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The interface of a strain-rate-softening fluid that displaces a low-viscosity fluid in a
circular geometry with negligible drag can develop finger-like patterns separated by
regions in which the fluid appears to be torn apart. Such patterns were observed and
explored experimentally in Part 1 using polymeric solutions. They do not occur
when the viscosity of the displacing fluid is constant, or when the displacing
fluid has no-slip conditions along its boundaries. We investigate theoretically the
formation of tongues at the interface of an axisymmetric initial state. We show that
finger-like patterns can emerge when circular interfaces of strain-rate-softening fluids
displace low-viscosity fluids between stress-free boundaries. The instability, which
is fundamentally different from the classical Saffman–Taylor viscous fingering, is
driven by the tension that builds up along the circular front of the propagating fluid.
That destabilising tension is a geometrical consequence and is present independently
of the nonlinear properties of the fluid. Shear stresses stabilise the growth either
along extended circumferential streamlines or through a street of vortices. However,
such stabilising processes become weaker, thereby allowing the instability to develop,
the more strain-rate-softening the fluid is. The theoretical model that we present
predicts the main experimental observations made in Part 1. In particular, the
patterns we predict using linear-stability theory are consistent with the strongly
nonlinear experimental patterns. Our model depends on a single dimensionless number
representing the power-law exponent, which implies that the instability we describe
could arise in any extensional flow of strain-rate-softening material, ranging from
suspensions that rupture in squeeze experiments to rifts formed in ice shelves.

Key words: complex fluids, instability, thin films

1. Introduction
Interfaces between fluids that displace other fluids in quasi-two-dimensional

geometries are common in various natural and industrial systems. In some settings,

† Email address for correspondence: roiy@bgu.ac.il
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such interfaces can maintain a smooth circular or planar shape, but in others they
can develop fingering instabilities, which can be beneficial to some processes and
detrimental to others. Therefore, predicting the stability of such interfaces and
controlling it is of major interest.

A large class of interfacial-stability problems, known as viscous fingering, involves
flows that are dominated by shear, typically due to the traction imposed by confining
solid boundaries. In these shear-dominated flows in a uniform gap, it is established
that the interface is stable when the displacing fluid is more viscous (less mobile),
either in a system of Newtonian fluids (e.g. Saffman & Taylor 1958; Wooding &
Morelseytoux 1976; Paterson 1981; Homsy 1987; Cardoso & Woods 1995; Jha,
Cueto-Felgueroso & Juanes 2011), or when at least one of the fluids is complex
(e.g. Zhao & Maher 1993; Kondic, Shelley & Palffy-Muhoray 1998; Coussot 1999;
Lindner, Bonn & Meunier 2000a). The development of instability in these systems
is primarily because the magnitude of the driving pressure gradient is larger in the
displaced fluid than in the displacing fluid, as described in more detail in Part 1.

Another important factor for the stability of shear-dominated flows is the flow
geometry. Particularly, for a constant-flux source, Newtonian flows in a circular
geometry tend to be more stable than flows in a linear geometry (e.g. Paterson 1981)
because the velocity of circular interfaces declines with time and circumferential
stretching tends to push perturbations to lower wavenumbers. In the case of
strain-rate-softening fluids, an axisymmetric flow configuration may appear prone
to an instability in a single fluid phase. This is because the declining strain rate with
radius leads to monotonically growing viscosity, or declining mobility, with radius,
which implies that any ring of fluid within such flows is like an interface between an
inner less-viscous fluid and an outer more-viscous fluid. Although there is no viscosity
jump across such fluid rings and they behave as rather smeared interfaces, one might
anticipate that instability could still occur as it does in miscible Newtonian fluids
(Paterson 1985; Manickam & Homsy 1993; Holloway & de Bruyn 2005). However,
viscous fingering in displacing strain-rate-softening fluids has not been observed thus
far. Similar axisymmetric flows of strain-rate-softening fluids were also studied using
viscous gravity currents that propagate into low-viscosity fluids over a horizontal
substrate. Such flows have mixed boundary conditions of no slip along their base
and no stress along their free surface due to the absence of confinement. Here too,
despite a radially increasing viscosity within the strain-rate-softening displacing fluids,
no fingering was observed (Sayag & Worster 2013).

In another class of problems, which forms the focus of this paper, the fluids have
free top and bottom surfaces along which traction is negligible and the circular flow
is dominated by extension rather than by shear. In this case, evidence shows that
unique finger-like patterns can arise, with the fluid appearing to be torn apart, when
the displacing fluid is strain-rate-softening. For example, ice shelves deform like
strain-rate-softening fluids (Glen 1955) under negligible traction, as they spread over
the ocean. When ice shelves are free from lateral confinement, finger-like patterns can
emerge normal to the shelf front, separated by deep rifts, reminiscent of tears (rips)
that cut through the entire ice thickness (Hughes 1983; Doake & Vaughan 1991;
Bassis et al. 2008; Borstad, McGrath & Pope 2017). Similarly tear-like patterns
emerge when pastes squeezed by parallel disks emerge outside of the rim of the
disks into a region that is unconfined where no external stress is applied (Mascia
et al. 2006; Roussel, Lanos & Toutou 2006). These patterns are potentially related
to the migration of the liquid phase within the pastes as they spread. In contrast,
the interface remains stable in similar flows of Newtonian displacing fluids, such as
viscous gravity currents that spread under no traction (Pegler & Worster 2012).
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t = 60 s t = 100 s t = 160 s

FIGURE 1. (Colour online) Selected plan view snapshots from a laboratory experiment
with constant source flux (Q=2.64 gm cm−3), showing polymer solution (blue) displacing
a denser salt solution (transparent) in a circular geometry (Sayag & Worster 2019).

In Part 1 of this study (Sayag & Worster 2019) we presented a laboratory study
in which thin films of strain-rate-softening fluids displacing ambient low-viscosity
fluids developed tearing patterns. The displacing fluid evolved in circular geometry
under spatially mixed boundary conditions: at radii r< rG the flow was under no-slip
basal conditions, while for r> rG no-stress basal conditions were imposed, where the
transition position rG was fixed in time. The top free surface of the displacing fluid
was under no-stress conditions uniformly. We found that an initially circular front
of the displacing fluid became unstable near rG and developed tongues that moved
as solid blocks (figure 1), similar to the movement of floating ice tongues (e.g.
Holdsworth 1983) or of foam under wall slip (Lindner, Coussot & Bonn 2000b). The
tips of the tears at rG were sharp, reminiscent of fracture tips. As the tongues grew
longer, some of those tips were advected with the flow and, as they did, they closed
down by the joining of adjacent tongues into wider ones. Consequently, the number
of tongues declined with time (figure 1) in patterns that emerged consistently over a
wide range of fluxes of the displacing fluid (Sayag & Worster 2019). Such an inverse
cascade of the number of tears or the tongues in between appears also to characterise
the patterns observed in squeezed pastes (Mascia et al. 2006) and in fractured thin
elastic plates (Vermorel, Vandenberghe & Villermaux 2010; Vandenberghe, Vermorel
& Villermaux 2013).

In this Part 2 of the study of instability of radially spreading extensional flows,
we analyse theoretically the laboratory experiments that were presented in Part 1
(Sayag & Worster 2019). We show that the instability that leads to the formation of
tongues has an entirely different mechanism than the classical Saffman–Taylor viscous
fingering. In particular, it is a consequence of the unique configuration of a circular
geometry combined with free-slip boundary conditions and a strain-rate-softening
displacing fluid. Although the displacing fluid in those experiments was viscoelastic,
they were performed at small Deborah and Reynolds numbers (Sayag & Worster
2019), implying that the leading-order deformation was viscous and that the flow
was inertialess. Under these conditions, we develop a general mathematical model
for power-law fluids that consists of the major physical and geometrical components
of the laboratory experiments (§ 2). We use linear-stability theory to explore the
instability of axisymmetric solutions and the possible development of fingers, and
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FIGURE 2. (Colour online) Diagram of the flow geometry considered in the mathematical
model.

investigate several asymptotic limits of that model to validate numerical results (§ 3)
and to elucidate the underlying physical mechanism of the instability (§ 4). We then
focus on the consistency of the model predictions with the experimental measurements
(§ 5) reported in Sayag & Worster (2019).

2. The mathematical model

In order to understand our two major experimental observations – that the initially
circular interface becomes unstable as it begins to float, and that the number of
emerging tongues declines with time (Sayag & Worster 2019) – we develop a
relatively simple model that captures the major physical and geometrical components
of the system.

