
Math. Struct. in Comp. Science (2016), vol. 26, pp. 1054–1106. c© Cambridge University Press 2014

doi:10.1017/S0960129514000346 First published online 12 November 2014

Breaking symmetries†

KIRSTIN PETERS and UWE NESTMANN

Technische Universität Berlin, Germany

Email: kirstin.peters@tu-berlin.de, uwe.nestmann@tu-berlin.de

Received 7 April 2011; revised 28 March 2012

A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice) is

more expressive than πsep (its subset with only separate choice). The proof of this result

analyses their different expressive power concerning leader election in symmetric networks.

Later on, Gorla offered an arguably simpler proof that, instead of leader election in

symmetric networks, employed the reducibility of ‘incestual’ processes (mixed choices that

include both enabled senders and receivers for the same channel) when running two copies

in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent.

In this paper, we shed more light on this role by re-proving the above result – based on a

proper formalization of what it means to break symmetries – without referring to another

problem domain like leader election.

Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and

reasonable encoding from πmix into πsep. We indicate how their proofs can be adapted and

exhibit the consequences of varying notions of uniformity and reasonableness. In each case,

the ability to break initial symmetries turns out to be essential. Moreover, by abandoning

the uniformity criterion, we show that there indeed is a reasonable encoding. We emphasize

its underlying principle, which highlights the difference between breaking symmetries locally

instead of globally.

1. Introduction

The context of this paper is the formal analysis of both the expressive power and the

(distributed) implementability of specification and programming languages for concurrent

systems. Concentrating on the computational essence of such languages, we focus on

so-called process calculi, as exemplified by the family of π-calculi, which contain as few

syntactic primitives as possible. Here, the primitives cover parallel composition, name

generation, name passing via handshake interactions between parallel components and,

depending on the respective variant, also some notion of choice that allows to express

a competitive selection among alternative communication capabilities. As it turned out

earlier (see next paragraph), and as we hope to shed further light upon in this paper, the

kind of such competitions – mixing inputs and outputs, or not – allowed within choice

operators has a great impact on the expressive power of the language. The reason relies

on their different power to break symmetries.

† Supported by the DFG (German Research Foundation), grant NE-1505/2-1.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1055

The well-known result of Palamidessi (2003) tells us that πmix (the π-calculus with

mixed choice) is more expressive than πsep (its subset with only separate choice). More

technically, the result states that there exists no ‘good’ – i.e. uniform (structure-preserving)

and reasonable (semantics-preserving) – encoding from πmix into πsep. Nestmann (2000)

proved that there is a ‘good’ encoding from πsep to πa (the choice-free asynchronous subset

of the π-calculus). He also exhibited various encodings from πmix to πsep, which were not

considered ‘good’ by Palamidessi, as they were not uniform or reasonable enough.

The proof of Palamidessi (2003) analyses the different expressive power of the involved

calculi concerning leader election in symmetric networks. More precisely, Palamidessi

proves that there is no symmetric network in πsep that solves leader election, whereas

there are such networks in πmix. The proof implicitly uses the fact that it is not possible in

πsep to break initial symmetries, while this is possible in πmix. To this end, a rather strong

notion of symmetry consisting of a syntactic and a semantic component is used to ensure

that solving leader election requires breaking initial symmetries. With this result, inspired

by the work of Bougé (1988) in the context of CSP , Palamidessi proves that there is no

uniform and reasonable encoding from πmix into πsep.

Later on, Gorla (2008b) offered an arguably simpler proof for the non-existence of a

‘good’ encoding from πmix into πsep. Instead of leader election in symmetric networks, it

employed the reducibility of ‘incestual’processes (mixed choices that include both enabled

senders and receivers for the same channel) when running two copies in parallel. Gorla’s

proof does not explicitly use a notion of symmetry.

Palamidessi’s proof that there are no symmetric networks in πsep that solve leader

election addresses the absolute expressive power of πsep, whereas the proofs of the non-

existence of a uniform encoding by Palamidessi and Gorla address the often-called relative

expressive power of the languages (Parrow 2008). In the following, we discuss these two

approaches in more detail, as this allows us to clarify the role of symmetry-breaking in

the respective proofs.

The absolute expressive power of a language describes what kind of behaviour or

operations on behaviour are expressible in it (see Gorla (2008a,b); Parrow (2008) and

even Lipton et al. (1974)). Analysing the absolute expressive power of a language usually

consists of analysing which ‘problems’ can be solved in it and which cannot. It is often

difficult to identify a suitable problem instance or problem domain to properly measure

the expressive power of a language. For instance, one might consider Turing-completeness

to measure the computational power of a language. In fact, Turing-completeness has

been used in the context of process algebras, e.g. for Linda (Busi et al. 2000). Instead,

Palamidessi, inspired by Bougé (Bougé 1988), uses the distributed coordination problem

of leader election. More precisely, the problem refers to initially symmetric networks,

where all potential leaders have equal chances and all processes run the same – read:

symmetric – code. There, to solve the leader election problem, it is required that in all

possible executions a leader is elected. Usually, it is argued that it is necessary – again in all

possible executions – to break the initial symmetry in order to do so. On the other hand, if

there is just a single execution in which the symmetry is somehow perpetually maintained

or at least restored, then also leader election may fail, and thus the leader election problem

is not solved. One may conclude that, at a closer look, Palamidessi’s proof furthermore

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1056

addresses another problem: the problem of breaking initial symmetries. Therefore, we

suggest to promote ‘breaking symmetries’ from a mere auxiliary proof technique to a

proper problem of its own. It turns out that, by doing so, we can significantly weaken

the definition of symmetry and at the same time provide a stronger proof applicable to

problem instances different from leader election.

Now, to compare the absolute expressive power of two languages, we may simply choose

a problem that can be solved in one language, but not in the other language. Actually, as

soon as we compare two languages, it makes sense to use the term relative expressive power,

as we can now relate the two languages. Unfortunately, the terminology was introduced

differently. It has been attributed (see Parrow (2008)) to the comparison of the expressive

power of two languages by means of the existence or non-existence of encodings from one

language into the other language, subject to various conditions on the encoding. In our

opinion, the term ‘relative expressive power’ is misleading. First, as mentioned above, also

the absolute expressive power can directly be used to relate two languages. Second, results

on the encodability of a language have to be understood relative to the specific conditions

on the encoding – it is not always clear to what aspect the ‘relative’ refers. Thus, in this

paper, we prefer the notion of translational expressive power to refer to comparisons of

the expressiveness of two languages by analysing the existence or non-existence of an

encoding, subject to various conditions. Both Palamidessi and Gorla state results of this

kind; they prove that there is no uniform and reasonable encoding from πmix into πsep,

for varying interpretations of the conditions uniform and reasonable.

In this paper, we show that the problem of breaking initial symmetries, compared to

the problem of leader election, appears to be a more suitable problem instance to separate

πmix from πsep. There are two great benefits in proving an absolute separation result

instead of a translational one. First, in opposite to translational separation results which

are always equipped with the conditions on the encoding, we can formulate a separation

result without any pre- or side conditions. Second, as we show in Section 3.3, we can prove

several translational separation results due to different definitions of reasonableness as

simple consequences of our absolute separation result. For our work, we had to develop

answers to two related questions of definition:

(1) How exactly should one define symmetric networks?

(2) What exactly does it mean to break symmetries?

By comparing the proofs of the translational separation results of Section 3.3, we

observe their dependency on the absolute separation result as well as their dependency

on the homomorphic translation of the parallel operator. Gorla (2010) points out that

the homomorphic translation of the parallel operator is a rather strict condition. Instead,

he proposes (weak) compositionality in combination with four other criteria to define the

notion of a ‘good’ encoding. We claim that this weakening of the structural condition

of homomorphic translation of the parallel operator by compositional translation of the

parallel operator suffices to turn the translational separation result (negative) into an

encodability result (positive). To underpin that claim, we present an encoding from πmix

into πa in Section 4, based on a known encoding from πsep into πa (Nestmann 2000), and

discuss some of its properties. Note that in Peters and Nestmann (2012a,b) we present

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1057

another encoding from πmix into πa based on similar ideas as well as an exhaustive

argumentation for the proof of its correctness with respect to the criteria of Gorla. Since,

by our absolute separation result, it is not possible to break initial symmetries in πsep,

thus neither in πa, it is up to the proposed encoding function to break initial source

term symmetries. This idea was also the basis for some of the encodings of Nestmann

(2000), where the symmetry was broken globally by means of some centralized artefacts.

However, as we show in Section 4, it is also possible by means of weak compositionality

to exploit the parallel structure of source terms to break symmetries locally.

The main contributions of this paper are then as follows. (1) We present a separation

result between πmix and πsep that does not require any additional preconditions. In

particular, it is completely independent of what it means for an encoding to be ‘good’

or ‘reasonable’. (2) This absolute separation result, i.e. the inability of πsep in opposite

to πmix to break initial symmetries, implies that any encoding from πmix into πsep– if

there is any – has to be able to break initial source term symmetries. (3) Since we use a

weaker notion of symmetry, and because we do not focus on the leader election problem,

our separation result is more general than the one in Palamidessi (2003), i.e. it widens

the gap between πmix and πsep. It also allows us to derive a number of translational

separation results using counterexamples different from leader election. (4) We prove

a stronger translational separation result in comparison to Palamidessi (2003), Vigliotti

et al. (2007) and (the first setting of) Gorla (2008b) by weakening the conditions on the

encodings used. This strengthening of the translational separation results reveals their

strong dependency on the homomorphic translation of the parallel operator as one of its

fundamental preconditions. By abandoning this precondition, and as a novelty going well

beyond our previous article (Peters and Nestmann 2010), (5) we manage to present, as we

conjecture, a ‘good’ encoding from πmix into πa.

1.1. Overview of the paper

In Section 2, we introduce the two process calculi that we intend to compare. Moreover

we discuss notions of ‘good’ encodings and revisit the five criteria Gorla presented in

Gorla (2010) to measure the quality of an encoding. In Section 3, we revisit the notion of

symmetry used by Palamidessi to propose her separation result and define symmetry as

we use it. Then we prove an absolute separation result, i.e. we prove that πmix is strictly

more expressive than πsep, by proving the inability of πsep to break initial symmetries.

Based on this result, we prove that there is no uniform and reasonable encoding from

πmix to πsep examining different notions of reasonableness. In Section 4, we present an

attempt to encode πmix into πa, show how initial source term symmetries are broken by the

proposed encoding function, and discuss some of the properties of this encoding attempt.

We conclude with Section 5.

2. Technical preliminaries

2.1. The π-calculus

Our source language is the monadic π-calculus as described for instance in Sangiorgi and

Walker (2001). Since the main reason for the absolute difference in the expressiveness of

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1058

the full π-calculus compared to the asynchronous π-calculus is the power of mixed choice

we denote the full π-calculus also by πmix.

Let N denote a countably infinite set of names and N the set of co-names, i.e.

N = { n | n ∈ N }. We use lower case letters a, a′, a1, . . . , x, y, . . . to range over names. In

πmix (and its subcalculi) names are used for two different purposes. First, they serve as

names of communication links and so are used by processes to interact. Second, they are

used as values within interactions, i.e. the objects that can be exchanged over links, and

so they allow to constitute dynamic communication networks. Sometimes, we denote the

value sent over a link as parameter of this link.

Definition 2.1 (πmix). The set of process terms of the π-calculus (with mixed choice),

denoted by Pmix, are given by

P � (ν n)P | P1 | P2 | [a = b]P |
∑
i∈I

πi.Pi | y∗ (x) .P

where

π � y (x) | y 〈z〉 | τ

for some names n, a, b, x, y, z ∈ N and a finite index set I .

The interpretation of the defined process terms is as usual. Restriction (ν n)P restricts the

scope of the name n to the definition of P . The parallel composition P1 | P2 defines the

process in which P1 and P2 may proceed independently, possibly interacting using shared

links. The operator [a = b] is called matching. It works as a conditional guard, which

can be removed if and only if a and b are equal. The process term
∑

i∈I πi.Pi represents

finite guarded choice; as usual, the term π1.P1 + π2.P2 denotes binary choice, and we use 0

as abbreviation for the empty sum, i.e. in case of I = �. y∗ (x) .P denotes input-guarded

replication.

We observe that recursion is defined for input-guarded processes only and that processes

within sums are also always guarded. A guard is either an input prefix y (x), an output

prefix y 〈z〉, or the prefix τ. We sometimes refer to input and output prefixes as action

prefixes. The input prefix y (x) is used to describe the ability of receiving the value x over

link y and, analogously, the output prefix y 〈z〉 describes the ability to send a value z over

link y. The prefix τ describes the ability to perform an internal, not observable action. A

term whose outermost operator is either choice or replication is called guarded, else it is

unguarded. Moreover an input/output-guarded term is a term guarded by an input/output

guard, respectively.

As common nowadays, we restrict our attention to guarded choice. However, in

the original definition, as presented in Milner et al. (1992), the π-calculus contained

free choice, i.e. summands can appear unguarded. This restriction does not influence

the results presented in Section 3, i.e. they remain valid even for the more general case of

free choice in πmix (as long as choice in πsep is restricted to be guarded). But the restriction

is necessary to obtain the encoding from πmix into πa in Section 4.

For simplicity, we often omit the continuation 0, so y.0 becomes y. In addition, for

simplicity in the presentation of examples, we sometimes omit an action’s object when it

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1059

does not effectively contribute to the behaviour of a term. Typically, we do this when it

would be enough to use a CCS-like example, but the monadic π-calculus would force us

to carry some object along that would never be used on a receiver side, e.g. as in y (x) .0,

which would be written as y.0 or y.

As target languages, we consider two subcalculi of πmix: πsep, the π-calculus with

separate choice, and πa, the asynchronous π-calculus. In πsep, both output and input can

be used as guards, but within a single choice term either there are no input or no output

guards, i.e. we have input- and output-guarded choice, but no mixed choice.

Definition 2.2 (πsep). The set of process terms of the π-calculus with separate choice,

denoted by Psep, are given by

P � (ν n)P | P1 | P2 | [a = b]P

|
∑
i∈I

πO
i .Pi |

∑
i∈I

πI
i .Pi | y∗ (x) .P

where

πO � y 〈z〉 | τ and πI � y (x) | τ

for some names n, a, b, x, y, z ∈ N and a finite index set I .

As expected, the definitions of πsep and πmix differ in the definition of choice only.

Moreover, since each separate choice construct also meets the requirements of a mixed

choice but not vice versa, the set of πsep-terms is a strictly smaller subset of the set of

πmix-terms, i.e. Psep ⊂ Pmix. For strictness, consider P = x + y. Obviously, P ∈ Pmix but

P /∈ Psep.

Asynchronous variants of the π-calculus were introduced independently by Honda and

Tokoro (1991) and Boudol (1992). In asynchronous communication, a process has no

chance to directly determine, i.e. without a hint by another process, whether a value sent

by it was already received or not. To model that fact in πa, output action is not allowed

to guard a process different from 0. Accordingly, within an asynchronous setting, the

interpretation of output guards within a choice construct is delicate. Here, we use the

variant of πa, where choice is not allowed at all. Let T (M) denotes the set of tuples over

a set M.

Definition 2.3 (πa). The set of process terms of the asynchronous π-calculus, denoted by

Pa, are given by

P � (ν n)P | P1 | P2 | [a = b]P

| 0 | y 〈z̃〉 | y (x̃) .P | y∗ (x̃) .P

for some names n, a, b, y ∈ N and x̃, z̃ ∈ T (N).

Since πa has no choice, and thus no nullary choice, we include 0 as a primitive. To simplify

the definition of the encoding in Section 4, we use a polyadic version of πa. As usual, the

tuple notation x̃ ∈ T (N) denotes finite sequences x1, . . . , xn of names in N . Moreover, we

use (ν x̃) for a sequence x̃ = x1, . . . , xn to abbreviate (ν x1) . . . (ν xn) and x̃ \ M for a set of

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1060

P ≡ Q if Q can be obtained from P by renaming one or more

of the bound names in, silently avoiding name clashes P

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

[a = a]P ≡ P (ν n)0 ≡ 0 (ν n) (ν m)P ≡ (ν m) (ν n)P

P | (ν n)Q ≡ (ν n) (P | Q) if n /∈ fn(P)

Fig. 1. Structural congruence.

names M to denote the sequence of names x̃ without the occurrences of name y for all

y ∈ M. We also use the tuple notation for other kinds of data, like actions or labels. Of

course, two processes can communicate over the same link if and only if the number of

parameters send and the number of parameters expected to receive are equal. Note that

if we consider the monadic πa instead of its polyadic variant, then the set Pa of πa-terms

is strictly contained in Psep.

We use capital letters P , P ′, P1, . . . , Q, R, . . . to range over processes. If we refer to

processes without further requirements, we denote elements of Pmix; we sometimes use

just P when the discussion applies to all three calculi.

Let A � { x y, x y, x (y) | x, y ∈ N } denote the set of monadic action labels for

visible actions, where x y denotes free input, x y denotes free output, and x (y) denotes

bound output, respectively. Let τ denote an internal invisible action whose label is denoted

by τ as well. Let Aτ be the corresponding set of labels, i.e. Aτ = A ∪ { τ }. We use

μ, μ′, μ1, . . . to range over labels. Let fn(P) and fn(μ) denote the sets of free names in P

and μ, respectively. Let bn(P) and bn(μ) denote the sets of bound names in P and μ,

respectively. Likewise, n(P) and n(μ) denote the sets of all names occurring in P and

μ. Their definitions are completely standard, i.e. names are bound by restriction and as

parameter of input or replicated input and n(P) = fn(P)∪bn(P) for all P ∈ P . We assume

that there are no clashes between free and bound names in terms, i.e. in any term the set

of bound and free names are disjoint.

