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SUMMARY
In this work, we propose an output feedback sliding mode
control (SMC) method for trajectory tracking of robotic
manipulators. The design process has two steps. First, we
design a stable SMC controller by assuming that all state
variables are available. Then, an output feedback version
of this SMC design is presented, which incorporates a
model-free linear observer to estimate unknown velocity
signals. We then show that the tracking performance under
the output feedback design can asymptotically converge
to the performance achieved under state-feedback-based
SMC design. A detailed stability analysis is given, which
shows semi-global uniform ultimate boundedness property
of all the closed-loop signals. The proposed method is
implemented and evaluated on a robotic system to illustrate
the effectiveness of the theoretical development.

KEYWORDS: Output feedback; Sliding mode control;
Observer; Robotics; Perturbation.

1. Introduction
Over the past decades, the sliding mode control (SMC)
techniques have been studied extensively for robotic control
(see refs. [1,5,6,8,10,12,13,15,18,20], to name a few). Most
SMC (detailed definition can be found in refs. [8,18]) designs
reported in the literature, however, assume that velocity
signals are available for feedback. But most advanced
industrial robotic systems (e.g., those from CRS Robotics
and Applied AI1,2) provide only joint position measurements.
So, the required joint velocity signals have to be derived by
differentiating the position measurements from encoders or
resolvers. As a consequence, the obtained velocity signals
are often contaminated by severe noise, and the performance
of the designed system is limited, since the disturbance
noise is amplified with the increase of controller gains.
Specifically, the control system under SMC design may
exhibit excessive chattering and infinitely fast switching,
causing poor tracking performance (see for example refs.
[1, 2]). To deal with the above-mentioned practical problem,
we propose to estimate the velocity signals in the classical
SMC design framework. Results in this direction can be
found in refs. [4, 7, 14] and the references therein. The
nonlinear dynamic observer was proposed in ref. [7] for a
planar flexible manipulator. The observer dynamics is based
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on the use of system dynamics, uncertain model parameters,
and nonlinear control inputs. This method guarantees local
stability of the closed-loop system. Moreover, the design
is not in adaptive framework demanding very large control
effort to cope with the modeling error uncertainty.

Recently, the authors of ref. [14] proposed output feedback
SMC based on sliding mode observer (SMO) for a certain
class of nonlinear dynamics. The design and stability analysis
of their technique replicate the output feedback method
earlier reported in ref. [9] for robotic systems. The theoretical
concepts and the critical assumptions of such SMO can
be found for uncertain robotic manipulators.9 Further
difficulties associated with the SMO design synthesis are
clearly illustrated via using simulation example. The SMO
structure,14 however, requires system dynamics, nonlinear
control input, switching control input terms, and the
undesirable switching function sign(). The narrow stability
range of initial conditions with the assumption of the
zero initial position estimation error and the difficulties
associated with the chattering activity of the switching
controls as well as the switching function in SMO structure
are also discussed. In the face of large-scale parametric
uncertainty, such a nonadaptive SMC14 demands very large
control effort, as nonlinear control terms and high-frequency
switching function intensify the control chattering activity
in the sliding surface. The method, however, imposes global
growth conditions on the system nonlinearities. In addition,
the observer-controller only ensure local stability of the
closed-loop design. More recently, the dynamic observer
based full-order output feedback sliding mode design was
introduced for a certain class of nonlinear systems.4 The
idea of this approach is twofold. The first part comprises
the introduction of an auxiliary dynamics whose input is the
system output-input, and the other part is the transformation
of the augmented system into an observable linear system
with an injection term that contains the system output as well
as the state of the auxiliary dynamics. The parameters of the
controller-observer are chosen using complex matrix–vector
transformations. As a matter of fact, such a large number of
tuning parameters may not be realistic for highly uncertain
robotic systems. Moreover, the designed controller is not
robust, as it cannot cope with parametric uncertainty. This
is mainly because the design uses fixed system dynamics,
which may cause poor tracking performance in the face of
large uncertainty.

In the current work, we propose linear-observer-based
output feedback design SMC for robotic systems. The
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observer structure is simple in the sense that it does not
require system dynamics, control inputs, and undesirable
switching terms. The proof of the stability of this method
has two parts. In the first part, we derive the SMC as a state
feedback approach with the assumption that all the state
variables are available for feedback. Using the Lyapunov
method, we show that the state-feedback-based SMC design
ensures the global stability property for all the signals in the
closed-loop system. This property is established by assuming
that the parameters are unknown but belong to a known
compact set that is relatively large. In the second part of
the proof, we replace the unknown velocity signals with the
output of the linear estimator. For the given set of initial
conditions, we first define the estimated region of interest for
the state-feedback-based SMC design. Then, we saturate the
controller outside the estimated region of interest, ensuring
that the output feedback controller remains bounded over the
estimated region. The idea of using saturation mechanism
is to deal with large-scale uncertainty and disturbance. The
bounded control allows the designer to increase the speed
of the observer dynamic without sacrificing the transient
tracking performance. In convergence analysis, we show that
the stability region under the SMC design based on position
and velocity can be recovered asymptotically by the output
feedback SMC design. The proposed method can be used
to formulate an output feedback form of any state-feedback-
based classical SMC design reported in the literature. In
contrast with the existing design, the method proposed in the
current paper is adaptive, while the output feedback method
for a certain class of nonlinear systems4,7,14 is not in adaptive
control framework. In addition, the output feedback design
proposed in refs. [4,14] only ensures local stability, while our
approach guarantees semi-global stability of the observer–
controller closed-loop system.

The rest of the paper is organized as follows: In Section 2,
we first describe model dynamics and its dynamical
properties. Then, we formulate the SMC and its stability
property by assuming that position–velocity signals are
available for feedback design. The output feedback form of
this classical SMC is also introduced in Section 2. A detailed
stability analysis of the proposed output feedback method
is given. Section 3 presents an adaptive output feedback
SMC design. In Section 4, we implement and evaluate the
proposed method on a robotic system that demonstrates
the theoretical development of the current paper. Finally,
Section 5 concludes the paper.

2. Output Feedback Sliding Mode Control
In this section, we first formulate the stability criterion for
the SMC as a state feedback (position–velocity) control
approach. Then, an output feedback version of this SMC that
incorporates a linear observer in order to remove the demand
of the velocity signals from SMC design is presented. Let
us first consider the equation of motion for an n-link rigid
robot:9,16,17,19,20

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (1)

where q ∈ �n is the joint position vector; q̇ ∈ �n is the
joint velocity vector; q̈ ∈ �n is the joint acceleration vector;
τ ∈ �n is the input torque vector; M(q) ∈ �n×n is the
symmetric positive definite inertia matrix; C(q, q̇)q̇ ∈ �n is
the coriolis and centrifugal loading vector; and G(q) ∈ �n is
the gravitational loading vector. We now represent the robot
model (1) in error–state space form as follows:

ė1 = e2, ė2 = φ1(e, qd, q̇d ) + φ2(e1, qd )τ − q̈d , (2)

where e1 = (q1 − qd) ∈ �n is the vector of joint position
tracking error with q1 = q; e2 = (q2 − q̇d ) ∈ �n is the
vector of joint velocity tracking error with q2 = q̇; e =
[eT

1 , eT
2 ]T ; φ1(e, qd, q̇d ) = −M−1(q)[C(q, q̇)q̇ + G(q)]; and

φ2(e1, qd ) = M−1(q). We first assume that the desired
trajectory qd (t) and its first and second derivatives are
bounded as Qd ∈ �d = [qd, q̇d , q̈d ]T ⊂ �3n with compact
set �d . Then, we consider the following well-know properties
of the robot dynamics:1,8,9,12,20 (i) M(q) ∈ Rn×n is a
symmetric, bounded, and positive definite matrix that
satisfies the inequalities ‖M(q)‖ ≤ MM and ‖M−1(q)‖ ≤
MMI , where MM and MMI are bounded positive constants.
(ii) The matrix Ṁ(q) − 2C(q, q̇) is skew symmetric. (iii)
The norm of the gravity and centripetal-coriolis forces are
bounded and can be represented as ‖C(q, q̇)‖ ≤ CM‖q̇‖
and ‖C(q, q̇d )‖ ≤ kcd‖q̇d‖ ≤ kc, where CM , kcd , and kc are
bounded positive constants.

