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We investigate linear–quadratic dynamical systems with energy-preserving quadratic
terms. These systems arise for instance as Galerkin systems of incompressible flows. A
criterion is presented to ensure long-term boundedness of the system dynamics. If the
criterion is violated, a globally stable attractor cannot exist for an effective nonlinearity.
Thus, the criterion can be considered a minimum requirement for control-oriented
Galerkin models of viscous fluid flows. The criterion is exemplified, for example,
for Galerkin systems of two-dimensional cylinder wake flow models in the transient
and the post-transient regime, for the Lorenz system and for wall-bounded shear
flows. There are numerous potential applications of the criterion, for instance, system
reduction and control of strongly nonlinear dynamical systems.
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1. Introduction
The focus of this paper is the a priori characterisation of the long-term behaviour

of a linear–quadratic differential equation system with energy preserving quadratic
term. Such a dynamical system can be obtained by the spectral discretisation of
the Navier–Stokes equation. More generally, many traditional Galerkin models with
orthonormal basis functions fall into this category (Fletcher 1984). Of particular
interest is the long-term behaviour and attractor properties that can be ideally extracted
analytically from the dynamical system. For instance, a meaningful model can be
requested to have globally bounded solutions. Respective analytical methods for
linear–quadratic Galerkin systems are still in their infancy. For a variety of related
problems, for example, the properties of fixed points, efficient tools for dynamical
system analyses (see e.g. Guckenheimer & Holmes 1986; Khalil 2002) and tensor
structure analyses (see e.g. Kolda & Bader 2009) have been well elaborated.
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326 M. Schlegel and B. R. Noack

In this study, focus will be placed on low-order Galerkin models of the coherent
flow dynamics as a simple starting point. These models are of particular interest
for the understanding of nonlinear dynamics (see e.g. Holmes et al. 2012) and are
key enablers of closed-loop flow control applications (see e.g. Noack, Morzyński
& Tadmor 2011). Examples of low-order models include boundary layers (Rempfer
& Fasel 1994), cylinder wakes (Deane et al. 1991; Noack et al. 2003), mixing
layers (Noack, Papas & Monkewitz 2005; Wei & Rowley 2009), lid-driven cavities
(Cazemier, Verstappen & Veldman 1998; Balajewicz, Dowell & Noack 2013) and
supersonic diffuser flows (Willcox & Megretski 2005). However, these models tend to
be fragile: small changes of system parameters may give rise to unphysical divergent
solutions, at least for a subset of initial conditions. Thus, parameter identification is
a delicate task and a priori knowledge about the long-term behaviour of Galerkin
models for all initial conditions is highly desirable.

For a priori analyses of the long-term behaviour, the optimum is represented by
analytical solutions. However, the explicit solution of a class of linear–quadratic
differential equation systems in terms of elementary functions, including, for example,
the Lorenz system, appears to be unrealisable within the frame of the current state
of the art. In contrast, the simple analytical structure of a linear–quadratic Galerkin
system provides a key enabler for the application of a rich kaleidoscope of the
methodologies provided by the theory of nonlinear dynamics and control theory.
One example is given by the utilisation of Lyapunov’s direct method (Lyapunov
1892). In fluid mechanics, this method is adopted mainly for two purposes. Firstly,
it is employed for nonlinear stability analyses of fixed points and for model-based
flow control design. The methodology is well established for linear systems (see
e.g. Kim & Bewley 2007; Sipp et al. 2010) and generalised for nonlinear systems
(see e.g. Aamo & Krstić 2002; Khalil 2002). Applications for Lyapunov-based flow
control design are demonstrated in numerical and experimental investigations (see
e.g. Gerhard et al. 2003; Samimy et al. 2007; Schlegel et al. 2009, 2012). A second
purpose of the direct Lyapunov method is to ensure hydrodynamic stability via the
sufficient condition for a monotonically decreasing fluctuation energy (see e.g. Joseph
1976; Drazin & Reid 1981). This leads to the identification of lower bounds for the
critical Reynolds number of laminar–turbulent transition and the identification of flow
structures of maximal energy growth.

However, the application range of Lyapunov’s direct method is restricted by the
lack of a systematic approach for the construction of appropriate Lyapunov functions.
The usage of conventional Lyapunov functions like the total kinetic energy might
fail the desired purpose, e.g. to show stability for interior flows: the linear stability
matrix is far from being normal over a large range of Reynolds numbers. Temporal
energy growth is observed, which is traced back to interactions of non-orthogonal
eigenvectors (Trefethen et al. 1993; Schmid & Henningson 2001). The application
range of Lyapunov’s direct method is enhanced for some configurations (Galdi &
Padula 1990; Straughan 2004). However, the identification of strict lower bounds of
flow stability is often far below the critical Reynolds number.

The difficulty of finding an appropriate Lyapunov function can partially be ascribed
by the design goal, e.g. by ensuring the global stability of fixed points in the whole
phase space. Instead, conditions for the existence of an arbitrary globally attractive
solution are considered. In this paper, we focus on the existence of trapping regions
employing Lyapunov’s direct method (Swinnerton-Dyer 2000). Roughly stated, a
trapping region is a domain in the state space such that each trajectory, once it
has entered the trapping region, will remain inside the trapping region for all times
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FIGURE 1. Venn diagram of dynamical systems.

(Meiss 2007). In the case of a (globally) attracting trapping region, all trajectories
outside of the trapping region converge to the trapping region. The assumption of the
existence of an attracting trapping region is connected with several other properties
of dynamical systems (see figure 1). In the case that an attracting trapping region
exists, the system dynamics is long-term bounded because the habitat of the long-term
dynamics is represented by this trapping region. An existing (globally stable) single
or multiple attractor must be embedded inside of an attracting trapping region.

The existence of an attracting trapping region can be ensured via the existence of
a function that is strictly of Lyapunov function type outside of a trapping region. As
a well-known example, the existence of an attracting trapping region is shown for
the Lorenz system (Swinnerton-Dyer 2001). Further general findings can be traced
back to Lorenz (1963), where the existence of monotonically attracting trapping
regions is shown for linear–quadratic systems with negative definite linear term and
energy-preserving quadratic term. We follow these hints to investigate long-term
boundedness and to estimate the extent of existing attractors. In particular, we focus
on the generality for the considered class of linear–quadratic dynamical systems and
the simplicity of the construction of the respective Lyapunov functions.

This paper is structured as follows. In § 2, the class of the considered dynamical
systems is defined. A criterion for long-term boundedness and existence of globally
stable attractors is proposed in § 3. Analytical and numerical application results
are given for the investigation of long-term boundedness of Galerkin systems for
wall-bounded shear flows in § 4, and of Galerkin systems for the post-transient and
transient dynamics of a two-dimensional cylinder wake flow in § 5. The Lorenz
system is investigated in § 6. Algorithms and computational load associated with
the criterion and alternatives are discussed in § 7. In § 8, the main findings are
summarised and future directions are indicated. The proposed criterion is illustrated
by a sample system fulfilling the criterion and examples for systems in which the
criterion is violated in the first and third appendices A and C, respectively. The
theorems of § 3 are proven in appendix B. In appendix D, potentials of the criterion
for state stabilisation and for attractor control are illustrated.