The operational semantics of πmix and πsep are jointly given by the transition rules

in Figures 2 and 3, where structural congruence, denoted by ≡, is given by the rules in

Figure 1. As usual, we use ≡α if we refer to alpha-conversion (the first rule of Figure 1)

only. Note that for the separation result in Section 3 (according to Palamidessi (2003))

only the following rules of structural congruence are used:

(1) P ≡ Q if P ≡α Q

(2) P | (ν n)Q ≡ (ν n)
(
P | Q

)
if x /∈ fn(P)

(3) P | Q ≡ Q | P
We define both the labelled and reduction semantics of πmix, because we conveniently

use them for different purposes. The labelled semantics is used in Section 3 to state a

separation result in the style of Palamidessi (2003) while the reduction semantics of πmix

as well as its counterpart for πa in Figure 4 are used in the style of Gorla (2010) to derive

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1061

O-Sum
∑

i∈I πi.Pi
x y−−→ Pj πj = x 〈y〉 ∧ j ∈ I

I-Sum
∑

i∈I πi.Pi
x y−−→ { y/z }Pj πj = x (z) ∧ j ∈ I

Rep x∗ (z) .P
x y−−→ { y/z }P | x∗ (z) .P

τ -Sum
∑

i∈I πi.Pi
τ−−→ Pj πj = τ ∧ j ∈ I

Com
P

x y−−→ P ′ Q
x y−−→ Q′

P |Q τ−−→ P ′|Q′

Close
P

x y−−→ P ′ Q
x(y)−−−→ Q′

P | Q τ−−→ (ν y) (P ′ | Q′)
y /∈ fn(P)

Par
P

μ−−→ P ′

P |Q μ−−→ P ′|Q
bn(μ) ∩ fn(Q) = ∅

Res
P

μ−−→ P ′

(ν z)P
μ−−→ (ν z)P ′

z /∈ n(μ)

Open
P

x y−−→ P ′

(ν y)P
x(y)−−−→ P ′

x
= y Cong
P ′ ≡ P P

μ−−→ Q Q ≡ Q′

P ′ μ−−→ Q′

Fig. 2. Labelled semantics of πmix and πsep.

TauS (. . . + τ.P + . . .) →−� S P

ComS (. . . + y (x) .P + . . .) | (. . . + y 〈z〉 .Q + . . .) →−� S { z/x }P | Q

RepS y∗ (x) .P | (. . . + y 〈z〉 .Q + . . .) →−� S { z/x }P | y∗ (x) .P | Q

ParS
P →−� S P ′

P | Q →−� S P ′ | Q ResS
P →−� S P ′

(ν n)P →−� S (ν n)P ′

CongS
P ≡ P ′ P ′ →−� S Q′ Q′ ≡ Q

P →−� S Q

Fig. 3. Reduction semantics of πmix and πsep.

a good encoding in Section 4. This also explains the indices within the two reduction

semantics: S and T refer to source and target language, respectively (see Section 2.2).

A network is a process (ν x̃)
(
P1 | . . . | Pn

)
for some n ∈ N , P1, . . . , Pn ∈ P and x̃ ∈ T (N).

We refer to P1, . . . , Pn as the processes of the network.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1062

TauT (. . . + τ.P + . . .) →−� T P

ComT y (x̃) .P | y 〈z̃ →−�〉 T

{
z̃/̃x

}
P |x̃| = |z̃|

RepT y∗ (x̃) .P | y 〈z̃ →−�〉 T

{
z̃/̃x

}
P | y∗ (x̃) .P |x̃| = |z̃|

ParT
P →−� T P ′

P | Q →−� T P ′ | Q ResT
P →−� T P ′

(ν n)P →−� T (ν n)P ′

CongT
P ≡ P ′ P ′ →−� T Q′ Q′ ≡ Q

P →−� T Q

Fig. 4. Reduction semantics of πa.

We use σ, σ′, σ1, . . . to range over substitutions. A substitution { x1/y1
, . . . ,xn/yn } is a

mapping from names to names. The application of a substitution on a term P , denoted by

{ x1/y1
, . . . ,xn/yn } (P), is defined as the result of simultaneously replacing all free occurrences

of yi by xi for i ∈ { 1, . . . , n }, possibly applying alpha-conversion to avoid capture or

name clashes. For all names N \ { y1, . . . , yn } the substitution behaves as the identity

mapping. Let id denote identity, i.e. id is the empty substitution id = �. We sometimes

omit the brackets, i.e. σ (P) = σP , and naturally extend substitutions to co-names, i.e.

∀n ∈ N . σ (n) = σ (n) for all substitutions σ.

To avoid confusion, we use
μ

−−→ with μ ∈ Aτ for steps within the labelled semantics

and −→ within the reduction semantics. Moreover, let P −−→ (P �−−→) and P −→ (P �−→)

respectively denote existence (non-existence) of a step from P , i.e. there is (no) P ′ ∈ P and

(no) μ ∈ Aτ such that P
μ

−−→ P ′ and P −→ P ′. A (partial) execution is a sequence of steps

P
μ1 ,...,μn−−−−→ P ′ such that P

μ1−−→ H1

μ2−−→ . . .
μn−1−−→ Hn−1

μn−−→ P ′ for some P , P ′, H1, . . . , Hn−1 ∈ P
with the sequence μ1, . . . , μn of observable and unobservable actions, i.e. μ1, . . . , μn ∈ Aτ.

Accordingly, P
μ̃

−−→ P ′ �−−→ denotes a finite execution from P to P ′ with the sequence of

actions μ̃ ∈ T (Aτ). Moreover, let �=⇒ be the reflexive and transitive closure of −→ and

let −→ω define an infinite sequence of reduction steps, i.e. P −→ω means P −→−→ . . .

for an infinite sequence of steps. Let P (�)n Q denote a sequence of n �-steps from P to

Q for every kind of steps �; e.g. in case of −→-steps P (−→)3 Q denotes a sequence of

three reduction steps from P to Q, i.e. P −→−→−→ Q.

If P
μ

−−→ for some μ �= τ then P can perform a visible action. In this case, P has

an input observable a, denoted by P ↓a, if μ is an input action with subject a, i.e.

μ ∈ { a b | a, b ∈ N }, and P has an output observable a, denoted by P ↓a, if μ is an output

action with subject a, i.e. μ ∈ { a b, a (b) | a, b ∈ N }. Observables are often also called

barbs (Milner and Sangiorgi 1992).

Comparing the three calculi, we observe that at least for their monadic versions their

sets of terms form a strict inclusion chain. Moreover, the operational semantics for all

three calculi is essentially the same – modulo the usual consistency between labelled

τ-steps and reduction steps. Accordingly, these three versions of the π-calculus naturally

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1063

form a hierarchy with the full π-calculus at the top and its asynchronous variant at the

bottom.

Corollary 2.4 (hierarchy). πmix is at least as expressive as πsep and πsep is at least as

expressive as πa.

One main purpose of this paper is to discuss to what extent the expressive power of these

calculi are equal and to what extent the inclusions are strict.

2.1.1. Match. πmix and its variants are often presented without a match operator. We

present all variants including match, because (1) we need the match operator in Section 4

to obtain an encoding from πmix into πa and (2) we want a hierarchy (at least for the

monadic versions) of the calculi. However, note that none of the results in Section 3 rely

on this decision, i.e. all presented results of Section 3 hold also if match is removed from

one or all considered calculi.

2.2. Quality criteria for encodings

To compare two languages by means of translational expressiveness, we either distinguish

them by a separation result or relate them by an encodability result. A separation result

distinguishes two languages by showing that there is a term – or a class of terms – of

the source language that cannot be encoded into the target language via some ‘good’

encoding. An encodability result shows that the target language is as expressive as the

source language by showing that there is a ‘good’ encoding from the source into

the target language. In both directions, the notion of ‘good’ encoding, i.e. the quality

of the encoding, is crucial.

To prove separation results, the set of criteria shall be minimal to strengthen the

significance of the result. In contrast, encodability results are strengthened by stricter

constraints, i.e. the set of criteria shall be maximal. There is no agreement yet about the

criteria for language comparison – neither for encodability, nor for separation – which

naturally leads to incomparable results (Boer and Palamidessi 1991; Nestmann 2006;

Parrow 2008; Shapiro 1989, 1991, 1992).

A widely used criterion is based on the notion of full abstraction: the preservation

and reflection of equivalences associated to the two compared languages. By definition,

the relevance of this notion depends on the involved equivalences. Since there are lots

of different equivalences (van Glabbeek 1993, 2001) – as also for the π-calculus and its

variants – one may, for the very same encoding, arrive at both encodability and separation

results, simply by varying the respective choice of equivalence for the source and target

language. As for the set of criteria itself, there is no agreement about what kinds of

equivalence are well suited for language comparison.

To overcome this problem, Gorla (2010) identifies five criteria to build a possibly more

robust and uniform approach to compare languages. Instead of notions of equivalence,

Gorla’s approach focuses on the notion of computation and related capabilities. Here,

there is no need to provide a notion of equivalence for the source language. There is,

though, a need to provide a notion of equivalence for the target language to be able to

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1064

abstract from certain low-level artefacts that the encoding may produce. In the following,

we recall the five criteria as presented for instance in Gorla (2010).

To distinguish source and target language, the former is denoted by LS – as long as

no specific source language is given – while the latter is denoted by LT. The indices S

and T are then deployed along the definitions of relations and rules on the languages

to distinguish those of the source from those of the target language. Both languages are

defined by their set of terms possibly up to some notion of structural congruence as we

did for πmix and πa in Section 2.1 and their reduction semantics. Moreover, we require

that both languages contain a special operator � called success within their syntax. As

explained further below, this operator allows to compare the behaviour of source and

target terms by means of testing in a very general, i.e. not domain-specific, way. We

also require that the parallel composition operator | is binary and subject to the same

operational semantics in both languages, as is the case in our setting. Let S, S ′, S1, . . .

range over processes of the source language LS and T ,T ′, T1, . . . range over processes of

the target language LT.

Additionally, on the target language, we assume a behavioural equivalence �T. Its

purpose is to describe the abstract behaviour of a target process, where abstract basically

means with respect to the behaviour of the source terms. Therefore, it should abstract

from ‘junk’ left over by the encoding while mimicking the behaviour of the source term

(compare to Definition 2.8). Note that the choice of this equivalence is still crucial in

the sense that choosing a trivial form of equivalence allows for meaningless encodings.

By Gorla (2010) a ‘good’ equivalence �T is often defined in the form of a barbed

equivalence (as described e.g. in Milner and Sangiorgi (1992)) or can be derived directly

from the reduction semantics and is often a congruence, at least with respect to parallel

composition.

The five conditions on a good encoding are divided into two structural and three se-

mantic criteria. The structural criteria include (1) compositionality and (2) name invariance,

i.e. that the encoding does not depend on specific names within the respective source term.

The semantic criteria include (3) operational correspondence, (4) divergence reflection and

(5) success sensitiveness.

Intuitively, an encoding is compositional if the translation of an operator is the same

for all possible sets of parameters. To mediate between the translations of the parameters

the encoding defines a unique context for each operator, whose arity is the arity of the

operator. Moreover the context can be parametrized on the free names of the respective

source term.

Definition 2.5 (criterion 1: compositionality). A translation � · 	 : LS → LT is compositional

if, for every k-ary operator op of LS and for every subset of names N, there exists a k-ary

context CN
op (1; . . . ; k) such that, for all S1, . . . , Sk with fn(S1) ∪ . . . ∪ fn(Sk) = N, it holds

that � op (S1, . . . , Sk) 	 = CN
op (� S1 	; . . . ; � Sk).

In Section 3, we refer to a separation result of Palamidessi (Palamidessi 2003) where,

instead of compositionality, the stronger condition of homomorphic translation of the

parallel operator is assumed. In the context of variants of the π-calculus, the homomorphic

translation of the parallel operator enjoys the pleasant property of preserving the degree of

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1065

distribution, i.e. encoding the parallel operator homomorphically ensures that the degree

of distribution of the source and the target term are the same. However, it is also a

possibly too limiting condition as it rules out some well-accepted encodings; Gorla (2010)

specifically mentions (Baldamus et al. 2005; Bugliesi and Giunti 2007; Nestmann 2000).

Compositionality, as defined above, may allow to change the degree of distribution but

it does not enforce this. Thus, we rely on this weaker condition and additionally require,

whenever needed, an argumentation on a case-by-case basis that the encoding does not

significantly change the degree of distribution.

The second structural criterion states that the encoding should not depend on specific

names used within the respective source term. Of course, an encoding that translates each

name to itself simply preserves this condition. However, it is sometimes necessary and

meaningful to translate a name into a sequence of names or to reserve a couple of names

for the encoding, i.e. to give them a special function within the encoding. To ensure that

there are no conflicts between (i) the names used by the encoding function for special

purposes and (ii) the names used by the source term, the encoding is enriched with a

renaming policy, i.e. a substitution from names into sequences of names. If we allow a

name to be translated into a sequence of names, we have to require that (1) each such

sequence is finite – such that the translated names can be handled by the target language

– and that (2) the sequences associated to two different names are of the same length and

do not have names in common – such that the encoding cannot link the translations of

different names nor build up a hierarchy on the translated names.

Definition 2.6 (renaming policy). Let n ∈ N be a positive natural number. A substitution

ϕn
� · 	 : N → N n is a renaming policy if, for all u, v ∈ N such that u �= v, it holds that

ϕn
� · 	 (u) ∩ ϕn

� · 	 (v) = �, where ϕn
� · 	 (·) is considered as a set.

Based on such a renaming policy an encoding is independent of specific names if it

preserves all substitutions σ on source terms by a substitution σ′ on target terms such

that σ′ respects the changes made by the renaming policy.

Definition 2.7 (criterion 2: name invariance). A translation � · 	 : LS → LT is name

invariant if, for every S and σ, it holds that

� σ (S) 	

{
≡ σ′ (� S) if σ is injective

�T σ′ (� S) otherwise

where σ′ is such that ϕn
� · 	 (σ (a)) = σ′ (ϕn

� · 	 (a)
)

for every a ∈ N .

Note that substitutions may always induce alpha-conversion to avoid name capture. Since

we have no control of the names used within such an alpha-conversion � σ (S) 	 and

σ′ (� S) in the first case can only be compared up to alpha-conversion which explains

the use of structural congruence instead of equality†. The use of �T in the second case is

included by Gorla to allow for non-injective substitutions.

† In Gorla (2010) we find equality at this position but Gorla states before at pages 3 and 4 that processes are

usually identified up to some notion of structural congruence.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1066

The first semantic criterion is operational correspondence, which consists of a soundness

and a completeness condition. Completeness requires that every computation of a source

term can be mimicked by its translation, i.e. the translation does not reduce the

computations of the source term. Soundness requires that every computation of a target

term corresponds to some computation of the respective source term, i.e. the translation

does not introduce new computations.

Definition 2.8 (criterion 3: (weak) operational correspondence). A translation � · 	 : LS →
LT is (weak) operationally corresponding if it is

Complete: for all S �=⇒S S ′, it holds that � S 	 �=⇒T�T � S ′ 	;

Sound: for all � S 	 �=⇒T T , there exists an S ′ such that

S �=⇒S S ′ and T �=⇒T�T � S ′ 	.

Note that the Definition of operational correspondence relies on the equivalence �T to

get rid of junk possibly left over within computations of target terms. For instance in (Fu

and Lu 2010) a slightly different formulation of operational correspondence is used.

Definition 2.9 (strong operational correspondence). A translation � · 	 : LS → LT is strong

operationally corresponding if it is
Complete: for all S �=⇒S S ′, it holds that � S 	 �=⇒T�T � S ′ 	;

Sound: for all � S 	 �=⇒T T , there exists an S ′ such that

S �=⇒S S ′ and T �T � S ′ 	.

The only difference between these two versions is the requirement on T within the

soundness condition. Here, the second definition is significantly stricter, because it rules

out the existence of ‘intermediate states’, as we discuss in Section 4.5. Sometimes, we refer

to the completeness criterion of weak or strong operational correspondence as (weak) or

strong operational completeness and, accordingly, for the soundness criterion we use the

terms (weak) or strong operational soundness.

The next criterion concerns the role of infinite computations in encodings.

Definition 2.10 (criterion 4: divergence reflection). A translation � · 	 : LS → LT reflects

divergence if, for every S , � S 	 −→ω
T implies S −→ω

S .

With the last criterion, the behaviour of the source terms is linked to the behaviour

of the target terms in order to except unreasonable encodings. With Gorla (2010), we

assume a success operator � to be part of the syntax of both the source and the

target language. Likewise, for the encoding presented in Section 4 we add � to the

syntax of πmix in Definition 2.1 and of πa in Definition 2.3. Since � cannot be further

reduced, the operational semantics is left unchanged in both cases. Moreover, note that

n(�) = fn(�) = bn(�) = �, so also interplay of � with the ≡-rules is smooth and does

not require explicit treatment. The test for reachability of success is standard.

Definition 2.11 (success). A process P ∈ L may lead to success, denoted as P ⇓, if (and

only if) it is reducible to a process containing a top-level unguarded occurrence of �, i.e.

∃P ′, P ′′ ∈ L . P �=⇒ P ′ ∧ P ′ ≡ P ′′ | �

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1067

Note that we use the modal operator may. With that we get may testing. Other modal

operators lead to different forms of testing and, thus, to possibly different results

concerning translational expressiveness. So, again, the choice of this modal operator

is crucial. Each result, regardless whether it is an encodability or a separation result, needs

a discussion of the involved modal operator within the definition of test for success. At

best, the quality of the encoding or the separation result is robust w.r.t. different modal

operators.

Finally, an encoding preserves the behaviour of the source term if it and its respective

target term answer the tests for success in exactly the same way.

Definition 2.12 (criterion 5: success sensitiveness). A translation � · 	 : LS → LT is success

sensitive if, for every S , S ⇓ if and only if � S 	 ⇓.

Note that this criterion only links the behaviours of source and target terms but not of their

continuations. To do so we relate success sensitiveness and operational correspondence

by requiring that the equivalence on the target language never relates two processes P

and Q such that P ⇓ and Q �⇓.

Definition 2.13 (success respecting). An equivalence � ⊆ L×L is success respecting if, for

every P and Q such that P ⇓ and Q �⇓, it holds that P �� Q.

3. The role of symmetry

In this section, we discuss the role of symmetry for the expressive power of πmix in

comparison to πsep. Therefore, we first revisit the result of Palamidessi (2003) and generalise

its absolute part. Then, we show that we can prove several translational separation results

due to different definitions of reasonableness as simple consequences of our absolute

result.

3.1. Semantic versus syntactic symmetry

Palamidessi (2003) proved that πmix is strictly more expressive than πsep by proving that

the former can solve leader election in symmetric networks while the latter cannot. The

leader election problem consists of choosing a leader among the processes of a network.

In Palamidessi (2003), a special channel out is assumed to propagate the index of the

winning process, i.e. the leader. The leader election problem is solved by a network iff in

each of its executions each process propagates the same process index over out and no

other index is propagated.

As already Bougé did for CSP in Bougé (1988), Palamidessi uses a semantic definition of

symmetry. Intuitively, the syntactic component of the symmetry definition in Bougé (1988),

Palamidessi (2003) and Vigliotti et al. (2007) states two processes as symmetric iff they

are identical modulo some renaming according to a permutation σ on their free names.

Bougé (1988) argues why a syntactic notion of symmetry does not suffice† considering the

† Compare Johnson and Schneider: ‘Symmetry means different things to different people’. (Johnson and

Schneider 1985).

