addition, λt is
bounded, since for � suitable positive constant and ∀t,

λt ≤ a + bz0 + bXt < � < +∞. (2.3)

The structure of (2.2) could suggest the introduction of the history process defined
by X. To avoid this introduction and the technicalities that it implies, as in Gerardi
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and Tardelli [18], we define the process

Zt := z0 +
∫ t

0
eks dXs

and we obtain

λt = a(t) + be−ktZt := λ(t, Zt).

Then λ is a deterministic measurable function of the time t and of the process Z , which
is a nonhomogeneous pure jump process, taking values in a suitable Z ⊆ R

+, having
the same jump times of X and jump sizes given by Zt − Zt− = ekt(Xt − Xt−).

The first difference between this model and that proposed in Gerardi and Tardelli
[18] is that, in this article, we allow the possibility of common jump times between
the latent process X and the logreturn process Y as well as the possibility of catas-
trophic events. Hence, we denote by {τX

n }n≥1 ⊆ {τn}n≥1 the nondecreasing sequence
of stopping times at which XτX

n
	= XτX

n − and YτX
n

= YτX
n −.

In addition, in order to better specify the dynamics of the processes X, Y , and Z ,
let ξ(t, x, z), η1(t, x, z), and η2(t, x, z) be measurable functions such that

ξ : [0, T ] × X × Z −→ R
+ ∪ {0}

and for any t ∈ [0, T ],
x ∈ X , z ∈ Z , x + ξ(t, x, z) ∈ X ,

ηi : [0, T ] × X × Z −→ R
+,

and for some real constants ηmax and ηmin,

0 < ηmin ≤ ηi(t, x, z) ≤ ηmax, i = 1, 2. (2.4)

Setting

ξt := ξ(t, Xt−, Zt−), η1
t := η1(t, Xt−, Zt−), and η2

t := η2(t, Xt−, Zt−),

we are able to give the representation

Xt =
∫ t

0
ξu [dN0

u + dNu], Yt =
∫ t

0
η1

u dN1
u −

∫ t

0
η2

u dN2
u ,

Zt = z0 +
∫ t

0
ekuξu [dN0

u + dNu],
where

N0
t =

∑
n≥1

1τX
n ≤t , N1

t =
∑
n≥1

1τ Y
n ≤t1{Y

τY
n

−Y
τY
n −>0},

N2
t =

∑
n≥1

1τ Y
n ≤t1{Y

τY
n

−Y
τY
n −<0}, and Nt = N1

t + N2
t .

We assume that N0 admits a (P, Ft)-intensity given by λ0
t := λ0(t, Xt−, Zt−), where

λ0(t, x, z) is a bounded nonnegative measurable function, such that, for the same �
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given in (2.3),

λ0(t, x, z) ≤ �. (2.5)

For i = 1, 2, Ni admits a (P, Ft)-intensity λt pi
t , where λt := λ(t, Zt−) and pi

t :=
pi(t, Xt−, Zt−), i = 1, 2 with pi(t, x, z) strictly positive measurable functions verifying
the condition

p1(t, x, z) + p2(t, x, z) = 1.

Remark 2.1: As we will see in Section 6, if the price process is strictly increasing or
strictly decreasing, the model does not admit any equivalent martingale measure. This
explains the particular structure of the dynamics of the process Y .

Proposition 2.2: Under these assumptions, (X , Y , Z) is a Markov process and for
f (t, x, y, z) belonging to a suitable class of real-valued measurable functions, t ≥ 0,
x ∈ X , y ∈ R, and z ∈ Z , its generator is

Lf (t, x, y, z) = ∂

∂t
f (t, x, y, z) + Ltf (t, x, y, z), (2.6)

where

Ltf (t, x, y, z) = λ0(t, x, z)[f (t, x + ξ(t, x, z), y, z + ektξ(t, x, z)) − f (t, x, y, z)]
+ λ(t, z)

∑
i=1,2

pi(t, x, z)[f (t, x + ξ(t, x, z), y + (−1)i−1ηi(t, x, z), z

+ ektξ(t, x, z)) − f (t, x, y, z)].

Proof: For a bounded real-valued measurable function f ,

f (t, Xt , Yt , Zt) − f (0, X0, Y0, Z0) −
∫ t

0
Lf (s, Xs−, Ys−, Zs−)) ds = (P, Ft)-martingale.

By Theorem 7.3 in Ethier and Kurtz [11], since the generator Lt that is given in (2.6)
is bounded, then the Martingale Problem associated with the operator L and initial
condition (X0 = 0, Y0 = 0, Z0 = z0) is well posed and its solution is a Markov process
with trajectories in DX×R×Z [0, T ]. �

From now on, we fix a finite horizon T , and by a little abuse of notations, we set,
for t ≤ T , Ft := σ {Xs, Ys, 0 ≤ s ≤ t}.

3. THE CONTROL PROBLEM

In this section we deal with the control problem that arises if we assume that the
investor seeks to maximize the expected value of the exponential utility function from
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his terminal wealth. The control problem is defined by the criterion

inf
θ∈�

E

[
exp

(
−w0 −

∫ T

0
θr dSr

)]
,

where w0 is a real positive constant and � is the class of the (P, Ft)-predictable
S-integrable real-valued self-financing processes.

The classical dynamic programming approach leads to the Hamilton–Jacobi–
Bellman equation. Herein, we prove that it admits a solution for a.a. t and we give an
explicit representation of the solution. To this end, setting

ϕr = Sr− θr ,

the wealth process (Zariphopoulou [29]) reduces to

Wt := w0 +
∫ t

0
θr dSr = w0 +

∫ t

0

ϕr

Sr−
dSr ,

with values in some W ⊆ R. By the Itô formula we get

Wt = w0 +
∫ t

0
ϕu(e

η1(u,Xu−,Zu−) − 1) dN1
u +

∫ t

0
ϕu(e

−η2(u,Xu−,Zu−) − 1) dN2
u .

As we did in Proposition 2.2, we characterize the joint dynamics of (X, Y , Z , W),
for every constant control variable ϕ ∈ R, by the operator Lϕ that, for f (t, x, y, z, w)

belonging to a suitable class of real-valued functions, t ≥ 0, x ∈ X , y ∈ R, z ∈ Z , and
w ∈ W , is

Lϕ f (t, x, y, z, w) = ∂

∂t
f (t, x, y, z, w) + Lϕ

t f (t, x, y, z, w), (3.1)

with

Lϕ
t f (t, x, y, z, w) = λ0(t, x, z)[ f (t, x + ξ(t, x, z), y, z + ektξ(t, x, z), w) − f (t, x, y, z, w)]

+ λ(t, z)[ f (t, x + ξ(t, x, z), y + η1(t, x, z), z + ektξ(t, x, z), w

+ ϕ(eη1(t,x,z) − 1)) − f (t, x, y, z, w)]p1(t, x, z)

+ λ(t, z)[f (t, x + ξ(t, x, z), y − η2(t, x, z), z + ektξ(t, x, z), w

+ ϕ(e−η2(t,x,z) − 1)) − f (t, x, y, z, w)]p2(t, x, z).