Let us define the reference state as q̇r = (q̇d − λe1), where
λ = diag[λ1, λ2, . . . , λn] with λ1 > 0, λ2 > 0, . . . , λn > 0.
Then we define the sliding surface as S = e2 + λe1. The
control objective is to drive the joint position q(t) to the
desired position qd (t). To obtain such control objective, we
consider the following control law for the robot system (1):

τ (e, Qd, θ̂) = M̂(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) − KS

− Ksgn(S), (3)

where q̈r = (q̈d − λe2); M̂ and Ĉ are the estimates of M(q)
and C(q, q̇), respectively;K = diag[K1,K2, . . . ,Kn, ], K =
diag[K1, K2, . . . , Kn] with K1 > 0,K2 > 0, . . . ,Kn > 0
and K1 > 0, K2 > 0, . . . , Kn > 0. Now, using (3), we
simplify the closed-loop dynamics as follows:

MṠ + (C + K)S = �β − Ksgn(S), (4)

with �β = (M̂ − M)q̈r+(Ĉ − C)q̇r + (Ĝ − G) = �Mq̈r +
�Cq̇r , where �M = M̂ − M , �C = Ĉ − C, and �G =
Ĝ − G. We now explore the convergence condition of the
closed-loop system (4) in the Lyapunov sense. To do that,
let us define the following positive definite Lyapunov-like
candidate function:

V = 1

2
ST MS, (5)

where M is a symmetric and positive definite matrix. As
M is symmetric and positive definite, V > 0 for S 	= 0. The
function V can be considered as an indicator of the energy for
S. Let us show that the energy V decays as long as S 	= 0. To
do that, we take the derivative along the closed-loop trajectory
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(4) and then use property (ii) to obtain V̇ as

V̇ = 1

2
ST ṀS + ST MṠ

= −STKS −
n∑

i=1

(Si [Kisgn(|Si |) − �βi]) . (6)

From (6), we can see that V̇ ≤ 0 holds if∑n
i=1(Si[Kisgn(|Si |) − |�βi |]) ≥ 0. This can be shown

when Ki ≥ |�βi |max with upper bound |�βi |max that
satisfies |�βi |max > |�βi |. If Si > 0 and Ki ≥ |�βi |max,
then we have �βi − Kisgn(|Si |) = �βi + Ki ≤ 0. This
implies that Si[�βi − Kisgn(|Si |)] ≤ 0. Similarly, if Si < 0
and Ki ≥ |�βi |max, then we can write �βi − Kisgn(|Si |) =
�βi − Ki ≥ 0 such that Si[�βi − Kisgn(|Si |)] ≤ 0. Hence∑n

i=1[Si(�βi − Kisgn(|Si |))] ≤ 0. As K is a positive
definite matrix, the first term of (6) can be written as
−STKS ≤ 0. Based on our above analysis, we can write (6)
as

V̇ =
n∑

i=1

(Si[�βi − Kisgn(|Si |)]) − STKS ≤ 0. (7)

Then Eq. (5) can be viewed as an energy indicator for S.
This implies the decay of the energy of S as long as S 	= 0.
Thus, the sufficient condition 1

2
d
dt

S2
i ≤ −ηi |Si |, where ηi is

a positive constant, is satisfied.8,13 To reduce the control
chattering activity, we estimate the switching function sgn(.)
by using a smooth bounded saturation function sat(.).

2.1. Output feedback sliding mode control design
The analysis presented above is based on the strict
assumption that all the state variables are available for
feedback. However, these algorithms cannot be applied
directly, as most advanced robotic systems remove the
velocity sensors to reduce the weight and cost of the
system. To obtain the velocity signals, the common practical
approach is to differentiate the position measurements
obtained from encoders or resolvers, which are often
contaminated by noise (see for example refs. [1, 2]). As a
consequence, the performance under state-feedback-based
SMC approach is limited, as in practice, the measurement
noise is amplified with the increase of the values of controller
gains. In the face of the large parametric uncertainty, the
demand of high control gain makes the design even more
complex, as high control gain intensifies high-frequency
control chattering activity. In fact, such a large control effort
may not be available in real-time application, as control
inputs are restricted in most control system technologies.

To deal with the above-mentioned practical control
problem, we propose to estimate the velocity signals by
the output of the observer. We consider a model-free linear
observer to formulate an output feedback form of the classical
SMC approach. The observer–controller algorithm is given
as

τ (ê, Qd, θ̂) = M̂(q) ¨̂qr + Ĉ(q, ê2 + q̇d ) ˙̂qr + Ĝ(q)

−K(ê2 + λê1) − Ksat

(
Ŝ

φ

)
, (8)

where sat(.) is a bounded smooth saturation function;
˙̂qr = (q̇d − λê1); ¨̂qr = (q̈d − λê2); Ŝ = (ê2 + λê1); and the
unknown velocity signals ê2 is replaced by the output of the
following linear estimator designed as follows:

˙̂e1 = ê2 + H1

ε
ẽ1, ˙̂e2 = H2

ε2
ẽ1, (9)

where ẽ1 = (e1 − ê1); ẽ2 = (e2 − ê2); ê1 and ê2 are the
estimates of e1 and e2; ε is a small positive constant that
needs to be specified; and H1 and H2 are the positive
constant matrices. The proposed observer dynamics (9)
for the SMC approach can be viewed as a simple chain
of integrator plus correction terms injected by the output
error term. Since the observer is linear, its dynamics can
be made exponentially fast of the form 1

ε
exp

−at
ε with

a > 0. The observer structure (9) is independent of the
system dynamics, uncertain model parameters, nonlinear
switching control input, and nonlinear control inputs. In
comparison, the performance with a nonadaptive SMC
design4,14 relies on the fact that there exists a known
system dynamics. For a robotic manipulator, however, it
is very difficult to obtain an exact system dynamics that
ensures robust reconstruction of unknown states in order
to guarantee asymptotic tracking error convergence. This
is mainly because robot dynamics is associated with many
structured and unstructured uncertainties that cannot be
exactly modeled. To analyze the convergence rate for the
proposed output feedback SMC design, we use singularly
perturbation method. To begin with that, we first define an
observer error dynamics. Using (8), one obtains ė2 as follows:

ė2 = φ1(e, qd, q̇d ) + φ2(e1, qd )τ (ê, Qd, θ̂) − q̈d . (10)

Then, the observer error becomes

˙̃e1 = ẽ2 − H1

ε
ẽ1,

˙̃e2 = −q̈d + φ1(e, qd, q̇d ) + φ2(e1, qd )τ (ê, Qd, θ̂)

− H2

ε2
ẽ1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11)

Now replace the observer errors by the scaled estimation
error to form a singularly perturbed system as η1 = e1−ê1

ε
=

ẽ1
ε

⇒ εη1 = ẽ1 and η2 = e2 − ê2 = ẽ2 with a small positive
parameter ε. Using this scaled estimation error, one gets

εη̇ = Bε[−q̈d + φ1(e, qd, q̇d ) + φ2(e1, qd )

× τ (e − ζ (ε)η, Qd, θ̂)] + Aoη, (12)

where Ao = [ −H1 I

−H2 0n×n
], ζ (ε) = [ εIn×n 0n×n

0 In×n
] and H1 and H2

are positive constant matrices such that the matrix Ao

is Hurwitz. In output feedback design, we show that the
performance achieved under state-feedback-based SMC (3)
can be recovered asymptotically by the output feedback
SMC design (8). This performance recovery analysis has
been shown by using singular perturbation method, where
the closed-loop system has the following standard singularly
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perturbed form:

ė = B[φ1(e, qd, q̇d ) + φ2(e1, qd )τ ((e − ζ (ε)η), Qd, θ̂)

− q̈d ] + Ae, (13)

εη̇ = Bε[−q̈d + φ1(e, qd, q̇d ) + φ2(e1, qd )

× τ (e − ζ (ε)η, Qd, θ̂)] + Aoη, (14)

where A = [ 0 In×n

0n×n 0 ]. To begin with the recovery analysis,
we first consider that the system output and its derivatives
are available for feedback. Then, we design an SMC as a
state feedback control law (3) such that the design meets the
desired tracking objectives. We then replace the unknown
velocity state vectors in the SMC by the output of the
observer (9). If we consider a situation in which the initial-
state estimates as well as the initial parameter estimates
become large, then the observer speed will be required to
increase for robust reconstruction of unknown velocity states.
The problem with high-speed observer is that it may cause
large control effort during transient phase, which may enter
into the closed-loop system, resulting in an unstable control
system. To protect the plant from large transient control
effect, we saturate the control input within the estimated
region of interest.3 This saturation function will only be
active during the transient period. To obtain such a bounded
control, let us consider that �c = {e | eT Qsme ≤ c}, c > 0,
is an estimate of the region of attraction of the state-
feedback-based SMC design, τ (e, Qd, θ̂), where Qsm =
0.5[ λ2M λM