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1068

leader election problem to distinguish CSP i/o, i.e. CSP where input and output commands

may appear in guards, and CSP in, i.e. CSP where only input commands may appear in

guards. He presents two networks in CSP in each solving leader election although each

should be considered as syntactically symmetric. The following example presents such a

syntactically symmetric network solving leader election in πsep:

N � P | σ (P) with P = x |
(
x.out 〈1〉 + y.out 〈2〉

)
and σ = { x/y,

y/x } (1)

N is syntactically symmetric with respect to the permutation σ, i.e. N = P1 | P2 and

P2 is equal to P1 modulo the exchange of x and y according to σ. Moreover N solves

the leader election problem. To rule out such examples, the semantic component of the

symmetry definition is designed to be strongly connected to the problem considered, i.e.

leader election in this case. Intuitively, its purpose is to ensure that the only way to

solve the leader election problem is to break the initial symmetry of the given network.

Note that N does not break the initial syntactic symmetry, because e.g. in the execution

N
τ−−→ P | out 〈1〉 τ−−→ out 〈1〉 | out 〈1〉 out 1−−→ 0 | out 〈1〉 out 1−−→ 0 | 0 �−−→ each second step

results in a network that is syntactically symmetric with respect to σ. So, without this

semantic part in the definition of symmetry, the leader election problem cannot be used

to distinguish πmix and πsep (or CSP i/o and CSP in).

3.1.1. Semantic symmetry. We revisit Palamidessi’s notion of symmetry for the π-calculus

as of (Palamidessi 2003). Note that the involved definitions are based on the ones

introduced by Bougé (1988) for CSP . According to Palamidessi (2003), a hypergraph is a

tuple H = 〈N,X, t〉, where N and X are finite sets whose elements are called nodes and

edges, and t, called type, is a function assigning to each edge the set of nodes connected by

this edge. An automorphism on a hypergraph is a pair σ = 〈σN, σX〉 such that σN : N → N

and σX : X → X are permutations which preserve the type of edges. Given a hypergraph

H and σ on H the orbit of a name n is the set of nodes in which the iterations of σ map

n.

A network P ≡ (ν x̃)
(
P1 | . . . | Pk

)
of k processes solves the leader election problem if

for every computation of P there exists an extension of the computation and there exists

an index n ∈ { 1, . . . , k } such that for each process the extended computation contains one

output action of the form out n and no other action out m with m �= n. The hypergraph

associated to a network P is the hypergraph H(P) = 〈N,X, t〉 with N = { 1, . . . , k },
X = fn

(
P1 | . . . | Pk

)
\ { out }, and for each x ∈ X, t(x) = { n | x ∈ fn(Pn) }. Given a

network P and the hypergraph H(P) associated to P , an automorphism on P is any

automorphism σ = 〈σN, σX〉 on H(P) such that σX coincides with σN on N ∩ X and σX
preserves the distinction between free and bound names.

A network P with the associated hypergraph H(P) = 〈N,X, t〉 and an automorphism

σ on P is symmetric with respect to σ iff for each node i ∈ N, Pσ(i) ≡α σ (Pi)
† holds. To

distinguish πmix and πsep Palamidessi shows that a network P ∈ Psep which is symmetric

† In Bougé (1988) and Vigliotti et al. (2007) formally slightly different conditions but with the same effect are

used.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1069

with respect to an automorphism σ on P with only one orbit cannot solve the leader

election problem while this is possible in πmix.

The main point of the semantic component of symmetry is that the special channel

out cannot be renamed by σ while the indices of the processes of the network must be

permuted by σ. With that, the network N in (1) above is not symmetric according to

(Palamidessi 2003). This allows Palamidessi to prove that for each execution of a network

in Psep, which is symmetric with respect to an automorphism σ, whenever there is an

output action out i there is an output out σ (i) with σ (i) �= i as well, which contradicts

the leader election problem. This explains why in Bougé (1988), Palamidessi (2003) and

Vigliotti et al. (2007) such an effort is spent to define symmetry.

Nevertheless it turns out that we do not need the leader election problem to distinguish

πmix and πsep. The main argument in the proof of Palamidessi (2003) that there is no

symmetric network in Psep solving leader election is that it is impossible in πsep to break

symmetries.

3.1.2. Syntactic symmetry. As mentioned in the introduction, we directly focus on the

problem of breaking symmetries instead of concentrating on leader election. Thus, we can

release most of the above conditions for symmetry. Moreover, we abandon the notion of

hypergraphs and automorphisms. Instead, we use a simple syntactic definition of symmetry

that, as mentioned above, states two processes as symmetric iff they are identical modulo

some renaming according to a permutation σ on their free names.

Definition 3.1 (symmetry relation). A symmetry relation of degree n is a permutation

σ : N → N , such that σn = id.

Let Sym (n,N) denote the set of symmetry relations of degree n over N and let σ0 = id.

Note that this definition does not require that n is the minimal degree of σ; consequently,

the condition that σ is an automorphism with only one orbit is released. A symmetric

network is then a network of n processes that are equal except for some renaming

according to a symmetry relation σ.

Definition 3.2 (symmetric network). Let P ∈ P . Let sequence x̃ contain only free names

of P . Let n ∈ N . Let σ be a symmetry relation of degree n over N \bn(P). Let x̃ be closed

under σ. Then [
P

]n,x̃
σ

= (ν x̃)
(
σ0 (P) | . . . | σn−1 (P)

)
is a symmetric network of degree n.

In contrast to (Palamidessi 2003), we consider the network N of (1) as symmetric network,

because σ = { x/y,
y/x } is a symmetry relation of degree 2 and thus N =

[
P

]2

σ
. Note that,

in the following proofs, we make use of the fact that names bound in P are bound in

each other process of
[
P

]n,x̃
σ

as well, so we explicitly forbid alpha-conversion here. In the

following, whenever we assume some symmetric network
[
P

]n,x̃
σ

, we implicitly assume the

respectively quantified parameters: a process P ∈ P , a sequence x̃ of free names of P , a

network size n ∈ N , and a symmetry relation σ of degree n over N \ bn(P).

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1070

The main difference of our definition to the definition of a symmetric network in

Palamidessi (2003) is that, in Palamidessi (2003), the processes of a symmetric network

are numbered consecutively and for each process Pi within the symmetric network Pσ(i) ≡
σ (Pi) holds, i.e. the symmetry relation additionally has to permute the indices of the

processes. Accordingly, to obtain a symmetric network in the sense of Palamidessi (2003)

from (1), we have to unify σ with the permutation
{

1/2,
2/1

}
. But then, of course, N does

not solve leader election anymore. Thus, each symmetric network in (Palamidessi 2003) is

a symmetric network for our definition, but not vice versa. Our definition of symmetry is

weaker.

We use an index-guided form of substitution to replace single processes within a

symmetric network.

Definition 3.3 (indexed substitution). Let
[
P

]n,x̃
σ

be a symmetric network. An indexed substi-

tution of some processes within a symmetric network, denoted by the term

{ i1 → Q1, . . . , im → Qm }
[
P

]n,x̃
σ

for some processes Q1, . . . , Qm ∈ P and i1, . . . , im ∈
{ 0, . . . , n−1 } such that for all j, k ∈ { 1, . . . , m }, j �= k implies ij �= ik , is the result

of exchanging σik (P) in
[
P

]n,x̃
σ

by Qk for all k ∈ { 1, . . . , m }.

Obviously { i1 → Q1, . . . , im → Qm }
[
P

]n,x̃
σ

is a network; in general, however, it is not

symmetric with respect to σ.

3.2. Symmetric executions

We explicitly prove that in πsep it is not possible to break initial symmetries, i.e. starting

with a symmetric network there is always at least one execution preserving the symmetry.

We refer to such an execution as symmetric execution. Let us consider a symmetric network[
P

]n,x̃
σ

of degree n. Of course, if only one process does a step on its own, then all the other

processes of the network can mimic this step and thus restore symmetry. So, there is a

symmetry preserving execution if there is no communication between the processes of the

network. The most interesting case is how the symmetry is restored after a communication

between two processes of the network has temporarily destroyed it. Both cases are reflected

in the proof of Theorem 3.7.

Apart from symmetric networks, we use the notion of a symmetric sequence of actions.

Similarly to symmetric networks, in which a symmetry relation is applied to processes to

derive symmetric processes, a symmetric sequence of actions is the result of applying a

symmetry relation to action labels. It is sometimes necessary to translate a bound output

action to an according unbound output action because a network can send a bound name

several times but only the first of this outputs will be bound.

Definition 3.4 (symmetric sequence of actions). Let μ ∈ Aτ be an action label, let x̃ ∈ T (N)

be a sequence of names and σ a symmetry relation of degree n ∈ N . Then [μ]n,x̃σ denotes

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1071

the sequence μ1, . . . , μn of n labels such that μ1, . . . , μn ∈ Aτ, μ1 = μ and for i ∈ { 2, . . . , n }:

μi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ, if μ = τ

σi (a) b, if μ = a b

σi (a) σi (b), if μ = a b or
(
μ = a (b) and

σi (b) /∈ x̃ \
{
b, σ (b) , . . . , σi−1 (b)

})
σi (a)

(
σi (b)

)
, if μ = a (b) and σi (b) ∈ x̃ \

{
b, σ (b) , . . . , σi−1 (b)

}
Sometimes we refer to μ2, . . . , μn as the symmetric counterparts of μ.

Intuitively, a symmetric execution is an execution starting from a symmetric network

returning to a symmetric network after any nth step, and which is either infinite or

terminates in a symmetric network. Thereby, each sequence of n steps is labelled by a

symmetric sequence of actions.

Definition 3.5 (symmetric execution). A symmetric execution is either a finite execution of

length m · n ∈ N [
P

]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1

[μ2]
n,x̃1
σ2−−−−→ . . .

[μm]
n,x̃m−1
σm−−−−−→

[
Pm

]n,x̃m
σm

�−−→

for some P1, . . . , Pm ∈ P , μ1, . . . , μm ∈ Aτ, x̃1, . . . , x̃m ∈ T (N) and some σ1, . . . , σm ∈
Sym (n,N) such that σ ⊆ σ1 ⊆ . . . ⊆ σm or an infinite execution[

P
]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1

[μ2]
n,x̃1
σ2−−−−→

[
P2

]n,x̃2

σ2

[μ3]
n,x̃2
σ3−−−−→

for some P1, P2, . . . ∈ P , μ1, μ2, . . . ∈ Aτ, x̃1, x̃2, . . . ∈ T (N) and σ1, σ2, . . . ∈ Sym (n,N) such

that σ ⊆ σ1 ⊆ σ2 ⊆

Note that because of σ ⊆ σ1 ⊆ . . . the symmetry relation can only increase during a

symmetric execution such that existing symmetries are preserved. Moreover – as shown

in Lemma 3.8 – the symmetry relation does only grow in the presence of bound output

to capture the renaming done by alpha-conversion. In the absence of bound output we

have σ = σ1 = . . . = σm and σ = σ1 = σ2 = . . . respectively.

Palamidessi proved that πsep enjoys a confluence property (Palamidessi 2003). Let x [y]

denote an output action, i.e. x [y] is either a bound output x (y) or an unbound output

x y.

Lemma 3.6 (confluence). Let P ∈ Psep be a process. If P can make two steps P
x[y]

−−→ Q

and P
z w−−→ R then there exists S such that Q

z w−−→ S and R
x[y]

−−→ S .

The proof of this lemma is by analysis of the possible rules used to derive the steps and

by the fact that an input and an output guarded term cannot be combined within a sum

in πsep.

Proof of Lemma 3.6. See proof of Lemma 4.1 in Palamidessi (2003) at pages 17–18.

Intuitively, the confluence lemma states the impossibility in πsep, that an output-step

immediately withdraws the possibility to perform a formerly alternative input-step, and

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1072

vice versa. Obviously, this is not a problem in case the output and the input are combined

in a mixed choice. Hence, the confluence lemma is itself an absolute result distinguishing

πmix and πsep. Moreover, it is crucial for both of the other absolute results: leader

election in symmetric networks in Palamidessi (2003) as well as for breaking symmetries

in the following proof. It ensures that a communication of two processes of a network

cannot immediately withdraw the possibility of all other network processes to mimic

this communication. So, why do we need an absolute result on top of confluence? The

answer is, it is not necessary but it is extremely helpful to derive translational results. To

use an absolute result in a translational result, we derive a problem instance from the

absolute result that we can use as counterexample in the translational result and ensure

that the discriminating properties of this example are preserved by the criteria required

for ‘good’ encodings (compare to Section 3.3). It is not easy to obtain such an example

directly from confluence and, in case of the criteria used in Section 3.3, it is very hard and

intricate to argue for the preservation of its relevant properties. Deriving more complex

absolute results on top of confluence may need some effort, but it makes the derivation

of translational results a magnitude easier.

So, we use confluence to prove that it is not possible to break symmetries in πsep.

Intuitively, we show that there is at least one symmetric execution by proving that

whenever there is a step destroying symmetry we can restore it in n−1 more steps

mimicking the first step. The respective existence relies on the standard lemma in process

calculi like the π-calculus that transitions are preserved under substitution. As conclusion,

it is not possible in πsep to break an initial symmetry in all executions.

Theorem 3.7 (symmetric execution). No symmetric network in Psep can break its symmetry

within a single step, i.e. every symmetric network in Psep has at least one symmetric

execution.

Proof of Theorem 3.7 First we prove that given an arbitrary symmetric network
[
P

]n,x̃
σ

in Psep, whenever
[
P

]n,x̃
σ

can perform a step then there are exactly n−1 more steps that

restore symmetry, i.e. that lead to a symmetric network again and the corresponding

n steps are labelled by a sequence of symmetric actions. Note that the main line of

argumentation of this lemma is very similar to the proof of Theorem 4.2 in Palamidessi

(2003) at pages 18–23, although we prove a completely different statement. Nevertheless,

due to the different formulations of the statements, also the proofs differ in technical

details.

Lemma 3.8.

∀n ∈ N . ∀x̃ ∈ T (N) . ∀P ∈ Psep . ∀σ ∈ Sym
(
n,N \ bn(P)

)
. ∀μ ∈ Aτ .[

P
]n,x̃
σ

μ
−−→ P̂ implies

∃P ′ ∈ Psep . ∃x̃′ ∈ T (N) . ∃μ2, . . . , μn ∈ Aτ . ∃σ′ ∈ Sym (n,N) .

P̂
μ2 ,...,μn−−−−→

[
P ′]n,x̃′

σ′ and μ, μ2, . . . , μn = [μ]n,x̃σ′ and σ ⊆ σ′

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1073

Proof of Lemma 3.8.
[
P

]n,x̃
σ

μ
−−→ P̂ can be the result of either an internal μ-step of one

process of the network, i.e. it can be produced without the rules Com or Close, or of

a communication between two processes of the network, i.e. be produced by one of the

rules Com or Close. In the first case, only one process performs a step and the rest of the

network remains equal, i.e.:

∃i ∈ { 0, . . . , n−1 } . ∃H ∈ Psep . ∃x̃1 ∈ T (N) . σi (P)
μ

−−→ H

and P̂ ≡ { i → H }
[
P

]n,x̃1

σ

(C1)

In the second case, μ = τ and two processes of the network change, i.e.:

∃i, j ∈ { 0, . . . , n−1 } . ∃H1, H2 ∈ Psep . ∃z, z′ ∈ N . i �= j

and
(
σi (P) | σj (P)

τ−−→ H1 | H2 or σi (P) | σj (P)
τ−−→

(
ν z, z′) (

H1 | H2

))
and P̂ ≡ { i → H1, j → H2 }

[
P

]n,x̃′

σ′

(C2)

We proceed with a case split.

Case (C1). Within the symmetric network
[
P

]n,x̃
σ

, for i ∈ { 0, . . . , n−1 } all processes σi (P)

are equal except for some renaming of free names according to σ. Thus, whenever a

process σi (P) can perform a step
μ

−−→ then each other process σk (P) of the network

can mimic this step by
μ′

−−→, where μ′ is the result of applying σk−i+n to μ possibly by

changing bound output to unbound output as described in Definition 3.4.† The case

of a bound output action μ is slightly tricky, so we consider the other cases first.

If μ is no bound output, then we can choose the labels μ2, . . . , μn such that the sequence

μ, μ2, . . . , μn is equal to [μ]n,x̃σ . Moreover, by symmetry σi (P)
μ

−−→ H implies σk (P)
μ′

−−→
σk−i+n (H) for a H ∈ Psep. With it, we can restore symmetry by mimicking the μ-step

of process σi (P) by the n−1 steps σi+1 (P)
μ2−−→ σ (H), . . . , σn−1 (P)

μn−i−−→ σn−1−i (H),

σ0 (P)
μn−i+1−−−→ σn−i (H), . . . , σi−1 (P)

μn−−→ σn−1 (H). These n steps build the chain[
P

]n,x̃
σ

μ
−−→ (ν x̃1)

(
σ0 (P) | . . . | σi−1 (P) | σ0 (H) | σi+1 (P) | . . .
| σn−1 (P)

)
...

μn−i−−→ (ν x̃n−i)
(
σ0 (P) | . . . | σi−1 (P) | σ0 (H) | . . .
| σn−1−i (H)

)
μn−i+1−−−→ (ν x̃n−i+1)

(
σn−i (H) | σ (P) | . . . | σi−1 (P) | σ0 (H)

| . . . | σn−1−i (H)
)

...
μn−−→ (ν x̃n)

(
σn−i (H) | . . . | σn−1 (H) | σ0 (H) | . . .
| σn−1−i (H)

)
† Note that n is added in k−i+n and k−j+n just to ensure that both values are positive. Because σn = id if

k−i � 0 we have σk−i+n = σk−i.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1074

with x̃1, . . . , x̃n ∈ T (N) and x̃′ = x̃n. Because of σn = id after the last step, we result

in a network which is again symmetric with respect to σ, i.e. we choose σ′ = σ. With

that, we can choose P ′ = σn−i (H) such that
[
P

]n,x̃
σ

μ
−−→ P̂

μ2 ,...,μn−−−−→
[
P ′]n,x̃′

σ′ .

If μ is an input or an unbound output action, then so are its symmetric counterparts

μ2, . . . , μn. We choose x̃′ = x̃1 = . . . = x̃n = x̃ and are done.

If μ is a bound output action y (z), then we have to consider two cases.