We consider the flow in an annular layer of fluid that emerges from a fixed inner
radius at rG, representing the position where the fluid begins to float, and that has
an outer radius rN(θ, t), representing the leading interface of the displacing fluid
layer, that evolves with time and can vary with azimuth (figure 2). Based on the
experimental observations that variations in the thickness of the floating fluid layer
were not significant, we assume that the layer has a uniform thickness h. Traction
is absent along the top and bottom surfaces of the propagating fluid so that the
horizontal flow is vertically uniform. This situation is analogous to the flow inside
a Hele-Shaw cell with a uniform gap but with no-stress conditions along the rigid
boundaries. The displacing fluid is discharged axisymmetrically at a constant flux
Q from a cylindrical source of radius rG, and the flow throughout the domain is
inertialess (Re� 1). We assume that the displacing fluid is purely viscous, in light of
the evidence presented in Part 1 that the experiments performed had small Deborah
number (De� 1) (Sayag & Worster 2019).
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Mathematically, we consider the two-dimensional Stokes flow of a power-law fluid
governed by the equations

∇ · σ = 0
∇ · u= 0

}
in rG < r< rN, (2.1a)∫ 2π

0

∫ rN

rG

r dr dθ =
Qt
h
, (2.1b)

ṙN = u(rN), (2.1c)

where u= ur̂+ vθ̂ is the plane velocity field with radial and azimuthal components u
and v respectively, ṙN = ∂rN/∂t, and σ is the full two-dimensional stress tensor.

The viscous deformation of the displacing fluid in Part 1 is consistent with a
power-law fluid of both shear and extensional thinning for a wide range of strain
rates with an approximately similar exponent. As the deformation rate tends to zero
the fluid may unyield or have a bounded viscosity. Here we are interested in exploring
the dynamics near the emergence of the tongues, where the propagating front is not
far from the inner boundary. In this range, the experimental setting suggests that the
deformation rate is consistent with the power-law behaviour of the fluid and that
elasticity does not contribute significantly. Along the developed tongues, further away
radially from the inner boundary and the tip of the tears where the tongues emerge,
the fluid may unyield or have a much larger viscosity than in the region of interest.
These evidences encourage us to use the simpler power-law model as a deformation
law with the notion that the leading-order qualitative behaviour is captured. Moreover,
the viscosity singularity of a strain-rate-softening power-law fluid at zero strain rate
is reminiscent of a yield stress. Therefore, we consider a two-dimensional stress
tensor of a generalised Newtonian fluid σ = −pI + 2µe, where p is the pressure
field, e = 1

2(∇u+∇uT) is the rate-of-strain tensor and µ is the strain-rate-dependent
viscosity of a power-law fluid, given by

µ=me1/2(1/n−1)
II , (2.2)

where eII≡
1
2 e :e is an invariant of the tensor e, n is a dimensionless, constant material

property and m is a constant consistency factor. This model represents a strain-rate-
softening material when n> 1, a strain-rate-hardening material when 0< n< 1 and a
Newtonian fluid when n= 1. Note that in some literature, n is defined as the inverse
of what is used here. Our choice is motivated by the common usage in glaciological
studies. Equations (2.1) are respectively the momentum balance, local mass balance,
global mass balance and a kinematic interfacial condition that the velocity of the front
is equal to the material radial velocity at the front. The boundary conditions at the
inner and outer radii are

u=
Q

2πhr
, v = 0 at r= rG, (2.3a)

n̂ · σ · t̂= 0, n̂ · σ · n̂= 0 at r= rN(θ, t), (2.3b)

where

n̂=
r̂−

r′N
rN

θ̂√
1+

(
r′N
rN

)2
, t̂=

r′N
rN

r̂+ θ̂√
1+

(
r′N
rN

)2
(2.4a,b)
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are respectively the normal and tangential unit vectors at the moving interface rN , with
r′N ≡ ∂rN/∂θ . Conditions (2.3) represent the uniform injection velocity and no slip at
the inner radius rG, and that the outer interface is stress free. We non-dimensionalise
(2.1)–(2.3) letting

r= rGr̃, t= T t̃, u= U ũ,
v = U ṽ, p=P p̃, µ=Mµ̃,

}
(2.5)

where a tilde denotes a dimensionless variable, and

U ≡
Q

2πhrG
, T ≡

rG

U
, M≡mT (1−1/n), P ≡

M
T

(2.6a−d)

are characteristic scales for the velocity, time, viscosity and pressure, respectively.
Substituting and removing tildes leads to the dimensionless equations

∇ · (2µe)=∇p
∇ · u= 0

}
in 1< r< R(θ, t), (2.7a)∫ 2π

0

∫ R

1
r dr dθ = 2πt, (2.7b)

Ṙ= u(R), (2.7c)

where R(θ, t)≡ rN(θ, t)/rG and Ṙ= ∂R/∂t, to the dimensionless viscosity

µ= e1/2(1/n−1)
II (2.8)

and to the dimensionless boundary conditions

u= 1, v = 0 at r= 1, (2.9a)

σrθ −
R′

R
(σθθ − σrr)−

(
R′

R

)2

σrθ = 0

σrr − 2
R′

R
σrθ +

(
R′

R

)2

σθθ = 0

 at r= R(θ, t), (2.9b)

where R′ = ∂R/∂θ and where the dimensionless stress tensor is σ = −pI + 2µe.
Consequently, equations (2.7), (2.9) involve a single dimensionless parameter n that
enters the constitutive equation through the viscosity function µ.

3. Linear-stability analysis

We investigate the temporal stability of the front r= rN(θ, t) to small perturbations
with respect to an axisymmetric base state.

3.1. The base state
We look for an axisymmetric solution to (2.7), (2.9) in which

u= u0(r), v = 0, p= p0(r), R= R0(t). (3.1a−d)
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n = 6

-10 -5 0
ViscosityViscosity
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state

Perturbed
state
k = 3

5 101.0 1.5 2.0 2.5

(a) (b)

3.0

FIGURE 3. (Colour online) The base state and a perturbed state for n= 6, R0= 2. (a) The
base state is axisymmetric with radially growing viscosity µ0 (colour). (b) The perturbation
flow for k = 3, showing the perturbation viscosity (colour), velocity field (arrows) and
streamlines (blue and red curves), where G = 0.1. In both panels ( , brown) marks the
inner boundary rG, and ( , green) marks the leading front rN .

Consequently, the boundary conditions at the front R0 (2.3b) simplify to

σ0rθ = σ0rr = 0. (3.2)

The solution, which we refer to as the base state, is given by the radial flow from a
cylindrical source from which we can determine that

u0 =
1
r
, v0 = 0, R0 =

√
1+ 2t, (3.3a)

so that

e0 =
1
r2

(
−1 0
0 1

)
, (3.3b)

µ0 = r2(1−1/n),
∂p0

∂r
=−

2
r2

∂µ0

∂r
. (3.3c)

Therefore, strain rates decline inversely with the square of the radius, which implies
that the viscosity of a strain-rate-softening fluid (n> 1) increases radially (figure 3a),
while that of a strain-rate-hardening material (0< n< 1) declines radially. Note that
equations (3.3b) and (3.3c) imply that

p0 = 2(n− 1)r−2/n
− 2nR−2/n

0 , (3.4a)

σ0rr =−2n(r−2/n
− R−2/n

0 ), (3.4b)

σ0θθ =−2n(r−2/n
− R−2/n

0 )+ 4r−2/n. (3.4c)
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3.2. Evolution of small perturbations
We next apply a harmonic perturbation to the base state having an azimuthal
wavenumber k, and investigate its linear stability. The full fields have the form

F=F0(r)+F1(r, θ, t), (3.5a)
R= R0(t)+ R1(θ, t), (3.5b)

where the subscripts 0,1 denote respectively the base state and the perturbation field,
F0 ≡ (u0, v0, p0, e0), F1 ≡ (u1, v1, p1, e1). The geometric perturbation is R1 = εeikθ+Gt,
where ε� 1 is the perturbation amplitude, k is the circumferential wavenumber, G is
the growth rate and F1/R1 is a function of r of the order of unity. The perturbation
strain-rate components are

e1rr =
∂u1

∂r
, (3.6a)

e1θθ =
1
r
∂v1

∂θ
+

u1

r
, (3.6b)

e1rθ =
1
2

(
1
r
∂u1

∂θ
+
∂v1

∂r
−
v1

r

)
. (3.6c)

The corresponding strain-rate invariant becomes

eII =
1
2(e0 + e1) : (e0 + e1)=

1
2 e0 : e0 + e0 : e1 (3.7)

to leading order. If we denote eII0 ≡
1
2 e0 : e0 = e2

0rr = r−4 and eII1 ≡ e0 : e1 = 2e0rre1rr =

−2e1rrr−2 then Taylor expansion of the viscosity implies that to leading order

µ(eII)=µ(eII0 + eII1) = (eII0 + eII1)
1/2(1/n−1)