I M
]. Since τ (e, Qd, θ̂) is a continuous function

over e, Qd , and θ̂ , there always exists a maximum control
τimax = max|τi(e, Qd, θ̂)|, 1 ≤ i ≤ n, such that the input
can be saturated over the compact set �cr that satisfies
τ s
i (e, Qd, θ̂) = τimax sat( τi (e,Qd ,θ̂)

τimax ) = τi(e, Qd, θ̂), ∀e(0) ∈
�co = {e(0) | e(0)T Qsme(0) ≤ c4}, where c4 < c, θ ∈ �,
θ̂ ∈ �, Qd ∈ �d , and τimax is taken over for all e ∈ �cr

with
cr > c and sat(.) is the smooth bounded saturation function.
Then, ∀e(t) ∈ �c and θ̂ (t) ∈ �, and one has |τi(e, Qd, θ̂ )| ≤
τimax ∀t ≥ 0 and τ s

i (e, Qd, θ̂) = τi(e, Qd, θ̂). Hence, the
saturation function will not be effective when short transient
time period is over. We now replace the state vectors e in the
control law by the state estimator ê. Then, the bounded output
feedback SMC can also be achieved via saturating outside
of the region of interest, �c, as follows: τ s

i (ê, Qd, θ̂) =
τimax sat( τi (ê,Qd ,θ̂ )

τimax ) = τi(ê, Qd, θ̂ ) ∀ê(0) ∈ �co, ∀ê ∈ �c,
∀e(0) ∈ �co, ∀e ∈ �c, ∀θ̂ ∈ �, ∀θ ∈ �, and Qd ∈ �d . Let
us now summarize our main results for the output feedback
SMC design.

Theorem 1: Consider the closed-loop system (13)–(14).
Then, for any given compact set of e(0) ∈ �co, ê(0) ∈ �co,
and θ̂ (0) ∈ �, there exists a small ε∗

1 such that for all 0 <

ε < ε∗
1 , all the state variables of the closed-loop systems are

bounded by a bound that can be made arbitrary small by
making ε∗

1 small.

Proof: See the Appendix.

3. Adaptive Sliding Mode Control
The level of uncertainty in the classical SMC design ((3)
and (8)) can be reduced by adding an adaptation term. For
this purpose, we first propose to introduce an estimation
algorithm to develop an adaptive SMC (ASMC) algorithm
as a state feedback as

τ (e, Qd, θ̂) = Y (e, q̇r , q̈r )θ̂ − KS − Ksat

(
S

φ

)
, (15)

˙̂θ = �YT (e, q̇r , q̈r )S, (16)

where � = diag[�1, �2, . . . , �n] with constant diagonal
elements �n > 0; Y (e, q̇r , q̈r ) is the regressor matrix;19 and θ̂

denotes the estimation of the manipulator parameters and the
masses of the working loads. To construct Y (e, q̇r , q̈r ), one
requires the model structure of the system. Such a parameter
adaptation law may exhibit discontinuous property even after
the learning estimate converges to the actual parameter.9

Therefore, the parameter estimates θ̂ are required to adjust
with the smooth parameter projection scheme11 as

˙̂θ i = [Proj (θ̂ , �)]i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γii�i if ai ≤ θ̂i ≤ bi or
if θ̂i > bi and �i ≤ 0 or
if θ̂i < ai and �i ≥ 0,

γii�̄i if θ̂i > bi and �i > 0,

γii�̆i if θ̂i < ai and �i < 0

(17)

for θ ∈ � = {θ | ai ≤ θi ≤ bi}, 1 ≤ i ≤ p}, where �̄i =
[1 + bi−θ̂i

δ
]�i ; �̆i = [1 + θ̂i−ai

δ
]�i ; �i is the ith element of

the column vector YT (e, q̇r , q̈r )S; γii is the ith element of �;
and δ > 0 is chosen such that � ⊂ �δ with �δ = {θ | ai −
δ ≤ θi ≤ bi + δ}, 1 ≤ i ≤ p}. Then the closed-loop error
model can be written as

MṠ = Y (e, q̇r , q̈r )θ̃ − (C + K)S − Ksat

(
S

φ

)
, (18)

where θ̃ = (θ − θ̂ ) and θ denotes the actual manipulator
parameters and the masses of the working loads. The
proposed adaptive control law is designed by using the
following control Lyapunov function:

V = 1

2
ST MS + 1

2
θ̃�−1θ̃ . (19)

Using property (ii), the time derivative of (19) along the
closed-loop error trajectories (18) can be simplified as

V̇ (e, θ̃ ) ≤ −λmin(K)‖S‖2 − K‖S‖ ≤ 0, (20)

∀e ∈ �c, ∀θ̂ (0) ∈ �, ∀θ(0) ∈ � and θ̂(t) ∈ �δ .

3.1. Adaptive output feedback sliding mode control
The above-given design is implementable only when all the
process states are measurable. To relax this strict assumption,
we now replace the unknown state vectors e in (15)–(17) by
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the output of estimator (9):

τ (ê, Qd, θ̂) = Y (ê, ˙̂qr,
¨̂qr )θ̂ − KŜ − Ksat

(
Ŝ

φ

)
, (21)

˙̂θ = �YT (ê, ˙̂qr,
¨̂qr )S. (22)

To smooth the parameter estimates, we may use parameter
projection scheme (17), where the state estimates have
been replaced by the output of observer (9). Then the
closed-loop model under the adaptive output feedback SMC
(AOFBSMC) scheme has the following form:

ė = B[φ1(e, qd, q̇d) + φ2(e1, qd)τ ((e − ζ (ε)η),

Qd, θ̂) − q̈d ] + Ae, (23)
˙̂θ = Proj (θ̂ , �(e − ζ (ε))η, Qd, θ̂)),

εη̇ = Bε[−q̈d + φ1(e, qd, q̇d) + φ2(e1, qd)

× τ (e − ζ (ε)η, Qd, θ̂)] + Aoη. (24)

For any given e(0) ∈ �co, ê(0) ∈ �co, θ(0) ∈ �, and θ̂ (0) ∈
�, we then have the inequality

‖[−q̈d + φ1(e, qd, q̇d) + φ2(e1, qd)τ s((e − ζ (ε)η), Qd, θ̂)]‖
≤ k2o

for k2o > 0, ∀e(t) ∈ �c, ∀θ̂ (t) ∈ �δ .
We now state the main results for the AOFBSMC design

in the following theorem.

Theorem 2: Let us consider the closed-loop system (23)–
(24) with the output feedback control laws (9), (17), (21),
and (22). Then, for any given θ̂(0) ∈ � and (e(0), ê(0)) ∈
�co ⊆ �c, there exists ε∗

1 such that for all 0 < ε < ε∗
1 , all

the signals in the closed-loop system will be bounded by a
bound that can be made arbitrarily small for small value of
the observer design constant ε.

Proof: The proof of stability of Theorem 2 is similar to
Theorem 1. So, we removed the details stability analysis for
brevity, and it can be obtained from the authors on request.

Remark 1: It is worth noting that the bounded inequalities
‖[−q̈d + φ1(e, qd, q̇d ) + φ2(e1, qd )τ s((e − ζ (ε)η), Qd, θ̂)]‖
≤ k1 and ‖[−q̈d + φ1(e, qd, q̇d ) + φ2(e1, qd )τ s((e − ζ (ε)η),
Qd, θ̂)]‖ ≤ k2o used in observer error dynamics analysis do
not impose any restriction either in theory or in practice. Note
also that these inequalities do not enforce growth condition
on systems nonlinearities. More specifically, the constants k1

and k2o are used to establish the semi-global stability property
of Theorems 1 and 2. For the given set of initial conditions
of interest, the designer can calculate the values of k1 and
k2o over the domain of attraction �c. Their values can be
obtained as follows: For the given e(0) ∈ �co and θ(0) ∈ �,
one calculates the terms φ1(e, qd, q̇d ) and φ2(e1, qd ). Then,
for the given q̈d and initial conditions of interest, we define the
saturation level τmax (maximum bound on τ (e, Qd, θ̂)). For a
small value of ε and the initial error estimates ê(0) ∈ �co, we
then calculate the bound on the output feedback controller

τ s((e − ζ (ε)η), Qd, θ̂) as well as the bound on the term
−q̈d + φ1 (e, qd, q̇d ) + φ2 (e1, qd )τ s ((e − ζ (ε)η), Qd, θ̂ ).