Case z /∈ bn
(
σi (P)

)
. Here, z ∈ fn

(
σi (P)

)
and because μ is a bound output z must be

in x̃. So we have to choose x̃1 = x̃ \ { z }. Then, by Definition 3.4 some of the

actions μ2, . . . , μn might be bound and some might be unbound outputs depending

on whether σj−1 (z) was already the subject of an earlier bound output of this

sequence or not. If σj−1 (z) of μj was already the subject of an bound output

within μ, μ2, . . . , μj−1, then μj is an unbound output and we choose x̃j = x̃j−1, else

μj is a bound output and we choose x̃j = x̃j−1 \ σj−1 (z) for all j ∈ { 2, . . . , n }.
Again, we can choose σ′ = σ and P ′ = σn−i (H) and proceed as in the case where

μ is no bound output.

Case z ∈ bn
(
σi (P)

)
. Here, by symmetry, σj (z) = z is bound in σi+j (P) for all j ∈

{ 0, . . . , n−1 }. By the above assumption that there are no name clashes (except

for the duplicate binding of names), we conclude z /∈ x̃. Then, by Definition 3.4,

μ, μ2, . . . , μn is a sequence of n bound output actions. Each of these actions μj
changes the scope of σi+j−1 (P) (in a symmetric way to the other processes) but the

scope of the network is left unchanged. So, we can again choose x̃′ = x̃1 = . . . =

x̃n = x̃. The crux is that performing the first bound output with label μ may force

an alpha-conversion to avoid name clashes to the other bound instances of z in the

other processes of the network such that the symmetry is destroyed. To illustrate

this problem, let us consider an example:

Example 3.9. Let

N � (ν x) a 〈x〉 .x | (ν x) a 〈x〉 .x =
[
(ν x) a 〈x〉 .x

]2

id
.

N can perform two bound outputs a (x). To avoid name capture we have to apply

alpha-conversion such that we have N
a(x)

−−→ x |
(
ν x′) a 〈x′〉 .x′

a(x′)
−−−→ x | x′. Because

of this alpha-conversion, we result in a network which is not symmetric with respect

to id. Nevertheless, the first step is mimicked by the second step and thus both

parts of the network behave symmetrically. As consequence to our intuition, the

resulting network should be again considered as symmetric network. To overcome

this problem, we record the renaming done by alpha-conversion in σ′ =
{

x/x′ ,x
′
/x

}
such that x | x′ =

[
x
]2

σ′ . Note that because of this σ′ can only increase by adding

permutations on formerly bound names and fresh names.

That is why we have to increase the symmetry relation in this case to keep track of

the renaming done by alpha-conversion. Thereto, we enforce the alpha-conversion

after the first bound output to rename all instances of z (except the first one)

to a different fresh name for each process of the network and add the respective

permutations of z to σ in order to obtain σ′ such that σ ⊆ σ′. Afterwards, we can

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1075

σk (P)

σk−i+n (H1) σk−j+n ({ z2/z1 } (H2))

{ z2/z1 } (Qk)

σk−i+n (y)σk−i+n (z1) σk−j+n (y) z2

σk−j+n (y) z2 σk−i+n (y)σk−i+n (z1)

Fig. 5. Local confluence of receiving and sending actions.

choose μ2, . . . , μn such that μ, μ2, . . . , μn = [μ]n,x̃σ′ and P ′ = σ′n−i (H) and proceed as

in the case where μ is no bound output.

Case (C2). In this case, there is a communication between σi (P) and σj (P) as result of

one of the rules Com or Close. Without loss of generality, let us assume that σi (P) is

the sender and σj (P) is the receiver of this communication, i.e. there are y, z1, z2 ∈ N
such that σi (P)

y z1−−→ H1 (or σi (P)
y(z1)−−→ H1) and σj (P)

y z2−−→ { z2/z1
} (H2). Because

of symmetry, each process σk (P) for 0 � k � n−1 can perform an output action

μout,k = σk−i+n (y) σk−i+n (z1) (or μout,k = σk−i+n (y)
(
σk−i+n (z1)

)
for bound output) and

an input action μin,k = σk−j+n (y) z2 such that for each process σk (P)
μout,k−−−→ σk−i+n (H1)

and σk (P)
μin,k−−→ σk−j+n

(
{ z2/z1

} (H2)
)
. Because of the confluence Lemma 3.6, i.e. without

mixed choice an output action cannot block an alternatively input action (within one

step) and vice versa, as depicted in Figure 5 (case of unbound output) process σk (P)

must be able to perform both actions consecutively in arbitrary order resulting in the

same term which we denote by Qk . Indeed without mixed choice the only possibility

for σk (P) to be able to perform both actions is that these two actions are composed in

parallel, so σk (P) can perform both actions in an arbitrary order and it is not possible

that performing one of these actions alone prevents σk (P) form performing the other

one next. To restore symmetry, we build a chain of n steps such that each process σk (P)

performs the output action μout,k in step ((k−i+n) mod n) +1 and the input action μin,k

in step ((k−j+n) mod n) +1, i.e. each process is once a sender and once a receiver and

μ = μ2 = · · · = μn = τ and with that μ, μ2, . . . , μn = [μ]n,x̃σ . Again, we consider the

case of unbound outputs first. Then, we have
[
P

]n,x̃
σ

τ−−→ { i → H1, j → H2 }
[
P

]n,x̃
σ

as

first step with σi (P)
y z1−−→ H1, σ

j (P)
y z2−−→ { z2/z1

} (H2) and σi (P) | σj (P)
τ−−→ H1 | H2.

Depending on the values of i and j, some of the processes perform the corresponding

input action first while others perform at first the corresponding output action. Because

of Lemma 3.6, both is possible. We let each process perform exactly these two actions

(compare to Figure 5). We choose P ′ = Q0 and x̃′ = x̃. We start with a symmetric

network and all processes behave symmetrically, i.e. each process mimic the behaviour

of its neighbour, so we have Qk = σk (Q0) for all k with 0 � k � n−1 such that can

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1076

choose σ′ = σ and have [
P

]n,x̃
σ

τ−−→
n [

P ′]n,x̃′

σ′ .

Now, we consider the case of bound outputs. Note that σi(P) and σj(P) perform a

communication step within the network, so if σi(P) performs a bound output z1 must

be bound in σi(P), i.e. z1 /∈ x̃. By symmetry σl(z1) = z1 is bound in σi+l(P) for all

l ∈ { 0, . . . , n−1 }. With that either all output actions are bound or all are unbound.

In case of bound output we have σi(P) | σj(P)
τ−−→

(
ν z, z′) (H1 | H2), because first we

have to apply alpha-conversion to rename the instance of z1 bound in σj(P) and then

the bound output by σi(P) leads to a scope extrusion such that z = z1 and z′ is the

renaming of z1 in σj(P). Again we use alpha-conversion after the first communication

step to rename all instances of z1 (except the first) to a different fresh name for

each process of the network and add the respective permutations of z1 to σ in order

to obtain σ′ such that σ ⊆ σ′. Let z1,2, . . . , z1,n denote the sequence of names used to

rename z1 according to σ′. We proceed as in the case of unbound outputs with the n−1

communication steps as described above. Of course we have to replace the processes

σk(P) by
{

z1,2/z1
, . . . ,z1/z1,n

}k−i
(P) and μout,k by σk−i+n(y)

[{
z1,2/z1

, . . . ,z1/z1,n

}k−i
(z1)

]
for

0 � k � n−1. After completing these n communication steps the names z1, z1,2, . . . , z1,n

are pulled outwards by scope extrusion, i.e. we have[
P

]n,x̃
σ

τ−−→ { i → H1, j → H2 }
[
P

]n,x̃,z1 ,z1,2

σ

τ−−→
n−1 [

R
]n,x̃′

σ′ ,

where x̃′ = x̃, z1, z1,2, . . . , z1,n and P
σn−i(y)(z1),σ

n−j (y) z2−−−−−−−−−−−→ R. With that we can choose P ′ = R

and are done.

With Lemma 3.8, we can now construct the symmetric execution. We start with an

arbitrary symmetric network
[
P

]n,x̃
σ

. If
[
P

]n,x̃
σ

�−−→ we have a symmetric execution of

length 0. Otherwise, if
[
P

]n,x̃
σ

can perform a step labelled by μ1 by Lemma 3.8 we can

perform n−1 more steps such that
[
P

]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1
. Now we can proceed alike

with
[
P1

]n,x̃1

σ1
and result either in a finite symmetric execution of length n or we have[

P
]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1

[μ2]
n,x̃1
σ2−−−−→

[
P2

]n,x̃2

σ2
. By recursively repeating this argument, we either get

a finite or an infinite symmetric execution.

3.2.1. Breaking symmetries. Note that Theorem 3.7 does not state anything about en-

codability and it does not need a notion of reasonableness either. Instead, it just states

without any precondition that every symmetric network in Psep has at least one symmetric

execution. In contrast, there are symmetric networks in Pmix without such a symmetric

execution, as the following example shows. Consider the network

(ν x, y)
(
P | σ (P)

)
with P = x.1 + y.2 and σ =

{
x/y,

y/x,
1/2,

2/1
}

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1077

with σ2 = id, i.e. (ν x, y)
(
P | σ (P)

)
is a symmetric network in Pmix. It has, modulo

structural congruence, exactly the two following executions

(ν x, y)
(
P | σ (P)

) τ−−→ 1 | 1
1−−→ 1

1−−→ 0

(ν x, y)
(
P | σ (P)

) τ−−→ 2 | 2
2−−→ 2

2−−→ 0

and even none of them is symmetric; the initial symmetry is broken. So Theorem 3.7

proves a difference in the absolute expressive power between πsep and πmix.
†

Conclusion 1. The π-calculus with mixed choice (πmix) is strictly more expressive than the

π-calculus without mixed choice (πsep).

3.3. Non-existence of uniform encodings

As done by Palamidessi (2003) and also by Gorla (2008b), we now also prove that there

is no uniform and reasonable encoding from πmix into πsep, but here using Theorem 3.7

which states a difference in the absolute expressive power of the two calculi. It is no real

surprise that this absolute result leads to differences in the translational expressiveness of

the languages. Because uniform encodings preserve symmetries – or at least enough of the

symmetric nature of the terms – , the non-existence of a uniform and reasonable encoding

is a natural consequence of the difference in their absolute expressiveness. Unfortunately,

there is no agreement on the minimal requirements of a reasonable encoding, so we

cannot formally prove this result in general, although we believe that it holds for any

meaningful definition of reasonableness. Instead, to underpin our assertion, we prove it

in the settings of Palamidessi (2003) and Gorla (2008b).

According to Palamidessi (2003), an encoding is uniform if it translates the parallel

operator homomorphically and preserves renamings, i.e. for all permutations of names σ

there exists a permutation of names θ such that � σ (P) 	 = θ (�P). Vigliotti et al. (2007)

additionally require that the permutations σ and θ are compatible on observables. Gorla

(2008b) does not use the notion of uniformity, but in his first setting the separation result

between πmix and πsep does also assume homomorphic translation of the parallel operator.

Moreover, he specifies name invariance as a criterion for a good encoding, which is a

more complex condition than Palamidessi’s second condition. It turns out that, in our

setting, we do not need a second condition like renaming preservation or name invariance,

because we base our counterexamples in the following separation results on symmetric

networks of the form P | P as already Gorla did in Gorla (2008b). For us, an encoding

is uniform iff it translates the parallel operator homomorphically.

Definition 3.10 (uniform encoding). An encoding � · 	 from πmix into an other language

is a uniform encoding if and only if for all P ,Q ∈ Pmix

�P | Q	 = �P 	 | �Q	 (U)

† Remember that Psep is a subset of Pmix, so πmix is at least as expressive as πsep.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1078

Actually, Theorem 3.7 should suffice to prove that there cannot be a uniform and

reasonable encoding from πmix into πsep, because uniform encodings preserve symmetries

and it is possible to break symmetries in πmix while this is not possible in πsep. The crux is

that there is no commonly accepted notion of reasonableness. For separation results, we

seek a definition of reasonableness that is as weak as possible. But, without any notion of

reasonableness, the theorem would not hold, because there are uniform encodings from

πmix into πsep. For instance, we could simply translate everything to 0 (modulo ≡). Of

course such an encoding makes no sense and so hardly anyone would call it reasonable.

Usually, an encoding is called reasonable if it preserves some kind of behaviour or the

ability to solve some kind of problem so to ensure that the purpose of the original term

is preserved. In the following, we consider three different notions of reasonableness.

3.3.1. Version 1. For Palamidessi, an encoding is reasonable if it preserves the relevant

observables and termination properties (Palamidessi 2003). Implicitly, she requires that a

reasonable encoding should at least preserve the ability to solve leader election. We do

alike but with a different interpretation of what it means to solve leader election that is

more closely related to the definition used by Bougé (1988): a network is said to solve

leader election iff in each execution exactly one process propagates itself as leader while

all the other processes propagate themselves as slaves. We assume the existence of two

different predetermined output actions, one to propagate as leader (μl) and the other to

propagate as slave (μs). Moreover, we require that for both output actions neither the

channel names nor the sent values are bound within the network†.

Definition 3.11 (solving leader election). Let μl, μs ∈ A be two different output action

labels, i.e. μl �= μs. A network N of size n solves leader election if every maximal execution

of N contains exactly one step labelled by μl and n− 1 steps labelled by μs and all names

of μl and μs are free in N.

The main difference to the definition of leader election used in Palamidessi (2003) is

that here the slaves do not have to know the identity, i.e. the index, of the leader. So,

this definition is usually considered as a weaker notion of the leader election problem.

However, the leader may inform all its slave about its identity after election. An encoding

is now said to be reasonable iff it preserves the ability to solve the leader election problem.

Definition 3.12 (1-reasonableness). An encoding � · 	 : Pmix → Psep is 1-reasonable, if

�P 	 solves leader election if and only if P solves leader election for all P ∈ Pmix.

To prove that there is no uniform and reasonable encoding, we force our encoding

to lead to a network of two processes that is symmetric with respect to identity. By

Theorem 3.7, this network has at least one symmetric execution. Because we use the

identity as symmetry relation, in the symmetric execution both processes behave exactly

the same such that if one of them propagates himself as leader then the other one does

alike, which contradicts leader election.

† Note that if we allow bound names in these output actions, we could hardly predetermine them.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1079

Theorem 3.13 (separation result). There is no uniform and 1-reasonable encoding from

πmix into πsep.

Proof of Theorem 3.13 Let us assume the contrary, i.e. there is a uniform and 1-

reasonable encoding � · 	 from πmix into πsep. Consider the network:

N � P | P with P � a.slave + a.leader

Obviously σ = id is a symmetry relation of degree 2. With that the network N =[
a.slave + a.leader

]2

σ
is a symmetric network. Moreover, N solves leader election, because

the leader sends an empty message over channel leader and all slaves send an empty

message over channel slave. By Definition 3.10 of uniformity, we have �P | P 	
(U)
=

�P 	 | �P 	 =
[
� P 	

]2

id
, i.e. �N 	 is again a symmetric network of degree 2 with

id as symmetry relation. By Theorem 3.7, �N 	 has at least one symmetric execution

and by reasonableness �N 	 must solve leader election, i.e. there is exactly one process

that propagates itself as leader by an output action. Let μl denote this send action. By

Definition 3.5, a symmetric execution has symmetric sequences of actions, i.e. the action μl
is coupled to its symmetric counterpart building the sequence [μl]

2,z̃′

σ′ for some z̃′ ∈ T (N)

and σ′ ∈ Sym (2,N). By construction in the proof of Lemma 3.8, and because we start

with id, we know that σ′ consists of (permutations of) names that are bound in �N 	

or fresh. Because, by Definition 3.11, μl can neither contain fresh nor bound names, we

conclude [μl]
2,z̃′

σ′ = μl, μl , i.e. the output action appears twice in the symmetric execution.

With that two processes propagate themselves as leader, which is a contradiction.

Note that, in contrast to the proof of Palamidessi (Palamidessi 2003; Vigliotti et al.

2007), we do not have to assume that the encoding is renaming preserving.

3.3.2. Version 2. Here, we first introduce a technical lemma. Intuitively, it states that the

symmetric execution of a symmetric network of degree n, where n is not the minimal degree

of the corresponding symmetry relation, can be subdivided into symmetric executions on

symmetric subnetworks of the original network.

Lemma 3.14. Let
[
P0

]n,x̃
σ

be a symmetric network in Psep. If the degree of σ is not minimal,

i.e. if there is a n′ ∈ N with 0 < n′ < n such that σn′
= id, then

[
P0

]n,x̃
σ

has a finite or an

infinite symmetric execution

[
P0

]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1

[μ2]
n,x̃1
σ2−−−−→ . . .

[μm]
n,x̃m−1
σm−−−−−→

[
Pm

]n,x̃m
σm

�−−→

or
[
P0

]n,x̃
σ

[μ1]
n,x̃
σ1−−−→

[
P1

]n,x̃1

σ1

[μ2]
n,x̃1
σ2−−−−→ . . .

for a m ∈ N , P1, . . . , Pm ∈ Psep, σ1, . . . , σm ∈ Sym (n,N) with σ ⊆ σ1 ⊆ . . . ⊆ σm, x̃1, . . . , x̃m ∈
T (N) and μ1, . . . , μm ∈ Aτ or some P1, P2, . . . ∈ Psep, σ1, σ2, . . . ∈ Sym (n,N) with σ ⊆ σ1 ⊆
σ2 ⊆ . . ., some x̃1, x̃2, . . . ∈ T (N) and μ1, μ2, . . . ∈ Aτ respectively such that

[
P0

]n′ ,x̃

σ
has the

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1080

finite or infinite symmetric execution

[
P0

]n′ ,x̃′

σ

[μ′
1]

n′ ,x̃′

σ′
1−−−−→

[
P1

]n′ ,x̃′
1

σ′
1

[μ′
2]

n′ ,x̃′
1

σ′
2−−−−→ · · ·

[μ′
m]

n′ ,x̃′
m−1

σ′
m−−−−−−→

[
Pm

]n′ ,x̃′
m

σ′
m

�−−→

or
[
P0

]n′ ,x̃

σ

[μ′
1]

n′ ,x̃
σ′
1−−−−→

[
P1

]n′ ,x̃′
1

σ′
1

[μ′
2]

n′ ,x̃′
1

σ′
2−−−−→ · · ·

for some x̃′
1, . . . , x̃

′
m ∈ T (N), μ′

1, . . . , μ
′
m ∈ Aτ and σ′

1, . . . , σ
′
m ∈ Sym

(
n′,N

)
with σ ⊆ σ′

1 ⊆
. . . ⊆ σ′

m or some x̃′
1, x̃

′
2, . . . ∈ T (N), μ′

1, μ
′
2, . . . ∈ Aτ and σ′

1, σ
′
2, . . . ∈ Sym

(
n′,N

)
with

σ ⊆ σ′
1 ⊆ σ′

2 ⊆ . . . respectively such that x̃′ is a subsequence of x̃, x̃′
i is a subsequence

of x̃i and either μ′
i or if μ′

i is a bound output its unbound variant is in [μi]
n,x̃i−1
σi

for all

i ∈ { 1, . . . , m } or i ∈ N respectively.