2. Galerkin models of fluid flows
In this section, the considered class of dynamical systems is introduced. These

systems naturally arise as Galerkin models of the incompressible Navier–Stokes
equation in a steady domain Ω with stationary boundary conditions (see e.g.
Holmes et al. 2012). Galerkin models are typically extracted in two steps. First, a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.736


328 M. Schlegel and B. R. Noack

finite-dimensional Hilbert function subspace H is chosen. This subspace is spanned
by space-dependent modes ui, i = 1, . . . , N, which form an orthonormal basis in
this Hilbert space. The flow u is modelled by a Galerkin approximation with a base
flow u0 fulfilling stationary boundary conditions, and an expansion for the fluctuation
u′ = u− u0:

u(ξ , t)= u0(ξ)+

N∑
i=1

xi(t) ui(ξ). (2.1)

The flow state is described by the time-dependent modal amplitudes xi. The spatial
variables are denoted by ξ and the time by t. The base flow u0 might represent a
steady Navier–Stokes solution or mean flow. The main purpose for the introduction
of the base flow is that (2.1) satisfies the boundary conditions for arbitrary choices of
modal coefficients xi (Ladyz̆henskaya 1963). The expansion modes ui, i= 1, . . . , N,
may arise from a proper orthogonal decomposition (POD) of snapshot data or from
other mathematical considerations (Noack & Fasel 1994).

In the second step, a dynamical system is identified. At first, the Navier–Stokes
equation is projected onto the Hilbert subspace H (see e.g. Noack et al. 2011). As
result of the modelling process, a class of dynamical systems is considered, formulated
in the vector space of the state variable x= [x1, . . . , xN]

T by

dxi

dt
= ci +

N∑
j=1

lij xj +

N∑
j,k=1

qijk xj xk, (2.2)

with the real numbers ci, lij and qijk, for i, j, k= 1, . . . ,N. Without loss of generality,
the qijk are assumed to be symmetric in the last two indices, i.e.

qijk = qikj, i, j, k= 1, . . . ,N. (2.3)

The quadratic term in (2.2) can be shown to be energy-preserving for a large class
of boundary conditions. One example is stationary Dirichlet boundary conditions,
because the no-slip condition for all modes ui ≡ 0 is implied for all modes at
the boundary (see e.g. Rummler 2000). As well, the proof for periodic boundary
conditions is straightforward (see e.g. McComb 1991; Holmes et al. 2012). The two
boundary conditions may be combined, as in plane parallel Couette and Poiseuille
channel flows (Rummler & Noske 1998) or in Hagen–Poiseuille flow (Boberg &
Brosa 1988). Moreover, by a fast decrease of the velocity magnitude for classes of
open flows (two-dimensional cylinder wake flows and jets, three-dimensional round
jets (Schlichting 1968)), evidence of energy preservation of open flows is supported
by vanishing surface integrals.

An energy-preserving quadratic term implies that the sums of the quadratic
coefficients over index permutations are zero

qijk + qikj + qjik + qjki + qkij + qkji = 2qijk + 2qjik + 2qkij = 0, i, j, k= 1, . . . ,N. (2.4)

This property is postulated for the class of dynamical systems discussed in this paper.
The energy-preserving quadratic term has an important effect on the evolution of

the fluctuation energy

K :=
1
2

N∑
i=1

x2
i > 0. (2.5)
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On long-term boundedness of Galerkin models 329

If u0 is the mean flow, then K denotes the standard turbulent kinetic energy (TKE)
of statistical fluid mechanics. The time derivative of K reads

dK
dt
= [∇xK]T

dx
dt
=

N∑
i=1

xi fi(x)=
N∑

i=1

ci xi +

N∑
i,j=1

lij xi xj, (2.6)

i.e. the quadratic terms cancel each other out by (2.4).
Defining the vector c := [c1, . . . , cN]

T and matrix L := [lij]
N
i,j=1, the evolution of K is

given in a simple vector–matrix notation via

dK
dt
= cTx+ xTLS x, (2.7)

where the symmetric part LS := (L+ LT)/2 of L is introduced.

3. A sufficient criterion for long-term boundedness
In this section, a sufficient criterion for long-term boundedness of Galerkin systems

is derived to exclude infinite blow-ups of the system state x(t) in finite or infinite
periods of time. Via the criterion of theorem 1 below, the existence of monotonically
attracting trapping regions is considered. For a generic class of Galerkin systems (2.2)
with effective nonlinearity, it is shown that a globally stable attractor can exist only if
there is a monotonically attracting trapping region. For further comprehension of the
criterion, the reader might moreover consult the investigation of the sample system
(A 1) for long-term boundedness, elaborated in appendix A.

For generalisation of Lyapunov’s direct method, we introduce monotonically
attracting trapping regions. A trapping region D ⊆ RN is a compact set, in which
each trajectory remains once it has entered, i.e. from x(s)∈D it follows that x(t)∈D
for all t > s. A trapping region is termed (globally) monotonically attracting if
an energy is strictly monotonically decreasing along all trajectories starting from an
arbitrary state outside of D. This implies that outside of the trapping region the energy
possesses the mathematical properties of a strict Lyapunov function. For mathematical
convenience and physical intuition, energy K defined in (2.5) is generalised by

Km :=
1
2
‖x−m‖2

=
1
2

N∑
i=1

(xi −mi)
2. (3.1)

This is modulo factor 1/2 the square of the Euclidean distance to an arbitrary but fixed
state m measured in the Euclidean norm ‖ · ‖ =

√
2K(·). As candidates for trapping

regions it is sufficient to consider closed balls

B(m, R) := {x ∈RN
: ‖x−m‖6 R} (3.2)

with centre m and radius 0< R<∞. For later reference, these closed balls are also
expressed in terms of translated coordinates y= x−m:

By(R) := {y ∈RN
: ‖y‖6 R}. (3.3)

Here, any closed ball containing D as a subset is a monotonically attracting trapping
region as well.
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330 M. Schlegel and B. R. Noack

B
E

FIGURE 2. Principal sketch of boundedness of a solution of a Galerkin system (2.2) in a
closed ball B. The growth of energy to the origin is positive only inside of an ellipsoid E.

In Lorenz (1963), the existence of a monotonically attracting trapping region is
shown for negative definiteness of the symmetric linear part LS of system (2.2). Then,
the growth of K =K0 vanishes only on the surface of an ellipsoid E, and is positive
only in the interior of E. After a finite time, the system state is trapped in the smallest
closed ball B with centre at the origin y = 0 such that the ellipsoid E is contained
(only in the non-generic case, in which there is a stable fixed point at the intersection
of the boundaries of B and E, it might take an infinite time to enter B). Hence, the
smallest monotonically attracting trapping ball is given by B. The long-term behaviour
of the system, represented, for example, by a globally stable attractor, is either part
of the boundary without growth of K0, or alternates between positive energy growth
inside of E and negative energy growth in B\E (see figure 2).

To generalise this result, the origin is shifted to arbitrary m= [m1, . . . ,mN]
T using

the translation
y= x−m, (3.4)

by which a transformation to new coordinates y is provided. To obtain a representation
of the system in the new coordinates, the notation is kept simple, employing the
following vector–matrix representation of (2.2),

dx
dt
= c+ L x+ [ xTQ(1)x, . . . , xTQ(N)x ]T, (3.5)

using the symmetric matrices Q(α)
:= [qαij]

N
i,j=1, α=1, . . . ,N. For the translated variable

y= x−m, the dynamical system

dy
dt
= d + A y+ [ yTQ(1) y, . . . , yTQ(N) y ]T (3.6)

with

d :=

(
ci +

N∑
j=1

lijmj +

N∑
j,k=1

qijkmjmk

)N

i=1

(3.7)

and

A :=

(
lij +

N∑
k=1

(qijk + qikj)mk

)
(3.8)

is obtained. Note that the symmetric part AS of A can be represented as a linear
combination of the symmetric part LS of L and of the Q(i),

AS :=
1
2
(A+ AT)= LS −

N∑
i=1

mi Q(i), (3.9)
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exploiting the symmetry properties (2.4) and (2.3). Invoking (2.6), the evolution of
Km =

∑N
i=1 y2

i /2 is given by

d
dt

Km = yTAS y+ dT y= (x−m)TAS(x−m)+ dT
(x−m), (3.10)

where d and AS denote the constant and linear symmetric part of the transformed
Galerkin system.

If all eigenvalues of AS are negative after translation, i.e. 0 > λ1 > · · · > λN , then
the observation of Lorenz (1963) is applicable. Every ball with origin y = 0 at the
centre, which contains the ellipsoid E, is a monotonically attracting trapping region.
This leads to the following theorem.