However, in practice, the designer does not require the
calculation of the maximum bound on τmax, as it is predefined
by a manufacturer.

Remark 2: The design parameter ε represents the
bandwidth of the observer dynamics. For the given set
of initial interests, it is not hard to obtain the minimum
bound on ε from the combined Lyapunov function candidate
as VC = (1−d)

2 ST MS + d
2 ηT Pη with the design constant

d > 0. To calculate the bound on ε, let us differentiate
VC with respect to time along the perturbed closed-loop
trajectory to simplify V̇C as V̇C ≤ −(1 − d)[α1‖e‖2 +
ζ1‖e‖‖η‖] − d α2

ε
‖η‖2 + 2dηT PBfo(e, Qd, θ, η, ε), where

ζ1 = ςo(kε1 + ksm1 ) with ςo = ‖λ2 λ; λI‖, α1 = λmin(V)
with V = ςoK and α2 = ‖Qo‖, Qo being a positive definite
matrix for solving the Lyapunov equation AT

0 P +
PA0 = −Qo, fo(e, Qd, θ, η, ε) = [−q̈d + φ1(e, qd, q̇d ) +
φ2(e1, qd)τ s(ê, Qd, θ)]. By knowing the upper bound on
the inertial parameter θ ∈ � as well as the bound on the
desired trajectories Qd ∈ �d , we can simplify the modeling
error term fo(e, Qd, θ, η, ε) = [ψ(0, η, ε) + ψ(e, 0, 0)] as
‖ψ(0, η, ε)‖ ≤ γsp‖η‖ and ‖ψ(e, 0, 0)‖ ≤ γs‖e‖. Then, V̇C

can be written as V̇C ≤ −(1 − d)[α1‖e‖2 + ζ1‖e‖‖η‖] −
d α2

ε
‖η‖2+2d‖η‖‖P‖γsp‖η‖+2d‖η‖‖P‖γs‖e‖ with ‖B‖ =

I . We now define �1(e) = ‖e‖ and �2(η) = ‖η‖.
Then V̇C can be further simplified as V̇C ≤
−(1 − d) α1�

2
1 (e) − d α2

ε
�2

2 (η) + (1 − d)ζ1�1(e)�2(η) +
dζ2�1(e)�2(η) + dγ�2

2 (η), where ζ2 = 2‖P‖γs and
γ = 2‖P‖γsp. Now, V̇C can be expressed in compact matrix
form as

V̇C ≤ −
[

�1(e)

�2(η)

]T

U

[
�1(e)

�2(η)

]

with

U =

⎡
⎢⎢⎣

(1 − d)α1 −1

2
(1 − d)ζ1 − 1

2
dζ2

−1

2
(1 − d)ζ1 − 1

2
dζ2 d

((α2

ε

)
− γ

)
⎤
⎥⎥⎦ .

This implies that V̇C is negative definite if the matrix
U is positive definite and satisfies the inequality [d(1 −
d)α1(α2

ε
− γ )] > 1

4 [(1 − d)ζ1 + dζ2]. This means that for
a given d ∈ (0, 1) the matrix U will be positive definite,
and there exists a continuous interval (0, ε∗) such that ∀ε ∈
(0, ε∗), where ε∗ satisfies ε∗(d) = α1α2

α1γ+ 1
4d(1−d) [(1−d)ζ1+dζ2]

for

the maximum value of d∗ = ζ1

ζ1+ζ2
, and one gets the bound on

ε∗ as ε∗ = α1α2
ζ1ζ2+α1γ

. Then V̇c becomes, V̇c ≤ −λmin(U )‖η̃‖2,

where η̃ = [�T
1 (e), �T

2 (η)]T and λmin(U ) is the minimum
eigenvalue of the positive definite matrix U . This implies
that all the signals in the singularly perturbed system (13)–
(14) are bounded, and the trajectories converge close to zero
within a finite time.
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4. Design and Implementation Process
To illustrate the design procedure of the proposed scheme,
let us now consider a two-link robotic system.9,17,20 The
dynamic equation for this robot system can be defined as

[
m11 m12

m21 m22

] [
q̈1

q̈2

]
+

[
c11 c12

c21 c22

] [
q̇1

q̇2

]
=

[
τ1

τ2

]
(25)

with m11 = (θ1 + 2θ2 + 2θ2 cos q2), m12 = (θ2 + θ2 cos q2),
m21 = (θ2 + θ2 cos q2), m22 = θ2, c11 = −2q̇2θ2 sin q2,
c12 = −q̇2θ2 sin q2, c21 = q̇1θ2 sin q2, c22 = 0, θ1 = m1l

2,
and θ2 = m2l

2; l is the link length and m1 and m2 are the
masses of link 1 and link 2 respectively. The robot operates
in the horizontal plane; so the gravitational force vector
is zero, that is, G = 0. We consider that the parameters
θ1 and θ2 of the above-mentioned robot dynamics are
unknown but belong to comparatively large compact sets as
θ ∈ � = [−10, 10]. We also consider that the initial states
belong to the set e(0) ∈ �co = [−2, 2]. We now generate the
reference trajectory qd (t) for the given robot model to follow,
a square wave with a period of 8 s and an amplitude of ±1
rad is prefiltered with a critically damped second-order linear
filter using a bandwidth of ωn = 2.0 rad/s. Specifically, our
main target is to use a desired trajectory that is usually used
in industrial robotic systems. In practice, the step reference
inputs are not preferred because such initial jump may reduce
the lifetime of the bearing. If one uses the step reference
trajectory, then very small step sizes are required. If we
know the uncertain parameter θ of the given system, then
the controller is a simple feedback-linearizing regulator as
τ (e, Qd, θ) = M(q)q̈r + C(q, q̇)q̇r + G(q) − KS − K( S

φ
)

with positive constant K and φ. Then the origin of the closed-
loop system under the above-given control law can be shown
to be globally exponentially stable provided that the value of
positive constant K and φ are chosen via well-known pole-
placement technique. Now, if we consider that the parameter
θ is unknown, then we can estimate the parameter θ̂ of
θ . Then, the continuous SMC has the form τ (e, Qd, θ̂) =
M̂(q)q̈r + Ĉ(q, q̇)q̇r + Ĝ(q) − KS − Ksat( S

φ
), where φ is

a small positive constant and sat(.) is a bounded saturation
function that satisfies

sat(y) =
⎧⎨
⎩

−1 if y < −1,

y if |y| ≤ 1,

1 if y > 1.

We first show how to design the values of K and φ for
the given initial conditions of interest. The value of K and
φ can be chosen to ensure that the closed-loop trajectories
converge to an invariant set where |S| ≤ φ. This requires to
guarantee K ≥ |�β|max with �G = 0 as the given system
operating in the horizontal plane. Our aim is now to show
an exponential convergence property of the closed-loop
trajectory that satisfies the Lyapunov-stability property as
V̇ + σV ≤ 0 with σ = λminK

λmax(M) . To show V̇ + σV ≤ 0, the
value of K and φ are required to satisfy the inequality as
K
φ

≥ 771.1321 with �co ⊂ {S(0)T M(0)S(0) ≤ 3357.2}. If
|S| > φ, then the control gain K requires satisfying the
inequality as K ≥ 771.1321. Note that for the given set, the

designer can increase the value of φ and decrease the value
of K to reduce the chattering phenomenon.

We now show how to calculate the feedback controller
gain K for the given initial conditions and bandwidth
of the controller. This implies finding the value of the
feedback controller gains K such that they ensure an
acceptable transient performance of the closed-loop system.
To show that, let us consider positive definite Lyapunov-like
energy function as Vr = 1

2ST MS with S = [ST
1 , ST

2 ]T ,
M = [ m11 m12

m21 m22
] and C = [ c11 c12

c21 c22
]. First take the derivative and

then use the control input τ (e1, e2) = −KS and property
(ii) to obtain V̇r as V̇r ≤ −λmin .(K)‖S‖2 + ‖ST ‖ko, where
‖[λC(e1 + qd, e1)q̇d − C(e1 + qd, q̇d)q̇d ]+M(−q̈d +λe2) +
[λC(e1 + qd, e1) − C(e1 + qd, q̇d)]e2‖ ≤ ko ∀(e, Qd ) ∈
�c1 × �d with ko > 0. Now, applying ‖S‖2 ≥ Vr

λmax .(αo) and

‖S‖ ≤
√

Vr

λmin .(αo) , V̇r can be written as V̇r ≤ −ψoVr + υo

√
Vr

with αo = 0.5[ m11 m12
m21 m22

], ψo = �
λmax(αo) , � = λmin(K), and

υo = ko√
λmin .(αo)

. Then, we can find the bound on the error
trajectory as Vr (t) ≤ Vr (0)e−γot + βo

γo
(1 − e−γot ) for any

αo > 0 with ψo > αo

2 , γo = (ψo − αo

2 ), and βo = υ2
o

2αo
.