The cost functional becomes

J(ϕ) := E

[
exp

{
−w0 −

∫ T

0

ϕr

Sr−
dSr

}]
= E

[
e−WT

]
and the Hamilton–Jacobi–Bellman equation joint with its terminal condition is
given by ⎧⎨⎩

∂U(t, x, y, z, w)

∂t
+ infϕ∈R Lϕ

t U(t, x, y, z, w) = 0,

U(T , x, y, z, w) = e−w.
(3.2)
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Proposition 3.1: The Hamilton–Jacobi–Bellman (HJB) equation (3.2) reduces to the
following linear equation with final condition:

⎧⎨⎩
∂V(t, x, z)

∂t
+ L∗

t V(t, x, z) + λ(t, z)(G∗(t, x, z) − 1)V(t, x, z) = 0,

V(T , x, z) = 1,
(3.3)

where

L∗
t V(t, x, z) := λ∗(t, x, z)[V(t, x + ξ(t, x, z), z + ektξ(t, x, z)) − V(t, x, z)],
λ∗(t, x, z) := λ0(t, x, z) + λ(t, z)G∗(t, x, z). (3.4)

Proof: Setting U(t, x, y, z, w) = e−wV(t, x, z), we get that V(T , x, z) = 1 and that the
generator Lϕ , (3.1), restricted to a function V that does not depend on y and w, is

Lϕ
t V(t, x, z) = λ0(t, x, z)

[
V(t, x + ξ(t, x, z), z + ektξ(t, x, z)) − V(t, x, z)

]
+ λ(t, z)V(t, x + ξ(t, x, z), z + ektξ(t, x, z))G(ϕ, t, x, z)

− λ(t, z)V(t, x, z),

where

G(ϕ, t, x, z) = e−ϕ(eη1(t,x,z)−1)p1(t, x, z) + e−ϕ(e−η2(t,x,z)−1)p2(t, x, z).

The minimum value of G(ϕ, t, x, z), with respect to ϕ, is attained at

ϕ∗(t, x, z) = − log

{(
1 − e−η2(t,x,z)

eη1(t,x,z) − 1

p2(t, x, z)

p1(t, x, z)

)(eη1(t,x,z)−e−η2(t,x,z))−1}
, (3.5)

G∗(t, x, z) = min
ϕ

G(ϕ, t, x, z)

= exp {−ϕ∗(t, x, z)(eη1(t,x,z) − 1)}p1(t, x, z)

+ exp {−ϕ∗(t, x, z)(e−η2(t,x,z) − 1)}p2(t, x, z),

and the thesis is reached by a direct computation. �

Proposition 3.2: Problem (3.3) admits a unique measurable bounded solution that
is absolutely continuous with respect to t. Then, for any (x, z) and for a.a. t, there
exists ∂V(t, x, z)/∂t and it is bounded.

https://doi.org/10.1017/S0269964809990131 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990131


RISK-NEUTRAL MEASURES 55

Proof: We note that, taking into account (3.4), (3.3) can be written as⎧⎪⎪⎨⎪⎪⎩
∂V(t, x, z)

∂t
− (λ(t, z) + λ0(t, x, z))V(t, x, z) + λ∗(t, x, z)V(t, x + ξ(t, x, z), z

+ ektξ(t, x, z)) = 0,

V(T , x, z) = 1,
(3.6)

which is equivalent to

V(t, x, z) = e− ∫ T
t (λ(s,z)+λ0(s,x,z)) ds +

∫ T

t
λ∗(s, x, z)V(s, x + ξ(s, x, z), z

+ eksξ(s, x, z))e− ∫ s
t (λ(r,z)+λ0(r,x,z)) dr ds. (3.7)

In fact, differentiating both sides of (3.7) with respect to t, we obtain an equation that,
joint with (3.7), reproduces (3.6).

Equation (3.7) has a unique bounded solution. If V1 and V2 are two bounded
solutions, setting

(t) = sup
x,z

|V1(t, x, z) − V2(t, x, z)|,

we get

(t) ≤ �∗
∫ T

t
(s) ds,

and the assertion follows by a slight modification of the Gronwall Lemma.
Finally, by a classical recursive method, we obtain the existence of a bounded

solution absolutely continuous with respect to t. Setting

β(t, u, x, z) = e− ∫ u
t (λ(r,z)+λ0(r,x,z)) dr ≤ 1,

we define, recursively, for k ≥ 0,

V0(t, x, z) = β(t, T , x, z) +
∫ T

t
λ∗(s, x, z)β(t, s, x, z) ds,

Vk+1(t, x, z) = β(t, T , x, z) +
∫ T

t
λ∗(s, x, z)Vk(s, x + ξ(s, x, z), z

+ eksξ(s, x, z))β(t, s, x, z) ds.

Since

0 < G∗(t, x, z) ≤ eηmax − e−ηmin

1 − e−ηmin
and

λ∗(t, x, z) ≤ �(1 + G∗(t, x, z)) ≤ �

(
1 + eηmax − e−ηmin

1 − e−ηmin

)
= �∗,
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we have that

‖V1 − V0‖ ≤ (2 + �∗T)�∗T ,

|Vk+1(t, x, z) − Vk(t, x, z)| ≤ (�∗)k (T − t)k

k! ‖V1 − V0‖ ≤ (�∗)k T k

k! ‖V1 − V0‖

and the conclusion by standard arguments. �

We give the main result of this section.

Theorem 3.3: The HJB equation (3.2) admits a unique measurable bounded solution
that is absolutely continuous with respect to t. Then, for any x and for a.a. t, there
exists ∂U(t, x, z, w)/∂t and it is bounded. Moreover,

θ∗
t = ϕ∗(t, Xt−, Zt−)

St−
(3.8)

is the optimal strategy with ϕ∗ given in (3.5).
The Martingale Problem for the operator L∗

t , with initial condition (t, x, z), is well
posed. Denoted by (X̃, Z̃) as its solution, (X̃ , Z̃) is a Markov process with trajectories
in DX×Z [0, T ] and let P̃(t,x,z) be its law. Then the value function of the control problem
discussed in this section is given by

U(t, x, z, w) := e−w
Ẽ(t,x,z)

[
exp

{∫ T

t
λ(s, Z̃s)

(
G∗(s, X̃s, Z̃s) − 1

)
ds

}]
. (3.9)

Proof: The first claim is reached by setting

U(t, x, z, w) = e−w V(t, x, z),

with V provided by Proposition 3.2.
For the second claim, we get that the generator L∗

t , given in (3.4), is bounded
and, again, by Theorem 7.3 in Ethier and Kurtz [11], the Martingale Problem is well
posed. By Proposition 3.2, the solution to (3.3) belongs to the domain of L∗

t , and we
can write

V(u, X̃u, Z̃u) = V(t, x, z) +
∫ u

t

(
∂V(s, X̃s, Z̃s)

∂s
+ L∗

s V(s, X̃s, Z̃s)

)
ds + mu − mt ,

where mu is a zero-mean (P̃(t,x,z), Ft)-martingale.
Finally, by the product formula and by (3.3), we get

V(t, x, z) = Ẽ(t,x,z)

[
exp

{∫ T

t
λ(s, Z̃s)

(
G∗(s, X̃s, Z̃s) − 1

)
ds

}]
. (3.10)

Thus, the function U, defined in (3.9), is a solution to (3.2) and the optimal Markovian
strategy is given by θ∗

t in (3.8). �
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Remark 3.4: Looking at the generator L∗
t given by (3.4), we are able to characterize

explicitly the structure of the probability measure P̃ such that P̃(t,x,z)(·) = P̃(· |Xt =
x, Zt = z). Actually, under P̃, the point process N0 admits the same intensity
λ0(t, Xt−, Zt−) as under the original measure P. For i = 1, 2, the point process Ni

admits the new intensity λ(t, Zt−)pi(t, Xt−, Zt−)G∗(t, Xt−, Zt−).
Then, by Brémaud [4], we are able to write

dP̃

dP

∣∣∣∣
FT

= exp

{∫ T

0
log (1 + G∗(t, Xt−, Zt−)) dNt −

∫ T

0
G∗(t, Xt−, Zt−)λ(t, Zt−) dt

}
.