Note that, like Theorem 3.7, this result is absolute in the sense that it holds independently

of any notion of uniformity or reasonableness.

The proof is based on the following observation: every network of degree n that is

symmetric with respect to a symmetry relation σ such that n is not the minimal degree of

σ can be subdivided into several identical symmetric networks with respect to σ. Then, an

induction on the number of sequences of n steps from a symmetric network to a symmetric

network is performed. The inductive step is proved by a case analysis on whether the first

step of such a sequence is due to an action of only one process of the network or to a

communication between two processes.

Proof of Lemma 3.14 Assume there is a 0 < n′ < n such that σn′
= id. Then because

σn = id there must be a k ∈ N such that n = k ∗ n′. Because σ0 = σn′
= σi∗n′

for each

i ∈ { 1, . . . , k } we have σj = σj+n′
. So

[
P ′]n,x̃

σ
can be divided into k identical symmetric

networks such that
[
P ′]n,x̃

σ
=

[
P

]n′ ,x̃

σ
| . . . |

[
P

]n′ ,x̃

σ
and

[
μ′]n,x̃

σ
can be divided in k identical

sequences such that
[
μ′]n,x̃

σ
=

[
μ′]n′ ,x̃

σ
, . . . ,

[
μ′]n′ ,x̃

σ
for each P ′ ∈ Psep and each μ′ ∈ Aτ.

If
[
P0

]n,x̃
σ

has a symmetric execution of length 0, i.e.
[
P0

]n,x̃
σ

�−−→, then of course we have[
P0

]n′ ,x̃

σ
�−−→ as well and so

[
P0

]n′ ,x̃

σ
has a symmetric execution of length 0.

Else we consider an arbitrary sequence of n steps

[
Pk

]n,x̃k
σk

[μk+1]
n,x̃k
σk+1−−−−−→

[
Pk+1

]n,x̃k+1

σk+1

of the given symmetric execution for k ∈ { 0, . . . , m } in the case of a finite symmetric

execution and k ∈ N for an infinite symmetric execution. As constructed in Theorem 3.7

Pk+1 is either the result of a step of σi
k (Pk) realized without the rules Com and Close

(C1) or it is the result of two communications of σi
k (Pk) and σ

j
k (Pk) realized by one of

the rules Com or Close (C2). We proceed with a case split.

Case (C1): Let σi
k (Pk) with i ∈ { 0, . . . , n−1 } be the process which performs the first of

the n steps labelled μk+1. We choose μ′
k+1 as the n−ith action in [μk+1]

n,x̃k
σk+1

, i.e. we

choose the label of the action performed by process Pk . If μk+1 is a bound output

and μ′
k+1 is not then we choose the bound output variant of μ′

k+1. By construction

in the proof of Lemma 3.8 there are n′ steps performed by the processes σ0
k (Pk), . . . ,

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1081

σn′−1
k (Pk) and labelled by the first n′ labels of

[
μ′
k+1

]n,x̃k
σk+1

. Note that because σ′
k differs

from σk only on permutations on formerly bound names we can perform these steps

by σ′
k
0 (Pk), . . . , σ′

k
n′−1 (Pk), too. If μk is no bound output we can choose x̃′

k+1 = x̃′
k and

σ′
k+1 = σ′

k and are done. Else if μk = y z and z /∈ bn
(
σi
k (Pk)

)
we can choose σ′

k+1 = σ′
k

and x̃′
k+1 as the sequence of names in x̃′

k, z1, . . . , zl , where z1, . . . , zl are the values of

the bound outputs in
[
μ′
k+1

]n′ ,x̃k
σ′
k+1

. Else if z ∈ bn
(
σi
k (Pk)

)
we can choose x̃′

k+1 = x̃′
k and

we add the permutations of z done by alpha-conversion as described in Lemma 3.8

to σ′
k to obtain σ′

k+1. Again by construction in Lemma 3.8 performing these n′ steps

we have
[
Pk

]n′ ,x̃′
k

σ′
k

[μ′
k+1]

n′ ,x̃′
k

σ′
k+1−−−−−−→

[
Pk+1

]n′ ,x̃′
k+1

σ′
k+1

.

Case (C2): Then [μk+1]
n,x̃k
σk+1

is a sequence of n times τ. We choose μ′
k+1 = μk+1 = τ and[

μ′
k+1

]n′ ,x̃k
σk

is a sequence of n′ times τ. Let σi
k (Pk) and σ

j
k (Pk) with i, j ∈ { 0, . . . , n−1 }

be the processes which perform the first of the n steps. Without loss of generality

let σi
k (Pk) be the sender and σ

j
k (Pk) be the receiver, i.e. σi

k (Pk) performs an output

action γ and σ
j
k (Pk) performs the complementary receiving action γ. By construction

in the proof of Theorem 3.7 the first n′ steps within
[
Pk

]n,x̃k
σk

[μk+1]
n,x̃k
σk+1−−−−−→

[
Pk+1

]n,x̃k+1

σk+1

are performed by the senders σi
k (Pk), . . . , σi+n′−1

k (Pk) in this order sending [γ]n
′ ,x̃k
σk+1

respectively and by the receivers σj
k (Pk), . . . , σj+n′−1

k (Pk) in this order receiving [γ]n
′ ,x̃k
σk+1

.

Now because of σn′
= id and σ′

k differs from σ only by formerly bound names and their

renamings according to alpha-conversion for each g ∈ { i, . . . , i+n′−1 } and for each

h ∈ { j, . . . , j+n′−1 } we have σ
g
k (Pk) and σ′

k
gmod n′

(Pk), and σh
k (Pk) and σ′

k
hmod n′

(Pk)

respectively are equal modulo the renaming performed by formerly alpha-conversion.

With that we can again close the cycle as in the proof of Lemma 3.8 leading to[
Pk

]n′ ,x̃′
k

σk

[μ′
k+1]

n′ ,x̃′
k

σ′
k+1−−−−−−→

[
Pk+1

]n′ ,x̃′
k+1

σ′
k+1

, where x̃′
k+1 and σ′

k+1 are obtained from x̃′
k and σ′

k as

described in Lemma 3.8.

Because we can subdivide an arbitrary sequence of n steps we can subdivide each such

sequence in the symmetric execution and with it the symmetric execution.

Gorla (2008b) defines the reasonableness of an encoding by the properties operational

correspondence, divergence reflection and success sensitiveness. We use just the last of his

properties instantiated with must testing. So we implicitly require divergence reflection.

According to Gorla (2008b), success is represented by a process �, that is a part of

the source and the target language of the encoding and always appears unbound. More

precisely, a process must-succeeds if it always reduces to a process containing a top-level

unguarded occurrence of �. The fact that P must-succeeds is denoted by P �. With

it, an encoding is reasonable if the encoding of a term must-succeeds iff the term itself

must-succeeds.

Definition 3.15 (2-reasonableness). An encoding � · 	 : Pmix → Psep is 2-reasonable, if P �
iff �P 	 � for all P ∈ Pmix.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1082

Again, we choose a term such that the encoding results in a network of the form Q | Q
in Psep that is symmetric with respect to identity. In this case, we take advantage of the

fact that the minimal degree of id is less than the degree of the network such that we can

use Lemma 3.14 to subdivide the symmetric execution. With it already Q can perform the

same sequence of steps as each process in Q | Q performs in the symmetric execution.

Theorem 3.16 (separation result). There is no uniform and 2-reasonable encoding from

πmix into πsep.

Proof of Theorem 3.16 Let us assume the contrary, i.e. there is a uniform and 2-

reasonable encoding � · 	 from πmix into πsep. Consider the network:

N � P | P with P � a.0 + a.�

Obviously, σ = id is a symmetry relation of degree 2 and so N =
[
a.0 + a.�

]2

σ
is a

symmetric network. Moreover, we have N � but P ��. We have �P | P 	
(U)
= �P 	 |

�P 	 =
[
� P 	

]2

id
, i.e. �N 	 is again a symmetric network of degree 2 with id as

symmetry relation. By Theorem 3.7, �N 	 has at least one symmetric execution and

by success sensitiveness and must testing �N 	 must reduce to a process containing

a top-level unguarded occurrence of � within this symmetric execution, i.e. there is a

sequence of actions μ̃ ∈ T (Aτ), a process P ′ ∈ Psep, a σ′ ∈ Sym (2,N) and a sequence

of names x̃ such that �P 	 | �P 	
μ̃

−−→
[
P ′]2,x̃

σ′ and P ′ or σ′ (P ′) contain a top-level

unguarded occurrence of �. Then, by symmetry, both processes of
[
P ′]2,x̃

σ′ contain a

top-level unguarded occurrence of �. By Lemma 3.14, there is a sequence of actions

μ̃′ ∈ T (Aτ) and an execution �P 	
μ̃′

−−→
(
ν x̃′

)
P ′ for a subsequence x̃′ of x̃. With it,

�P 	 �, and with success sensitiveness P �, which is a contradiction.

Note that, reconsidering the proofs of this separation result in Gorla (2008b), we

managed to omit one of Gorla’s additional assumptions. Namely, we do not need the

assumption that �T is exact (first setting in Gorla (2008b)) or reduction sensitive (second

setting in Gorla (2008b)) and we do not need to assume the stronger version of operational

correspondence in the third setting in Gorla (2008b). On the other side Gorla does not

need to assume homomorphic translation of | in his second and third setting. He uses

the weaker notion of compositional translation of | instead. But, as we conjecture, there

is an encoding from πmix into πa for this weaker structural assumption (compare to the

presented attempt of such an encoding in Section 4 and the full encoding in (Peters and

Nestmann 2012a)). Summarizing, this separation result is weaker as the result in the first

setting of Gorla but incomparable to the results in the other two settings. Moreover, note

that because we focus on breaking symmetries instead of leader election, we can apply

Theorem 3.7 to problem instances different from leader election.

Version 3. In his proofs of this separation result in Gorla (2008b), he uses may testing to

show that there are terms P ∈ Pmix such that P �−→, P �� and
(
P | P

)
�, but there are no

such terms in Psep. Implicitly, he uses the fact that P �� and
(
P | P

)
� implies P | P −→

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1083

and that there are no terms P in Psep such that P �−→ and P | P −→. By proving this

fact directly, we do not need any notion of testing to prove the separation result.

Definition 3.17 (3-reasonableness). An encoding � · 	 : Pmix → Psep is 3-reasonable if

P −→ if and only if �P 	 −→ for all P ∈ Pmix.

To our knowledge, only few intuitively reasonable encodings are not also 3-reasonable.

Note, however, that the encoding in Section 4 is not 3-reasonable.

Theorem 3.18 (separation result). There is no uniform and 3-reasonable encoding from

πmix into πsep.

Again, for the separation proof, we enforce that the encoding results in a symmetric

network Q | Q. By subdividing the symmetric execution of this network, we prove that

Q
τ−−→ iff Q | Q τ−−→, which does not necessarily hold in πmix.

Proof of Theorem 3.18 Let us assume the contrary, i.e. there is a uniform and 3-

reasonable encoding � · 	 from πmix into πsep. Consider the network:

N � P | P with P � a + a

Obviously, σ = id is a symmetry relation of degree 2 and so N =
[
a + a

]2

σ
is a symmetric

network. Moreover, we have N
τ−−→ but P � τ−−→ and thus N −→ but P �−→. We have

�P | P 	
(U)
= �P 	 | �P 	 =

[
� P 	

]2

id
, i.e. �N 	 is again a symmetric network of degree 2

with id as symmetry relation. By Theorem 3.7 �N 	 has at least one symmetric execution

and by 3-reasonableness we have �P 	 | �P 	 −→ and �P 	 �−→ and thus �P 	 | �P 	
τ−−→

and �P 	 � τ−−→. By Lemma 3.8, �P 	 | �P 	
τ−−→ implies that there is at least one step in the

symmetric execution, i.e. there is a process P ′ ∈ Psep, a σ′ ∈ Sym (2,N), and a sequence of

names x̃ ∈ T (N) such that �P 	 | �P 	
τ,τ

−−→
[
P ′]2,x̃

σ′ . By Lemma 3.14, there is an execution

�P 	
τ−−→

(
ν x̃′)P ′ for a subsequence x̃′ of x̃, i.e. �P 	 −→, which is a contradiction.

Note that – in contrast to both Palamidessi and Gorla – we do not even assume

divergence reflection in this argumentation.

3.4. Intermezzo

We prove that πmix is strictly more expressive than πsep by means of an absolute separation

result about the ability to break initial symmetries. This result is independent of any notion

of encodability, uniformity and reasonableness. By choosing the problem of breaking initial

symmetries instead of leader election, we significantly weaken the underlying definition

of symmetry in comparison to Palamidessi (2003). Moreover, we could still apply our

absolute separation result to derive that there is no uniform and reasonable encoding

from πmix into πsep considering three different definitions of reasonableness. It turns

out that the concentration on the underlying problem of breaking initial symmetries

allows us to use counterexamples different from leader election in translational separation

results. Likewise, the separation result in the setting of Gorla (2008b) can be derived

by our absolute result as well. Besides that, our absolute separation result allows us to

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1084

weaken the definition of uniformity in comparison to the translational separation result

of Palamidessi (2003), and also to weaken the definition of reasonableness in comparison

to the translational separation result in the first setting of Gorla (2008b). Moreover,

considering our last translational separation result, we can even withdraw the assumption

of divergence reflection.

Our own translational separation results, i.e. the proofs of the non-existence of a uniform

and reasonable encoding for different definitions of reasonableness, follow similar lines

of argument. The proofs argue by contradiction. First, a symmetric network of the form

P | P in Pmix with special features is presented. Second, we use the fact that uniformity,

i.e. the homomorphic translation of the parallel operator, preserves essential parts of the

symmetric nature of P | P . Third, we apply Theorem 3.7 to conclude with the existence

of a symmetric execution. In two proofs, we then apply Lemma 3.14 to subdivide this

symmetric execution. At last, we derive a contradiction between the additional information

provided by the symmetric execution (and its subdivision) and the respective definition of

reasonableness.

Note that, we prove the absolute result without any precondition. We use different

definitions of reasonableness for the translational results. The only constant precondition

of the translational separation results is the definition of uniformity, i.e. the homomorphic

translation of the parallel operator. This condition is crucial. Without it, we could

not apply our absolute separation result. To the best of our knowledge, only Gorla ever

managed to prove such a separation result between πmix and πsep without the homomorphic

translation of the parallel operator, using compositionality, operational correspondence,

divergence reflection, success sensitiveness and either a reduction sensitive version of �T

or the stronger version of operational correspondence of his third setting. However, Gorla

believes that the result also holds for the general formulation of his criteria as presented

in Section 2.2.

We may also turn the non-existence of a uniform and reasonable encoding around

and rephrase it as a weakened existence statement. Recall that any uniform encoding

from πmix into πsep preserves symmetries. While it is possible to break such symmetries in

πmix, this is not possible in πsep. Thus, should there be a non-uniform (at least: ‘weakly

compositional’) but reasonable encoding from πmix into πsep, then it would have to be the

encoding itself to break these symmetries.

Conclusion 2. A reasonable, divergence reflecting encoding from πmix into πsep must be

able to break initial source term symmetries.

This tells us much about how such an encoding, if it exists, has to look like. The

homomorphic translation of the parallel operator preserves the symmetry of the source

term. Hence the encoding is sure not homomorphic. Instead, by compositionality in

Definition 2.5, it has to introduce a context CN
| (1; 2) to translate the parallel operator.

To break symmetries the context cannot treat the left and the right side in exactly the

same way, i.e. it cannot look like (ν x̃)
(
C ′

(1) | C ′
(2)

)
for some sequence of names x̃

and a subcontext C ′
(). But of course it has to ensure, that both sides can mimic all

behaviours of source terms.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1085

Finding a reasonable, divergence reflecting encoding from πmix into πsep is an open

problem. A uniform and ‘almost reasonable’ divergent encoding was already presented in

(Nestmann 2000). It shows that, if divergence reflection is not required, the encoding can

ensure that all undesired symmetric executions are divergent such that it is not necessary

for the encoding function to break symmetry. In the next section, we present an encoding

that, as we strongly conjecture, meets all five of Gorla’s criteria. In turn, this would

counter Gorla’s conjecture that it is possible to prove a separation result for the general

formulation of his criteria without further assumptions.

4. Encoding synchrony by breaking symmetry

In this section, we present the main idea of an encoding from πmix into πa that we

conjecture to be correct with respect to the five criteria of Gorla presented in Section 2.2.

We start with an encoding from πsep into πa of Nestmann (2000). Based on it, we illustrate

the main idea to design an encoding from πmix into πa, i.e. how to break possible source

term symmetries by means of an encoding. In the following, we explain some concepts

auxiliary and notions that we use within the presented encoding functions.

4.1. Locks and tests

A lock is a special channel used by the encoding function to block some further behaviour.

Therefore the term we want to block is guarded by an input on the lock channel such

that the term is blocked until an output on this channel is available. Moreover, we use

a special kind of locks called boolean locks. A boolean lock is a channel on which only

the boolean values � (true) or ⊥ (false) are transmitted. An output over a boolean lock

with value � is called a positive instantiation of the respective lock while sending ⊥ is

denoted as negative instantiation. At the receiving end of such a channel, the boolean

value can be used to make a binary decision, which is done here within a test-construct.

The test-construct and accordingly positive and negative instantiations of boolean locks

are implemented using restriction (compare to Nestmann and Pierce (2000)).

Definition 4.1 (test). The test operator and positive or negative instantiations of boolean

locks, denoted by l 〈�〉 and l 〈⊥〉 for a boolean lock l, are abbreviations of the terms:

l 〈�〉 � l (t, f) .t

l 〈⊥〉 � l (t, f) .f

test l then P else Q � (ν t, f)
(
l 〈t, f〉 | t.P | f.Q

)
for some t, f /∈ fn

(
P | Q

)
Note that with this definition the test predicate operates as guard for its subterms P and

Q. Moreover, we observe that the boolean values � and ⊥ are realized by a pair of links

without parameters. With that a boolean lock is indeed a lock with two parameters and

the distinction between true and false is given by the order of these parameters.