Using Vr ≥ 4k2
oλ

2
max .(αo)

λmin .(αo)�2 , the bound on V̇r can be written as
V̇r ≤ −κVr , where κ = ψo

2 . Thus, the tracking error bound
can be obtained as Vr (t) ≤ Vr (0)e−κt . This implies that the
trajectory starting in a region where Vr (0) > c1 will continue
to decrease until the trajectory enters into the set �c1 ,
where �c1 = {e | Vr ≤ c1}. Now using Vr = 4k2

oλ
2
max .(αo)

λmin .(αo)�2 , we
have V̇r ≤ 0, where c1 = 2k2

oλ
2
max .(αo)

λmin .(αo)�2 , which implies that the
trajectory starting in the set �c1 = {e | Vr ≤ c1} will remain
there ∀t ≥ 0, as V̇r is negative on the boundary Vr = c1. The
boundary of the set �c1 defines the maximum errors that
one can expect from the controller τ = −KS. Notice from

the relationship c1 = 2k2
oλ

2
max .(αo)

λmin .(αo)� that the set �c1 , that is, the
error bound, can be made arbitrarily small by increasing the
minimal eigenvalue of the control gain K. Then, we can say
that for any given initial conditions of interest and λ, there
exists a controller gain K such that the tracking error signals
are bounded by a bound that can be made arbitrarily small
close to the origin by increasing the minimal eigenvalue of
the control gains K.

Finally, we design observer gain matrices H1 and H2 such
that the dynamics represented by Ao is Hurwitz. Then, for the
given e(0) ∈ �co, θ(0) ∈ �, K, H1, H2, and λ, we select the
small value of ε that makes observer dynamics relatively
faster than the closed-loop robot dynamics to guarantee
robust reconstruction of the unknown velocity state. Note
that for the given e(0) ∈ �co, θ(0) ∈ �, K, H1, H2, and λ,
one can calculate the minimum bound of ε a priori to ensure
robust reconstruction of the unknown velocity signals. It is
also important to note that the a priori calculated bound
on ε may not be applied for the real-time application, as
the value of ε depends on the sampling time, the output
(position measurement obtained from encoders), and the
input disturbances.

4.1. Implementation results
In this subsection, we follow the above-mentioned design
steps to implement and evaluate the property of the proposed
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Fig. 1. The desired trajectory (dashed line), output tracking (in
radians, solid lines), and control input (in newton meters) for joints
1 and 2 under state-feedback-based ASMC for θ̃ = 10 without
using input and output disturbance noise.

method on the given system (25). In our evaluation, we will
examine the tracking convergence property of the ASMC
and the AOFBSMC approach with respect to estimation
errors as θ̃ = 10 and θ̃ = 8. Because of the space limit, we
have removed the evaluation of Theorem 1. The observer–
controller design parameters are calculated along the line
of the design steps given in previous section for the chosen
initial conditions. For the given initial sets of interest, the
design parameters for the ASMC approach are obtained
as K = 125I2×2, K = 15I2×2, � = 10I2×2, φ1 = 0.7, and
φ2 = 0.7. With these control parameters, we first apply the
ASMC design on the given system. The tested results are
given in Fig. 1. Figure 1 shows the tracking performance
with the chosen parameter estimator errors as θ̃ = 10.
We now examine the tracking performance of ASMC
algorithms under nonideal operating situations. For this
purpose, we add a band-limited white noise w(t) into
the output q(t) (as position measurement obtained from
encoders is contaminated by disturbance noise1,2) and the
input τ (t) to the system. For our evaluation, the level w(t)
for the output q(t) and the input τ (t) are given in Fig. 2.
Then, we apply ASMC on the given system by using the
same design parameters as used in our last evaluation. The
implemented results are given in Fig. 3. Figure 3 pictures the
tracking performance under nonideal operating condition.
The estimation errors for this test are set to θ̃ = 8. The design
parameters are used for this experimentation asK = 125I2×2,
K = 15I2×2, � = I2×2, φ1 = 0.7, and φ2 = 0.7. Notice from
Figs. 1 and 3 that the tracking errors increase with the increase
of the disturbance noise associated with input and output
measurement. More specifically, one can notice that the
control effort become very large, which may not be realistic
for the real-time operation, as available control inputs are
restricted in most nonlinear control system designs. Such a
large control effort is mainly due to the derivative action of
the noisy position signals that are used in the ASMC based
on position and velocity. Now our aim is to show that control
chattering phenomenon under the ASMC design based on
position and velocity can be reduced by using an AOFBSMC
design. To explore that, we keep the same controller design

Fig. 2. The disturbance level w(t) for the input τ (t) and the output
q(t).

Fig. 3. The desired trajectory (dashed lines), output tracking (in
radians, solid lines), and control input (in newton meters) for joints
1 and 2 under state-feedback-based ASMC for θ̃ = 8 with nonideal
operating conditions.

parameters as applied for the evaluation of the ASMC
algorithm based on position and velocity. Then, we define
observer design constants as H1 = I2×2, H2 = I2×2, and ε =
0.05 such that the observer dynamics is faster than the closed-
loop robot dynamics. With these sets up, we now apply the
AOFSMC algorithm on system (25). The implementation
results are given in Fig. 4. By observing Figs. 1 and 4, we
can see that the performance under the AOFBSMC design is
similar to the performance under the ASMC design. Let us
examine the robustness property of the AOFBSMC design in
the presence of input and output disturbances noise. For this
purpose, we add a band-limited white noise, w(t), into the
output measurement q(t) and the input τ (t) of the system.
For fair comparison of the performance of the AOFBSMC
with the ASMC design, we use the same level of w(t) as
used for the evaluation of the ASMC design as depicted in
Fig. 2. Then, using the observer–controller design parameters
K = 125I2×2, � = 10I2×2, K = 15I2×2, φ1 = 0.7, φ2 = 0.7,
ε = 0.05, H1 = I2×2, and H2 = I2×2, we implement the
AOFBSMC on the system. The tested results are presented
in Fig. 5 with θ̃ = 10. By comparing Figs. 3 (ASMC) and
5 (AOFBSMC), we can clearly observe that the tracking
performance under the AOFBSMC is almost close to zero,
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Fig. 4. The desired trajectory (dashed lines), output tracking (in
radians, solid lines), and control input (in newton meters) for joints
1 and 2 under the AOFBSMC design with θ̃ = 10 and without using
input and output disturbance noise w(t).

Fig. 5. The desired trajectory (dashed lines), output tracking (in
radians, solid lines), and control input (in newton meters) for joints
1 and 2 under the AOFBSMC design using with disturbance noise
w(t) and the estimation error as θ̃ = 10.

while large tracking errors can be seen under the ASMC
design even with smaller uncertainty. Notice also from these
results that the required control effort under the AOFBSMC
is much smaller than the control effort demanded under the
ASMC design.

4.2. Comparison with output feedback method
In this subsection, we compare our approach with the
method proposed in refs. [7, 14]. In comparison, the robot
dynamics, uncertain model parameters, and nonlinear control
inputs are not required in the proposed observer, while they
should be known in ref. [7]. The method introduced in
ref. [7] only provides local stability. In addition, we propose
an ASMC approach, but the method7 is not in adaptive
control framework. For comparison, let us design nonlinear
observer7 for rigid robot manipulators as

˙̂e1 = ê2 + H1

ε
ẽ1,

˙̂e2 = H2

ε2
ẽ1 − q̈d + φ1(ê, qd, q̇d ) + φ2(ê1, qd )

× τ (ê, Qd, θ̂).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

Fig. 6. The implementation results with the AOFBSMC based on
observers (9) and (26) under ideal condition: the left column is for
θ̃observer = 4, and the right column is for θ̃observer = 0; the dashed
lines denote observer (26), and the solid lines denote observer
(9). (a) Output tracking errors (in radians) for joint 1. (b) Output
tracking errors (in radians) for joint 2. (c) Control input for joint 1.
(d) Control input for joint 2.