THEOREM 1 (Monotonically attracting trapping regions). Regarding the system (3.5),
the following two statements are equivalent:

(a) There is a monotonically attracting trapping region.
(b) There is an m such that there are only negative eigenvalues 0> λ1 > · · ·> λN of

the symmetric linear part AS (3.9) of the shift-transformed system (3.6).

If these conditions are true, then Rm=
√
λN/λ1 ‖d‖ is a radius such that B(m,Rm)=

By(Rm) is a monotonically attracting trapping region.

The theorem is proven in appendix B.
For a quantitative identification of the ellipsoid E, invoke the diagonalisation

AS = T TΛT (3.11)

of the symmetric matrix AS with the diagonal eigenvalue matrix Λ and the orthogonal
matrix T comprising the eigenvectors; a transformation

z= T y (3.12)

is defined, preserving the energy Km. Employing this coordinate transformation
(rotation plus reflections) to the y formulation of (3.10), the energy growth is given
by

d
dt

Km =

N∑
i=1

hi zi + λi z2
i =

N∑
i=1

λi

(
zi +

hi

2λi

)2

−

N∑
i=1

h2
i

4λi
, (3.13)

with the components hi of h := dT T.
For d = 0 and hence h = 0, the energy is a strict Lyapunov function, because
λi < 0, i = 1, . . . , N, has been assumed. In addition, a globally stable fixed point
is situated at the origin y= z= 0. For d 6= 0 and hence h 6= 0, the energy growth can
be positive close to the origin. In more detail, the sign of the energy growth changes
at the boundary of an ellipsoid E, which is defined via

N∑
i=1

1
α2

i

(
zi +

hi

2λi

)2

= 1 with αi :=
1
2

√√√√ N∑
j=1

λj

λi
h2

j . (3.14)

In the interior of the ellipsoid E, the energy growth is positive. Outside of the ellipsoid
the energy is decreasing. At the boundary, the energy stays constant. Note that the
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origin is situated at the boundary of the ellipsoid because it trivially solves (3.14).
The half-axes αi are directly proportional to the Euclidean norm of h and hence of d.

Revisiting theorem 1, at first a sufficient criterion for long-term boundedness is
provided. The validity range of this criterion could be restricted by the nature of
Lyapunov’s direct method or choice of the energy as Lyapunov function. From
global stability analyses of stationary flows in pipes and channels, it is known that
information loss may occur: employing the nonlinear stability based on Lyapunov’s
direct method, the critical Reynolds numbers are underestimated by one order of
magnitude (see e.g. Joseph 1976; Drazin & Reid 1981). For the criterion of theorem 1,
it is at first only evidently known that, although long-term boundedness of a large
class of systems is ensured, there might exist long-term bounded systems even
with a globally stable fixed point that do not fit the condition of theorem 1. One
class is given by Hamiltonian systems in which the energy Km is preserved. Here,
AS = 0, because the distance to an m of the initial values remains constant for
all times. All trajectories are embedded in invariant spaces, representing shells of
constant distance around the centre. Hence the dynamics are bounded, but globally
stable trapping regions or even a globally stable attractor do not exist. Another
class is given from the linear system behaviour of (3.5) with vanishing nonlinear
term Q(i)

= 0, i = 1, . . . , N, c = 0 and a non-normal matrix L. Here, an attracting
behaviour can be accompanied with temporal energy growth as known from the theory
of non-normal matrices (Trefethen & Embree 2005). Even if there is a globally stable
fixed point, the convergence of the trajectories can be non-monotonic with alternating
increase and decrease of the distance to the fixed point.

To show the necessity implication of the criterion of theorem 1 for a large subclass
of dynamical systems, a second theorem is derived. To define this subclass, the notion
of an effective nonlinearity is introduced. The nonlinearity of system (3.5) is termed
‘effective’ if there is no non-trivial linear subspace in which the nonlinear term
vanishes and where the trajectory given by the prevalent linear dynamics remains in
this subspace for an infinite time horizon.

For systems with effective nonlinearity, the criterion of theorem 1 is equivalent to
boundedness. This is formulated in the following theorem.

THEOREM 2 (Necessity of the criterion). Consider a system (3.5) with effective
nonlinearity. If the system is long-term bounded, i.e. there are T and R such that
‖x(t)‖<R for all t> T, then there is a shift vector m such that the symmetric linear
part AS (3.9) of the shift-transformed system (3.6) is negative semidefinite.

This theorem is proven in appendix B. It should be noted that the unlikely special
case, that AS is negative semidefinite for one shift vector but never negative definite,
is not separately discussed for simplicity of presentation.

In the complementary subclass of systems with at least one linear subspaces in
which the system dynamics is reduced to linear behaviour, the above procedure for
investigation of long-term boundedness has to be extended by linear analyses.

The results of this section culminate in the procedure sketched in figure 3, guiding
the determination of the long-term behaviour of the Galerkin systems (2.2). To
prove boundedness, an m has to be found, such that the largest eigenvalue of
the respective AS is positive. Otherwise, linear subspaces of the null space of the
quadratic term have to be identified, in which a corresponding linear dynamics has
to be investigated.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.736


On long-term boundedness of Galerkin models 333

Criterion of theorem 1 is fulfilled 

Monotonically attracting
trapping regions exist.

The dynamical system
is long-term bounded.

No globally stable
attractor exists.

Class 1 models Class 3 modelsClass 2 models

Yes No

Yes No

Linear analysis has to
be taken into account.

Is an effective
nonlinearity present 

FIGURE 3. Decision tree diagram for long-term boundedness of linear–quadratic systems.

4. Long-term boundedness of Galerkin models for wall-bounded shear flows

Following the arguments of Lorenz (1963), which are generalised in the previous
section, long-term boundedness of Galerkin models of fluid flows can be immediately
seen from elementary considerations. For a demonstration, such results of three
Galerkin models for wall-bounded shear flows are summarised, all representing
flow mechanisms in Couette flows: the fourth-order models of Waleffe (1995), the
eighth-order models derived in Waleffe (1997) and the ninth-order models of Moehlis,
Faisst & Eckardt (2004). These systems are of the form

dx
dt
= c−Λ x+ [ xTQ(1)x, . . . , xTQ(N)x ]T, (4.1)

where Λ is a diagonal matrix with positive diagonal entries.
Following our arguments, only the energy-preservation property of the quadratic

term has to be shown, which can be easily done. Although this result is known, it
indicates that there is a class of fluid flows for which long-term boundedness of
physical Galerkin models can easily be verified employing the criterion.

5. Long-term boundedness of Galerkin models for cylinder wake flows

In this section, we investigate the long-term boundedness of a hierarchy of Galerkin
models for periodic cylinder wakes (Noack et al. 2003). The considered systems
include a three-dimensional mean-field system (§ 5.1), an eight-dimensional POD
model (§ 5.2) and a nine-dimensional generalisation of this POD model with a
stabilising shift mode (§ 5.3). The existence of a monotonically attracting trapping
region is demonstrated analytically for the mean-field system, which is known to have
a globally stable limit cycle. The corresponding existence is also numerically shown
for the nine-dimensional model that generalises the mean-field system by inclusion of
the second to fourth harmonics. The existence of a monotonically attracting trapping
region is disproved for the eight-dimensional system, which has a locally stable limit
cycle but also solutions converging to infinity. Thus, by the theorems of § 3, the
dynamical behaviour suggested by preliminary investigations is proven.
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5.1. On the long-term boundedness of a mean-field system
We consider a mean-field system for a soft onset of oscillatory fluctuations (Noack
et al. 2003) in fluid flows. The state contains three coordinates: x1 and x2 describe
the amplitude of the phase of the oscillatory fluctuation, and x3 characterises the
mean-field deformation. The origin x1= x2= x3= 0 corresponds to the steady solution.
For simplicity, many parameters of the general mean-field model (see e.g. Noack
et al. 2011) are set to zero or unity, following § 2.1 of Noack et al. (2003). Only the
bifurcation parameter µ is left. The resulting mean-field system reads

dx1

dt
= µx1 − x2 − x1x3, (5.1a)

dx2

dt
= µx2 + x1 − x2x3, (5.1b)

dx3

dt
= −x3 + x2

1 + x2
2 (5.1c)

and has the form of system (2.2) with an energy-preserving quadratic term. For
subcritical Reynolds numbers (µ < 0), the system has a globally stable fixed point
x1 = x2 = x3 = 0. For supercritical values (µ> 0), these fixed points becomes unstable
and all trajectories converge to the limit cycle

x1 =
√
µ cos(t), x2 =

√
µ sin(t), x3 =µ (5.2a−c)

modulo an irrelevant phase. This limit cycle represents vortex shedding (Noack et al.
2011).