= e1/2(1/n−1)
II0

+ eII1

1
2

(
1
n
− 1
)

e1/2(1/n−1)
II0

eII0

= µ0 +µ1, (3.8)

where the perturbation viscosity is

µ1 =

(
1−

1
n

)
µ0r2e1rr. (3.9)

Therefore, the decomposed stress field is

σ = σ0 + σ1 = −(p0 + p1)I+ 2(µ0 +µ1)(e0 + e1)

= −p0I+ 2µ0e0 + (−p1I+ 2µ0e1 + 2µ1e0), (3.10)

resulting in perturbation stress components

σ1rr =−p1 +
2µ0

n
e1rr, (3.11a)

σ1θθ =−p1 +
2µ0

n
e1θθ , (3.11b)

σ1rθ = 2µ0e1rθ . (3.11c)
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Therefore, substituting the perturbed fields in (2.7a), the order ε force-balance
equations are

1
n

[
∂

∂r
(2µ0e1rr)+

4
r
µ0e1rr

]
+

2
r
∂

∂θ
(µ0e1rθ)=

∂p1

∂r
, (3.12a)

1
n

[
2
r
∂

∂θ
(µ0e1θθ)

]
+

4
r
µ0e1rθ +

∂

∂r
(2µ0e1rθ)=

1
r
∂p1

∂θ
, (3.12b)

while the continuity equation in (2.7a) can be expressed as

e1rr + e1θθ = 0. (3.12c)

It is interesting to note that n does not appear additively in a coefficient proportional
to n − 1 but rather multiplicatively in coefficients proportional to 1/n. This is an
indication that non-Newtonian effects do not introduce new qualitative influences but
rather modify physical influences quantitatively. We return to this point in § 3.4 below.

Following a similar substitution in (2.7b) the linear terms in ε∫ 2π

0
eikθ dθ = 0 (3.13)

imply that the wavenumber k is integer, as expected from the requirement of
periodicity around a circle. The kinematic condition (2.7c) gives

G =
(
∂u0

∂r
+

u1

R1

)∣∣∣∣
r=R0

= −
1
R2

0
+

u1

R1

∣∣∣∣
r=R0

, (3.14)

to leading order. The first term in this expression is always negative and therefore
suppresses the perturbation growth and stabilises the flow independently of the
constitutive model. This is a reflection of mass conservation, since the azimuthal
straining of the base flow e0θθ is always and everywhere positive, and is simultaneous
with radial compression e0rr = −e0θθ < 0 (3.12c). Thus, the base-flow radial velocity
of the front diminishes with r in order to compensate for the areal expansion with
radius, thereby tending to keep the front axisymmetric.

The conditions at the inner boundary are

u1 = 0,
∂u1

∂r
= 0 at r= 1, (3.15a)

where continuity was used to derive the last equation from the no-slip condition. The
order ε stress conditions (2.3b) at the front R simplify to

σ1rθ=
∂R
∂θ

σ0θθ − σ0rr

R0
,

σrr = 0

 at r= R. (3.15b)

Expanding further around R0 we find that

e1rθ =
2
R3

0

∂R1

∂θ
,

p1 =
2µ0

n
e1rr +

4µ0

R3
0

R1

 at r= R0. (3.15c)
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FIGURE 4. (Colour online) (a) Results of the stability analysis, showing the neutral curves
(colour) of the set of wavenumbers k= 1, 2, 3, 4, 5, 10, 20, 30, 50, 100, 200 as a function
of the power-law exponent n and of the normalised thickness of the annular layer of
fluid δ/(π/2). The unstable region is always above the neutral curves. The envelope
of these neutral curve is marked by (blue colour). When more modes are included
(e.g. figure 5) that envelope converges to a global neutral curve, which is flatter at the
left edge (smaller δ). (b) The same modal neutral curves presented in panel (a), but as a
function of the dimensionless quantity K≡ kδ converge with the growth of k to a universal
neutral curve near K∼π/2. Modes with n< 1 are always stable and therefore not shown.

3.3. Numerical solution of the perturbation equations
We solved equations (3.12) together with the boundary conditions (3.15) using
MATLAB bvp4c. In this method, R0, n and k are treated as specified parameters and
the solver computes the perturbation velocity and pressure fields. Having the solution
for the perturbation velocity field (e.g. figure 3b) we evaluate the radial perturbation
velocity at the base-state front and then the growth rate G using (3.14).

Repeating this computation for a range of the parameters k, n and R0, we find a
range of unstable modes, which we describe through the neutral-stability curves (G =
0) for each wavenumber k in the n− δ space, where δ ≡ R0 − 1 represents the width
of the base-state annular shape (figure 4a). Neutral curves n(δ) are shown for some
specified values of k, and the envelope of these curves gives a global neutral curve.
We find that unstable modes, in which circular fronts break down into fingered fronts
can emerge in fluids that are sufficiently strain-rate-softening (n>1). Specifically, each
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FIGURE 5. (Colour online) Results of the stability analysis, showing the most-unstable
wavenumbers k (a) and the corresponding growth rates (b) as a function of the power-law
exponent n and of the thickness of the annular layer of fluid δ/(π/2), among a denser (but
not complete) set of wavenumbers than that shown in figure 4. Therefore, the envelope of
these neutral curves ( ) (blue colour) is more similar to the global neutral curve than
the one shown in figure 4. Modes with n< 1 are stable and therefore not shown.

neutral-stability curve in the n − δ space corresponding to a particular mode k > 1
has a general U shape that encloses an unstable domain between some finite n > 1
and n→∞. The k = 1 neutral curve is unique, since it is open and asymptotically
converges to n= 1 as δ→∞. The minimum of each of the k > 1 curves coincides
approximately with the base-state width δ/(π/2)= 1/k. Therefore, plotting the same
neutral curves versus K ≡ δk (figure 4b) results in a series of neutral curves that
converge as k→∞ to a universal curve whose minimum is approximately at K=π/2.
This universality with respect to K motivates the development of a simpler model for
the perturbation field that depends on two parameters n,K rather than the present triple
n, k, δ, which we investigate thoroughly in § 3.5.

The neutral curves in figure 4(a) intersect and form a global domain of unstable
modes out of a small set of wavenumbers. To identify the most unstable mode for
each n and δ, we compare the growth rates among a finite though more dense set of
modes (figure 5a). Consequently we find that the most unstable wavenumbers depend
only weakly on n. In addition, the corresponding growth rates depend only weakly on
δ, but grow with n (figure 5b).

Considering the details of the perturbation flow, we find that it can vary substantially
between different modes, and between fluids that are strain-rate-softening and
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(a) (b)

k = 4

k = 8

k = 12

Stable

Stable

Stable

–5 0 5
Viscosity

Stable

Unstable

Stable

Viscosity
–20 –10 0 10 20

FIGURE 6. (Colour online) One-wavelength sections of the two-dimensional flow for
k = 4, 8, 12 (R0 = 1.23) and for n = 0.3 (a) and n = 3 (b), showing the perturbation
velocity field (→), streamlines ( , red (clockwise) and , blue (counterclockwise)
curves), perturbed front ( green) and viscosity field (colour). All modes are stable apart
from the k= 8, n= 3 mode. The specific growth rates are (from low to high wavenumbers)
G ≈ −0.54, −0.53, −0.55 (n = 0.3) and G ≈ −0.03, +0.1, −0.41 (n = 3). Streamlines
absolute values: 0.002, 0.016, 0.064, 0.256, 0.512.

strain-rate-hardening (figure 6). For strain-rate-softening fluids, the perturbation
viscosity is positive where the perturbed front has a forward bulge (R1 > 0) and
negative along frontal depressions (R1 < 0), implying that the fluid in bulges is stiffer
while in depressions it is softer (n> 1, figure 6b). In the case of strain-rate-hardening
fluids, the viscosity distribution is opposite so that the fluid in forward bulges is
more mobile (n < 1, figure 6a). Unlike the base-state flow, which is purely radial,
the secondary flow involves a significant azimuthal component. Particularly, there
are qualitatively two flow patterns – a converging flow mode in which mass is
carried from frontal depressions to bulges (open streamlines), and a vortex-flow mode
(closed streamlines) that consists of vortices that are centred at the depression–bulge
boundaries and rotate such that their radial component is negative in the centre of
bulges and positive in the centre of depressions. The two flow patterns can coexist
(figure 6) and the total vortex-covered area grows with wavenumber and with the
inverse of n, while flow convergence into bulges persists over increasingly smaller
regions. The nature of these vortices is discussed in more detail in § 4.4.2.