Then, we replace the unknown velocity signals by the
output of the nonlinear observer (26) to formulate nonlinear-
observer-based AOFBSMC. We use observer (26) in the
ASMC that has been introduced in the current work
to formulate the AOFBSMC. We examine the tracking
performance under the ASMC approach based on observers
(9) and (26). It is important to note that for fair comparison,
we use adaptive controller instead of the nonadaptive
SMC proposed in ref. [7]. As the observer is based on
model parameters, we consider two different estimation
error uncertainties for the observer error dynamics as
θ̃observer = (θ − θ̂observer) = 4 and θ̃observer = (θ − θ̂observer) =
0; that is, the model parameters that are used in the observer
dynamics are exactly known. Here, θ̂observer denotes the
parameter estimates in nonlinear observer dynamics. Then
we implement both observer-based (defined by (9) and (26))
AOFBSMC designs on the given robotic system. The results
are given in Fig. 6 with the observer design constants H1 =
20I2×2, H2 = 20I2×2, and ε = 0.1, but we keep the same
set of controller design parameters that were applied for the
evaluation of the ASMC. The left column of Fig. 6 presents
the control performance when the estimation error for the
nonlinear observer is set to θ̃observer = 4. The right column of
Fig. 6 depicts the tracking convergence when the estimation
error for the nonlinear observer is chosen to be θ̃ = 0. The
dashed line of Fig. 6 is for the nonlinear observer-based
AOFBSMC, while the solid line is for the linear observer-
based AOFBSMC. By comparing the solid and dashed lines
of Fig. 6, we can notice that the tracking error and control
effort under the nonlinear observer-based AOFBSMC are
larger than the tracking error and control effort under the
model-free linear observer-based AOFBSMC. Let us now
show the difficulties associated with the SMO-based output
feedback design.14 Like the method reported in refs. [4, 7],
the SMO-basedoutput feedback SMC reported in ref. [14]
only ensures local stability. The main assumption in SMO-
based design is the requirement of the zero initial conditions
ẽ1 = 0 and the growth condition on unknown velocity signals
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(see Eqs. (11) and (20) of ref. [14] for a certain class of
system). Let us examine the SMO-based adaptive output
feedback design for robotic systems. The following design
and implementation for robotic system can be viewed as
an extension of the work reported in ref. [14] for a class
of nonlinear systems. To derive an SMO-based adaptive
approach, let us construct the SMO for robotic systems (1):

˙̂q1 = q̂2 − �1oẽ1 − δ1osgn(ẽ1),
˙̂q2 = −δ2osgn(ẽ1) − W (q, q̇r , θ̂)ŝ

+ W (q, q̇r , θ̂)δ1osgn(ẽ1) + v,

⎫⎬
⎭ (27)

where q̂1 is the observer estimate of the joint
positions; q̂2 is the estimate of the joint velocities;
and ŝ = (q̂2 − q̇d ) + �(q − qd ). The constants �1o, δ1o, and
δ2o are n × n positive definite diagonal design matrices. The
design elements are �1o = diag(γ1o, γ1o, . . . , γ1o), δ1o =
diag(λ1o, λ1o, . . . , λ1o), δ2o = diag(λ2o, λ2o, . . . , λ2o).
Notice from the SMO design (27) that the observer
consists of undesirable high-frequency switching terms
such as sgn(), W (q, q̇r , θ̂) and v. These switching
terms are designed in such away that they meet the
eventual Lyapunov-stability condition. To construct
observer dynamics for system (25), we first define the
matrix W (q, q̇r , θ̂) as W (q, q̇r , θ̂) = [ W11 W12

W21 W22
] and the

diagonal matrix � = [�s1 �s2]. The SMO for links 1 and
2 is given by Eq. (27) as ˙̂q11 = q̂21 − γ1oẽ11 − λ1osgn(ẽ11),
˙̂q21 = −λ2sgn(ẽ11) − W11ŝ1 − W12ŝ2 + v1, ˙̂q12 = q̂22 −
γ1oẽ12 − λ1osgn(ẽ12), and ˙̂q22 = −λ2osgn(ẽ12) − W21ŝ1 −
W22ŝ2 + v2, where ẽ11 = (q̂1 − q1) is the known position
estimation error for joint 1; ẽ12 = (q̂2 − q2) is the known
position estimation error for joint 2; q̂11 is the observer
estimate of the position for joint 1; q̂21 is the estimate of the
velocity for joint 1; q̂12 is the observer estimate of the position
for joint 2; q̂22 is the estimate of the velocity for joint 2; and
W11 = [−2 cos(q2)θ̂2�s1 − 2θ̂2�s1 − θ̂1�s1 − K1], W12 =
[− cos(q2)θ̂2�s2 − θ̂2�s2 − 2 sin(q2)q̇r1θ̂2 − sin(q2)q̇r2θ̂2],
W21 = [− cos(q2)θ̂2�s1 − θ̂2 �s1 − θ̂2 sin(q2) q̇r1], and
W22 = [−θ̂2�12 − K2] with q̇r1 = q̇d1 − �s1(q1 − qd1) and
q̇r2 = q̇d2 − �s2(q2 − qd2). The nonlinear compensation
laws v1 and v2 for joints 1 and 2 can be designed as follows

v1 =
{

ψ(q̂2, τ )sgn(ẽ11) if |sgn(ẽ11)| 	= 0,

0 if |sgn(ẽ11)| = 0

and

v2 =
{

ψ(q̂2, τ )sgn(ẽ12) if
∣∣sgn(ẽ12)

∣∣ 	= 0,

0 if |sgn(ẽ12)| = 0,

where ψ(q̂2, τ ) is given as ψ(q̂2, τ ) = α1|q̂2|2 +
2α1|q̂2|λ1o + λ2

1o + α2 + α3|τ |. Then, the adaptive controller
with SMO observer can be designed as

τ = M̂(q) ¨̂qr + Ĉ(q, q̂2)q̇r + Ĝ(q) − Kŝ

= Y τ (q, q̂2, q̇r , ¨̂qr )θ̂ − Kŝ (28)

with the positive definite matrix K ∈ �n×n and the reg-
ressor model as Y τ (q, q̂2, q̇r , ¨̂qr ) = [ Y τ

11 Y τ
12

Y τ
21 Y τ

22
], where

Y τ
11 = ¨̂qr1, Y τ

12 = 2 ¨̂qr1 + 2 cos(q2) ¨̂qr1 + ¨̂qr2 + cos(q2) ¨̂qr2 −
2q̂22 sin(q2)q̇r1 − q̂22 sin(q2)q̇r2, Y τ

21 = 0 and Y τ
22 =

¨̂qr1 + cos(q2) ¨̂qr1 + ¨̂qr2 + sin(q2)q̇r1q̂21 in which ¨̂qr1 =
q̈d1 − �s1(q̂21 − q̇d1) and ¨̂qr2 = q̈d2 − �s2(q̂22 − q̇d2)
with qd1 = qd2 = qd . Let us now formulate projection-
free parameter adaptation law. For this purpose, we define
the adaptation gain matrix as �−1 = diag[η1 η2], and the
standard adaptation law takes the following form:
˙̂θ = −�−1YT (q, q̇, q̇r , q̈r )s, where Y11 = q̈r1, Y12 =
2q̈r1 + 2 cos(q2)q̈r1 + q̈r2 + cos(q2)q̈r2 − 2q̇2 sin(q2)q̇r1 −
q̇2 sin(q2)q̇r2, Y21 = 0, and Y22 = q̈r1 + cos(q2)q̈r1 + q̈r2 +
sin(q2)q̇r1q̇1. The parameter adaptation law can be written
as ˙̂θ1 = −η1[Y11s1 + Y21s2] and ˙̂θ2 = −η2[Y12s1 + Y22s2.
The unknown terms in adaptation mechanism
can be defined as follows: s1 = ŝ1 − λ1osgn(ẽ11),
s2 = ŝ2 − λ1osgn(ẽ12), q̈r1 = ¨̂qr1 + λ1o�s1sgn(ẽ11), and
q̈r2 = ¨̂qr2 + λ1o�s2sgn(ẽ12). The observer design starts
by choosing a particular observer estimation error sliding
regime such that λ1o ≥ |ẽ2| (the bound on the velocity
error signals; see Eqs. (11) and (20) of ref. [14]). Now, the
question is how such a priori bound on unknown velocity
signals should be chosen. Another important assumption
in SMO design is the requirement of strict condition
of ẽ11 = 0 and ẽ12 = 0. For our evaluation, we choose
ẽ11 = 0 and ẽ12 = 0 and find an appropriate value of λ1o