4. MINIMAL ENTROPY MARTINGALE MEASURE

Several criteria have been proposed in the literature in order to find, among all equiv-
alent martingale measures, the one that is closest to P, in some sense (Follmer and
Schweizer [12], Ansel and Stricker [1], Schweizer [27,28]).

In this section we investigate the probability measure that minimizes the relative
entropy with respect to the probability measure P and we give its density, with respect
to P in terms of the value function of the control problem discussed in Section 3. Note
that, as observed in Frittelli [16], the notion of relative entropy is used intuitively as a
measure of the “distance” between two probability measures, even if it is not a metric
and it does not define a topology.

4.1. General Properties

For an introduction and a review of the applications of the notion of relative entropy
to economics and finance, see Frittelli [16] and the references therein. To discuss the
existence of the minimal entropy martingale measure for this model, we need some
preliminaries.

Definition 4.1: On a filtered probability space (�, F , {Ft}t≥0, P), given a probability
measure P′, the relative entropy of P′ with respect to P is defined as

H(P′|P) =
⎧⎨⎩E

P

[
dP′

dP
log

(
dP′

dP

)]
, P′ � P

+∞, otherwise

and it is a nonnegative strictly convex function, vanishing only if P coincides with P′.

Definition 4.2: Let us denote by M the set of probability measures Q absolutely
continuous with respect to P such that S is a (Q, Ft)-local martingale and by Me the
set of Q ∈ M such that Q is locally equivalent (and then equivalent on a finite horizon)
with respect to P (risk-neutral or equivalent martingale measures; see the Appendix
for further details).
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Definition 4.3: The minimal entropy martingale measure is a probability measure
PE ∈ M such that

H(PE |P) = min
Q∈M

H(Q|P).

Since the functional defining the relative entropy, P′ −→ H(P′|P), is strictly
convex, if the minimal entropy martingale measure exists, it is unique and equivalent
to P (Frittelli [16, Thm 2.2] and Grandits and Rheinlander [20, Thm 3.1]) under the
assumption

inf
Q∈Me

H(Q|P) < +∞. (4.1)

A known generalization of Theorem 2.1 in Frittelli [16] enables us to assert that if
the price process S is locally bounded, a necessary and sufficient condition for the
existence (and, obviously, uniqueness) of the minimal entropy martingale measure is

inf
Q∈M

H(Q|P) < +∞. (4.2)

Concerning the structure of the density of PE with respect to P, we give the following
theorem, which summarizes the results reached in Frittelli [16, Thm 2.3] and Grandits
and Rheinlander [20, Prop 3.4].

Theorem 4.4: On a filtered probability space (�, F , {Ft}t≥0, P), under (4.1), a prob-
ability measure PE is the minimal entropy martingale measure if and only if it is
defined by the Radon–Nikodym derivative

dPE

dP
= eH(PE |P)+FE

,

where FE is an FT -measurable random variable, such that, for any Q ∈ M, FE is
Q-integrable, E

Q[FE] ≥ 0, and E
PE [FE] = 0.

In addition, there exists a predictable process θE
t such that FE =

∫ T

0
θE

t dSt.

Therefore,

H(PE |P) = − log E

[
exp

(∫ T

0
θE

r dSr

)]
and

dPE

dP
=

exp
(∫ T

0 θE
r dSr

)
E

[
exp

(∫ T
0 θE

r dSr

)] .

Furthermore, the (P, Ft)-predictable process θE can be characterized by a duality
result, exhaustively discussed in Delbaen et al. [9], Bellini and Frittelli [2], Biagini
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and Frittelli [3], and the references therein. The Duality Principle can be written as

sup
θ∈�

E

[
− exp

{
−
∫ T

0
θr dSr

}]
= − exp

{
− inf

Q∈M
H(Q|P)

}
= − exp

{
− H(PE |P)

}
,

(4.3)

where � is a suitable family of admissible strategies and the supremum on the left-hand
side is attained by choosing the predictable process θE mentioned in Theorem 4.4.

4.2. The Minimal Entropy Martingale Measure inThis Model

We will prove in the Appendix that (4.1) is verified in this model by introducing
the minimal martingale measure and showing that it has finite entropy. Then, since
the price process is locally bounded, we claim the existence of the minimal entropy
martingale measure. To give an explicit representation of its structure, we have to find
the (P, Ft)-predictable process θE .

The main result of this subsection consists in proving that we can identify θE

with the optimal control θ∗ given in (3.8). The main tool to this end is the Duality
Principle as presented in Biagini and Frittelli [3], choosing the exponential utility
function u(x) = −e−x.

First, to take into account that an agent can accept higher risk but only within a
certain degree, we define the set D of loss random variables (i.e. the family of random
variables D ≥ 1, P-a.s., such that Assumption 4.5 and Assumption 4.6 hold).

Assumption 4.5: The random variable D is called S-suitable if there exists θ ∈ �

such that, ∀t ∈ [0, T ],

θt 	= 0 P − a.s. and

∣∣∣∣∫ t

0
θr dSr

∣∣∣∣ ≤ D.

Assumption 4.6: The random variable D is u-compatible if, for any real constant
c > 0, E[ecD] < +∞.

Assumption 4.5 implies that all of the investments θ and −θ are admissible and
D controls the loss admitted in trading. Assumption 4.6 assures that the admissible
trading strategies are compatible with the preferences of the investors.

Next, we set

�E =
{
θ ∈ �, such that ∃D ∈ D, c > 0 and

∫ T

0
θr dSr ≥ −cD

}
.

Then Theorem 4.7 gives us the Duality Principle written in the frame of this article.
The proof can be obtained by looking at Theorem 1 in Biagini and Frittelli [3], which
holds in a more general setting.
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Theorem 4.7: Let us assume that there exists a random variable D0 ∈ D such that

sup
θ∈�0

E

[
− exp

{
−
∫ T

0
θr dSr

}]
< 0, (4.4)

where �0 = {θ ∈ � : ∃c ≥ 0 and
∫ T

0 θr dSr ≥ −cD0}. Then

sup
θ∈�E

E

[
− exp

{
−
∫ T

0
θrdSr

}]
= − exp

{
− min

Q∈Mf

H(Q|P)

}
(4.5)

and Mf is the set of the risk-neutral measures equivalent to P with finite entropy.