To validate the numerical results and investigate the mechanism of the instability,
we develop explicit solutions in several asymptotic limits in the following sections.

3.4. Asymptotic solutions: the Newtonian-fluid limit
In the Newtonian limit (n= 1)

µ0 = 1, (3.16)

so that the perturbation equations simplify to

2
∂e1rr

∂r
+

4
r

e1rr +
2
r
∂e1rθ

∂θ
=
∂p1

∂r
, (3.17a)
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2
r
∂e1θθ

∂θ
+

4
r

e1rθ + 2
∂e1rθ

∂r
=

1
r
∂p1

∂θ
, (3.17b)

e1rr + e1θθ = 0, (3.17c)

with the boundary conditions

u1 = 0
∂u1

∂r
= 0

 at r= 1, (3.18a)

e1rθ =
2
R3

0

∂R1

∂θ

p1 = 2e1rr +
4
R3

0
R1

 at r= R0. (3.18b)

These last two boundary conditions can be rearranged using (3.6) and (3.17b,c) to
give

R2
0u′′1 + R0u′1 + (k

2
− 1)u1 =

4k2

R2
0

R1

R3
0u′′′1 + 2R2

0u′′1 − (1+ 3k2)R0u′1 + (1− k2)u1 =−
4k2

R2
0

R1

 at r= R0, (3.18c)

while (3.14) implies that

u1 =

(
G +

1
R2

0

)
R1 at r= R0. (3.18d)

Equations (3.17) can be combined into a fourth-order ordinary differential equation
for u1

1
2k2

r4u′′′′1 +
3
k2

r3u′′′1 +
(

5
2k2
− 1
)

r2u′′1 −
(

1+
1

2k2

)
ru′1 +

(
k2

2
+

1
2k2
− 1
)

u1 = 0,

(3.19)
where prime denotes derivative with respect to r, which has the general solution

u1 = c1r1+k
+ c2r1−k

+ c3r−1+k
+ c4r−1−k. (3.20)

This general solution can be used in (3.18a,c,d) to give homogeneous equations for
c1, c2, c3, c4 and R1 (appendix A). The solvability condition gives the dispersion
relation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0
1+ k 1− k k− 1 −(k+ 1) 0

(1+ k)R1+k
0 (k− 1)R1−k

0 (k− 1)Rk−1
0 (1+ k)R−(1+k)

0 −
2k
R2

0

k(1+ k)R1+k
0 k(1− k)R1−k

0 (k2
+ k− 2)Rk−1

0 (2− k2
+ k)R−(1+k)

0 −
2k
R2

0

R1+k
0 R1−k

0 Rk−1
0 R−(1+k)

0 −G −
1
R2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(3.21)
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-1/R0
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1 21/4

FIGURE 7. (Colour online) The growth rate for n= 1 as a function of the width of the
fluid layer normalised by π/2 for k= 2, 3, 4, 10, evaluated by the analytic solution (3.22)
(colour), and validated numerically by the full model solution ( ). The base-state rate-
of-strain contribution to the growth rate −1/R2

0 is marked by ( ).

which can be evaluated to yield the growth rate

G =−
1
R2

0
+

2k2(R2
0 − 1)2

k2R2
0(R

2
0 − 1)2 + R4

0(R
k
0 + R−k

0 )
2
, (3.22)

which is found to be consistent with the numerical solution of the full model that we
described in the previous section (figure 7).

In the limit R0→ 1 the growth rate approaches −1 for all modes and the front is
stable. This limit is equivalent to the limit rG→∞ so that δ→ 0, which implies that
a planer interface is stable. The growth rate becomes less negative as R0 increases,
and in the limit R0→∞, for any finite k we evaluate

G(k)∼
1
R2

0

(
−1+

2k2

k2 + R2k−2
0

)
, (3.23)

which implies that G 6 0 for all k in the Newtonian limit, and confirms the results
of the stability analysis for power-law fluid that the neutral curve does not intersect
n= 1 (figure 5). An important feature of the Newtonian-fluid growth rate is that in the
range R0< 2⇔ δ < 1, the growth rate has a local maximum at approximately R0− 1=
δ∼ 1/k (figure 7). This thickness–wavenumber relation coincides with the relation that
the most-unstable modes satisfy in the case of strain-rate-softening fluid (n > 1), as
indicated in figure 4, suggesting that these local maxima in the n = 1 case develop
into the global maxima at higher n. This implies that the destabilising mechanism is
present in the Newtonian limit. In particular, (3.22) implies that u1(R0) is positive,
with a maximum, and it is only the geometrical stretching −1/R2

0 that keeps the flow
stable. We elaborate on this point when discussing the instability mechanism in § 4.

3.5. Asymptotic solutions: the thin-film approximation
To get deeper insights into the instability mechanism, we take advantage of the fact
that, at early time, the width of the annular sheet of fluid rN(t)− rG is small compared

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.778


Radially spreading extensional flows. Part 2. Theory 753

with rG so that a thin-film theory could be utilised to describe the leading-order flow.
In this limit the radius is r = 1 + δξ , where δ � 1 and ξ is the dimensionless
coordinate of order 1, implying that dr= δdξ . In addition, we let U, V and P denote
the magnitude of the perturbation fields corresponding to u1, v1 and p1, respectively.
Next, we expand the full perturbation equations for the momentum and mass balance
(3.12)

1
n
∂

∂r

(
2µ0

∂u1

∂r

)
+

4µ0

rn
∂u1

∂r
+

1
r
∂

∂θ

[
µ0

(
1
r
∂u1

∂θ
+
∂v1

∂r
−
v1

r

)]
=
∂p1

∂r
, (3.24a)

1
rn
∂

∂θ

[
2µ0

r

(
∂v1

∂θ
+ u1

)]
+

2µ0

r

(
1
r
∂u1

∂θ
+
∂v1

∂r
−
v1

r

)
+
∂

∂r

[
µ0

(
1
r
∂u1

∂θ
+
∂v1

∂r
−
v1

r

)]
=

1
r
∂p1

∂θ
, (3.24b)

∂u1

∂r
+

1
r
∂v1

∂θ
+

u1

r
= 0, (3.24c)

and represent them in terms of the thin-layer coordinate and the dimensionless
perturbation fields (tildes) u1 =Uũ1, v1 = V ṽ1 and p1 = Pp̃1 to get

2U
nδ2

∂

∂ξ

(
µ0
∂ ũ1

∂ξ

)
+

4µ0

(1+ δξ)n
U
δ

∂ ũ1

∂ξ

+
µ0

1+ δξ
∂

∂θ

(
U

1+ δξ
∂ ũ1

∂θ
+

V
δ

∂ṽ1

∂ξ
−

V ṽ1

1+ δξ

)
=

P
δ

∂ p̃1

∂ξ
, (3.25a)

2µ0

(1+ δξ)2n

(
V
∂2ṽ1

∂θ 2
+U

∂ ũ1

∂θ

)
+

2µ0

1+ δξ

(
U

1+ δξ
∂ ũ1

∂θ
+

V
δ

∂ṽ1

∂ξ
−

V ṽ1

1+ δξ

)
+

1
δ

∂

∂ξ

[
µ0

(
U

1+ δξ
∂ ũ1

∂θ
+

V
δ

∂ṽ1

∂ξ
−

V ṽ1

1+ δξ

)]
=

P
1+ δξ

∂ p̃1

∂θ
, (3.25b)

U
δ

∂ ũ1

∂ξ
+

V
1+ δξ

∂ṽ1

∂θ
+

Uũ1

1+ δξ
= 0, (3.25c)

where µ0 = (1+ δξ)2(1−1/n). The corresponding boundary conditions are

ũ1 =
∂ ũ1

∂ξ
= 0 at ξ = 0, (3.26a)

1
2

(
ikU

1+ δ
ũ1 +

V
δ

∂ṽ1

∂ξ
−

V ṽ1

1+ δ

)
=

2ik
(1+ δ)3

R1

2U(1+ δ)2(1−1/n) 1
nδ
∂ ũ1

∂ξ
+ 4(1+ δ)2(1−1/n)−3R1 = Pp̃1

 at ξ = 1. (3.26b)

Since n can be any positive number and k can be any positive integer, we now
consider several distinguished limits of this thin-film model as shown in table 1.
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§ 3.4 All δ All k — n= 1

§ 3.5.1 δ� 1 k� 1 δk≈ 1 All n
§ 3.5.2 δ� 1 k� 1 δk≈ 1 n� 1
§ 3.5.3 δ� 1 k� 1 δk≈ 1 n� 1

TABLE 1. Asymptotic solutions and distinguished limits considered.