Note that to simplify the following argumentation we omit, for now, the encoding of

matching, success, and the τ-prefix. Moreover, we omit the usage of the renaming policy.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1086

(ν x)P (ν x) P

P | Q P | Q

i∈I

πi.Pi (ν l) l
i∈I

πi.Pi l

y z̃ .P l (ν s) (y l , s, z̃ s. P)

y (x̃) .P l (ν r) r | r∗.y l , s, x̃ .

test l then test l then l l s | P

else l l r

else l y l , s, x̃

y∗ (x̃) .P y∗ (l, s, x̃) .test l then l s | P else l

Fig. 6. Encoding from πsep into πa.

It is used to ensure that there are no conflicts between the names used by the encoding

function for special purposes and the names used by the source term. We explain how to

extend the encoding function by these concepts after the presentation of its main idea.

4.2. An encoding from πsep into πa

Nestmann (2000) presents an encoding from πsep into πa (compare to Figure 6) that

encodes the parallel operator homomorphically.

Here
∏

i∈I � πi.Pi �l denotes the parallel composition of the encodings of all summands

πi.Pi in the respective sum. Remember that, in contrast to πsep, there is no choice operator

in the syntax of πa. Analysing the rules ComS and RepS (see Figure 3) we observe that a

communication with a summand of a sum automatically removes the other summands of

that sum. To compensate for the lacking choice operator, the encodings of the summands

are put in parallel. To ensure that a communication on one summand of a sum disables

the other summands of that sum the encoding of a sum introduces a boolean lock l and

exactly one positive instantiation of it to ensure that at most one of its branches can be

chosen. Input and output are tucked away behind such boolean locks. The receivers take

control over the locks. If there are a source term sender and receiver on the same channel

name, the translated sender sends the names of its sum lock and its sender lock to the

receiver. The sender lock s guards the encoded continuation of a sender. The receiver

then checks for its own and the sum lock of the sender. If both locks are instantiated

with true then he instantiates the sender lock and performs its subprocess. Moreover, it

sets both sum locks to false such that no other summand of the respective sums can be

used for communication.

The receiver lock r allows to restart a test on the corresponding receiver if a former

test failed due to a negative instantiation of the senders sum lock. To do so, in this

case, the receiver lock is reinstantiated. To allow the first test it is initially instantiated.

Moreover, it blocks the search of a matching output partner for communication to avoid

multiple concurrent tests on the same encoded input guarded term. The receiver lock is

not reinstantiated in the case of a successful completion of a test nor of a test failing

due to a negative instantiation of the sum lock of the receiver because, in these cases, a

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1087

a 〈z〉 + b (x) .Q b 〈z〉 + a (x) .Q

communication on channel a

communication on channel b

Fig. 7. Cyclic sums.

corresponding test will never succeed any more. Note that in each case the completion of

a test either reinstantiates the instantiations of all consumed sum locks or changes them

into false instantiations.

The sender lock is implemented as a simple lock and is instantiated by the positive

outcome of the test-construct within the encoding of a matching receiver. With that, of

course, it is possible that it is never instantiated. In that case, the sender lock blocks the

continuation of the respective output for ever.

Note that, in the case of an empty sum (i.e. I = �), the encoding yields (ν l)
(
l 〈�〉 | 0

)
which is semantically equivalent to 0. With that 0 is translated semantically equal to 0.

We refer to Nestmann (2000) for a more exhaustive explanation of this encoding.

The problem with mixed choice are cyclic dependencies within a single sum or a set of

sums. In both situations, the encoding introduces a deadlock. That is why the encoding

above is a good encoding from πsep into πa, but no good encoding from πmix into πa. We

explain the problem using two examples.

Example 4.2 (incestuous sum). Consider the sum a 〈z〉 + a (x). It is called an incestuous

sum because it contains two potential communication partners, i.e. there is an output and

a matching input within this sum. The encoding of this sum

(ν l)
(
l 〈�〉 | (ν s)

(
a 〈l, s, z〉 | s.� 0 �

)
| (ν r)

(
r | r∗.a

(
l′, s, x

)
.test l then test l′ then l 〈⊥〉 | l′ 〈⊥〉 | s | � 0 �

else l 〈�〉 | l′ 〈⊥〉 | r
else l 〈⊥〉 | y 〈l′, s, x〉

))
deadlocks while performing the nested test-construct because it tries to check twice for

the same lock, i.e. the first part of the nested test-construct consumes the sum lock and

so the second part – which tests for the same lock – is deadlocked. Since the source term

a 〈z〉 + a (x) cannot perform a step as well this is not a problem. But consider the term

P = a 〈z〉+a (x) | a (x) .Q. It reduces to Q { z/x }. In this case, the deadlock which may occur

by first testing the communication within the incestuous sum leads to different behaviour

of the target term, i.e. the target term may deadlock without reaching the encoding of

Q { z/x } while the source term reaches Q { z/x } in any execution (of reductions).

Example 4.3 (cyclic sums). With cyclic sums we denote a set of sums with cyclic

dependencies of their potential communication partners as in P = a 〈z〉 + b (x) .Q |
b 〈z〉 + a (x) .Q. The cyclic dependencies of P are depicted in Figure 7. Obviously P can

either reduce to a communication on channel a or on channel b. The encoding of P in

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1088

(ν l1) l1 (ν s1) (a l1, s1, z s1. 0)

| (ν r1) r1 | r∗1 .b l , s, x .test l1 then test l then l1 l s | Q

else l1 l r1

else l1 b l , s, x

| (ν l2) l2 (ν s2) b l2, s2, z s2. 0

| (ν r2) r2 | r∗2 .a l , s, x .test l2 then test l then l2 l s | Q

else l2 l r2

else l2 a l , s, x

Fig. 8. Encoding of P .

Figure 8 will deadlock if the two nested test-construct are performed simultaneously, i.e.

if the first nested test-construct consumes the lock l1 and before its second part can be

performed the second nested test-construct consumes the lock l2. In this situation the

process is deadlocked because both sum locks are consumed and with it none of the

remaining test-constructs can be resolved. Again the target term may deadlock without

reaching the encoding of Q { z/x } while the source term reaches Q { z/x } in any execution,

i.e. there is a difference in the behaviour of the target and the source term.

Both cases result in a deadlock that is induced by the encoding function and not intended

by the underlying source term. Note that such deadlocks are detected by operational

soundness provided �T is not trivial. In other words, not dealing with this problem

adequately violates the operational correspondence criteria in Definition 2.8. In Nestmann

(2000) different attempts to overcome these deadlocks are discussed. The simplest way

to resolve them is to implement the possibility to roll back a test. Unfortunately this

directly leads to divergence introduced by the encoding and not the source term and

with it violates the divergence reflection criterion in Definition 2.10. Another attempt is

to assume a total order among the threads or processes of the system, such that within

the test statements the order of the locks tested can be determined by the order of

the according threads. Since, we have no such total ordering on the source terms the

ordering must be constructed by the encoding function. That can be done for instance

by a two-level encoding or by an encoding with global knowledge about the source

term. Both violate the compositionality criterion in Definition 2.5. A third attempt is

to choose the order of the locks tested at random. Again this violates the divergence

reflection criterion although divergence may occur only with a very low probability. This

approach was formally investigated by Herescu and Palamidessi (2002) in the context

of the probabilistic π-calculus. Nevertheless, as we will show in the following, there is

a way to circumvent both problems, incestuous and cyclic sums, without referring to

randomization within the framework of a good encoding presented in Section 2.2.

4.3. An Encoding from πmix into πa

First in Palamidessi (2003), and later as well in Gorla (2008b, 2010), and by us in Section 3,

it is proved that there is no encoding from πmix into πsep and, thus, no encoding from πmix

into πa that translates the parallel operator homomorphically. So, we have to abandon

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1089

a + a | a
)

| b | a + b
)

Fig. 9. Parallel structure.

this condition. Moreover, in Section 3, we state that an encoding from πmix into πsep or

πa – if there is any – has to break symmetries.

Already Nestmann (2000) proposed some attempts to break symmetries, albeit at a

global level: he proposed (1) a two-level encoding, where the outermost level ensures to

break symmetries at a global level by the provision of a globally restricted channel – so

two encoded terms could not be run in parallel, as the global control would get lost –

and (2) extended target languages that allowed to impose some global ordering on names

to prevent from deadlock situations.

4.3.1. Principle. We propose a novel single-level encoding, in which the symmetry is broken

locally at each parallel operator, while still allowing for an unconstrained composability

of encoded terms. By doing so, we can avoid the problem with cyclic dependencies

in sums. To explain the main idea of such an encoding, let us consider the example,

S =
(
a + a | a

)
|

(
b | a + b

)
and its parallel structure depicted in Figure 9. As parallel

structure, we denote the binary tree induced by the nesting of the parallel operator of a

term, where the leafs are formed by its capabilities. Analysing the operational semantics

of πmix, given by Figure 3, we observe that communication steps in πmix are always due to

an input and an output guarded term on two different sides of a node within the parallel

structure of a term. Moreover, we observe that each matching pair of communication

partners is left and right of exactly one node of that binary tree, i.e. their closest common

parent node. Since there is no sum operator in πa, the encoding of sum forces us to

represent its summands as parallel terms; otherwise, there would be no way for them to

be concurrently enabled. Obviously, and unfortunately, this changes the parallel structure

of the original term. The sum lock is introduced to restore the lost information about the

correspondence of summands to a sum. That suffices to encode separate choice, but, as

shown in the Examples 4.2 and 4.3 above, it does not suffice to encode mixed sums. The

main idea to overcome these problems is to exploit the parallel structure of the originating

source term when enabling or disabling interactions in the translation at the target-level.

More precisely: (1) to avoid the problem of incestuous sums, the encoding will guarantee

that target-level communications will only be possible for requests emanating from two

different sides of a parallel operator in the source term; (2) to avoid the problem of cyclic

sums, the encoding guarantees that there cannot be two different tests being concurrently

enabled at the level of the same parallel operator, i.e. at the same node in the parallel

structure of the source term. This is the main effect of breaking symmetries locally.

In essence, the detection of matching communication partners is ceded to the nodes of

the parallel structure of the source term; more precisely, each parent node is equipped

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1090

(ν x)P (ν x) P

P | Q (ν c, pi,up , po,up , i, o)

(ν pi , po) P

| pi
∗ (y, r) . y · i r pi,up y, r

| po
∗ (y, l, s1, s2, z) . (y · o l, s1, s2, z po,up y, l, s1, s2, z)

| (ν pi , po) Q | c
| pi

∗ (y, r) . (y · o (l, s1, s2, z) .c.r l, s1, s2, z, c pi,up y, r)

| po
∗ (y, l, s1, s2, z) . (y · i (r) .c.r l, s1, s2, z, c po,up y, l, s1, s2, z)

| pi,up
∗ (y, r) .pi y, r po,up

∗ (y, l, s1, s2, z) .po y, l, s1, s2, z

i∈I

πi.Pi (ν l) l
i∈I

πi.Pi l

y z .P l (ν s1, s2) (s1 | s∗1 .po y, l , s1, s2, z | s2. P)

y (x) .P l (ν r) pi y, r

| r∗ l , s1, s2, x, c .test l then test l then l l s2 | P | c
else l l c | pi y, r

else l c | s1

Fig. 10. (Colour online) Encoding from πmix into π2
a .

with a coordinator process. This is explicitly allowed by weak compositionality, and it

is here that the source-term-level symmetry is broken. Now, as opposed to the previous

globally-breaking proposals by Nestmann (2000), the overall exercise is here much more

difficult: from the point of view of a single coordinator, communication may not only

occur between its left- and right-hand subterms, but also between either of these two and

some outer – unknown – communication partner in the environment. All coordinators

residing at the various nodes in the binary parallelism-reflecting tree must play together,

and the encoding function must treat them all alike (to avoid the term ‘symmetrically’)

to keep the encoding truly compositional. To this aim, the encoding of input and output

capabilities announce their requests along special channels to their parent coordinator

nodes within that binary tree. If, at the level of a node, a matching pair of communication

partners is identified, the (nested) test-construct are checked as described for the encoding

in Figure 6. At the same time, to keep up with communication possibilities with ‘external’

partners, the requests are passed on to the potential parent of this coordinator.

4.3.2. Implementation. The encoding in Figure 10 implements the above idea to translate

πmix into π2
a , the asynchronous π-calculus augmented with polyadic (here: 2-adic) syn-

chronization, as proposed by Carbone and Maffeis (2003). This mechanism is convenient

to focus on the essence of the encoding; as we use it only in a limited manner, its usage

can be expanded into the standard target calculus and is thus not critical for the intended

result. We comment on their intuition below, when explaining their usage in the encoding

itself.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1091

For simplicity, in this paper, we leave out the encoding of replicated input. The encoding

of recursive behaviour, however it is defined, is subtle. We explain the problems and how

to overcome them at the end of this section.

For each edge in the binary tree, there are two upward-directed channels named po

and pi . We use the same names in every node, but communications along such edges

are explicitly restricted in order to avoid interference. Thus, each (term at a) node of the

binary tree is assumed to dispose of the free names po and pi , intended for communication

with its parent node; the (term at the) parent node is, in turn, responsible for restricting

the respective access to this child. Consequently, also the top-level node disposes of these

two free names. For simplicity, we systematically do not display the indices po , pi on

expressions � P �po ,pi
and leave them implicit.

The differences in comparison with the encoding in Figure 6 are coloured blue and red.

Input and output guarded terms announce their ability to send or to receive a value to

the respective environment of the next parallel operator, i.e. to the next parent node in

the parallel structure of the source term, by an output over the channel po or pi . These

links are bound twice within the encoding of each parallel operator; once for each side.

We call such output messages requests, i.e. an output on channel po is an output request

and an output on channel pi is an input request. If there is no parallel operator, then the

encoding of the term cannot perform any step except by mimicking a source term step of

a term guarded by τ.

Coordinators are to break symmetries locally. To deal with potential cyclic dependencies

(see Example 4.3), we allow coordinators to do only one thing at a time, so we control

their behaviour by coordinator locks c. To implement communications, coordinators

shall connect the requests from the left- and right-hand sides of parallel terms. In our

encoding, we choose to transfer requests from the left-hand side of a parallel operator

(LHS requests) into outputs, and requests from the right-hand side of a parallel operator

(RHS requests) into inputs. This choice of direction is not essential. However, it is

essential that the resulting outputs and inputs must allow to be checked for matching

requests.

In order to guarantee that only requests from its children are taken into account, a

coordinator uses the local names i/o, which at the same time serve to distinguish the two

kinds of request. Here, we use polyadic synchronization as syntactic sugar to bind the

search for matching requests on channel y to a specific node (referred to via i/o). Polyadic

synchronization in the case of π2
a allows structured channels as combinations of any two

names n, m ∈ N , denoted by n · m. Moreover, two polyadic channels are equal if and only

if they have the same length and are composed of the same names in the same order. In

contrast to the usual π-calculus, polyadic synchronization allows us to restrict parts of a

channel such that
(
(ν n) n · m

)
| n · m �−−→. See further below how we can avoid polyadic

synchronization by working in the pure target language.

Now, by means of polyadic synchronization (cf. the red channel names in Figure 10),

LHS requests are translated into outputs on channel y · i for an input request and on

channel y · o for an output request, where y is the corresponding source term link, and

i/o are used as distinguishing tags for the kind of request. RHS requests are translated

into the according inputs on these channels.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1092

If a matching pair of communication partners is found at a node, then the respective

sum lock l of the sender, then the sender locks s1, s2, the sent value z, and the coordinator

lock c are transmitted by the respective right-hand communication partner back along

channel r to the encoding of the respective receiver. This step enables a test on the

involved sum locks. Note that to perform that step an instantiation of the coordinator

lock c has to be consumed. There is exactly one coordinator lock for each encoding

of a parallel operator, i.e. each node of the parallel structure of the source term, and

there is at most one instantiation on each coordinator lock. Moreover, we observe that,

by finishing a test-construct regardless of its outcome, exactly one instantiation on the

respective consumed coordinator lock is restored. Thus, the node is blocked until this

check is finished by the coordinator lock c, i.e. at each node only one test can be enabled

concurrently.

The test-constructs are mainly the same as in the encoding in Figure 6. One difference

is the emission of an instantiation of a coordinator lock in each case. Considering the

nested test-construct, in case of a negative instantiation of the sum lock of the encoded

sender, we observe that the input request of the encoded receiver is retransmitted instead

of the receiver lock. Moreover, in case of a negative instantiation of the sum lock of the

encoded receiver, the sender lock s1 is instantiated. This ensures that the retransmission

of the corresponding output request starts at the same leaf as the original output request

of that encoded output.

Analysing the parallel structure of S in Figure 9, we observe that the output on a in

the second leaf can communicate with the corresponding input in the first or the last

leaf. Therefore, it does not suffice to search for a matching communication partner at

the immediate parent node but we have to search at each parent node in the parallel

structure. Therefore, each node also pushes all its requests upwards within the parallel

structure to its subsequently parent node. The channels pi ,up and po,up are used to push

all left or right requests over the restriction on pi and po . Then, in the last line of the

encoding of a parallel operator, the requests are relayed by performing the respective

output over pi or po such that they can be bound by a surrounding parallel operator if

there is any. Otherwise, i.e. at the top-level of the parallel structure of the source term,

the requests remain unbounded.

There are two deficiencies of the encoding presented so far. First, it uses polyadic

synchronization, which is not a part of the source language πa. Second, there is no

encoding of replicated input. In the following, we sketch the main ideas to overcome these

issues.

4.3.3. Avoiding polyadic synchronization. Since πa does not allow for polyadic communic-

ation, we have to encode the binding of the search for a matching pair of communication

partners to a node in the parallel structure of the source term different to obtain an

encoding from πmix into πa. Unfortunately this requires match and further blows up the

already rather complicated encoding of the parallel operator. Therefore, we only give

some hints on how to obtain such an encoding. Intuitively, we have to ensure that at the

level of each node each left request is combined with each matching right request without

introducing divergence or deadlock. In Figure 10, we use polyadic synchronization to

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1093

synchronize on the respective source term link name and at the same time to restrict

the communication to the respective node. Instead of using a communication step and

synchronization to find a matching pair of requests, we can transmit all LHS requests to

all RHS requests and use the matching operator to check for a matching of the respective

source term links. The transmission of requests from the left to the right can be performed

on a fresh link which can be bound more easily to the respective node than a source term

name.