Remark 4.8: Assumption 4.4 holds true. In fact, in this model the price of the risky
asset S is locally bounded and 1 ∈ D, (Biagini and Frittelli [3]). Furthermore, we
know that PE exists and is equivalent to P. Then the results given in Bellini and
Frittelli [2, Corol. 2.3] assures that, for D0 ≡ 1,

sup
θ∈�0

E

[
− exp

{
−
∫ T

0
θrdSr

}]
= − exp

{−H(PE |P)
}

< 0.

Finally, Proposition 4.9 allows us to reach our goal.

Proposition 4.9: Under the additional assumption

pi(t, x, z) ≥ ε > 0, i = 1, 2, (4.6)

the optimal control θ∗ given in (3.8) belongs to �E.

Proof: Under (4.6), |ϕ∗| is bounded, since

0 ≤ |ϕ∗(t, x, z)| ≤ 1

eηmin − e−ηmin
max

{
1,

eηmax − 1

1 − e−ηmin

1 − ε

ε

}
:= C (4.7)

and ∫ T

0
θ∗

r dSr =
∑
u≤t

ϕ∗
u

Su−
(Su − Su−) =

∑
u≤t

ϕ∗
u (eYu−Yu− − 1).

Thus, we obtain that ∣∣∣∣∫ t

0
θ∗

r dSr

∣∣∣∣ ≤ C (eηmax − 1)Nt .

Moreover, for θt ≡ 1/St−,∣∣∣∣∫ t

0
θr dSr

∣∣∣∣ =
∣∣∣∣∫ t

0

1

Sr−
dSr

∣∣∣∣ =
∣∣∣∣∫ t

0
(eη1

r − 1) dN1
r +

∫ t

0
(e−η2

r − 1) dN2
r

∣∣∣∣
≤ (eηmax − 1)Nt .
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If we choose

D∗
t = Ĉ(Nt + 1) with Ĉ > max {1, C(eηmax − 1), (eηmax − 1)},

we get that D∗ is S-suitable. Next, we will prove that D∗ ∈ D and θ∗ ∈ �E , since
E[ecD∗ ] < +∞, ∀c > 0.

For any real constant c > 0,

M f
t = ecNt − 1 −

∫ t

0
[ec(Ns+1) − ecNs ]λs ds = ecNt − 1 − (ec − 1)

∫ t

0
ecNsλs ds

is a (P, Ft)-local martingale. Let {tn}n≥1 be a localizing sequence of stopping times,

such that Mf
t∧tn is a (P, Ft)-uniformly integrable martingale and E[Mf

t∧tn ] = 0,

E[ecNt∧tn ] = 1 + (ec − 1)E

[∫ t∧tn

0
ecNs∧tn λs ds

]
≤ 1 + �(ec − 1)

∫ t

0
E
[
ecNs∧tn

]
ds.

By the Gronwall lemma we get E[ecNt∧tn ] ≤ exp {�(ec − 1)}, and a monotone
convergence argument yields the thesis. �

Corollary 4.10: Under the assumptions of this article, setting ϕ∗
s = ϕ∗(s, X̃s, Z̃s),

sup
θ∈�

E

[
− exp

{
−
∫ T

0
θr dSr

}]
= sup

θ∈�E

E

[
− exp

{
−
∫ T

0
θr dSr

}]
= − exp

{−H(PE |P)
}

and

H(PE |P) = − log

{
Ẽ(0,x0,z0)

[
exp

(∫ T

0
λ(s, Z̃s)

(
G(ϕ∗

s , s, X̃s, Z̃s) − 1
)

ds

)]}
.

Proof: The first equality follows by considering the stochastic control problem
discussed in Section 3. Moreover, setting t = 0, x = x0, z = z0, and w = 0 in (3.10),

U(0, x0, z0, 0) := V(0, x0, z0) = Ẽ(0,x0,z0)

[
exp

{∫ T

0
λ(s, Z̃s)

(
G(ϕ∗

s , s, X̃s, Z̃s) − 1
)

ds

}]
and for the Duality Principle (4.5), we have the second claim. �

As a conclusion, we are able to identify the predictable process θE , mentioned in
Theorem 4.4, with the optimal strategy θ∗ given in (3.8), where ϕ∗ is defined in (3.5).

https://doi.org/10.1017/S0269964809990131 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990131


62 A. Gerardi and P. Tardelli

Then the final result of this section is an explicit expression of the density of the
minimal entropy martingale measure. Setting

γ 1(t, x, z) = exp{ϕ∗(t, x, z)(eη1(t,x,z) − 1)} − 1,

γ 2(t, x, z) = exp{ϕ∗(t, x, z)(e−η2(t,x,z) − 1)} − 1,

and

γ i
t = γ i(t, Xt− , Zt−) for i = 1, 2,

since by (A.5), ∫ T

0
θ∗

r dSr =
∫ t

0

ϕ∗
r

Sr−
dSr =

∫ t

0

∑
i=1,2

log (1 + γ i
s ) dNi

s, (4.8)

we get

dPE

dP
=

exp
{∫ T

0 θ∗
r dSr

}
E

[
exp

{∫ T
0 θ∗

r dSr

}] =
exp

{∫ t
0

∑
i=1,2 log (1 + γ i

r ) dNi
r

}
E

[
exp

{∫ t
0

∑
i=1,2 log (1 + γ i

r ) dNi
r

}] . (4.9)

5. PRICING UNDER RESTRICTED INFORMATION

In this section we assume that the process (X , Z) is unobservable by the agents, who
can only observe the behavior of the price process S or, equivalently, the behavior of
the logreturn process Y . Given a European contingent claim with maturity T , referred
to as the option, with payoff B = B(ST ), a bounded FS

T -measurable random variable,
we deal with the problem of pricing that is to determine the value of B at each time
t ∈ [0, T ] in order to avoid arbitrage opportunities. Thus, we face the problem of
pricing in a partially observed model under incompleteness of the market.

It is well known that in the full information case and in a complete market, there
exists a unique risk-neutral measure. The arbitrage-free price of a contingent claim
is defined as the expectation of B conditioned with respect to Ft under this measure.
However, we are studying a model in which the market is incomplete, hence there
exist many martingale measures and a choice must be made. The minimal entropy
martingale measure appears as a good choice, as a consequence of an asymptotic
result given in Mania and Schweizer [23, Thm. 17].

Furthermore, we must define the arbitrage-free price in a model with restricted
information. The discussion in Gombani et al. [19] suggests a choice similar to that
followed in Ceci and Gerardi [6] and Frey and Runggaldier [15]. Thus, we consider
martingale measures with respect to the filtration Ft and we will define the price of the
claim as the expectation conditioned to the observations, under the minimal entropy
martingale measure.

To accomplish this program, we need a better knowledge of the structure of this
measure. In the next subsection, we obtain such knowledge at the cost of a strong
condition on the parameters defining the dynamics of the model (see (5.2)).
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5.1. A Particular Model

Throughout this entire section we assume that (4.6) holds true and we define the
process

ME
t =

∫ t

0

∑
i=1,2

γ i
s (dNi

s − λi
s ds).