3.5.1. The distinguished limit δ� 1, k� 1, δk≈ 1
We consider the distinguished limit in which δ � 1, k � 1 while δk ≈ 1. The

dominant balance in (3.25c) implies that U ∼ V , and (3.25a) implies that Pk∼ V/δ2.
Therefore to leading order the conservation equations simplify to (tildes removed)

2u′′1
nδ2
− k2u1 +

ik
δ
v′1 =

p′1
δ
, (3.27a)

−
2k2

n
v1 +

ik
δ

u′1 +
1
δ2
v′′1 = ikp1, (3.27b)

1
δ

u′1 + ikv1 = 0, (3.27c)

where primes denote derivatives with respect to the thin-film coordinate ξ , the leading-
order boundary conditions are

u1(0)= 0, v1(0)= 0, ikδu1(1)+ v′1(1)= 4iδkR1, p1(1)=
2
nδ

u′1(1), (3.27d)

and the corresponding growth rate is

G =−1+ u1(ξ = 1). (3.28)

To solve for u1 we combine equations (3.27a–c) to get the following fourth-order
differential equation for u1(ξ)

uiv
1 −

2(2− n)
n

K2u′′1 +K4u1 = 0, (3.29)

where K ≡ kδ. We solve this equation using the first two boundary conditions in
(3.27d) to get

u1 = A sinh aKξ sin bKξ + B
(

sinh aKξ cos bKξ −
a
b

cosh aKξ sin bKξ
)
, (3.30)

where a and b satisfy the relations

a2
− b2
=

2− n
n

, ab=

√
n− 1
n

. (3.31a,b)

All four solutions for a and b result in the same u1(ξ). Choosing for example a =
1/
√

n and b=
√
(n− 1)/n and using the other two boundary conditions in (3.27d) to
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solve for the growth rate, we find that

G =−1+

2n sin2

(
K

√
n− 1

n

)

sin2

(
K

√
n− 1

n

)
+ (n− 1) cosh2

(
K
√

n

) . (3.32)

This prediction of the growth rate and of the most-unstable wavenumber is consistent
with the solution of the full equations (3.12) in the thin-film limit (figure 8). Instability
emerges in the thin-film limit for n & 2.5. The neutral curve of the full solution
follows the same path, but a departure from the thin-film approximation grows with
δ and is noticeable near δ/(π/2)∼ 1/20 in figure 8, and by the time δ/(π/2)∼ 1/5,
that neutral curve intersects n= 2 (figure 5). Nevertheless, the prediction of the most
unstable wavenumber for n & 2.5 is still consistent between the two models even for
larger δ. A more detailed comparison of the secondary flow between the full and the
thin-film models indicates that the two models are highly consistent (figure 9). In the
Newtonian limit (n→ 1) the growth rate is

Gn→1 =−
1− 2K2

+ cosh(2K)
1+ 2K2 + cosh(2K)

=−1+
2K2

K2 + cosh2 K
, (3.33)

which is consistent with the growth rate that was obtained in section § 3.4 without
assuming the thin-film limit, when the same distinguished limit is applied to (3.22).
This expression shows more clearly that the growth rate in the Newtonian limit is
negative for all K, reconfirming that the Newtonian case is stable.

The consistency with the full model that we demonstrate indicates that the thin-film
model preserves the important physical components of the instability mechanism in a
framework that is simple enough to present the solution in a closed form. Moreover,
the thin-film model consists of only two parameters, n and K, as implied from
equation (3.32), rather than the three parameters n, k, δ in the full perturbation model.
One consequence of this simplicity is the collapse of the neutral curves for individual
wavenumbers (figure 10a) into a single universal curve (figure 10b). This result was
anticipated based on the analysis of the full model, as indicated in figure 4(b). The
existence of a universal neutral curve also implies a universal maximum growth-rate
curve, based on (3.32), that marks the most unstable wavenumbers K as a function
of n (figure 10b). This result suggests that K ∼π/2 is a good approximation for the
most unstable wavenumber, particularly at large values of n. In the next section we
investigate an even simpler version of the thin-film model, focusing on the n � 1
limit.

3.5.2. The distinguished limit δ� 1, k� 1, δk≈ 1, n� 1
Consider now the distinguished limit δ � 1, k � 1, δk ≈ 1 and n � 1, which

represents the perfectly plastic limit or a fluid that is ultra-strain-rate-softening, such
as paste or plasticine. Although the growth rate in this case can be derived directly
by considering the limit n→∞ in (3.32), we choose to present the explicit model
equations, as they become useful in analysing the physical mechanism in § 4. The
dominant balance can be derived directly from equations (3.27) by taking the limit
n→∞, which leads to a thin-film model that is independent of n

−k2u1 +
ik
δ
v′1 =

p′1
δ
, (3.34a)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.778


756 R. Sayag and M. G. Worster

1/200

∞ ∞

1/100 1/50 1/30 1/20 1/10

1/200

1 2 3 5 10 20 30 50 100 200
Most unstable wavenumber k Growth rate g

4

1/100 1/50 1/30
∂(t)/(π/2) ∂(t)/(π/2)

1/20 1/10 1/200 1/100 1/50 1/30 1/20 1/10

0.001 0.010.03 0.1 0.3 1 3

1/200 1/100 1/50

Fu
ll 

m
od

el
Th

in
-fi

lm
 li

m
it

1/30 1/20 1/10

2

3

5
n

n

10

(a) (b)

(c) (d)

∞ ∞

10

5

3

2

10

5

3

2

10

5

3

2

FIGURE 8. (Colour online) Comparison of the predicted unstable modes between the
full perturbation model (a,b) and the thin-film model (c,d), showing the most-unstable
wavenumbers (a,c) and the corresponding growth rate (b,d) as a function of n and the
annulus width δ/(π/2), among k=10,20,30,50,100,200. In all panels, (green colour)
mark the global neutral curve (G = 0) predicted by the thin-film model for that specific
set of wavenumbers. The details of the secondary flow for n= 6 and δ = (π/2)/100 (+
red colour) are shown in figure 9.

ik
δ

u′1 +
1
δ2
v′′1 = ikp1, (3.34b)

1
δ

u′1 + ikv1 = 0, (3.34c)

with the boundary conditions

u1(0)= 0, v1(0)= 0, ikδu1(1)+ v′1(1)= 4iδk, p1(1)= 0. (3.34d)
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Viscosity
–200 0 200–200 0

k 
= 

15
0

k 
= 

10
0

k 
= 

50

200

FIGURE 9. (Colour online) One-wavelength sections of the two-dimensional flow for
δ/(π/2)= 1/100 and n= 6, comparing the perturbation flow (arrows and streamlines) and
viscosity (colour) obtained by the thin-film approximation (a) and by the full solution (b),
for the wavenumbers k = 50, 100, 150. The perturbed front is marked with (green
colour). The values of δ and n correspond to the + (red colour) in figure 8. The specific
growth rates are (from low to high wavenumbers) G≈−0.14,+0.40,−0.32 (thin film) and
G ≈−0.12,+0.42,−0.27 (full model). Streamlines absolute values: 0.0005, 0.002, 0.008,
0.032, 0.128, 0.512.
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n

(a) (b)
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gmax

π/2
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FIGURE 10. (Colour online) (a) Neutral curves (colour) predicted by the thin-film
approximation for a set of wavenumbers k = 10, 20, 30, 50, 100, 200 as a function of
the power-law exponent n and of the normalised thickness of the annular layer of fluid
δ/(π/2). The unstable region is always above the neutral cures. (b) The same neutral
curves as in panel (a), but as a function of the dimensionless wavenumber K≡ kδ collapse
into a universal curve. The value of K that corresponds to the maximum growth rate for
each n is marked with ( blue colour).

As before, equations (3.34a–c) can be combined into a single ordinary differential
equation (ODE)

uiv
1 + 2K2u′′1 +K4u1 = 0, (3.35)
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1

1/10

Full model

k = π/2/∂

1/5 1/3
∂/(π/2)

k

1/2

2

3

5

10

FIGURE 11. (Colour online) The instantaneous most-unstable wavenumber for n= 3 as a
function of the thickness of the fluid annulus δ, evaluated by the full model solution ( ,
grey), and by the thin-film and n� 1 limit ( , red) according to the round value of the
wavenumber predicted by (3.38).

and the growth rate in this distinguished limit is

Gn→∞ =− cos(2K) (3.36)

to leading order. This implies that the unstable wavenumbers are in the range

1
4

π

δ
6 kn→∞ 6

3
4

π

δ
(3.37)

and that the maximum growth rate occurs for 2K = π, which corresponds to a most
unstable wavenumber k given by

k≡
π/2
δ
=

π/2
R0 − 1

. (3.38)

This distinguished limit turns out to be quite useful in predicting the most unstable
wavenumber also for finite n, as implied from the thin-film solution for finite n
(figure 10b). Moreover, (3.38) provides a reasonable prediction for the most unstable
wavenumber even for large δ, as implied from a comparison with the solution to the
full perturbation model at low value of n (figure 11).