This differential equation system can be brought into the form (3.5) with

c=

0
0
0

 , L=

µ −1 0
1 µ 0
0 0 −1

 (5.3a,b)

and

Q(1)
=

 0 0 − 1
2

0 0 0
−

1
2 0 0

 , Q(2)
=

0 0 0
0 0 −

1
2

0 − 1
2 0

 , Q(3)
=

1 0 0
0 1 0
0 0 0

 , (5.4a−c)

with a real parameter µ> 0.
As in the sample system (A 1), there are areas in which the amplitude of the

oscillation in the x1–x2 plane grows while the x3 direction has only negative distance
growth. In fact, system (A 1) originated from the mean-field model (5.1) with µ= 1.
The first component x1 in (A 1) corresponds to the amplitude

√
x2

1 + x2
2 of the first two

components in (5.1), and the second component x2 corresponds to the component x3
in (5.1).

The stabilisation of the limit cycle can be described by the Landau equation (Noack
et al. 2003). As for system (A 1), the boundedness of the mean-field dynamics cannot
be derived from a quadratic Lyapunov function.

The criterion of theorem 1 can easily be satisfied. Consider the translation with m=
[0, 0, µ + ε]T for an ε > 0. Employing moreover (3.9), the symmetric part of the
transformed system is derived to be

AS =

−ε 0 0
0 −ε 0
0 0 −1

. (5.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.736


On long-term boundedness of Galerkin models 335

Ellipsoid
of energy growth
with respect to

Limit cycle

System trajectory

m

Part of ball surface of
attracting trapping region

Solution
paraboloid

Centre of
limit cycle

m

FIGURE 4. Solution behaviour of the system (5.1). The trajectories converge in spirals
along the paraboloid (dashed light grey line) towards the globally stable limit cycle (thick
solid black line), as exemplified by one representative (thin solid black line). For one m
with a corresponding negative definite AS, the trapping region of minimal radius (indicated
by dot-dashed black line) is determined by the contained ellipsoid of positive energy
growth (3.14) (thick solid dark grey line).

The negative definiteness of AS implies the existence of a monotonically attracting
trapping region. Following theorem 1, one of these regions is given by the closed
ball B(m, Rm), where Rm = (µ + ε)/

√
ε. Hence, the trapping region will grow to

infinity for ε → 0. The limit cycle is situated inside of B and at the boundary of
the ellipsoid E defined by (3.14), along which the energy Km is constant. This is
illustrated in figure 4. We employ that m lies on the x3-axis orthogonal to the limit
cycle plane, and Km is seen to remain constant on the limit cycle. The limit cycle is
contained in the intersection set of the infinite number of ellipsoids, each defined by
a positive parameter ε > 0.

5.2. On the long-term boundedness of a POD Galerkin model
In Deane et al. (1991) and Noack et al. (2003), a Galerkin model for the cylinder
wake flow is proposed employing the first eight modes from a POD. The post-transient
dynamics of oscillatory laminar vortex shedding at a Reynolds number of Re = 100
in the wake is accurately resolved by this model.

The eight-dimensional Galerkin system is given by the differential equation

dxi

dt
= ci +

8∑
j=1

lijxj +

8∑
j,k=1

qijkxjxk. (5.6)

The energy-preservation property (2.4) is enforced for the quadratic term. The kinetic
energy K is produced in the first mode pair (x1, x2) with the same positive growth
rate of energy. The other six modes form pairs of the same negative energy growth
rate, consuming the energy transferred by the first pair. For initial conditions close to
the projection of the Navier–Stokes attractor onto the eight-dimensional subspace, the
post-transient dynamics is reproduced (Noack et al. 2003). Starting far from the limit
cycle, also solutions that converge to infinity are numerically observed.

To test the criterion of theorem 1, the largest eigenvalue of the linear symmetric
part AS is minimised over a set of shift vectors m. The optimisation has been
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performed via a simulated annealing algorithm (see e.g. Gershenfeld 2006) with
random seeding in m ∈ [−100, 100]8. This interval contains the centre of the
limit cycle and can be considered as very large, since it is almost two orders of
magnitude larger than the radius of this limit cycle. Here 104 initial conditions have
been employed. The stopping criterion is given by the convergence of the largest
eigenvalue with a computational accuracy of eight digits. The computations stop
before the 100th temperature decrease is done. During each temperature stage, 103

iterations are computed.
In all computations, the dynamics converge to a minimum of 0< λ1≈ 0.013285 of

the largest eigenvalue of AS, which indicates that the criterion cannot be fulfilled. This
result indicates unboundedness of the solution, which is demonstrated by simulations
of Noack et al. (2003) showing divergent behaviour of the system dynamics of (5.6)
to infinity for some initial values. Also Deane et al. (1991) report fragile Galerkin
system behaviour for a similar POD wake model. In fact, the fragility of the POD
model for vortex shedding has inspired numerous enhancements of the reduced-order
modelling method, e.g. a nonlinear eddy viscosity term (Cordier et al. 2013), a
stabilising spectral viscosity term (Sirisup & Karniadakis 2004), a stabilising linear
term (Galletti et al. 2004), a stabilising additional shift mode (Noack et al. 2003),
or the inclusion of Navier–Stokes constraints construction of generalised POD modes
(Balajewicz et al. 2013).

5.3. On the long-term boundedness of a POD Galerkin model with shift mode
The eight-dimensional POD model of the previous section is stabilised by including
an additional shift mode u9 in the Galerkin expansion following Noack et al. (2003,
2005). This shift mode u9 represents the normalised difference of mean flow and
stationary solution. In addition, the base flow u0 is chosen to be the unstable steady
solution so that the origin x = 0 represents the fixed point of the Navier–Stokes
dynamics. In the following, long-term boundedness of the resulting nine-mode
Galerkin system is proven for all initial conditions.

The dynamical system (5.6) is generalised by additional terms on the right-hand
sides and a new additional equation arising from the shift mode:

dxi

dt
= ci +

8∑
j=1

lijxj +

8∑
j,k=1

qijkxjxk︸ ︷︷ ︸
terms from the eight-mode system (5.4)

+ li9x9 +

8∑
k=1

qi9kx9xk +

8∑
j=1

qij9xjx9 + qi99x2
9︸ ︷︷ ︸

additional shift mode terms

, i= 1, . . . , 8, (5.7a)

dx9

dt
= c9 +

9∑
j=1

l9jxj +

9∑
j,k=1

q9jkxjxk. (5.7b)

For all numerically investigated initial conditions employed in Noack et al. (2003), the
system solutions are long-term bounded and converge to a limit cycle.