Under (4.6), ϕ∗ is bounded (see (4.7)), |γ i| and λi are bounded for i = 1, 2. This implies
that ME

t is a {P, Ft}-martingale. Moreover, γ i
t + 1 > 0 and we define the process

LE
t = E(ME

t ) = exp

{∑
i=1,2

∫ t

0
log (1 + γ i

s ) dNi
s −

∑
i=1,2

∫ t

0
γ i

s λ
i
s ds

}
. (5.1)

Lemma 5.1: The process LE
t is a {P, Ft}-martingale.

Proof: For all t ≥ 0, LE
t is the solution to

LE
t = 1 +

∫ t

0
LE

s− dME
s = 1 +

∫ t

0
LE

s−γ 1
s

[
dN1

s − λ1
s ds
]+

∫ t

0
LE

s−γ 2
s

[
dN2

s − λ2
s ds
]

and is a strictly positive supermartingale (Ansel and Stricker [1] and Doléans-
Dade [10]). Consequently (Brémaud [4]), since

E

[∫ t

0
LE

s−|γ 1
s |λ1

s ds +
∫ t

0
LE

s−|γ 2
s |λ2

s ds

]
≤ K�

∫ t

0
E[LE

s−] ds < +∞,

where K is a positive constant depending on ηmin and ηmax, such that |γ 1
t | ∨ |γ 2

t | ≤ K ,
the required result follows. �

Proposition 5.2: Setting

dQE

dP
= LE

T ,

we define a probability measure equivalent to P, which is a risk-neutral measure.

Proof: The measure QE preserves the Markovianity of the model (see the Appendix),
and then we apply the sufficient condition (A.12). A direct computation provides

(eη1(t,x,z) − 1)[1 + γ 1(t, x, z)]p1(t, x, z) + (e−η2(t,x,z) − 1)[1 + γ 2(t, x, z)]p2(t, x, z)

= (eη1(t,x,z) − 1)eϕ∗(t,x,z)(eη1(t,x,z)−1)p1(t, x, z)

+ (e−η2(t,x,z) − 1)eϕ∗(t,x,z)(e−η2(t,x,z)−1)p2(t, x, z) = 0. �
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Theorem 5.3: Assume that there exists a deterministic measurable function h(t),
integrable on [0, T ], such that∑

i=1,2

γ i(t, x, z)λ(t, z)pi(t, x, z) = −h(t). (5.2)

In such a case, the measures QE and PE coincide.

Proof: By (4.8), we have that

LE
t = E(ME

t ) = exp

{∫ t

0

ϕ∗
r

Sr−
dSr +

∫ t

0
h(r) dr

}
,

and recalling that E[LE
t ] = 1,

E

[
exp

{∫ t

0
θ∗

r dSr

}]
= E

[
exp

{∫ t

0

ϕ∗
r

Sr−
dSr

}]
= exp

{
−
∫ t

0
h(r) dr

}
.

Moreover, by Proposition 5.2, E
QE [∫ t

0 θ∗
r dSr] = 0 and

H(QE |P) = E
QE

[
log

dQE

dP

]
= E

QE [
log LE

T

] =
∫ T

0
h(r) dr.

Finally, for any martingale measure Q,

H(Q|P) ≥ E
Q

[
log

dPE

dP

]
= E

Q

[∫ t

0
θ∗

r dSr

]
− log E

[
exp

{∫ t

0
θ∗

r dSr

}]
=
∫ T

0
h(r) dr = H(QE |P). �

Remark 5.4: When all of the parameters defining the structure of the system depend
only on time, as it happens, for instance, in Fujiwara and Miyahara [17], condition
(5.2) is trivial and reduces to the definition of the function h(t). This is not the case
in the model described in this article, where (5.2) represents a true restriction on the
dynamics of the model.

5.2. Filtering in the Discrete Case

We want to compute

E
PE [B(ST )|FY

t ] = E
PE [EPE [B(ST )|Ft]|FY

t ]. (5.3)

Since PE preserves the Markovianity of the process (X, Y , Z), there exists a mea-
surable function h(t, x, y, z) such that E

PE [B(ST )|Ft] = h(t, Xt , Yt , Zt), where h solves
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the system ⎧⎨⎩LEh(t, x, y, z) = ∂

∂t
h(t, x, y, z) + LE

t h(t, x, y, z) = 0,

h(T , x, y, z) = B(S0ey),
(5.4)

with

LE
t h(t, x, y, z) = LE

0,th(t, x, y, z) + LE
1,th(t, x, y, z) + LE

2,th(t, x, y, z), (5.5)

LE
0,th(t, x, y, z) = λ0(t, x, z)[h(t, x + ξ(t, x, z), y, z + ektξ(t, x, z)) − h(t, x, y, z)],

and, for i = 1, 2,

LE
i,th(t, x, y, z) = λ(t, z)pi(t, x, z)(1 + γ i(t, x, z))[h(t, x + ξ(t, x, z), y

+ (−1)i−1ηi(t, x, z), z + ektξ(t, x, z)) − h(t, x, y, z)].

The system (5.4) can be treated with a procedure similar to that used in Proposition 3.2,
and (5.3) reduces to

E
PE [B(ST )|FY

t ] = E
PE [h(t, Xt , Yt , Zt)|FY

t ].

Finally, for any bounded measurable F, we consider the filter πt(F(t, ·, Yt , ·)) =
E

PE [F(t, Xt , Yt , Zt)|FY
t ] (i.e., the cadlag version of the law of the process (X, Y , Z),

given the σ -algebra FS
t = FY

t , under PE). Hence, by the classical innovation method
(Brémaud [4]), we write down the Kushner–Stratonovich equation, which the filter has
to satisfy. This equation will be derived in this subsection under the assumption that
the process Y is discrete-valued. The more abstract general case is briefly presented
in the next subsection.

Then, we assume, without loss of generality that the process Y takes value in
the set Z of integer numbers and, as in Gerardi and Tardelli [18], we introduce the
multivariate point process U = (U1, U2, . . .) defined as

Uj
t :=

∑
i≥1

1{τ Y
i ≤t}1{Y

τY
i

=j}, j ∈ Z.

For any j ∈ Z, Uj
t counts the number of jumps bringing Ys on j, for s ≤ t, and the

relation

Yt = Y0 +
∫ t

0

∑
j∈Z

[j − Ys−] dUj
s (5.6)

implies that FY
t = FU

t := σ {U1
s , U2

s , . . . , s ≤ t}. Thus, the filtering problem reduces
to finding the conditional law of (X , Y , Z) given FU

t , under PE . We note that in (5.6)
just one term of the integrand is not null, almost surely.
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The joint generator of (X , Y , Z) and Uj, j ∈ Z, for F(t, x, y, u, z) belonging to a
suitable class of real-valued measurable functions, t ≥ 0, x ∈ X , y ∈ Z, z ∈ Z , and
u ∈ N, is given by

LE,jF(t, x, y, u, z) = ∂

∂t
F(t, x, y, u, z) + LE,j

t F(t, x, y, u, z), (5.7)

for

LE,j
t F(t, x, y, u, z) = LE,j

0,t F(t, x, y, u, z) + LE,j
1,t F(t, x, y, u, z) + LE,j

2,t F(t, x, y, u, z),
(5.8)

where

LE,j
0,t F(t, x, y, u, z) = λ0(t, x, z)[F(t, x + ξ(t, x, z), y, u, z + ektξ(t, x, z))

− F(t, x, y, u, z)],
and, for i = 1, 2,

LE,j
i,t F(t, x, y, u, z) = λ(t, z)pi(t, x, z)(1 + γ i(t, x, z)) · 1y+(−1)i−1ηi(t,x,z)=j

× [F(t, x + ξ(t, x, z), y + (−1)i−1ηi(t, x, z), u + ej, z

+ ektξ(t, x, z)) − F(t, x, y, u, z)].
Then we give the main result of this subsection.