There is a special feature of the perfect plastic limit given by equation (3.36), which
is that an infinite sequence of harmonics K = ( j+ 1/2)π, j ∈ Z shares the maximum
growth rate. This allows for the growth of linear, non-sinusoidal disturbances albeit of
an identifiable fundamental wavelength.

3.5.3. The distinguished limit δ� 1, k� 1, δk≈ 1, n� 1
Still in the distinguished limit in which δ� 1, k� 1 while δk≈ 1, we now consider

the case n� 1 where the fluid is ultra-strain-rate-hardening. In this limit we can use
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0
0.5 1.0 1.5 2.0
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n = 0.01

n = 0.1

n = 0.5

n = 0.9

-0.2
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-0.6

-0.8

-1.0

FIGURE 12. (Colour online) The growth rate at the thin-film approximation and the limit
n� 1 (- - -) compared with the complete thin-film solution (——), for n ranging between
1/100 and 9/10.

equations (3.27) to find that the leading-order terms are

2u′′1
nδ2
− k2u1 =

p′1
δ
, (3.39a)

−
2k2

n
v1 +

v′′1

δ2
= ikp1, (3.39b)

1
δ

u′1 + ikv1 = 0 (3.39c)

and that the boundary conditions are identical to (3.27d). As before, equations (3.39)
can be combined into a single ODE,

uiv
1 −

4
n

K2u′′1 +K4u1 = 0, (3.40)

and we find that the growth rate in this distinguished limit is

Gn→0 =−1+ n

1−
1

cosh
(

2K
√

n

)
 (3.41)

to leading order in n, which is negative for all K (e.g. figure 12) and is consistent
with (3.32) in the limit n→ 0.

4. Physical interpretation of the tearing mechanism
4.1. The structure of the growth rate

To reveal the physical mechanism behind the instability we now investigate the
structure of the growth rate (3.14) by deriving a more explicit expression for the
radial perturbation velocity at the front, u1(R0). Combining the boundary condition
of no-tangential and no-normal stresses (3.15b), the perturbation shear stress at the
base-state front is

σ1rθ(R0)=
1
R0

∂R1

∂θ
σ0θθ(R0). (4.1)
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By taking a derivative with respect to θ ,

∂σ1rθ

∂θ
(R0)=

1
R0

∂2R1

∂θ 2
σ0θθ(R0), (4.2)

we see that the left-hand side is a radial force. Substituting the definition of the shear
stress in terms of the perturbation velocities (3.6c) leads to

µ0
∂

∂θ

[
1
r
∂u1

∂θ
+ r

∂

∂r

(v1

r

)]
=

1
R0

∂2R1

∂θ 2
σ0θθ , (4.3)

and solving for u1 we find that

u1 =
σ0θθ

µ0
R1 +

R2
0

k2

∂

∂r

(
1
r
∂v1

∂θ

)
. (4.4)

Substituting this in the growth rate (3.14) results in

G(k, n, R0)=−
1
R2

0
+
σ0θθ

µ0
+

R2
0

k2R1

∂

∂r

(
1
r
∂v1

∂θ

)
, (4.5a)

where the three contributions to G represent the geometric stretching, hoop stress and
momentum dissipation. In the thin-film limit (∂/∂r� 1/r) R0∼ 1 and the growth rate
simplifies to

G(K, n)=−1+ 4−
u′′1

K2R1
, (4.5b)

where the three contributions correspond to those in (4.5a), and where mass continuity
at the same limit was used to present the dissipation contribution in terms of the radial
velocity.

4.2. Geometric stretching
The circular geometry of the flow combined with mass continuity implies that
the extensional strain rates of the base flow are e0rr = ∂u0/∂r = −1/R2

0 and
e0θθ = u0/r = 1/R2

0. Therefore, as the fluid front advances in a circular geometry
it stretches azimuthally and slows down radially. This geometrical stretching, which
is independent of n and k, gives rise to the first stabilising term in the growth rate
(4.5).

4.3. Instability
The flow in the base state is axisymmetric and diminishes towards the moving front
(figure 13a), having radially growing viscosity (n> 1), declining viscosity (n< 1) or
uniform viscosity (n= 1). The extensional stress in the θ̂ θ̂ direction (hoop stress) at
the base-flow front

σ0θθ(R0)=−p0 + 2µ0e0θθ = 4R−2/n
0 (4.6)

is always positive (3.4c), implying that the fluid front is under tension throughout
the evolution. Although the tension grows larger the smaller R0 > 1 is and the more
strain-rate softening (n > 1) the fluid is (figure 14), its contribution to the growth
rate (4.5a) is the constant σ0θθ/µ0 = 4R−2

0 namely, destabilising and independent of
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ß0rr = 0 ß0œœ = 2R0
-2/n

K <¡ π/2 K >¡ π/2

π/K

R0

Perturbed state

Stability

Base state
(a)

(c)

(b)

œ̂

r̂
n̂t̂

R0

R1

rG

ß1rœ ¢ ™R1/™œ ß0œœ
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√1
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œ̂ r̂ 
ß0rœ = 0

√1 ¢ -™R1/™œ

FIGURE 13. (Colour online) (a) The leading front of the base state ( , grey) is
under tension due to non-zero normal stress in the θ̂ θ̂ direction, while the other stress
components are zero. (b) The base-state normal stress contributes to tangential stress at
the perturbed interface ( , green). Therefore, the condition of zero tangential stress at
the perturbed front implies a perturbation shear stress at the r̂θ̂ direction of the base front
that is proportional to the slope of the perturbed front. (c) The secondary flow following
a geometric perturbation (↓ green colour) consists of two distinct patterns through which
momentum dissipates and stabilises the perturbation. At K . π/2, the streamlines stretch
circumferentially from frontal depressions to frontal bulges through a relatively long path
along which energy is dissipated. At K &π/2, vortices form near the inner boundary and
screen the interior from the front, so that less fluid is available to sustain the growth of
tongues. The volume covered with vortices grows with K.

0.01 0.1 1

1

2

3
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10
n

ß 0
œœ

100

R0 = 1.02

R0 = 1.2

R0 = 3

1000

FIGURE 14. (Colour online) The base-flow tension at the leading front is represented by
the hoop stress as a function of the fluid exponent.

k and n. The instability develops due to the interaction of the base-flow hoop stress
with the geometric perturbation: the geometric perturbation of the front forms forward
bulges and depressions along the front (figure 13b). Consequently, the base-flow hoop
stress at the front has a non-zero contribution to the tangential stress along the
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perturbed interface. Since the total tangential stress along the front must be zero,
the perturbation field has a non-zero shear stress along the base-state interface that
balances the contribution of the coupled hoop stress and geometric perturbation (4.1).
That is, the interfacial curvature leads to a base-flow hoop stress that leads to a
perturbation shear stress due to the perturbed interface. The perturbation shear stress,
which is proportional to the slope of the perturbed interface σ1rθ(R0)∝ ∂R1/∂θ (4.1)
forces a secondary flow along the base-flow front to converge into forward bulges in
the perturbed interface and diverge from interfacial troughs, independently of the fluid
exponent n. Consequently, the secondary flow transports fluid from interfacial troughs
to bulges, enhancing the perturbation growth. The development of the instability leads
to the relaxation of hoop stresses within the growing fingers, so that no additional
fingers form at the edges of existing fingers, as experimental evidence indicates (see
Sayag & Worster 2019).

We note that with a planar interface in a two-dimensional geometry, hoop stresses,
or extensional stresses transverse to the flow are absent. Therefore, the circular
geometry is crucial in generating a base-flow hoop stress, which is the source of the
instability.

Another way to think of the instability is in terms of forces. In the thin-film base
state, the radial extensional force ∂σ0rr/∂r is positive along a radius (3.4b), though it
is smaller at the leading front than in the interior due to the base-state hoop stress
that stretches the fluid azimuthally. Following a perturbation, the contribution to the
extensional force ∂σ1rr/∂r is equivalent, in the thin-film limit, to −∂σ1rθ/∂θ , which
equals at the leading front to k2/R0σ0θθ(R0)R1 (4.2). Therefore, the total extensional
force at the front grows along a bulge (R1> 0) and diminishes along a trough (R1< 0),
resulting in a greater radial force along a forward bulge.