In the following, we prove long-term boundedness of the nine-mode Galerkin
system with the criterion of theorem 1. Learning from the mean-field model,
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–4

4

8

0

12

1 3 5 7 9 11 13

FIGURE 5. Visualisation of the criterion of theorem 1 for long-term boundedness of the
nine-mode cylinder wake Galerkin system (5.7). At the left side, the largest eigenvalue λ1
of AS of the shifted system (3.6) and the estimated radius Rm of the globally attracting
trapping ball B described in this theorem are shown, for several shift vectors m =
(0, 0, 0, 0, 0, 0, 0, 0, α)T with α > 0. At the right side a section is zoomed to identify
the minimum of Rm ≈ 0.82 at α ≈ 3.0.

only translations (3.4) along the mean-field axis are considered, i.e. m =

(0, 0, 0, 0, 0, 0, 0, 0, α)T with α > 0. Figure 5 visualises the situation at α ≈ 1.
There is a change of the sign of the largest eigenvalue of AS from being positive to
negative at α≈ 1. By the translation, the largest eigenvalue decreases initially linearly
with α. After some value of α, this largest eigenvalue remains negative and constant
due to other eigenvalues that are not affected by the translation. Thus, the largest
eigenvalue of AS remains constant for larger α.

Moreover, the simulated annealing procedure has been employed as described in the
last subsection, but employing the stopping criterion, that the largest eigenvalue of AS
is lower than −10−3. All computations stop before the 50th temperature decrease step
has been done. It has to be noted that only a fraction of the computational load is
necessary, because with only one of these computations the existence of the desired
m is ensured.

In conclusion, there exists an m for which AS is negative definite. Thus, the nine-
mode Galerkin system is shown to be long-term bounded because a monotonically
attracting trapping region must exist according to theorem 1.

Furthermore, it is shown in figure 5 that there is a minimum of the volume of the
trapping region for a certain m as indicated by the curve of the estimated radius Rm
of the trapping region. So this m indicates the centre along the considered line, where
the attractor can be embedded in the smallest monotonically trapping region ball. For
smaller or larger values of α, the centre m is situated further away from the attractor
and thus the corresponding Rm is larger.

6. Long-term boundedness of the Lorenz system
The existence of a monotonically attracting trapping region is demonstrated for

Galerkin systems (2.2) with stable fixed point behaviour of the sample system (A 1)
and the stable periodic limit cycle dynamics of system (5.1). In this section and
appendix C, more complex examples are considered. We start with the well-known
Lorenz system

dx1

dt
= −σx1 + σx2, (6.1a)
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(a) (b) (c)

FIGURE 6. Fields of the symmetric part of (a) the linear term and (b) the quadratic term,
and (c) the strange attractor of the Lorenz system (6.1) for Lorenz’s choice of system
parameters.

dx2

dt
= ρx1 − x2 − x1x3, (6.1b)

dx3

dt
= −βx3 + x1x2, (6.1c)

for positive parameters σ , ρ and β. By these equations a Galerkin system is provided,
modelling the Overbeck–Boussinesq system as detailed by Saltzman (1962) and
Lorenz (1963). The Lorenz system is of the form (3.5) with c= 0, Q(1)

= 0 and

L=

−σ σ 0
ρ −1 0
0 0 −β

 , Q(2)
=

 0 0 − 1
2

0 0 0
−

1
2 0 0

 , Q(3)
=

0 1
2 0

1
2 0 0
0 0 0

. (6.2a−c)

In particular, the quadratic term is energy preserving. For Lorenz’s choice of
parameters,

σ = 10, ρ = 28, β = 8
3 , (6.3a−c)

the solution is characterised by a strange attractor. However, it is known that the
solution is long-term bounded. A trapping region of ellipsoidal form can be found
via a Lyapunov function (Swinnerton-Dyer 2001).

Because there are positive and negative eigenvalues of LS, there exist directions
of positive and negative energy growth K. However, via the quadratic term the
trajectories are deflected from directions of positive energy growth to directions of
negative energy growth, stabilising the resulting strange attractor (see figure 6).

The directions of energy growth and the symmetry axes of the quadratic term do
not coincide. The dynamics of the system is dominated by the quadratic term in the
case of large deviations from the origin x = 0 and far enough from fixed points of
the quadratic term at the two poles and the equator. Hence, the boundedness of the
system is determined by the accumulation of energy growth along the trajectories
of the quadratic term crossing areas of negative and positive growth. The set of
points with a vanishing quadratic term has to be investigated separately, leading to
an investigation of the linear term.

In the following, long-term boundedness is shown with the criterion of theorem 1.
After the translation employing m= [0, 0, ρ + σ ]T and invoking (3.9), the symmetric
part of the transformed system is equal to

AS =

−σ 0 0
0 −1 0
0 0 −β

. (6.4)
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1

1

FIGURE 7. The open set of all shift vectors m that fulfil the assumption of theorem 1
to show long-term boundedness. This set is sketched for the long-term bounded sample
system (A 1) by the hatched region above the parabola.

The negative definiteness of the matrix AS proves the existence of a monotonically
attracting trapping region. Following theorem 1 further, one of these regions is given
by the closed ball B(m, Rm) with Rm = β(ρ + σ)/

√
σ in the case of σ > β > 1.

For Lorenz’s choice of parameters (6.3), the trapping region is given by B(m, Rm)≈
B([0, 0, 38]T, 32). Hence, the complete strange attractor is situated inside of the ball
B. It can be shown that the Lorenz system represents a prototype of the dynamics
illustrated in figure 2 via further computation of the ellipsoid E using (3.14). For large
times the trajectories of the Lorenz system push through the boundary of the ellipsoid
and are alternately repelling from and attracting to m.

7. Discussion
In this section, the algorithm and computational load associated with the criterion

and alternatives are discussed. At the end, a procedure is provided to discriminate
between long-term boundedness and unboundedness.

At first, to validate the criterion of theorem 1, N components of m have to be
found such that the N eigenvalues of AS are negative. Analytically this can usually
only be done for low dimensions N 6 4, if the negative definiteness cannot be seen
by mathematical or physical evidence.

As a simpler perspective, only the largest eigenvalue might be considered. Invoking
(3.9) and the known continuous dependence of the largest eigenvalue of AS on the
matrix elements (see e.g. Horn & Johnson 2013), the largest eigenvalue depends
continuously on the components of m. Hence, for a long-term bounded system, there
is a non-zero Lebesgue measure of the set of all m fulfilling the criterion. Moreover,
this set is usually bounded by a piecewise polynomial curve, as illustrated for the
sample example (A 1) in figure 7. By these regularity properties preconditions are
provided for the successful application of numerical optimisation, e.g. by simulated
annealing algorithms (see e.g. Gershenfeld 2006) for minimisation of the first
eigenvalue or, equivalently, to the solution of the inf–sup problem

inf
m

sup
‖y‖=1

yT

(
LS −

N∑
i=1

miQ
(i)

)
y. (7.1)

One example is the simulated annealing algorithm employed in § 5.3 to prove
boundedness.

The knowledge about a bounded trajectory determined by an integration of the
system can supply the search for an m fulfilling the criterion – as indicated by
the proof of theorem 2, the desired m might be situated in a neighbourhood of
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Method Find any m fulfilling the Integration of system (3.5)
criterion of theorem 1 for a finite number of

initial conditions

Most expensive Spectral analysis of AS for Evaluation of the right-hand
element of computation one m via (3.9) side in each time step of the

solution of system (3.5)
Computational complexity O(N3) O(N3)

of basic element
Example of algorithm Simulated annealing to Runge–Kutta methods to

decrement the largest solve system (3.5)
eigenvalue of AS

Number of executions One execution, providing Usually a finite number of
of the algorithm to prove the desired m, is sufficient computed, bounded trajec-

long-term boundedness tories is not sufficient
Number of executions Usually, a finite number of One computed, unbounded

of the algorithm to determined m with non- trajectories is sufficient
prove unboundedness negative, largest eigenvalues

of AS is not sufficient

TABLE 1. Algorithmic comparison between criterion of theorem 1 and system
integration.

the respective mean value. However, even a finite number of computed bounded
trajectories usually do not prove long-term boundedness, whereas by the criterion
the long-term boundedness of all trajectories is shown. A comparison is provided in
table 1. Indeed, the computational load to search for an m fulfilling the criterion is
similar to one integration of the system.