Theorem 5.5: The (P, Ft)-intensity of Uj, for a fixed j ∈ Z, is given by the process

λj(t, Xt−, Yt−, Zt−)

= λ(t, Zt−)
∑
i=1,2

pi(t, Xt−, Zt−)(1 + γ i(t, Xt−, Zt−))1Yt−+(−1)i−1ηi(t,Xt−,Zt−)=j. (5.9)

For any real-valued bounded measurable function F defined on [0, T ] × X × R × Z ,
the Kushner–Stratonovich equation can be written as

πt(F) = π0(F) +
∫ t

0
πs(L

E
s F(s, ·, Ys−, ·)) ds

+
∑
j∈Z

∫ t

0
�

j
s−(F(s, ·, Ys−, ·))(dUj

s − πs−(λj(s, ·, Ys−, ·)) ds
)
, (5.10)

where

�
j

s−(F(s, ·, Ys−, ·)) = πs−(λj(s, ·, Ys−, ·))+{πs−(λj(s, ·, Ys−, ·)F)

− πs−(λj(s, ·, Ys−, ·))πs−(F) + πs−(LE,j
1,s F(s, ·, Ys−, ·)

+ LE,j
2,s F(s, ·, Ys−, ·))}

and a+ := (1/a)1{a>0}. Moreover, the filtering equation has a unique strong solution.
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Proof: The first claim is obtained by taking into account the joint dynamics of
Xt , Yt , Zt , and Uj

t given in (5.7). We get the Kushner–Stratonovich equation by apply-
ing the classical innovation method as described in Brémaud [4]. In particular, the last
term in �

j
s−(F(s, ·, Ys−, ·)), which arises when common jump times between the state

and the observations are allowed, is related with 〈F(t, X, Z), Uj〉t .
As far as the strong uniqueness of the solutions of (5.10), we observe that at any

jump time t = τ Y
k , the filter is uniquely determined by the knowledge of πt−. In fact,

for j = Yt , πt−(λj(t, ·, ·)) 	= 0, and we write

πt(F) = πt−(F) + �
j
t−(F(t, ·, Yt−, ·))

∣∣∣
j=Yt

= πt−
(
λj(t, ·, Yt−, ·)F + LE,j

1,t F(t, ·, Yt−, ·) + LE,j
2,t F(t, ·, Yt−, ·))

πt−
(
λj(t, ·, Yt−, ·))

∣∣∣
j=Yt

.

For t ∈ [τ Y
k , τ Y

k+1

)
, the behavior of the filter is defined by

πt(F) = πτ Y
k
(F) +

∫ t

τ Y
k

[
πs
(
LE

0,sF(s, ·, Ys−,·)
)+ πs(λ̂(s, ·, ·))πs(F) − πs(λ̂(s, ·, ·)F)

]
ds,

(5.11)
where

λ̂(t, Xt , Zt) =
∑
j∈Z

λj(t, Xt−, Yt−, Zt−)

= λ(t, Zt−)
∑
i=1,2

pi(t, Xt−, Zt−)(1 + γ i(t, Xt−, Zt−)).

For any two solutions π1
t and π2

t of (5.11), such that π1
τ Y

k
(F) = π2

τ Y
k
(F), we can find a

suitable positive constant C depending on ‖Ft‖ = supx,z |F(t, x, Yt , z)|, such that

|π1
t (F) − π2

t (F)| ≤ C
∫ t

τ Y
k

‖π1
s − π2

s ‖ ds,

where ‖·‖ denotes the bounded variation norm of the signed measure π1
s − π2

s .
The last inequality guarantees uniqueness for t ∈ [τ Y

k , τ Y
k+1

)
and the thesis follows

by induction. �

Finally, a representation for the filter via a classical linearized method can be
performed, as in Gerardi and Tardelli [18] for example, showing that the computation
of the filter between two consecutive jump times can be reduced to the evaluation of an
ordinary expectation. As a matter of fact, (5.11) is a nonlinear one. Thus, an explicit
expression for its solutions is not usually available, but it is possible to provide a
representation for it with a method that is a modification of that proposed in Kliemann,
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Koch, and Marchetti [22]. First, we introduce the linearized equation

ρt(F) = ρ0(F) +
∫ t

0

[
ρs
(
LE

0,sF(s, ·, Ys−,·)
)− ρs−

(
λ̂(s, ·, ·)F) ] ds, (5.12)

which is obtained by (5.11) dropping out the nonlinear terms. Equation (5.12) not
only admits a unique solution in the weak sense, but, by a Lipschitz argument, it also
admits a unique pathwise solution that is necessarily FU

t -adapted. This last claim can
be proven with a procedure similar to that used in Theorem 5.5.

Proposition 5.6: Equation (5.12) admits at least one solution that is FU
t -adapted.

In addition, this solution is a finite positive measure and, for all t ∈ [τ Y
i , τ Y

i+1

)
, i ≥ 1,

0 < e−(t−τ Y
i )C ≤ ρt(1) ≤ 1,

πt(F) = ρt(F)

ρt(1)
.

Proof: First we claim that for ρt any solution of (5.12), ρt(F)/ρt(1) provides a
solution of (5.11) and then coincides with the filter up to time t0 = inf{t ≥ 0 : ρt(1) =
0}. Hence, we construct a solution for (5.12) that has the required properties, and such
that ρt(1) > 0.

Let �s,x,z(t) be a process with initial condition (s, x, z), s ≥ 0, x ∈ X , z ∈ Z ,
and generator LE

t , given by (5.5). Let Ps,x,z be its law on DX×Z [s, T ]. Then, by the
Feynman–Kac’s formula, ∀t ∈ [τ Y

i , τ Y
i+1

)
,

ρt(F) =
∫

X×Z
Es,x,z

[
F(�s,x,z(t)) exp

{
−
∫ t

s
λ̂(�s,x,z(u)) du

}]∣∣∣∣
s=τ Y

i

ρτ Y
i
(dx, dz)

ρτ Y
i
(1)

,

ρt(1) =
∫

X×Z
Es,x,z

[
exp

{
−
∫ t

s
λ̂(�s,x,z(u)) du

}]∣∣∣∣
s=τ Y

i

ρτ Y
i
(dx, dz)

ρτ Y
i
(1)

,

and, underAssumption (4.6), there exists a real constant C := C(�, ε, ηmin, ηmax) > 0,
such that