4.4. Stability and the impact of the fluid exponent n
The contribution of momentum dissipation to the growth rate (4.5a) is also stabilising,
but unlike the uniform stabilisation of geometric stretching (§ 4.2), it depends on both
the wavenumber and the fluid exponent. In particular, the mechanism of momentum
dissipation is qualitatively different between low and high wavenumbers. To see this
we use the growth rate in the thin-film limit (4.5b), which has the closed-form solution
given by (3.32).

4.4.1. Long-wavelength limit: lateral flow
Expanding (3.32) assuming K� 1 we find that

GK�1 ≈−1+ 2K2 (4.7)

to leading order in K, which tends to −1 in the K→0 limit. This implies that stability
in the small-wavenumber K limit (K � π/2) is independent of the fluid exponent
n to leading order (figure 15). Since K = kδ, this limit corresponds to either small
wavenumbers k and thus long wavelengths, or to extremely thin films. Stability in this
long-wavelength limit may result from the relatively long circumferential and open
streamlines in the secondary flow, along which the total dissipation of momentum
is substantial (figure 13c). As the wavelength turns shorter (wavenumber larger) the
streamlines get shorter so less momentum dissipates, whereas the destabilising hoop
stress remains unchanged, which allows the instability to grow.
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n = 0.5

10.0

FIGURE 15. (Colour online) The growth rate in the thin-film limit (solid lines) as a
function of the effective wavenumber K for fluid exponents n = 0.5, 1, 5 (colour). The
asymptotic behaviour of the growth rate in the small-wavenumber limit (K � 1) is
independent of n to leading order (dash line). In the large-wavenumber limit (K� 1) the
growth rate has a leading-order dependence on the fluid exponent (dash–dot).

4.4.2. Short-wavelength limit: vortices
In the large wavenumber K limit, the growth rate (3.32) has the simplified form

GK�1 ≈−1+ 2K2

(
sin(K

√
(n− 1)/n)

K
√
(n− 1)/n cosh(K/

√
n)

)2

, (4.8)

which implies that stability in large wavenumbers (K � π/2) depends also on
the fluid exponent n to leading order (figure 15). This limit corresponds to either
large wavenumbers k and thus short wavelengths, or to relatively thicker films. In this
short-wavelength limit, we expect dissipation to be enhanced due to the corresponding
large gradients. This is naturally the case for a Newtonian fluid due to the constant
viscosity. However, for n 6= 1 the growth of dissipation with the wavenumber is not
straightforward since the strain-rate-dependent viscosity also changes. Specifically,
the viscosity varies with both the wavenumber and n as implied from equation (3.9)
and figure 6. In fact, in the K � 1 limit the dissipation dominates and is a weak
function of n such that G→−1 in the K→∞ limit. The sensitivity to n grows at
intermediate wavenumbers (K ≈ π/2), in which the dissipation is stronger than the
Newtonian case when n< 1 and weaker when n> 1 (figure 15), thereby allowing the
instability for strain-rate-softening fluids.

Another important consequence of the shortwave limit is the emergence of vortices
(closed streamlines) in the secondary flow, which form near the inner boundary and
are centred at the boundaries between interfacial depressions and bulges (figure 13c).
Since the mass flux out of a vortex is zero, the fluid that contributes to the growth of
perturbation comes from the region without vortices, which gets smaller with K and/or
as n declines (figure 16). That is, vortices screen the front from the fluid interior, so
that there is no secondary-flow mass flux from the vortex region to the front region.
Consequently, with the growth of the vortex-covered area with K the radial velocity
at the front declines and so does the growth rate.
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n = 0.3

g = -0.513

g = -0.515

g = -0.518

n = 1

g = -0.250

g = -0.274

g = -0.312

n = 3

g = 0.176

g = 0.140
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Vorticity
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FIGURE 16. (Colour online) The exact perturbation vorticity ω1/k (colour) and
streamlines (vortices are clockwise (red) or counterclockwise , blue) in a
one-wavelength sections of the two-dimensional flow ( green colour marks the
perturbed front) for (rows) K = 1.5, 1.75, 2 (δ = 0.25; k = 6, 7, 8), and for (columns)
n = 0.3, 1, 3. The volume covered with vortices grows the larger K is and the
smaller n is, and the corresponding growth rate declines. Streamlines absolute values:
0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512.

A measure of the behaviour of the secondary-flow vortices can be provided by the
perturbation vorticity

ω1 ≡ (∇× u1) · ẑ=
∂v1

∂r
+
v1

r
−

1
r
∂u1

∂θ
, (4.9a)

which simplifies in the thin-film limit (δ� 1) to

ω1 ≈
1
δ

∂v1

∂ξ
−
∂u1

∂θ
, (4.9b)

to leading order. Considering first the case n� 1 (§ 3.5.2), which corresponds to the
largest growth rates for all K, the vorticity to leading order in δ

ω1 = 2
∂R1

∂θ
[2Kξ sin(K(1− ξ))+ cos(K(1+ ξ))+ cos(K(1− ξ))] (4.10)

has harmonic structure along a radius. Specifically, the signature of ω changes along
a radius at a growing frequency with K. This implies that the secondary flow along a
radius consists of coexisting clockwise and counterclockwise vortices, whose number
grows with K (figure 17), or equivalently with both k and δ. This oscillatory structure
is slightly reminiscent of flows of strain-rate-softening fluid around a contracting
cavity (Dallaston & Hewitt 2014), though with some qualitative differences. Along
the boundaries ξ = 0, 1, the perturbation vorticity is

ω1(1)= 4
∂R1

∂θ
cos2(K), (4.11a)
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FIGURE 17. (Colour online) The normalised vorticity ω/ki in the limit n� 1 (4.10) along
a radius, for several values of K = 1.5, 3, 6.

ω1(0)= 4
∂R1

∂θ
cos(K), (4.11b)

which implies that the vortex rotation at the leading front (ξ = 1) follows the sign of
the interface slope and is independent of K. However, near the inner boundary (ξ = 0)
the rotation direction of the vortices changes with both the slope of the leading front
and with K. This implies that new vortices emerge at the inner boundary as K grows,
and that existing vortices are displaced radially towards the leading front (see movie
available at https://doi.org/10.1017/jfm.2019.778). The azimuthal size of these vortices
is half the azimuthal wavelength πδ/K, which is equivalent to the radial size (half the
radial wavelength), as implied by (4.10). Therefore, the number of vortices along an
annulus of thickness δ grows like K/π, forming a vortex street that covers the whole
flow domain (figure 18b).

When n6 1 (strain-rate thickening), the solution for the radial velocity (3.30) is no
longer harmonic because b is imaginary (3.31). Therefore, the vorticity is also non-
harmonic and the domain of radial size δ can only contain a single vortex (figure 18a).

4.5. Contrast with classical fingering instability
It is insightful to contrast the present mechanism with the classical viscous-fingering
instability. Considering a shear-dominated flow of Newtonian fluid of viscosity µd
displacing at constant flux Q an ambient Newtonian fluid of viscosity µa inside a
Hele-Shaw cell of uniform gap h in polar coordinates, the growth rate is (Paterson
1981)

GPaterson =
Q/h
2πr2

0

[
−1+ k

µa −µd

µa +µd

]
− σ

k(k2
− 1)

r3
0

µaµd

µa +µd
, (4.12a)

where r0(t) is the radius of the base-state interface when the perturbation is applied.
Surface tension σ at the fluid–fluid interface is stabilising for all wavenumbers and
fluid viscosities. Therefore, for all wavenumbers instability can occur only if the
viscosity of the displacing fluid is smaller (µd < µa). Particularly, in the absence of
surface tension and if the viscosity of the displaced fluid is negligible (µa�µd), as
in the flow that we study, the shear-dominated growth rate simplifies to

GPaterson|σ=0,µa�µd =
Q/h
2πr2

0
(−1− k). (4.12b)
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-0.5 0 0.5

(a)

(b)

-5 0 5
Vorticity

FIGURE 18. (Colour online) Vorticity and vortex street: the exact perturbation vorticity
ω1/k (colour) and streamlines (vortices are clockwise (red) or counterclockwise ,
blue) in a one-wavelength sections of the two-dimensional flow ( green colour marks
the perturbed front) for K = 30 (δ = 0.75; k= 40) and for (a) n= 1 (streamlines absolute
value: 0.5, 0.1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8), and (b) n = 100 (streamlines
absolute values: 0.75, 0.5, 0.25, 0.05).

In contrast, the flow that we consider in this paper is extensionally dominated and the
displacing fluid has a strain-rate-dependent viscosity. The resulting dimensional growth
rate in the thin-film limit (δ� 1)

G =
Q/h
2πr2

0

−1+

2n sin2

(
K

√
n− 1

n

)

sin2

(
K

√
n− 1

n

)
+ (n− 1) cosh2

(
K
√

n

)
 (4.13)

implies that if the fluid is strain-rate softening (n > 1), the interface is unstable for
some wavenumbers K = kδ. Such an unstable configuration corresponds to a highly
viscous fluid displacing an low-viscosity ambient fluid, a configuration that remains
stable in the classical shear-dominated fingering case.