To prove unboundedness, it has to be shown that the criterion is not fulfilled for
any m and there is an effective nonlinearity. Here, usually it is more efficient to find
an unbounded trajectory of the system via integration of the system for several initial
conditions. Alternatively, this problem might also be solved based on a generalisation
of the Lyapunov function with higher-order terms.

Invoking theorem 2 in addition, it is clear that the choice of kinetic energy as
Lyapunov function can always be employed to show long-term boundedness of the
considered Galerkin systems. However, the energy function is a Lyapunov function
only outside of an ellipsoid. To ensure asymptotic stability of a fixed point, the choice
of the energy can be too restrictive. This is known, for example, from the theory of
global stability of fluid flows (see e.g. Joseph 1976). The finding of a ‘background
flow’ representing the coordinate shift (3.4) might remedy the restrictiveness of the
energy function but is not necessarily enough for the proof (Doering & Constantin
1994). A promising approach of the construction of less restrictive Lyapunov functions
is pursued by Goulart & Chernyshenko (2012) and Chernyshenko et al. (2014) based
on the polynomial sum of squares approach of Parrilo (2003).

To conclude, a procedure is suggested to discriminate between long-term bounded
and unbounded Galerkin models of fluid flows. This procedure is based on mean-field
modelling results and energy flow analyses of Noack et al. (2003, 2005), where the
models of § 5 represents the paradigms. The procedure is described as follows:
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(a) Compute a steady solution. Find a fixed point of the considered system and
choose the system (3.5) based on that fixed point as origin x = 0. If LS is
negative definite, long-term boundedness is shown. Otherwise continue with the
unstable fixed point by which an unstable stationary flow is represented.

(b) Integrate an unsteady solution. Integrate the system for an initial condition. If the
dynamics diverges to infinity, unboundedness of the system is ensured. Otherwise
compute the mean value xm of the known trajectory.

(c) Search in the direction of the ‘shift mode’. Choose m = αxm and vary α to
find an m such that the largest eigenvalue of the corresponding AS is negative.
Following mean-field arguments, the production of total kinetic energy at the base
flow generally decreases linearly with increasing α. This leads to a net dissipation
indicating a negative definite linear term.

Although this procedure is physically plausible, no mathematical guarantee of
its success can be offered. Alternatively, a search in the full state space may be
performed.

8. Conclusions and future directions

We consider linear–quadratic dynamical systems and propose a criterion that is
sufficient for long-term boundedness and necessary for globally stable attractor
behaviour. For the first time, a straightforward procedure (see figure 3) can identify
control-oriented Galerkin models of a generic class with quadratic nonlinearity. The
key enabler is a generalisation of Lyapunov’s direct method for identification of
monotonically attracting trapping regions. These regions represent a more accessible
property than the attractor property: the existence of monotonically attracting trapping
regions is based solely on eigenvalue computations of linear combinations of system
intrinsic matrices.

One distinct benefit is given for the model calibration and model reduction: non-
divergent systems can be identified a priori. One can avoid the computational burden
of integration of the dynamical systems needed for a comprehensive set of system
parameters and a large set of initial conditions to indicate long-term boundedness of
the system.

Similarly, control laws that may lead to divergent system behaviour can be rejected
a priori. A straightforward control design is enabled via the design of monotonically
attracting trapping regions. In the appendix D, the respective control design is detailed
for state stabilisation and for attractor control.

The criterion is applied to reduced-order models like the Galerkin models for wall-
bounded shear flows (Waleffe 1995, 1997; Moehlis et al. 2004), the Galerkin models
for a cylinder wake (Noack et al. 2003), the Lorenz system (Saltzman 1962; Lorenz
1963), and its modification to show long-term boundedness or indicate unboundedness
(see table 2).

The proposed methods for showing long-term boundedness are generalisable to
Galerkin systems of larger dimensions in a straightforward manner. Such systems
may originate, for instance, from computational fluid dynamics. The numerical
realisation of the criterion is only restricted by the current state of the art of the
numerical linear algebra and multidimensional optimisation.
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Class 1 systems Class 2 systems Class 3 systems

Nine-mode Galerkin system Eight-mode Galerkin system
(5.7) for the cylinder wake, (5.7) for the cylinder wake

mean-field system (5.1)

Lorenz system (6.1) Modification (C 1) of Lorenz Modification (C 1) of Lorenz
system for α1 > 0 system for α1 < 0

‘Sample system’ (A 1) Hamiltonian systems

TABLE 2. Classification of the investigated dynamical systems employing the categories
introduced in figure 3.
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Appendix A. A simple example illustrating the derived criterion

In this appendix, a simple example is worked out to illustrate the energy limiting
mechanism and an application of the derived criterion of theorem 1.

The two-dimensional system

dx1

dt
= x1 − x1x2, (A 1a)

dx2

dt
=−x2 + x2

1 (A 1b)

is considered. By the linear symmetric part LS = L=
[

1 0
0 −1

]
of the two-dimensional

system, the direction [1, 0]T with positive energy growth and the direction [0, 1]T
with negative energy growth are obtained (see figure 8). The field of the quadratic
term deflects the trajectories from directions of growing energy into the directions
of shrinking energy. The interaction of the unstable linear and the energy-preserving
quadratic terms leads to a bounded dynamics. All trajectories are attracted by one of
the stable fixed points [−1, 1]T, [1, 1]T, or along the abscissa to the origin x = 0,
which represents an unstable fixed point. There is no quadratic Lyapunov function
by which the convergence to one of the stable fixed points can be proven a priori.
The Lyapunov function does not even exist in the corresponding open half-planes
of attraction. The energy is increasing or decreasing depending on the location of
the state. There are phase-space areas of positive or negative energy growth. If the
dynamics along the trajectory is dominated by negative energy growth, the system
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1

–1 1

(a) (b) (c)

FIGURE 8. Fields of (a) the linear term and (b) the quadratic term, and (c) the stable
fixed point behaviour of system (A 1).

state is attracted, for example, to fixed points as in system (A 1). If the dynamics is
dominated by positive energy growth, the trajectories may diverge to infinity.

Employing m = [0, 2]T in (3.4), the sample system (A 1) is given for the shifted
coordinates by

dy1

dt
= −y1 − y1y2, (A 2a)

dy2

dt
= −2− y2 + y2

1, (A 2b)

leading to the power balance with respect to the new origin x=m, i.e. y= 0,

d
dt

Km =−2y2 − y2
1 − y2

2. (A 3)

Hence, the energy is growing only in a bounded domain defined by the interior of the
circle given by y2

1 + (y2 + 1)2 < 1. If Km is large, it will decrease and the trajectories
cannot escape each circle B with the origin at the centre in which the bounded domain
of energy growth is contained. In conclusion, the long-term dynamics of the shifted
system and consequently of the system (A 1) are bounded. Outside of each B, the
energy Km represents a strict Lyapunov function and thus Lyapunov’s direct method
is effective. Inside of B, the energy Km can grow and thus Lyapunov’s direct method
cannot be applied.