0 < e−(t−τ Y
i )C ≤ ρt(1) ≤ 1. �

5.3. Filtering in the Continuous Case

We derive the filtering equation with a procedure quite similar to that provided in
Ceci [5]; thus, the proof will be omitted. Preliminarily, we define the integer-valued
random measure associated to Y :

m(dt, dy) =
∑
n≥1

δ{τ Y
n ,Y

τY
n

−Y
τY
n −}(dt, dy)11τ Y

n <+∞,

whose {PE , Ft}-predictable projection is νE(dy) dt, and

νE(dy) = λ1
t (1 + γ 1

t ) δ{η1
t }(dy) + λ2

t (1 + γ 2
t ) δ{−η2

t }(dy).
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Proposition 5.7: Under the assumptions of this section, for any real-valued, bounded,
measurable function f (x, z), the Kushner–Stratonovich equation is given by

πt(f ) = f (0, z0) +
∫ t

0
πs(L

E
t f ) ds +

∫ t

0

∫
R

{dπs−(f νE
s )

dπs−(νE
s )

− πs−(f )

+ dπs−(Bsf )

dπs−(νE
s )

}(
m(ds, dy) − πs−(νE

s (dy)) ds
)
, (5.13)

where
dμ1

dμ2

denotes the Radon–Nikodym derivative of the measure μ1 with respect to the measure
μ2 and Bsf is measure defined as

Bs f (dy) = [
f
(
Xs− + ξs, Zs− + eksξs

)− f
(
Xs−, Zs−

)]
νE

s (dy).

Again, at any jump time τ Y
n , the filter is uniquely determined by its behavior for

t ∈ [τ Y
n−1, τ Y

n ). For t ∈ [τ Y
n−1, τ Y

n ), the filtering equation reduces to an equation that
verifies a Lipschitz condition with respect to the bounded variation norm.

Thus, the discussion about the uniqueness of the solutions (as well as the
linearization method, which, jointly with the Feynmann–Kac formula, provides an
expression of the filter between two jump times in terms of ordinary expectations)
can be performed as in the previous case.
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APPENDIX

Risk-Neutral Measures and the Minimal Martingale Measure

In the model considered in this article, the price process is a semimartingale, as we will prove
in Lemma A.1. Successively, we will characterize the equivalent martingale measures that is,
the probability measures Q, equivalent to P, under which S is a (Q, Ft)-local martingale.
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Lemma A.1: The stock price process St is a special (P, Ft)-local semimartingale with canonical
decomposition

St = S0 + AS
t + MS

t , (A.1)

where AS
t is a locally bounded variation predictable process,

AS
t =

∫ t

0
λuSu−

[
eη1

u p1
u + e−η2

u p2
u − 1

]
du, (A.2)

MS
t is a locally square integrable (P, Ft)-local-martingale,

MS
t =

∫ t

0
Su−(eη1

u − 1)[dN1
u − λup1

u du] +
∫ t

0
Su−(e−η2

u − 1)[dN2
u − λup2

u du], (A.3)

and

〈MS〉t =
∫ t

0
λuS2

u−
[
(eη1

u − 1)2 p1
u + (e−η2

u − 1)2 p2
u

]
du. (A.4)

Proof: By the Itô formula

St = S0 +
∫ t

0
Su−(eη1

u − 1) dN1
u +

∫ t

0
Su−(e−η2

u − 1) dN2
u

= S0 +
∫ t

0
Su−(eη1

u − 1)[dN1
u − λup1

u du] +
∫ t

0
Su−(eη1

u − 1) λup1
u du

+
∫ t

0
Su−(e−η2

u − 1) [dN2
u − λup2

u du] +
∫ t

0
Su−(e−η2

u − 1) λup2
u du. (A.5)

Thus, (A.2) and (A.3) follow. Moreover, MS
t is a locally square integrable (P, Ft)-local

martingale since∫ t

0
λu S2

u

[
(eη1

u − 1)2p1
u + (e−η2

u − 1)2p2
u

]
du < +∞ P − a.s.

In order to compute 〈MS〉t , we note that, for f (y) = S0ey,

〈MS〉t =
∫ t

0

[
Lu(f (Yu−)2) − 2f (Yu−)Luf (Yu−)

]
du. �

A.1. Equivalent Martingale Measures, General Properties

The main tool for characterization of the risk-neutral measures is a suitable version of the
Girsanov theorem. The choice of the internal filtration allows us to claim that any probability

measure Q equivalent to P is a solution to the exponential equation Lt = 1 +
∫ t

0
Ls−dMs, for

M (P, Ft)-local martingale.

https://doi.org/10.1017/S0269964809990131 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990131


72 A. Gerardi and P. Tardelli

As is well known, Doléans-Dade [10] and Jacod [21], this equation has a unique solution.
Furthermore, if M is a (P, Ft)-local martingale such that Mt − Mt− > −1, then L is a (P, Ft)-
local martingale and a strictly positive supermartingale, which turns to be a (P, Ft)-martingale
when E[LT ] = 1. In this last case, the measure Q defined by the Radon–Nykodim derivative
dQ/dP|FT = LT is a probability measure equivalent to P.

On the other hand, any (P, Ft)-local martingale Mt admits the representation

Mt = M0 +
∑

i=0,1,2

∫ t

0
gi

s

[
dNi

s − λi
s ds
]

, (A.6)

where gi
s, for i = 0, 1, 2, are (P, Fs)-predictable processes. Under the assumption that

∑
i=0,1,2

∫ t

0
|gi

s|λi
s ds < +∞ P−a.s. or E

⎡⎣ ∑
i=0,1,2

∫ t

0
|gi

s|λi
s ds

⎤⎦ < +∞,

Mt is a (P, Ft)-local martingale or a (P, Ft)-martingale, respectively. In this last case,
necessarily, Mt is uniformly integrable, since we are working on a finite horizon.

Remark A.2: By (A.6),

Mt − Mt− =
∑

i=0,1,2

gi
t

(
Ni

t − Ni
t−
)

.

Therefore, at any jump time of the process (X, Y , Z),

Mt − Mt− > −1 ⇐⇒ gi
t > −1 for i = 0, 1, 2, (A.7)

and the density of Q with respect to P can be written as

LT =
∏

i=0,1,2

exp

{∫ T

0
log (1 + gi

s) dNi
s −

∫ T

0
gi

sλ
i
s ds

}
.

Moreover, if ∑
i=0,1,2

∫ T

0
(gi

t + 1) λi
t dt < +∞ P−a.s. (A.8)

the processes N0, N1, and N2 admit (Q, Ft)-intensity given by (g0
t + 1)λ0

t , (g1
t + 1)λ1

t , and
(g2

t + 1)λ2
t , respectively.

With a procedure similar to that used in the proof of Lemma A.1 we have that, under (A.7),
the price of the risky asset, S, is a special (Q, Ft)-local semimartingale, such that

St = S0 + AQ
t + MQ

t ,
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where

AQ
t =

∫ t

0
λuSu−[(eη1

u − 1)(g1
u + 1)p1

u + (e−η2
u − 1)(g2

u + 1)p2
u] du

and

MQ
t =

∫ t

0
Su−(eη1

u − 1)[dN1
u − (g1

u + 1)λ1
u du] +

∫ t

0
Su−(e−η2

u − 1)[dN2
u − (g2

u + 1)λ2
u du].

As a consequence, we give a characterization of the risk-neutral measures.