via trial-and-error search technique without injecting the
discontinuous control term. We notice that once we inject the
discontinuous control term in (28), the closed-loop control
system immediately exhibits finite escape time phenomenon
as the observer–controller system generates excessive
chattering from four different control switching operation.
The design parameters α1 to α3, γ1o, λ1o, λ2o, �s1, �s2,
η1, and η2 are determined by trial and error. The observer
estimation error sliding regime is arbitrarily selected as
λ1o = 0.1. One then uses a trial-and-error procedure to find
appropriate parameters such that |q̃2| ≤ 0.1. The controller
and observer parameters are selected as follows: α1 = 2,
α2 = 2, α3 = 1, K1 = 25, K2 = 30, λ1o = 0.1, λ2o = 5,
γ1o = 2, �s1 = 0.5, �s2 = 0.5, and η1 = η2 = 3. The true
values of the parameters are set at θ1 = 1 and θ2 = 2. Then,
the parameter estimation are initialized to θ̃1 = 1 and θ̃2 = 2.
The sampling period is chosen as 1 ms for all the results
reported in the current paper. With these sets up, we now
implement SMO-based output feedback design (27)–(28)
on the given system (25). The results are depicted in Fig. 7.
Figure 7 shows the observer estimation error in the position
of joint 1. The switching behavior is clearly visible. It is
clear from Fig. 7 that the assumption in SMO design, i.e.,
the estimation error of link 1 position, is not zero, ẽ11 	= 0.
Consequently, Fig. 9 demonstrates the assumption on the
derivative of the observer estimation error of joint 1, ˙̃e11, is
also not zero. Figure 8 also illustrates the observer velocity
estimation error. In view of Figs. 7 and 9, we notice that
the assumptions that are used in SMO design, i.e., the zero
initial conditions on ẽ11 and ˙̃e11, are not met even when the
control system is operating under ideal conditions with small
estimation error uncertainty. Figure 10 depicts the effect of
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Fig. 7. Observer estimation error ẽ11 for joint 1.

Fig. 8. Observer velocity estimation error q̃21 for joint 1.

Fig. 9. Derivative of observer estimation error ˙̃e11 for joint 1.

the switching term v in SMO dynamics for joint 1. Finally,
we show the drifting effect of the projection-free adaptation
mechanism in Fig. 11. Notice from Fig. 11 that the parameter
estimates of θ1 approach the true value of θ1 = 1.0 and then
drift away from the correct value. For brevity, we remove
the discontinuous property of the estimates θ2.

Remark 3: It is assumed in our evaluation that with the
chosen design parameters, the sliding regime is established,

Fig. 10. Discontinuous nonlinear vector v1 for joint 1.

Fig. 11. The parameter estimate θ̂1.

which satisfies the bounded inequality λ1o ≥ |ẽ2|. This
condition, however, makes the SMO design unrealistic, as it
is very hard for the designer to select the bound that provides
the required sliding regime. On the other hand, because of
the presence of control switching terms in SMO design, it is
also very difficult for this method to be robust with respect to
large parametric uncertainty and disturbance noise with q(t)
and τ (t). Therefore, in the face of large-scale uncertainty, the
SMO-based output feedback SMC design cannot achieve the
desired tracking objectives, as the designer cannot increase
the observer–controller gain because of excessive control
chattering phenomenon.

5. Conclusion
In the current paper, an output feedback sliding mode
robot control method has been proposed to deal with the
problem associated with the velocity-based SMC design.
The Lyapunov method has been utilized to establish the
stability condition of all the closed-loop signals. This
property has been shown using a parameter projection and
control saturation mechanism. The evaluation on a two-
degree-of-freedom robotic system validates the effectiveness
of the proposed SMC approach and the Lyapunov-stability
arguments of the proposed method. Furthermore, the
introduced method is compared with the exiting results,
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which confirms the superiority of the proposed design. The
implementation of the proposed theorems on an industrial
robotic system will be focused on in our future work. Future
work will also be focused on developing a multiple-model-
based ASMC along the lines of the design introduced in
ref. [17].

Appendix: Proof of Theorem 1
The proof of the Theorem 1 consists of two parts. In the
first part, we show that there exists a short transient period
T1(ε) ∈ [0, T2] during which the fast variable η approaches
a function O(ε), while the slow variables (e, θ̂ ) remain in
a subset of the domain of attraction. In the second part,
we establish the boundedness of the signal e(t) for all
t ∈ [T1(ε), T3], where T1(ε) ∈ (0, T2

2 ] and T3 ≥ T2 is the first
time (e(t), θ̂ (t)) exists from the set �c. This part shows that
the state variables (e(t), θ̂(t)) remain bounded for t ≥ 0. This
proof makes use of the fact that the fast variable η is O(ε)
such that W (η(t)) ≤ ε2β for all t ∈ [T1(ε), T3].

Part 1: We first show that there exists a finite time T2,
independent of ε, such that for all t ∈ [0, T2] the slow
variable remains bounded in the set �c. To show that, let us
define the following positive definite Lyapunov-like function
candidate:

V = 1

2
ST MS. (29)

We consider that all initial conditions are bounded. Thus, we
choose e(0) ∈ �co ⊆ �c, which includes e1(0) ∈ �co1 and
e2(0) ∈ �co2 , θ(0) ∈ �, where �c is the domain of attraction
and �co is the compact set chosen to cover any bounded
initial condition. Then, for the given initial set of e1 and
e2, we have c4 = maxe1∈�co1,e2∈�co2

1
2ST MS, where c4 > 0.

Then define the compact set as e(t) ∈ �c with c > c4. Now,
our aim is to prove that the energy function V remains
bounded by a constant c. To verify that, we first take the
derivative of the Lyapunov function (29). Then we use
property (ii) and the bounded output feedback law on the
set �cr as τ s(ê, Qd, θ̂) = [τ s(e, Qd, θ̂) − τ s(ζ (ε)η, Qd, θ̂)]
with τ (e, Qd, θ̂) = τ s(e, Qd, θ̂) to simplify the derivative of
V as

V̇ = −STKS −
n∑

i=1

(
Si

[
Kisat

( |Si |
φi

)
− �β̂i

])

− ST τ s(ζ (ε)η, Qd, θ̂), (30)

where �̂β is defined as

�β̂ = �β + [
(M̂ − M)λη2 + (Ĉ − C)λεη1

]
(31)

with Ŝ = S − (η2 + λεη1), ¨̂qr = q̈r + λη2, and ˙̂qr = q̇r +
λεη1. Since ε is a small positive constant and the fast variable
η enters into the slow dynamics via the bounded function
τ s((e − ζ (ε)η), Qd, θ̂), ∀e ∈ �c, ∀Qd ∈ �d , ∀θ ∈ �, and
∀θ̂ ∈ �, in view of the dynamical properties of (i) and (iii),

the second part of (31) satisfies the following inequality:

‖(M̂ − M)λη2 + (Ĉ − C)λεη1‖ ≤ ksm (32)

for ksm > 0. We then simplify the derivative of (30) as

V̇ ≤ −
n∑

i=1

(
Si

[
Kisat

( |Si |
φi

)
− �βi − ksmi

])

− STKS − ST τ s(ζ (ε)η, Qd, θ̂). (33)

Now, for |Ki | ≥ |�βi |, we have [Kisat( |Si |
φ

) − �βi] ≥ 0.
Then Eq. (33) can be written in a simplified form as

V̇ ≤ −STKS + ‖S‖ksm − ST τ s(ζ (ε)η, Qd, θ̂). (34)

As η enters into slow subsystem via bounded function, the
above equation can be simplified as

V̇ ≤ −�oV + αo, (35)

∀e ∈ �c, ∀θ̂ ∈ �, and ∀θ ∈ �, where αo = γsksm + γsα1,
�o = λmin .(K)

λmax .(Qsm) , and γs and α1 are the bound for ‖S‖ and
‖η‖ over the set �c, respectively. Then, the solution of the
differential equation (35) can be derived as follows:

V (t) ≤ V (0)e−�ot + αo

�o

(
1 − e−�ot

)
. (36)

As V (0) ≤ c4 < c, we conclude that there always
exists a finite time T2, independent of ε, such
that for all t ∈ [0, T2], V (t) ≤ c. Note that during
t ∈ [0, T2], we can alternatively show the ultimate
boundedness property of the closed-loop trajectories
as follows: V̇ = −STKS − ∑n

i=1(Si[Kisat( |Si |
φi

) − �βi]) −
ST τ s(ζ (ε)η, Qd, θ̂). Using [Kisat( |Si |

φi
) − �βi] ≥ 0, we

have V̇ ≤ −STKS + ST τ s(ζ (ε)η, Qd, θ̂). Since ε is a
bounded by a positive constant and the fast variable η

enters into the slow dynamics via the bounded function
τ s((e − ζ (ε)η), Qd, θ̂), ∀e ∈ �c, Qd ∈ �d , ∀θ ∈ �, and
∀θ̂ ∈ �, we have V̇ ≤ −�oV + αo, ∀e ∈ �c, ∀θ̂ ∈ �, and
∀θ ∈ �, where αo = γsα1, and γs and α1 are the bound for
‖S‖ and ‖η‖ over the set �c, respectively.