As a first example of an application of the criterion of theorem 1, we show the
existence of a monotonically attracting trapping region for the system (A 1). It can be
written in the form of (3.5) with

c=
[

0
0

]
, L=

[
1 0
0 −1

]
, Q(1)

=

[
0 −

1
2

−
1
2 0

]
, Q(2)

=

[
−1 0
0 0

]
. (A 4a−d)

Considering the translation with m = [0, 2]T, and invoking (3.9), the symmetric part
of the transformed system is

AS =

[
−1 0
0 −1

]
. (A 5)

By the negative definiteness of AS, the existence of a monotonically attracting trapping
region is shown. One of these regions is given by the closed ball By(2) in the y
coordinates (see (3.3)) and equivalently by B(m, 2) in the x coordinates (see (3.2)).
All solutions given by the stable and unstable fixed points are situated inside of B
and at the boundary of the ellipsoid E defined by (3.14), along which the energy Km
is maintained.
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Appendix B. Proofs of the theorems
B.1. Proof of theorem 1

As shown by Lorenz (1963), there is a monotonically attracting trapping region for
the shifted system, if all eigenvalues of AS are negative, i.e. 0> λ1 > · · ·> λN . In this
case the energy evolution equation is transformed to (3.13) employing the rotation of
the coordinate system to the principal axes. Hence, the domain of energy growth is
identified to be inside of the ellipsoid given by (3.14). Consider the estimate

αi 6
1
2

√
λN

λ1
‖d‖, (B 1)

invoking the definition (3.14) of the half-axes αi. Then the radius of such a ball, not
necessarily the infimum amongst such radii, is given by Rm =

√
λN/λ1 ‖d‖.

On the other hand, given a monotonically attracting trapping region, the distance of
every state x outside the trapping region to a state m inside of the trapping region
is monotonically decreasing by definition. This is only true if the right-hand side of
the power balance equation (3.10) is negative for this m for any x with large distance
from m, i.e. if the Km is large enough. By symmetry considerations this proves that
all eigenvalues of AS are negative.

B.2. Proof of theorem 2
Because of the assumed long-term boundedness of the system, the ensemble
average 〈·〉 is defined. The ensemble average of any observable g is given by

〈g〉 =
∫
RN

gρ(x)dx, (B 2)

with the invariant (probability) density ρ(x) of the dynamical system (3.5) representing
the probability of the system state x for large times assuming uniform distribution of
initial conditions (see e.g. Kryloff & Bogoliouboff 1935; Manneville 2004; Holmes
et al. 2012).

An m̃ can be found such that, for the transformed system (3.6) with m = m̃, the
ensemble average is zero, 〈y〉=0. Let c̃= d, L̃=A and L̃S :=AS be defined as constant
term, linear term and its symmetric part of the shifted system, respectively. Moreover,
let the reference coordinate system x of the original system (3.5) be transformed
by x̃ = x − m̃. Then the obtained system is of the form (3.5). For simplicity of
representation, the tildes over the variables are dropped.

Hence, without loss of generality, systems of the form (3.5) can be considered with
a zero ensemble average 〈x〉 = 0 of the dynamics. While the existence of such a
reference system is ensured, the constant and linear parts of this reference system are
usually a priori unknown. It will be shown that L̃S is negative semidefinite and thus
the theorem holds.

A reformulation of the corresponding transformed system (3.6) is considered. Let
r :=‖y‖> 0 be the amplitude (radius) of the state and w := y/r the ‘generalised phase’
(direction) on the unit ball ∂By(1). It yields, with the identity matrix I ,

dw
dt
=

1
r
(d − (dTw)w)+ (A− (wTASw)I)w

+ r[wTQ(1)w, . . . , wTQ(N)w ]T, (B 3a)
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dr
dt
= dTw+ rwTASw. (B 3b)

For m=0, it is known that 〈y〉=0. Given a long-term bounded system, i.e. ‖y+m‖<
R for large t, then the correlation matrix can be chosen as

W m := [〈wiwj〉]
N
i,j=1 ≈ vvT, for each v ∈ B(0, 1) (B 4)

because m = ‖m‖v can be selected for arbitrary direction v and arbitrary large
amplitude ‖m‖. In the following, systems with large amplitudes ‖m‖ are considered.

For the considered class of effective nonlinearity, the constant and linear term of
the phase equation (B 3a) can be neglected for large r,

dw
dt
= r[wTQ(1)w, . . . , wTQ(N)w]T (B 5)

and
dr
dt
= rwTASw. (B 6)

The system of equations

dw
dt
= [wTQ(1)w, . . . , wTQ(N)w ]T (B 7)

and (B 6) is bounded as well, because the trajectories of the w variable along the
unit ball are identical with those of system (B 5) and (B 6), because the uniform
factor r(t) only changes the speed along the trajectories, not their shapes. For this
new system, the phase variable w is considered to be independent of r. Employing
the same arguments as for system (B 3a), the corresponding correlation matrix can
be chosen as in (B 4) with arbitrary v.

The amplitude r is determined by the solution of (B 6),

r(t)= r(0) exp
(∫ t

0
wTASwdτ

)
= r(0) exp

(
AS :

∫ t

0
wwTdτ

)
, (B 8)

where the colon denotes the Frobenius matrix scalar product U : V :=
∑N

i,j=1 uijvij.
Because the system behaviour is finite, for large times

0 6 AS :

∫ t

0
wwTdτ . (B 9)

Employing the ensemble average, dividing by t, and by the application of (B 4),
(3.9), m= rv, and the energy-preservation property (2.4), this yields

0 6 AS :W m ≈ AS : v vT
= vTL̃Sv −

N∑
i,j,k=1

miQ
(i)
: v vT

︸ ︷︷ ︸
=r

∑N
i,j,k=1 qijkvivjvk=0

. (B 10)

Because v is arbitrary, L̃S must be negative semidefinite, i.e. the statement of the
theorem is shown.
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Appendix C. Example of unboundedness

In this appendix, a modification of the Lorenz equations is discussed that does not
obey the criterion for boundedness of theorem 1. The modified system given by

dx1

dt
= α1x1, (C 1a)

dx2

dt
= α2x2 − x1x3, (C 1b)

dx3

dt
= α3x3 + x1x2, (C 1c)

with −∞ < α1, α2, α3 <∞, is considered for the investigation of the existence of
monotonically attracting trapping regions and of globally stable attractors. From (3.9)
we get

AS =

 α1 −m3/2 m2/2
−m3/2 α2 0
m2/2 0 α3

. (C 2)

Independent of the choice of m, the sum of the three eigenvalues of AS is equal to
the constant trace of AS, i.e. the mean value γ = (λ1 + λ2 + λ3)/3 is constant.

The eigenvalues are increasingly separated with growing |m2| and |m3|, which can
be seen from the dispersion of the eigenvalues

1
3

3∑
i=1

(λi − γ )
2
=

1
3

(
3∑

i=1

λ2
i

)
− γ 2

= f (α1, α2, α3)+
m2

2 +m2
3

6
. (C 3)

For derivation of (C 3), Vieta’s formula for the characteristic polynomial of AS,

(λ− α1) (λ− α2) (λ− α3)−
m2

2

4
(λ− α2)−

m2
3

4
(λ− α3), (C 4)

is employed, which yields

3
2
γ 2
−

1
2
(λ2

1 + λ
2
2 + λ

2
3)= λ1λ2 + λ2λ3 + λ1λ3 = α1α2 + α2α3 + α1α3 −

m2
2 +m2

3

4
. (C 5)

From the increased dispersion of the eigenvalues and the preservation of the mean
value, the following can be concluded: if one of the three growth rates αi is positive,
then for each m there is always at least one λi positive as well. Following theorem 1,
a monotonically attracting trapping region does not exist in that case. This result is
easily validated considering the dynamics in the case that one eigenvalue is positive.
For α1>0, the variable x1 diverges to infinity for large times, i.e. the system dynamics
is unbounded. For α1 < 0 and large times the quadratic term is small compared to the
linear term and each variable xi, i = 2, 3, diverges to infinity if the respective αi is
positive. If α1 = 0, x1 is constant in time for each initial value, i.e. a monotonically
trapping region does not exist either.