Proposition A.3: The measure Q is risk-neutral if and only if

AQ
t = 0 P−a.s. and MQ

t = (Q, Ft)−local martingale. (A.9)

We only observe that if

∫ t

0
λuSu−

[
(eη1

u − 1)(g1
u + 1)p1

u + (1 − e−η2
u )(g2

u + 1)p2
u

]
du < +∞ P−a.s.,

then MQ
t is a (Q, Ft)-local martingale that turns to be a (Q, Ft)-martingale if

E

[∫ t

0
λuSu−

{
(eη1

u − 1)(g1
u + 1)p1

u + (1 − e−η2
u )(g2

u + 1)p2
u

}
du

]
< +∞.

Let us finally note that if the price process is strictly increasing or strictly decreasing, (A.9)
cannot be satisfied and the model does not admit any equivalent martingale measure.

Remark A.4: Recalling Lemma A.1, we observe that when AS
t = 0, P-a.s., the original measure

P is a risk-neutral measure.

A.2. Equivalent Martingale Measures, Markov Property

Next, in the set of the risk-neutral measures, when it is not empty, we can find an element
preserving the Markovianity of the process (X , Y , Z), assuming the existence of the real-valued
measurable deterministic functions gi(t, x, y, z), i = 0, 1, 2, such that

gi
t = gi(t, Xt−, Yt−, Zt−). (A.10)

In this case, defining

LQf (t, x, y, z) = ∂

∂t
f (t, x, y, z) + LQ

t f (t, x, y, z), (A.11)
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where

LQ
t f (t, x, y, z) = λ0(t, x, z)(1 + g0(t, x, y, z))

× [f (t, x + ξ(t, x, z), y, z + ektξ(t, x, z)) − f (t, x, y, z)]
+ λ(t, z)

∑
i=1,2

pi(t, x, z)(1 + gi(t, x, y, z)) [f (t, x + ξ(t, x, z), y

+ (−1)i−1ηi(t, x, z), z + ektξ(t, x, z)) − (t, x, y, z)]

for any bounded, real-valued, measurable function f , under (A.8) with gi
t given by (A.10), we

have that the process

MQ
f (t) = f (t, Xt , Yt , Zt) − f (0, x0, 0, z0) −

∫ t

0
LQf (s, Xs, Ys, Zs) ds

is a (Q, Ft)-local martingale.
The Martingale Problem for the operator LQ given in (A.11) and initial condition

(0, 0, 0, z0) is well posed since such is the Martingale Problem for the operator L given in
(2.6) with the same initial conditions. This implies that the process (Xt , Yt , Zt) is Markovian
under the measure Q. We observe that when (A.10) holds true, the condition

(eη1(t,x,z) − 1)[1 + g1(t, x, y, z)]p1(t, x, z) + (e−η2(t,x,z) − 1)

× [1 + g2(t, x, y, z)]p2(t, x, z) = 0 (A.12)

provides a sufficient condition for (A.9).

A.3. The Minimal Martingale Measure

To verify condition (4.2) in the frame of this article, we introduce the minimal martingale
measure. Note that, herein, the properties of the minimal martingale measure provide the main
tool to prove that (4.2) holds true. This allows us to claim that, in this model, the minimal
entropy martingale measure exists, is unique, and is equivalent to P and that its density with
respect to P is given by (4.9).

The minimal martingale measure P̂, as observed in Prigent [24] was introduced in Follmer
and Schweizer [12], to obtain hedging strategies that are optimal in a suitable sense. In Schweizer
[28], the author shows that the value process can be computed as the conditional expectation
with respect to P̂ and then a risk-neutral approach to option valuation is provided.

Definition A.5: An equivalent martingale measure P̂ is called minimal if each (P, Ft)-local
martingale, R, strictly orthogonal to MS, (A.3), is a (P̂, Ft)-local martingale.

For any initial probability P, there exists at most one minimal martingale measure, (Ansel
and Stricker [1, Thm. 2.1]). In this subsection we prove its existence and describe its structure
for this model. The main tool is the following theorem whose proof can be found in Schweizer
[27, Prop. 2].
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Theorem A.6: Let us assume that there exists a (P, Ft)-predictable process cu such
that, P-a.s.

(i) AS
t =

∫ t

0
cu d〈MS〉u,

(ii)
∫ t

0
|cu|2 d〈MS〉u < +∞,

(iii) 1 − ct(MS
t − MS

t−) > 0,

then, L̂t := E(− ∫ t
0 cu dMS

u ) is a (P, Ft)-strictly positive local martingale. When L̂t is a (P, Ft)-

martingale, the probability measure P̂ defined by L̂t = dP̂/dP|Ft is the minimal martingale
measure. On the other hand, when P(1 − ct(MS

t − MS
t−) ≤ 0) > 0, the minimal martingale

measure does not exist.

From now on, we take into account the particular structure of the model studied in this
article. In this way we are able to prove results stronger than in a more general setting.

Recalling (A.2)–(A.4), condition (i) implies that

ct = (eη1
t − 1)p1

t + (e−η2
t − 1)p2

t

St−[(eη1
t − 1)2p1

t + (e−η2
t − 1)2p2

t ]
and ct is a predictable process as required. Condition (ii) holds true since λu is bounded:∫ t

0
|cu|2 d〈MS〉u ≤

∫ t

0
λu du < +∞ P-a.s.

and, by an easy computation, we get that condition (iii) is always verified.
Summing up, the process M̂t := − ∫ t

0 cu dMS
u is a martingale that has the structure given

in (A.6), with

ĝ0
t = 0, ĝ1

t = −ct St− (eη1
t − 1), ĝ2

t = −ct St− (e−η2
t − 1), (A.13)

and L̂t := E(− ∫ t
0 cu dMS

u ) is a (P, Ft)-strictly positive local martingale.

Proposition A.7: The probability measure P̂ is equivalent to P. It is a risk-neutral measure
and coincides with the minimal martingale measure.

Proof: By (2.4), we have that

|ĝ1
t | ∨ |ĝ2

t | ≤ K , (A.14)

for a real constant K > 0, depending on ηmin and ηmax. Then, as in Lemma 5.1, E[L̂T ] = 1. �

Proposition A.8: The minimal martingale measure, P̂, preserves the Markovianity.

Proof: The claim is true if (A.10) and (A.8) hold. Assumption (A.10) is an easy consequence
of (A.13).

https://doi.org/10.1017/S0269964809990131 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990131


76 A. Gerardi and P. Tardelli

Furthermore, by (A.14), we have that

E

⎡⎣ ∑
i=0,1,2

∫ T

0
(1 + ĝi

t)λ
i
t dt

⎤⎦ ≤ E

[∫ T

0
(λ0

t + λtK) dt

]
≤ T�(1 + K) < +∞,

which implies (A.8). �

Finally, we get the main property.

Proposition A.9: The minimal martingale measure P̂ has finite entropy.

Proof: By (A.14) and recalling that λs ≤ �, we get

H(P̂|P) = E
P̂

[
log

(
dP̂

dP

)]
≤ K

(
E

P̂ [NT ] + �T
)

and

E
P̂[Nt] = E

P̂
[∫ t

0
λs

[
ĝ1

s p1
s + ĝ2

s p2
s

]
ds

]
≤ �TK ,

which provides the required result. �

https://doi.org/10.1017/S0269964809990131 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990131