5. Consistency with experimental evidence
The theory we have developed here is aimed at explaining the spatio-temporal

patterns that were discovered in a series of laboratory experiments with strain-rate-
softening polymer solutions in Part 1 (Sayag & Worster 2019). One important result
of these experiments is that the fingered interfaces coarsened over time: as the front
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of the displacing fluid evolved, the number of floating tongues declined through
the progressive closure of some of the tears that separated them, resulting in the
merging of adjacent tongues into wider ones. This coarsening or cascade of the
dominant wavenumbers, either converged in time to a lower integer wavenumber,
or kept alternating, apparently stochastically, within a range of lower wavenumbers.
The results of these experiments were combined into a single graph that shows the
evolution of the dominant wavenumbers for the different source flux used (figure 9b,
Sayag & Worster 2019), in which time was non-dimensionalised with the characteristic
scale T = 2πhr2

G/Q that is also used in the theoretical part (2.6).
The wavenumber cascade mechanism that we observed experimentally in Part 1

(Sayag & Worster 2019) was operating also when the propagating front was far
from the initial circular state, which suggests that it is primarily a nonlinear process.
Therefore, there is no apparent reason to expect that the present linear-stability
analysis can predict such late-time evolution in the experiments that departs from a
circular base state by far. And yet, our theoretical results in the present part also
involve a wavenumber cascade. Specifically, for a fixed n in the full linear theory
the most unstable wavenumber declines monotonically with δ. This implies that
an unstable front will develop more fingers the earlier the perturbation is made,
while fewer fingers will emerge following a perturbation at later times (figure 5a).
Therefore, we evaluate the instantaneous most unstable wavenumbers as a function
of the base-state thickness δ, as in figure 11 but replacing δ(t) with the explicit
dependence on time (3.3), and consider this as a time evolution of the dominant
wavenumber. We find that this interpretation of the dependence of the most unstable
wavenumber on the base-state thickness δ(t) provides a consistent prediction to
the initial cascading evolution of the measured dominant wavenumbers (figure 19).
Furthermore, the prediction of the perfectly plastic, thin-film model for the most
unstable wavenumber (3.38) that is written explicitly in terms of time

kmax =
π

2

[
−1+

√
Q

πhr2
G

t+ 1

]−1

(5.1)

also provides a surprisingly consistent prediction for the experimental evolution of the
dominant wavenumbers (figure 19).

The apparent correspondence between the linear-theory prediction and the cascading
phase of the experimental observations is surprising. It implies that at any instant the
dominant wavenumber of an experimental pattern, which can be far from a circular
shape, is equivalent to the most unstable wavenumber of a perturbed circular state
that has the same volume. This appears to suggest that the wavenumber the system
settles on is determined to leading order by the total discharged volume, and that other
interactions may be secondary.

Our experimental observations suggest that throughout their evolution there was no
apparent flow within the tongues, and that they were displaced as solid objects. The
most active flow in the free-slip domain (r> rG) seemed to concentrate within a thin
region of width ≈h near rG. This may imply that the finite-time evolution of the
patterns is determined by the flow in the vicinity of rG and that the tongues are passive
components. The interpretation of our theoretical results predicts that the cascade of
wavenumbers ends at k = 1. Such a situation was not observed experimentally, apart
from some experimental indications of a trend toward a k= 1 mode at the high-end
flux regime (Sayag & Worster 2019).
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FIGURE 19. (Colour online) Comparison of the predicted most-unstable modes and the
time evolution of the dominant wavenumbers measured in laboratory experiments for n=6
(Sayag & Worster 2019). The experimental measurements (colour) represent the dominant
Fourier modes that the front is comprised of at each instant for a range of source fluxes
0.7 . Q . 13.4 g s−1. Also shown are the corresponding instantaneous most-unstable
modes predicted by the full perturbation model ( , grey), and by the perfectly plastic
(n� 1) thin-film model (5.1) ( , red). (a,b) Experiments that converge to an integer
wavenumber. (c,d) Experiments whose late-time pattern is stochastic. Results are presented
in log–linear scale (a,c) and log–log scale (b,d), in which the initial transition to high
wavenumber is truncated.

The transition at low Q to a stochastic late-time evolution, which we identified
experimentally (figure 19c,d) is not captured by the theoretical model. This could
be simply a consequence of late-time evolution that our linear model cannot resolve.
It could also be a result of the relatively simple constitutive model that we used.
For example, accounting for a low strain-rate behaviour such as bounded viscosity
should introduce another time scale, which may lead to the differentiation between a
regular and stochastic evolution with respect to Q. The interaction with the flow of
the ambient fluid within the tears may also have an effect, though we do not account
for it at present.

6. Conclusions
Inspired by the experimental study in Part 1 (Sayag & Worster 2019), we developed

a model to investigate the development of the observed tear-like patterns and their
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coarsening in time. Our theoretical model includes three elements that we believe
are critical to the appearance of the instability: the free-slip conditions along the
base and the surface boundaries of the displacing fluid; the circular geometry that
imposes circumferential tension along the leading front; and the nonlinear deformation
law of the displacing fluid. We found that axisymmetric solutions can become
linearly unstable, having a most unstable wavenumber that is inversely proportional
to the thickness of the base state δ(t), to leading order. Consequently, the thicker
the base-flow annular layer is, the smaller the number of tears that would evolve.
The mechanism of the instability appears fundamentally different from that of the
classical viscous fingering: the source of the instability is the base-flow hoop stress
along the leading front. The projection of that stress over the perturbed interfacial
geometry results in a perturbation shear stress along the base-flow front that varies
azimuthally with the shape of the perturbed front. Such shear-stress distribution
results in circumferential flow along the interface that converges into forward
bulges and diverges from troughs in the perturbed interface and thus sustains the
perturbation growth. We emphasise that the destabilising hoop stress is independent
of the wavenumber and of the nonlinearity of the fluid. Rather, the base-flow hoop
stress is a consequence of the flow geometry and it is present for all fluid exponents
and particularly for both Newtonian and strain-rate-softening fluids. In contrast, the
momentum dissipation associated with shear suppresses the perturbations through two
different mechanisms at low and high wavenumbers. At the lower-end wavenumbers
the secondary flow consists of open circumferential streamlines along which fluid
is carried from perturbation depressions to perturbation bulges on a relatively long
dissipative path. At the higher-end wavenumbers the dissipation is modified by larger
velocity gradients, and the secondary flow consists of vortices that screen perturbation
flow from the leading front. The combined impact of these stabilising mechanisms is
weakest at wavenumbers ∼1/δ and the more strain-rate softening the fluid is. This
defines the wavenumbers that grow fastest and that dominate the front pattern.

We find that our fluid-mechanical approach to explain a phenomenon that
involves tear-like patterns leads to predictions that are consistent with some major
characteristics of the experimental measurements of Part 1, including the inverse
cascade of the dominant wavenumber, which is predominantly a nonlinear process.
Our theoretical model relates to power-law fluids and neglects other potential
non-Newtonian properties. The fact that the model includes a single dimensionless
number n, associated with the way the fluid viscosity responds to strain rate, implies
that the patterns that we observed in polymer solutions may be dynamically similar
to other strain-rate-softening fluids under circular extension in inertia-free flow,
independently of the spatio-temporal scales of the flow and independently of the
material microscopic structures. Particularly, our results may apply to systems ranging
from pastes squeezed in laboratory scale to polycrystalline ice creeping into the open
ocean on a global scale.
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Appendix A. The Newtonian-fluid limit n= 1

The coefficients c1...4 of the solution in the Newtonian limit (3.20) are

c1 =
k(R2k

0 + k(R2
0 − 1)+ 1)

k2Rk+1
0 − 2(k2 − 1)Rk+3

0 + k2Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c2 =
k(−(k+ 1)R2k

0 + kR2k+2
0 − 1)

k2Rk+1
0 − 2(k2 − 1)Rk+3

0 + k2Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c3 =−
k(k(R2

0 − 1)+ R2
0(R

2k
0 + 1))

k2Rk+1
0 − 2(k2 − 1)Rk+3

0 + k2Rk+5
0 + R3−k

0 + R3k+3
0

R1,

c4 =
k(kR2k

0 − (k− 1)R2k+2
0 + R2

0)

k2Rk+1
0 − 2(k2 − 1)Rk+3

0 + k2Rk+5
0 + R3−k

0 + R3k+3
0

R1.
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