In the case α1 < 0, the nonlinear term of the system (C 1) is vanishing for large
times. Invoking theorem 2, under the action of an additional antisymmetric part,
there might exist globally attracting trapping regions or fixed points that are not
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monotonically attracting. One example with an additional antisymmetric linear term is

dx1

dt
= α1x1, (C 6a)

dx2

dt
= α2x2 − x3 − x1x3, (C 6b)

dx3

dt
= α3x3 + x2 + x1x2. (C 6c)

The analysis for a monotonically attracting region is de facto the same as in system
(C 1). However, if α1 < 0, the application of linear theory is enabled by the vanishing
of the nonlinear term for large times. Only the evolution equations for x2 and x3
are considered while the nonlinear term is neglected. Here, [x2, x3]

T
= [0, 0]T is a

globally stable fixed point, if and only if the real parts of the eigenvalues of
[
α2 −1
1 α3

]
are negative-valued. In conclusion, in the absence of an efficient nonlinearity, linear
analyses are needed in addition for a complete analysis of the long-term boundedness
of the system.

Appendix D. Large-deviation and attractor control
In this appendix, applications of the criterion of § 3 for control design are sketched.
For control, the term B b(t) is added to the right-hand side of the Galerkin system

(3.5), leading to

dx
dt
= c+ L x+ [ xTQ(1)x, . . . , xTQ(N)x ]T + B b, (D 1)

with the input matrix B and the input vector b= b(t). Let us assume full-state feedback
with constant, linear and quadratic terms

b= cb
+ Lb x+ [ xTQb(1)x, . . . , xTQb(N)x ]T (D 2)

with the free coefficients in cb, Lb and Qb(i). The actuation term reads

B b(t)= cg
+ Bgx+ [ xTQg(1)x, . . . , xTQg(N)x ]T, (D 3)

introducing the feedback vector cg, the feedback matrix Lg and the symmetric matrices
Qg(i) for the quadratic term of feedback. We require that the control law (D 2) is
chosen to respect the energy-preservation property

qg(i)
jk + qg(j)

ik + qg(k)
ij = 0, i, j, k= 1, . . . ,N. (D 4)

In summary, the actuated system reads

dx
dt
= ca
+ Lax+ [ xTQa(1)x, . . . , xTQa(N)x ]T, (D 5)

where ca
= c+ cg, La

= L + Lg and Qa(i)
= Q(i)

+ Qg(i), i = 1, . . . , N. The controlled
system is of the form (3.5) and thus contained in the class of dynamical systems
considered in this paper. That is why the long-term behaviour of the corresponding
dynamics can be investigated by the criterion of theorem 1. In control design, the
choice of the parameters cb, Lb and Qb(i), i = 1, . . . , N, is restricted by constraints
implied by the input matrix Lg.
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Two tasks are pursued here:

(a) Large-deviation control. The purpose of this part is twofold. One goal is the
modification of the parameters of system (3.5) such that the existence of a
monotonically attracting trapping region is ensured. On the other hand, artefacts
like blow-ups in model-based control design are precluded a priori.

(b) Attractor control. The target is the manipulation of statistical attractor moments.
To that end, in this paper, tools are provided to design the volume and the
location of monotonically attracting trapping regions. In one extreme case, on
which we focus here, a globally attracting fixed point is designed, i.e. the
attractor mean is equal to a fixed point and the higher central moments are
zero. The focus of large-deviation control is the identification or creation of
monotonically attracting trapping regions. This can be achieved as described in
§ 3.

As one extreme case of attractor control, we assume a constant actuation,
i.e. vanishing Lb and Qb(i). The feedback vector cg may be chosen such that each
state m ∈S is a globally attracting fixed point of the feedback system. This implies
that

0= ca
i +

N∑
j=1

la
ijmj +

N∑
j,k=1

qa(i)
jk mjmk, i= 1, . . . ,N. (D 6)

Then, the energy Km represents a Lyapunov function, because the linear symmetric
part AS is negative definite. The choice of the feedback vector cg might be restricted
such that a globally stable fixed point is not attainable owing to the constraints
implied by the input matrix Lg of the flow control configuration. However, even in
this case, the first and second attractor moments can be estimated from the location
and the volume of the trapping region. Thus, the moments can be manipulated
by the design of the ellipsoid of energy growth given by (3.14). The effort of a
corresponding volume force actuation for this attractor control might be large. A
trade-off between the attractor scaling via choice of cg and the discussed design
of S might be necessary for model-based flow control applications.

Examples for the application of large-deviation and attractor control are discussed
in the following.

D.1. Example for large-deviation control
For large-deviation control, the set S of stabilisable states is analytically or
numerically created and designed for the sample system (A 1) endowed with a
linear feedback matrix of the family of linear symmetric matrices:

Lg
β :=

[
β1 0
0 β2

]
. (D 7)

The corresponding sets Sβ of stabilisable states m are identified via auxiliary
calculations to be

Sβ =

{
{x= [x1, x2]

T
: |x1|〈2

√
1− β2

√
x2 − 1− β1, x2〉1+ β1} for β2 < 1,

∅ for β2 > 1.
(D 8)

In particular, S0 := {x = [x1, x2]
T
: |x1| < 2

√
x2 − 1, x2 > 1}. Starting from S0, the

set Sβ is designed via variation of β as demonstrated in figure 9. If the set S =
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1

1

FIGURE 9. Design of the open set Sβ of stabilisable states at the upper side of the curve.
By variation of the parameters β = [β1, β2]

T of the feedback matrix Lg
β , the set Sβ is

modified via a spatial shift in the x2 direction (via varying β1) and widening/narrowing
(varying β2) of the opening angle.

Sβ is not empty, the long-term dynamics of the resulting system is bounded invoking
theorem 1.

In the case β2 > 1, the set of stabilisable states is empty and a monotonically
attracting trapping region does not exist, which is obvious considering the resulting
system,

dx1

dt
= (1+ β1)x1 − x1x2, (D 9)

dx2

dt
= (β2 − 1)x2 + x2

1, (D 10)

in the subspace of the x2-axis, i.e. x1= 0. It means that the Lg
β with β2 > 1 cannot be

chosen to form a control with bounded system behaviour.

D.2. Example for attractor control
As attractor control example, we control the size of the monotonically attracting
trapping region. The Lorenz system (6.1) is extended by a control vector cg

=

γ [0, 0, β(ρ + σ)]T with γ ∈ [0, 1] such that

dx
dt
= γ

 0
0

β(ρ + σ)

+
−σ σ 0
−ρ −1 0
0 0 −β

 x+

 0
−x1 x3
x1 x2

 . (D 11)

For γ = 0, this system is identical to the Lorenz equations (6.1). From the
transformation y= x−m with m= [0, 0, ρ + σ ]T, the system

dy
dt
= (γ − 1)

 0
0

β(ρ + σ)

+
−σ σ 0
−σ −1 0
0 0 −β

 y+

 0
−y1 y3
y1 y2

 (D 12)

is obtained. For γ = 1 the constant part of the right-hand side is equal to zero. Thus,
the energy is a Lyapunov function and m is a globally stable fixed point in this
case. Generally, (3.14) for the ellipsoid of positive energy growth is given in original
coordinates x by

x2
1

α2
1
+

x2
2

α2
2
+
[x3 − (ρ + σ)+ (γ − 1)(ρ + σ)/2]2

α2
3

= 1 (D 13)
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with the half-axes

α1 = (1− γ )
ρ + σ

2
√
σ
, α2 = (1− γ )

ρ + σ

2
, α3 = (1− γ )

ρ + σ

2
√
β
. (D 14a−c)

Hence, the half-axes shrink linearly with the growth of γ . This is true as well for the
radius of the monotonically attracting trapping region given by the smallest ball with
m at the centre that contains the ellipsoid.

In conclusion, the attractor contained in this trapping region is shrinking, and
degenerates to a fixed point for γ = 1. The first statistical moment situated in the
ball converges to m for γ → 1; the standard deviation bounded by the ball radius
converges to zero. For γ ≈ 0.288 there is a transition from the strange attractor to
three fixed points, which converge for γ → 1 to the monotonically stable fixed point
m at γ = 1. Thus, the control parameter γ defines a transition scenario between
stationary and chaotic dynamical behaviour.
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