We now prove that over the time interval [0, T2] the fast
variable η converge to a very small value. On the basis of
the choice of the observer design parameter ε, one can make
the bound on η very small. To show that, let us consider the
following Lyapunov function candidate for the fast observer
error model (14):

W (η) = ηT Pη, (37)

where P = P T > 0 is the solution of the Lyapunov equation
PA0 + AT

0 P = −I . Applying PA0 + AT
0 P = −I , one can

simplify the derivative of (37) along the trajectory (14),

Ẇ (η) ≤ −1

ε
‖η‖2 + 2ηT PB[−q̈d + φ1(e, qd, q̇d )

+φ2(e1, qd )τ s((e − ζ (ε)η), Qd, θ̂)]. (38)
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Now, for any given e(0) ∈ �co, ê(0) ∈ �co, θ(0) ∈
�, and θ̂(0) ∈ �, the inequality ‖[−q̈d + φ1(e, qd, q̇d) +
φ2(e1, qd )τ s((e − ζ (ε)η), Qd, θ̂)]‖ ≤ k1 holds. Substituting
this inequality, we obtain Ẇ (η) as

Ẇ (η) ≤ −1

ε
‖η‖2 + 2k1‖P‖‖η‖ (39)

with ‖B‖ = I . Using the Lyapunov equation (37), Eq. (39)
can be simplified as

Ẇ (η) ≤ − W (η)

ελmax .(P )
+ 2k1‖P‖

√
W (η)

λmin .(P )
. (40)

We now investigate the property of η for three different
situations as W (η) ≥ ε2β, W (η) = ε2β, and W (η) ≤ ε2β. If
W (η) ≥ ε2β, then we can write (40) in the following form:

Ẇ (η) ≤ −γ

ε
W (η) (41)

with W (η) ≥ ε2β, where β = 16‖P‖2k2
1λmax .(P ) =

16‖P‖3k2
1 and ‖P‖ = λmax .(P ). Since {V ≤ c} and

{W ≥ ε2β}, we have the solution of the differential equation
(41) as

W (η(t)) ≤ W (0) exp(− γ t

ε
) . (42)

As we know that initial conditions are bounded for the
estimates ê(0) ∈ �co, the corresponding scaled initial-state
estimation error are also bounded by η(0) = e(0)−ê(0)

ε
≤ k

ε
for

some positive constant k that depends on the initial set �co.
Then, Eq. (42) can be further simplified as follows:

W (η(t)) ≤ W (0) exp(− γ t

ε
) ≤ ko

ε2
exp(− γ t

ε
), (43)

where ko = k2λmax .(P ) = k2

2γ
with γ = 1

2λmax .(P ) . We now
calculate the transient peaking time T1(ε) when W (η(t)) =
ε2β. Let ε∗

1 > 0 be small enough so that for all 0 < ε < ε∗
1 ,

the time T1(ε) is calculated when W (η(t)) = ε2β as

T1(ε) = ε

γ
ln

(
ko

βε4

)
≤ 1

2
T2. (44)

This implies that at the time T1(ε), W (η(t)) = ε2β and
Ẇ (η) ≤ −γ εβ. Hence, W (η) will continue to decrease, and
for the time t > T1(ε) the inequality W (η(t)) ≤ ε2β holds.
We now investigate the property of η for the case in which
W (η(t)) ≤ ε2β. One can see from (44) that T1(ε) tends to
zero as ε → 0. This means that the right-hand side of the
above-mentioned inequality tends to zero as ε → 0. This
implies that we can choose T1(ε) small enough such that
T1(ε) ∈ (0, 1

2T2]. That is, for t ∈ [0, T2], there always exists
a short transient period T1(ε) ∈ (0, 1

2T2] such that for all
t ∈ [T1(ε), T3], W (η(t)) ≤ ε2β. The time T3 ≥ T2 is the first
time (e(t), θ̂(t)) exists from the set �c, and the time T3

may be equal to infinity. Since the time T1(ε) in (44) is a
function of ε, one can make T1(ε) → 0 as ε → 0. In view
of the Lyapunov equation (37), we can conclude that as

W (η(t)) ≤ ε2β ∀t ∈ [T1(ε), T3], ‖η‖ ≤ Koε, Ko > 0. This
means that η is O(ε) over the time interval ∀t ∈ [T1(ε), T3].

Part 2: Let us now study the slow subsystems (13) over the
time interval [T1(ε), T3], that is, study the property of the
slow variable (e, θ̂) when ‖η‖ converges close to the origin.
For the time interval [T1(ε), T3], we choose e(0) ∈ �co and
θ̂(0) ∈ �. Then we can write the tracking error model as

ė2 = [
φ1(e, qd, q̇d ) + φ2(e1, qd)τ s(e, Qd, θ̂) − q̈d

]
+ [

φ2(e1, qd )τ s(ê, Qd, θ̂) − φ2(e1, qd )τ s(e, Qd, θ̂)
]
.

(45)

This can be viewed as a perturbed closed-loop model
under state feedback over the time interval [T1(ε), T3].
From part 1, we already know that the perturbation term
‖η‖ decays exponentially fast to a level at which ‖η‖ is
O(ε) and W (η(t)) ≤ ε2β. Now ∀(e, θ̂ , η) ∈ {e ∈ �c} × {θ̂ ∈
�} × {η ∈ �ε} with �ε = {η | W (η(t)) ≤ ε2β} for all t ∈
[T1(ε), T3], and we have

‖τ s(ê, Qd, θ̂) − τ s(e, Qd, θ̂)‖ ≤ kε1‖η‖,
(46)‖(M̂ − M)λη2 + (Ĉ − C)λεη1‖ ≤ ksm1‖η‖

with kε1 > 0 and ksm1 > 0. Now using perturbed error model
(45) as well as inequality (46), the derivative of the lyapunov
function (29) has the following simplified form:

V̇ ≤ −STKS + ‖S‖ksm1‖η‖ + kε1‖η‖‖S‖. (47)

As we have shown in part 1 that η is bounded by a constant
Koε with Ko > 0 and ε > 0, the term ‖η‖ is also bounded.
Then, Eq. (47) can be simplified as

V̇ ≤ −λmin(K)‖S‖2 + Koεkε1‖S‖ + ‖S‖ksm1Koε. (48)

Now, ∀e ∈ �c, ∀θ̂ ∈ �, and ∀θ ∈ �; we can further simplify
V̇ as

V̇ ≤ −�oV + χε, (49)

∀e ∈ �c, ∀θ̂ ∈ �, and ∀θ ∈ �, where χ = Koγpkε1 +
γpksm1Ko, �o = λmin .(K)

λmax .(Qsm) , and γp is the bound for the error
state ‖S‖ over the set �c. From (49), we can see that on the
boundary V = c, V̇ < 0 when c >

χε

�o
. Since ε is a small

bounded positive constant and c is chosen strictly greater
than c4 and χε

�o
, we can conclude that the set �c × � × �ε

is a positively invariant set, and inside this set, e ∈ �c. This
implies that the state trajectory (e, θ̂ , η) is confined inside
the set �c × � × �ε . By making ε small, one can make
this invariant set very small close to the origin. Hence,
we conclude that T3 = ∞, and all the signals in (13) and
(14) are bounded ∀t ≥ 0 and η is O(ε) ∀t ∈ [T1, T3]. Now
integrating (49) from t = 0 to t = T yields V (t) − V (0) ≤
− ∫ T

0 α1‖e‖2dt + T χε. Since V (0) ≥ 0, and furthermore

from (29) we can write the above equation as
∫ T

0 α1‖e‖2dt ≤
1
2S(0)T MS(0) + k6ε with k6 = T χ . This implies that if
ε → 0, then the output feedback SMC (Lyapunov-stability
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condition defined by (49)) can recover the performance (the
bound on error trajectories) achieved by the state-feedback-
based SMC controller (Lyapunov-stability condition defined
by (7)).
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