We have to be careful that indeed each left request can be combined with each right

request without the introduction of divergence as for instance a careless broadcast would

induce. Moreover notice that the unguarding of the encoding of the continuation of some

guarded source term may add further requests to a side of a node or even further subtrees

to the parallel structure of an encoded term. With that it is necessary that the possibility

to transmit requests from left to the right is no pure preprocessing but remains during

the hole execution of the target term. Therefore, the requests on the right can be ordered

dynamically into two chains – one for input requests and one for output requests – such

that the first member of each chain receives all left requests of the opposite kind, checks

itself for the matching of the respective source term links, and regardless of the outcome

of that check forwards all left requests to the respective next member in that chain. With

that all left requests are pushed along that chains and are combined with each right

request of the opposite kind. In that case the test-constructs should not retransmit the

requests in case of a fail of the test as it is done by the encoding in Figure 10. Note that

such a retransmission of requests in case of a failed test is necessary in Figure 10 to be

able to perform a test on the respective request that was not the reason for the failure and

a possibly other matching request. Obviously such retransmitting leads to duplications of

requests within the parallel structure. Since in the case of chains as explained all possible

combinations of requests are checked there is no need for these retransmitting of requests.

To explain why these chains – or at least a comparable construct that ensures that each

left request is combined with each right request of the opposite kind and not only with a

single one – are indeed necessary let us consider an example without chains. We assume

a couple of fresh links mi and mo . To combine left and right requests we exchange y · i

by mi and y · o by mo and send y as first parameter to compare it within some matching.

Then, the right side (for right input requests) becomes:

mo

(
y′, l, s1, s2, z

)
.
[
y = y′]

c.r 〈l, s1, s2, z, c〉

Unfortunately, if matching fails then not only the left request is lost, but also the ability

of the corresponding right request to receive a left request. Alternatively, we might use

the mismatch operator to restore the lost capabilities; mismatch, however, might have

an unexpected impact on the expressive power of the respective calculus. Thus, the

introduction of chains seems to be the better way. Another alternative would be to

retransmit the left request regardless of whether matching fails or not and to restore the

ability to receive left requests. With this, we would get something like:

mo
∗ (

y′, l, s1, s2, z
)
.
([

y = y′]
c.r 〈l, s1, s2, z, c〉 | mo 〈y′, l, s1, s2, z〉

)

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1094

Obviously, this solution introduces divergence since, if it is possible to reduce the replicated

input on mo once then it can reduce infinity often.

4.3.4. Encoding replication. So far, the encoding takes advantage of the parallel structure

of the source term to circumvent problems with cyclic sums. Unfortunately, the use of the

parallel structure further complicates the encoding of replication. Consider the rule RepS

for replicated inputs in the source language:

RepS y∗ (x) .P |
(
· · · + y 〈z〉 .Q + · · ·

)
−→S { z/x }P | y∗ (x) .P | Q

It states that the communication of a replicated input with a matching output results not

only in the respective continuations, but also in a copy of the original replicated input in

parallel to its continuation. The outcome of a communication for the side of an output

is encoded by a guard on the encoding of the respective continuation. This guard can be

removed after the respective communication is mimicked within the target term (compare

to the second sender lock s2 in Figure 10). Revisiting the encoding of an input guarded

term, we observe that the guard of the continuation in this case is the test-construct that

is used to mimic a step on that capability. This suffices to mimic the ComS rule. However,

mimicking RepS is not that easy. Intuitively, the problem is that its conclusion has three

terms in parallel, but there are only two parallel terms within its precondition. In the

encoding of an input guarded term, after mimicking a step on the respective capability,

the continuation is placed at the same position as the original input capability. Since

this capability cannot be used once more, this is not a problem. On the other side, we

cannot simply place the encoding of the continuation of a replicated input in the same

place at this replicated input, because this would prevent the encodings of several such

continuations from communicating among themselves, or with the replicated input.

As a solution, we propose the introduction of a new kind of node into the parallel

structure of the source term that, in contrast to the nodes of the parallel structure, is not

binary, but needs at least two children to enable a test, i.e. to mimic a source term step.

Instead of placing the encoding of a replicated input within a leaf, as the other capabilities,

we place them within a non-binary node. Therefore, the encoding restricts not only its

own receiver lock, but also a coordinator lock. The encoding starts as the encoding of an

input guarded term with the respective input request and a single test-construct guarded

by the receiver lock similar to the second test-construct of an encoded input guarded

term. Thus, in the beginning, this node behaves as a leaf, but whenever a source term

step on that replicated input capability is mimicked the node places the encoding of the

continuation of that replicated input as a new child. To enable communication among

them, these children are constructed in the same way as the right side of the encoding of

a parallel operator, i.e. the children look like the encoding of a parallel operator without

the left side and with the encoding of the continuation of the replicated input instead of

� Q �, but without a restriction on the coordinator lock. As a result, the respective node

can have several right children, one for each mimicked source term step of that replicated

input. To organize communication on these right children they are dynamically ordered

into a chain just as the right requests are ordered within the right side of a parallel

operator. Moreover, to enable the communication with the encoded replicated input its

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1095

[a = b]P ϕ (a) = ϕ (b) P

τ.P l test l then l P else l

Fig. 11. Encoding of matching, τ-prefix, and success.

input request is put as the only left child of that node. The request from the left child

is transported to the first such right child in that chain, but, in contrast to the chains of

right requests, a right child forwards not only the received requests, but also all its own

requests to the respective next member in that chain. To ensure that there is no problem

with cyclic sums, the hole node, i.e. all of its right children, share the same coordinator

lock. Moreover, to allow for communication with the environment, each child pushes all

of its own (but not received) requests further upwards along the channels pi and po .

Finally, these requests are added to the request of the encoded replicated input and are

further propagated by a surrounding parallel operator.

4.3.5. Renaming policy. Analysing the encoding function in Figure 10, we observe that

the encoding uses several names for special purposes. For instance, l is used to denote a

sum lock. A renaming policy ensures that there are no conflicts with respect to the names

of the source term.

Definition 4.4 (renaming policy). ϕ� � : N → N is an arbitrary substitution such that:

∀n ∈ N . ϕ� � (n) /∈ { l , s1, s2, r , c, pi , po , pi ,up , po,up } (R1)

∀n1, n2 ∈ N . n1 �= n2 implies ϕ� � (n1) �= ϕ� � (n2) . (R2)

Obviously, we do not completely specify ϕ� � because we do not want to make special

assumptions about the set N of possible names. Nevertheless, any substitution satisfying

conditions (R1) and (R2) suffices as renaming policy. To augment the encoding in

Figure 10 by a renaming policy, use ϕ� � (n) instead of n in the encodings for each source

term name n, i.e. in case of Figure 10 for n ∈ { x, y, z } (cf. the renaming policy to encode

matching in Figure 11).

In addition to the operators in the encodings above, we give an encoding of success �,

matching [a = b]P , and prefix τ.P in Figure 11, which are straightforward and therefore

should not need further explanation.

4.4. Encoding example

To illustrate the encoding and especially the resulting computations, we consider an

example. Let us consider the source term:

S = a (b) .0 + a 〈a〉 .0 | a (b) .0 + a 〈a〉 .0

Note that this is a version of the term a + a | a + a used in the Proof of Theorem 3.18,

now without abbreviations, i.e. without omitting unnecessary parameters and trailing 0’s.

Since a and b are no special names of the encoding function we can assume without loss

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1096

(ν c, pi,up , po,up , i, o)

(ν pi , po) (ν l) l

| (ν r) pi a, r r∗ l , s1, s2, b, c .

test l then test l then l l s2 | (ν l) l 0 | c
else l l c | pi a, r

else l c | s1

| (ν s1, s2) s1 | s∗1 .po a, l , s1, s2, a s2.(ν l) l 0

| pi
∗ (y, r) . (y · o r pi,up y, r)

| po
∗ (y, l, s1, s2, z) . y · i l, s1, s2, z po,up y, l, s1, s2, z

| (ν pi , po) (ν l) l

| (ν r) pi a, r r∗ l , s1, s2, b, c .

test l then test l then l l s2 | (ν l) l 0 | c
else l l c | pi a, r

else l c | s1

| (ν s1, s2) s1 | s∗1 .po a, l , s1, s2, a s2.(ν l) l 0

| c | pi
∗ (y, r) . (y · i (l, s, z) .c.r l, s, z, c pi,up y, r)

| po
∗ (y, l, s1, s2, z) . (y · o (r) .c.r l, s1, s2, z, c po,up y, l, s1, s2, z)

| pi,up
∗ (y, r) .pi y, r po,up

∗ (y, l, s1, s2, z) .po y, l, s1, s2, z

Fig. 12. (Colour online) Encoding example: � S �.

of generality that ϕ� � (a) = a and ϕ� � (b) = b. The corresponding target term � S � is

given by the term in Figure 12.

First we observe that the encoding of 0 – coloured blue in S and � S � – is simply

(ν l)
(
l 〈�〉 | 0

)
which is semantically equal to 0 because we have (ν l)

(
l 〈�〉 | 0

)
�−−→.

Secondly we observe that although the source term is a symmetric network of degree

2 (with respect to identity) the resulting target term is not a symmetric network. Note

that the source term symmetry is broken because of the different encodings of the left

and the right side of the parallel operator, i.e. mainly by the single instance of c, and

not by changing the degree of the source network. If we want to make sure that the

encoding function does not change the degree of distribution by translating a network

into a network of the same degree, we duplicate the last line of the encoding of the parallel

operator and assign one instance of it to each side of the encoding of the parallel operator

within different scopes of the names pi ,up and po,up . Then performing alpha-conversion to

push the restrictions on the different versions of the names o, i, and c outwards restores

the degree of the original network. We observe that there are initially four requests within

the target term; one for each input or output capability of the source term. Moreover,

since the corresponding capabilities are unguarded in S , the requests are unguarded in

� S � or can become so by a single target term step on the respective first sender lock.

Apart from the requests, there are three more unguarded outputs. Two of them are the

positive instantiations of the sum locks l 〈�〉 to which no matching inputs are unguarded.

The same holds for the instantiation of the coordinator lock c. With that initially there

are two steps on sender locks and then four steps, one for each request.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1097

(ν pi , po , ll, rl, s1,l, s2,l) ll

| r∗
l l , s1, s2, b, c .test ll then test l then ll l s2 | 0 | c

else ll l c | pi a, rl

else ll c | s1

| s∗1,l.po a, ll, s1,l, s2,l, a s2,l. 0

| pi
∗ (y, r) . y · i r pi,up y, r | a · i rl pi,up a, rl

| po
∗ (y, l, s1, s2, z) . (y · o l, s1, s2, z po,up y, l, s1, s2, z)

| a · o ll, s1,l, s2,l, a po,up a, ll, s1,l, s2,l, a

Fig. 13. (Colour online) Consumption of left requests.

At first we take a look on the left side of the encoding of the parallel operator. The

consumption of the left requests leads to the term in Figure 13. Analysing this term we

observe that the requests were not completely consumed but instead copied into a new

version for each request with the same parameters but on different channel names, namely

pi ,up 〈a, rl〉 and po,up 〈a, ll , s1,l , s2,l , a〉. The purpose of those copies is to push the content

of the request over the restriction on pi and po such that it can be pushed upwards

in the parallel structure to enable communications with other parts of the binary tree.

Note that the replicated inputs on the links pi and po remain. So some of the requests

might be processed at the beginning while other requests might be processed later. That

allows us to handle the requests of the encoding of a continuation of some input or

output guarded term as soon as the completion of a corresponding source term reduction

step removing such a guard is mimicked within the encoding. Therefore, note that the

encodings of continuations of guarded terms, i.e. the � 0 � in our case, appear guarded

within the encoding of the source term, where the guard is either a receiver lock in case of

an input guarded source or a sender lock in case of an output guarded source. Moreover,

we observe that these guards cannot be removed by reduction steps on requests. We

also observe that the two reduction steps cause a scope extrusion of the restrictions on

r , l , s1 and s2. Since in the current case there is only one instance of each of these

locks no alpha-conversion is necessary. Multiple receiver/sender locks stem from multiple

input/output guarded summands in the respective source term or from the case that at

the corresponding side of the parallel operator a subtree of the parallel structure of the

source term is encoded which can also leads to multiple sum locks. Later on we combine

the requests of the left with the requests of the right in order to mimic a reduction step

of the source term. Therefore, since on the right side there are different versions of these

locks we perform alpha-conversion to avoid ambiguity later, i.e. we index the locks on

the left side by l and the locks on the right side by r.

The processing of the requests on the right side of the encoding of a parallel operator

as visualized in Figure 14 is similar. We observe that to enable a test there are some

necessary informations: the receiver lock of the corresponding encoded input capability

and the sum lock, the sender locks, and the sent value of the corresponding encoded

output capability. The requests cover all these information. If a right request is processed

the already gathered information are filled in (compare to c.rr 〈l, s1, s2, z, c〉 for right output

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1098

(ν pi , po , lr, rr, s1,r, s2,r) lr c

| r∗
r l , s1, s2, b, c .test lr then test l then lr l s2 | 0 | c

else lr l c | pi a, rr

else lr c | s1

| s∗1,r.po a, lr, s1,r, s2,r, a s2,r. 0

| pi
∗ (y, r) . (y · o (l, s1, s2, z) .c.r l, s1, s2, z, c pi,up y, r)

| a · o (l, s1, s2, z) .c.rr l, s1, s2, z, c pi,up a, rr

| po
∗ (y, l, s1, s2, z) . (y · i (r) .c.r l, s1, s2, z, c po,up y, l, s1, s2, z)

| a · i (r) .c.r lr, s1,r, s2,r, a, c po,up a, lr, s1,r, s2,r, a

Fig. 14. (Colour online) Consumption of right requests.

(ν c, pi,up , po,up , i, o, ll, rl, s1,l, s2,l, lr, rr, s1,r, s2,r)

(ν pi , po) ll

| r∗
l l , s1, s2, b, c .test ll then test l then ll l s2 | 0 | c

else ll l c | pi a, rl

else ll c | s1

| s∗1,l.po a, ll, s1,l, s2,l, a s2,l. 0

| pi
∗ (y, r) . y · i r pi,up y, r

| po
∗ (y, l, s1, s2, z) . (y · o l, s1, s2, z po,up y, l, s1, s2, z)

(ν pi , po) lr c

| r∗
r l , s1, s2, b, c .test lr then test l then lr l s2 | 0 | c

else lr l c | pi a, rr

else lr c | s1

| s∗1,r.po a, lr, s1,r, s2,r, a s2,r. 0

| pi
∗ (y, r) . (y · o (l, s1, s2, z) .c.r l, s1, s2, z, c pi,up y, r)

| c.rr ll, s1,l, s2,l, a, c

| po
∗ (y, l, s1, s2, z) . (y · i (r) .c.r l, s1, s2, z, c po,up y, l, s1, s2, z)

| c.rl lr, s1,r, s2,r, a, c

| pi,up
∗ (y, r) .pi y, r pi a, rl pi a, rr

| po,up
∗ (y, l, s1, s2, z) .po y, l, s1, s2, z

| po a, ll, s1,l, s2,l, a po a, lr, s1,r, s2,r, a

Fig. 15. (Colour online) Encoding example: � S � (−→T)12.

requests and c.r 〈lr, s1,r , s2,r , a, c〉 for right input requests). The missing details are gathered

by the communication with a matching left request.

Now there are two concurrently enabled steps, at channel a · i and at a · o. One for

each possible step of the source term. Note that the two steps of the source term are in

conflict, whereas the two steps here are not conflicting. The result of these two steps and

the four steps on the channels pi ,up and po,up is given in Figure 15. We observe that the

missing details are filled in. The results are two outputs on receiver locks each guarded

by the same coordinator lock c. Since there is only one instantiation of that lock, we

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1099

(ν pi , po) lr

| r∗
r l , s1, s2, b, c .test lr then test l then lr l s2 | 0 | c

else lr l c | pi a, rr

else lr c | s1

| test lr then test ll then lr ll s2,l | { a/b } (0) | c
else lr ll c | pi a, rr

else lr c | s1,l
| sr. 0

| pi
∗ (y, r) . (y · o (l, s1, s2, z) .c.r l, s1, s2, z, c pi,up y, r)

| po
∗ (y, l, s1, s2, z) . (y · i (r) .c.r l, s1, s2, z, c po,up y, l, s1, s2, z)

| c.rl lr, s1,r, s2,r, a, c

Fig. 16. (Colour online) Unguarding a test-construct.

can only reduce one of these terms by now. The consumption of a coordinator lock and

a following step on the receiver lock enables a test of the sum locks of the respective

found pair of matching communication partners. Note that since such a pair consists of a

communication partner left and a partner right to the encoding of the respective parallel

operator these two sum locks are always different. With that the problem of incestuous

sums described in Example 4.2 is avoided.

We reduce the first occurrence of the guard of the coordinator lock. The other case

is similar. A second step removes the receiver lock – rr in this case – that guards

the right nested test-construct as depicted in Figure 16. Since, both sum lock are positive

instantiated – the instantiation of the left sum lock ll can be found on the left side – the

unguarded nested test-construct reduce to its first case, i.e. it reduces to:

lr 〈⊥〉 | ll 〈⊥〉 | s2,l | { a/b }
(
� 0 �

)
| c

The reduction to the first case shows that our communication attempt on the identified pair

of communication partners was successful, i.e. at this point we mimic the corresponding

source term step. Both sum locks are changed to false instantiations. This outlines that

already a summand of each of these two sums was used for communication. Then there is

an unguarded instantiation of the left sender lock s2,l . With that we can remove the guard

of the encoding of the continuation of the output guarded left source term within one

more reduction step. The encoding of the continuation of the respective input guarded

source term is the term { a/b }
(
� 0 �

)
= � 0 �. As we can observe it is already unguarded.

Moreover, the value send by the respective left source term output was received at the

encoding of the right input guarded term as depicted by the substitution { a/b }. The last

new subterm is an instantiation of the coordinator lock. Since the test of the two sum

locks is finished another test can be enabled.

S can perform only a single step, which we have mimicked within its encoding. The

encoded term can perform some post-processing steps. Since there is an instantiation

of the coordinator lock the second test of sum locks on the second pair of matching

communication partners can be performed. Again the guarding coordinator lock is reduced

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1100

by a reduction step. Then an additional step is performed to remove the left receiver lock

guarding the left nested test-construct. The first sum lock, which is ll in this case, is

tested. There is only one instantiation of the lock and that is a negative instantiation.

With that the test is finished immediately without testing the second lock and the nested

test-construct reduce to its last case, i.e. to ll 〈⊥〉 | c | s1,r . With that a subsequently step

results in a duplicate version of the right output request.

Moreover, the completion of the second nested test-construct results in an other

instantiation of the coordinator lock. Indeed, analysing the encoding function we observe

that each completion of a test-construct block restores the coordinator lock consumed to

enable this test regardless of its outcome. In our case we found no other matching pair

of communication partners, so no further tests can be enabled.

Note that the resulting target term contains five unguarded and not restricted, i.e. free,

requests: pi 〈a, rl〉, pi 〈a, rr〉, po 〈a, ll , s1,l , s2,l , a〉, and twice po 〈a, lr, s1,r , s2,r , a〉. They can be

bound by a surrounding parallel operator, i.e. by the next parent node. Since in our

example there is no such surrounding parallel operator they remain free.

4.5. Properties of the encoding

Abstracting from the instantiation of sender locks we observe that the encoding function

translates source term observables into translated observables, i.e. into requests containing

the name of the corresponding observable as first parameter augmented with positive

instantiations of sum locks. A source term step S −→S S ′ is translated into a sequence

of target term steps. Most of these steps are pre- or post-processing steps, which we call

administrative steps. Indeed, each source term step can be mapped to exactly one non-

administrative target step and vice versa, namely to a step from the second test-construct

of a nested test-construct or from a single test-construct to its then-case. All steps of the

target term before or after such a step are administrative steps.

Based on the notion of translated observables we define translated barbed bisimilarity

(denoted by 	�) as weak reduction bisimilarity augmented with a check for the same set

of translated barbs. The main purpose of this relation is to capture our intuition of the

connection between source and target terms. Moreover, it turns out that 	� is well suited

to prove the missing three criteria on the quality of the encoding; it identifies terms with

the same behaviour with respect to translated observables. Interestingly, the relation 	�

identifies structural congruent terms, but it does not preserve the structural congruence of

source terms. The reason is that the encoding obviously treats the two sides of the rule

P |
(
Q | R

)
≡

(
P | Q

)
| R quite differently.

To circumvent problems with cyclic sums (compare to Example 4.3), the encoding

function introduces a so-called coordinator lock. It ensures that at each node of the

parallel structure of the source term, and at any moment in time, at most one test

can be enabled. Remember that the reduction of a test-construct to its then-case is

a non-administrative step. Here, the enabling of a non-administrative step at a node

may block the enabling of an alternative non-administrative step at the same node.

This blocking of non-administrative steps leads to (1) intermediate states, in case the

blocked non-administrative step is in conflict to the enabled step, and (2) additional causal

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1101

dependencies, in case the blocked non-administrative step is independent of the enabled

step. Intuitively, an intermediate state is a state of the target term that cannot be mapped

to a state of the source term but can be placed in between a source term state and some,

but not all, of its subsequent states. In comparison to the encoding of the former state,

some of the alternative conflicting non-administrative steps are ruled out, while there

is still some choice on conflicting non-administrative steps leading to the encoding of

different subsequent source term states.

Of course, these effects – the introduction of intermediate states and additional causal

dependencies and the fact that associativity of the parallel operator in the source terms is

not preserved – rely on the fact that the encoding function takes such strong advantage

of the parallel structure of the source term. However, we believe that any encoding from

πmix into πsep (and likewise into πa) will introduce intermediate states and additional

causal dependencies, although we have up to now only proven the second claim in Peters

et al. (2011). Note that causality is often defined as the opposite of concurrency, i.e. two

actions are concurrent only if they are not causal dependent (Boreale and Sangiorgi 1998;

Charron-Bost et al. 1996; Priami 1996). Hence Peters et al. (2011) prove that there is

no good encoding from πmix into πa that preserves the degree of distribution of source

terms, because each such encoding introduces additional causal dependencies and thus

reduces the amount of concurrent enabled steps. We particularized this fact in Peters and

Nestmann (2012a), hence – restoring the original intention of Palamidessi (2003) – there

is no distribution preserving encoding from πmix into πa with respect to the criteria of

Gorla.

4.5.1. Monadic versus polyadic communication. To reduce the complexity of the encoding

function, we chose to use a monadic version of πmix, but a polyadic version of πa. There are

decent encodings from the polyadic π-calculus into its monadic variant, especially when

the polyadic usage is limited. Such an encoding is described for the case of two parameters

in Nestmann and Pierce (2000). Here, the encoding uses at most four parameters. It is

straightforward to adapt the encoding function in Figure 10 using an encoding similar

to the one in Nestmann and Pierce (2000) to reduce each input, replicated input, and

output to one parameter, i.e. to translate the encoding into an encoding from πmix into

the monadic version of πa.

4.5.2. Proof of correctness. We will not present a formal proof of the correctness of our

encoding here, but in Peters and Nestmann (2012b) there is an exhaustive argumentation,

why the encoding presented in Peters and Nestmann (2012a) is correct with respect to the

five criteria presented in Section 2.2. The main difference of the encoding presented above

and the encoding of Peters and Nestmann (2012a) is that the former uses coordinator

looks to rule out potential deadlocks caused by cyclic sums, while the later implements an

algorithm to compute an order on the sum locks at runtime without global knowledge, i.e.

in a compositional way. To do so both encodings rely on the idea of requests, presented

above. Hence much of the argumentation in Peters and Nestmann (2012b) can be simply

adapted or used verbatim for a similar argumentation here.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1102

Since it is the main difference of our encoding and the encoding in Peters and Nestmann

(2012a), we shortly explain how our encoding avoids the deadlocks caused by cyclic sums.

In the encoding given in Nestmann (2000), several nested test-constructs can lead to

deadlocks, because they consume some sum locks while waiting for other sum locks

(see Section 4.2). The coordinator locks restrict the number of test-constructs that can

be evaluated concurrently. More precisely, for each related pair of input and output

requests the instantiation of the coordinator lock of the closest common parent node is

consumed. Therefore, the consumed coordinator locks and the tested sum locks form a

binary tree with the sum locks as leafs and the coordinator locks as remaining nodes.

For each consumed coordinator lock a nested test-construct is enabled, that checks two

sum locks of leafs of the corresponding subtree. Hence there is always at least one more

sum lock than enabled test-constructs, i.e. at least one sum lock is tested by at most

one test-construct. Because of that it is not possible to close the cycle, i.e. there are no

deadlocks on the test-constructs.

4.5.3. Match. For the presented idea of an encoding from πmix into πa as well as for the

encoding presented in Peters and Nestmann (2012a), the match operator seems crucial,

i.e. we strongly believe that there is no encoding from πmix into πsep satisfying all criteria

presented in Section 2.2 without match. We have not formally proven this claim yet, but in

Peters et al. (2011) and Peters and Nestmann (2012a) some argumentation can be found.

The main idea is, that according to the proof in Peters et al. (2011) each encoding has

to utilize some kind of requests, that are combined at the level of an encoded parallel

operator. Here, matching is necessary to identify requests that belong to the same source

term step. To avoid this kind of matching, related requests have to be identified by

communication on restricted channels. This restriction requires global knowledge – e.g.

to cover source term steps that result from scope extrusion – which is not available in

compositional encodings (see Definition 2.5). Note that the only proof that πa is strictly

more expressive than πa without match in Carbone and Maffeis (2003) we are aware

of, relies on criteria harder than Gorla’s criteria, but we believe that the proof can be

generalized to the criteria presented in Section 2.2.

5. Summary and future work

We prove without any further assumption that πsep lacks – in contrast to πmix– the ability

to break initial symmetries. For this reason, we state an absolute separation result proving

that πmix is strictly more expressive than πsep. Moreover, since homomorphic translation of

the parallel operator preserves initial symmetries, this absolute result turns out to be well

suited to prove several translational separation results for respectively different definitions

of reasonableness. These results support the conjecture that there is no reasonable encoding

from πmix into πsep that translates the parallel operator homomorphically, where the notion

of reasonableness covers at least reflection of divergence and deadlock, and some suitable

notion of preservation of behaviour. Moreover, comparing the presented translational

separation results we observe that:

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1103

1. the absolute separation result plays a central role in each of the above-presented

translational results,

2. the use of the absolute separation result allows us to weaken the assumptions under

which the translational separation results hold in comparison to earlier proposals,

3. the use of the absolute separation result induces an intuitive way to prove quite different

translational separation results.

In summary, these arguments emphasize the central role of absolute separation results for

language comparison, even when considering translational results. Note that even with

the help of match, πsep cannot break symmetries and there is no uniform and reasonable

encoding from πmix into πsep or πa.

As shown in Palamidessi (2003), leader election serves to derive a translational result,

but even input-output confluence suffices to separate πmix from πsep by an absolute result.

Absolute separation results like confluence, leader election, and breaking symmetries can

be used to obtain translational separation results. Therefore, typically an example is

chosen that illustrates the main discriminating features of the absolute result and that

can be used in the translational separation result as counterexample. To do so, the

main features of this example have to be preserved by the encoding function, i.e. by the

criteria required for the encoding. Thus, confluence is not an adequate choice to derive a

translational separation result as the above, since it is very difficult to find a discriminating

counterexample based on confluence; even if such an example is found, it is intricate to

argue for the preservation of its properties. In this sense, leader election is much more

suitable, because its main conditions are preserved under uniform encodings that preserve

substitutions. However, as shown above, breaking symmetries is even better suited because

its properties are preserved by weaker requirements on reasonable encodings. Accordingly,

confluence can be considered as a too weak property, while leader election is a little bit too

specific. In short, breaking symmetries serves as a ‘sweet spot’. It allows for the formulation

of a general result: there is no reasonable encoding from πmix into πsep that translates

the parallel operator homomorphically, where the notion of reasonableness covers at

least reflection of divergence and deadlock, and some suitable notion of preservation of

behaviour.

By abandoning the condition of homomorphic translation of the parallel operator in

favour of weak compositionality, we propose an encoding from πmix into πa that, as we

strongly conjecture, meets all five of Gorla’s criteria. As a novelty, our new encoding

overcomes the previous non-compositional attempts to break symmetries globally by

providing a principle that breaks symmetries locally, saving true compositionality. Because

of the complexity of this encoding, a complete proof of its correctness with respect to

Gorla’s criteria is rather intricate (compare to Peters and Nestmann (2012b)). However, it

should reveal greater insight on the relation between πmix and πa and thus, hopefully, on

the relation between synchronous and asynchronous interactions in general. For instance,

it preserves structural congruence of source terms except for the associativity of the

parallel operator, which at first may seem rather unexpected. Even more interesting is

the introduction of intermediate states and additional causal dependencies. Note that the

necessity of the latter is already proved Peters et al. (2011). We are convinced that also

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1104

the former is no effect of the particularities of the chosen encoding; rather, we conjecture

that any encoding from πmix into πsep that is correct with respect to Gorla’s criteria also

introduces intermediate states. We also conjecture that the match operator is required for

such encodings.

Symmetry is also a concept of practical relevance. Likewise, from the early days of

CSP (Hoare 1978), researchers were looking for convincing ways to practically implement

mixed choice – then called generalized input-output construct or generalized alternative

command (Bernstein 1980; Buckley and Silberschatz 1983; Kieburtz and Silberschatz

1979; van de Snepshout 1981) – which turned out to be hard to do correctly (Kumar

and Silberschatz 1997). However, in practice, systems are never truly symmetric when

considered as sitting on top of some network architecture. In order to achieve global

ordering information, one can always use IP addresses, process IDs, etc and exploit them

to break symmetries. Ideas along this path have been pursued to implement mixed choice

in the context of a programming language (Knabe 1993) beyond mere proof-of-concept

prototyping. On the other hand, the relevance of symmetry is also a matter of the level of

abstraction. Not referring to the underlying technical architecture in all low-level details,

we are forced to abandon solutions that require global knowledge in favour of those that

only require local knowledge. Finding a local-knowledge solution is then practically useful

for issues like scalability and fault-tolerance.

References

Baldamus, M., Parrow, J. and Victor, B. (2005) A fully abstract encoding of the i-calculus with data

terms. In: Proceedings of ICALP. Springer Lecture Notes in Computer Science 3580 1202–1213.

Bernstein, A. (1980) Output guards and nondeterminism in ‘communicating sequential processes’.

ACM Transactions on Programming Languages and Systems 2 (2) 234–238.

Boer, F. S. and Palamidessi, C. (1991) Embedding as a tool for Language Comparison: On the

CSP hierarchy. In: Proceedings of CONCUR. Springer Lecture Notes in Computer Science 527

127–141.

Boreale, M. and Sangiorgi, D. (1998) A fully abstract semantics for causality in the π-calculus. Acta

Informatica 35 (5) 353–400.

Boudol, G. (1992) Asynchrony and the π-calculus (note). Note, INRIA.

Bougé, L. (1988) On the existence of symmetric algorithms to find leaders in networks of

communicating sequential processes. Acta Informatica 25 (4) 179–201.

Buckley, G. and Silberschatz, A. (1983) An effective implementation for the generalized input-output

construct of CSP. ACM Transactions on Programming Languages and Systems 5 (2) 223–235.

Bugliesi, M. and Giunti, M. (2007) Secure implementations of typed channel abstractions. In:

Proceedings of POPL. SIGPLAN-SIGACT 42, ACM 251–262.

Busi, N., Gorrieri, R. and Zavattaro, G. (2000) On the expressiveness of linda coordination primitives.

Information and Compututation 156 (1–2) 90–121.

Carbone, M. and Maffeis, S. (2003) On the expressive power of polyadic synchronisation in π-

calculus. Nordic Journal of Computing 10 (2) 70–98.

Charron-Bost, B., Mattern, F. and Tel, G. (1996) Synchronous, asynchronous, and causally ordered

communication. Distributed Computing 9 (4) 173–191.

Fu, Y. and Lu, H. (2010) On the expressiveness of interaction. Theoretical Computer Science 411

(11–13) 1387–1451.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

Breaking symmetries 1105

Gorla, D. (2008a) Comparing communication primitives via their relative expressive power.

Information and Computation 206 (8) 931–952.

Gorla, D. (2008b) Towards a unified approach to encodability and separation results for process

calculi, Technical Report, Dip. di Informatica, Univ. di Roma ‘La Sapienza’, 2008. (An extended

abstract appeared in the Proceedings of CONCUR’08. Springer Lecture Notes in Computer Science

5201 492–507.)

Gorla, D. (2010) Towards a unified approach to encodability and separation results for process

calculi. Information and Computation 208 (9) 1031–1053.

Hoare, C. A. R. (1978) Communicating sequential processes. Communications of the ACM 21 (8)

666–677.

Herescu, O. M. and Palamidessi, C. (2002) A randomized distributed encoding of the pi-calculus

with mixed choice. In: Baeza-Yates, R. A., Montanari, U. and Santoro, N. (eds.) IFIP TCS. IFIP

Conference Proceedings, Kluwer 537–549.

Honda, K. and Tokoro, M. (1991) An object calculus for asynchronous communication. In:

Proceedings of ECOOP. Springer Lecture Notes in Computer Science 512 133–147.

Johnson, R. E. and Schneider, F. B. (1985) Symmetry and similarity in distributed systems. In:

Proceedings of PODC, ACM 13–22.

Knabe, F. (1993) A distributed protocol for channel-based communication with choice. Computers

and Artificial Intelligence 12 (5) 475–490.

Kieburtz, R. and Silberschatz, A. (1979) Comments on ‘communicating sequential processes’. ACM

Transactions on Programming Languages and Systems 1 (2) 218–225.

Kumar, D. and Silberschatz, A. (1997) A counter-example to an algorithm for the generalized

input-output construct of CSP. Information Processing Letters 61 287.

Lipton, R., Snyder, L. and Zalcstein, Y. (1974) A comparative study of models of parallel

computation. In: 15th Annual Symposium on Switching and Automata Theory, New Orleans 145–

155.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes, part I and II. Information

and Computation 100 (1) 1–77.

Milner, R. and Sangiorgi, S. (1992) Barbed sisimulation. In: Proceedings of ICALP. Springer Lecture

Notes in Computer Science 623 685–695.

Nestmann, U. (2000) What is a ‘Good’ encoding of guarded choice? Information and Computation

156 (1-2) 287–319.

Nestmann, U. (2006) Welcome to jungle: A subjective guide to mobile process calculi. In: Proceedings

of CONCUR. Springer Lecture Notes in Computer Science 4137 52–63.

Nestmann, U. and Pierce, B. C. (2000) Decoding choice encodings. Information and Computation

163 (1) 1–59.

Palamidessi, C. (2003) Comparing the expressive power of the synchronous and the asynchronous

π-calculi. Mathematical Structures in Computer Science 13 (5) 685–719.

Parrow, J. (2008) Expressiveness of process algebras. Electronic Notes in Theoretical Computer

Science 209 173–186.

Peters, K. and Nestmann, U. (2010) Breaking symmetries. In: Proceedings of EXPRESS. Electronic

Proceedings in Theoretical Computer Science 41 136–150.

Peters, K. and Nestmann, U. (2012a) Is it a ‘Good’ encoding of mixed choice? In: Proceedings of

FoSSaCS. Lecture Notes in Computer Science 7213 210–224.

Peters, K and Nestmann, U. (2012b) Is it a ‘Good’ encoding of mixed choice? Technical Report, TU

Berlin, Germany. http://arxiv.org/corr/home.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

K. Peters and U. Nestmann 1106

Peters, K., Schicke-Uffmann, J.-W. and Nestmann, U. (2011) Synchrony versus causality in the

asynchronous Pi-calculus. In: Proceedings of EXPRESS. Electronic Notes in Theoretical Computer

Science 64 89–103.

Priami, C. (1996) Enhanced Operational Semantics for Concurrency, Ph.D. thesis, Università di Pisa-

Genova-Udine.

Sangiorgi, D. and Walker, D. (2001) The π-Calculus: A Theory of Mobile Processes, Cambridge

University Press New York, NY, USA.

Shapiro, E. (1989) The family of concurrent logic programming languages. ACM Computing Surveys

(CSUR) 21 (3) 413–510.

Shapiro, E. (1991) Separating concurrent languages with categories of language embeddings. In:

Proceedings of STOC, ACM 198–208.

Shapiro, E. (1992) Embeddings among concurrent programming languages. In: Proceedings of

CONCUR. Springer Lecture Notes in Computer Science 630 486–503.

van de Snepshout, J. (1981) Synchronous communication between asynchronous components.

Information Processing Letters 13 (3) 127–130.

van Glabbeek, R. J. (1993) The linear time - branching time spectrum II. In: Proceedings of

CONCUR. Springer Lecture Notes in Computer Science 715 66–81.

van Glabbeek, R. J. (2001) The linear time – branching time spectrum I: The semantics of concrete,

sequential processes. In: Bergstra, J.A., Ponse, A. and Smolka, S. A. (eds.) Handbook of Process

Algebra, Elseveier Science B.V. 3–99.

Vigliotti, M. G., Phillips, I. and Palamidessi, C. (2007) Tutorial on separation results in process

calculi via leader election problems. Theoretical Computer Science 388 (1–3) 267–289.

https://doi.org/10.1017/S0960129514000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000346

