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The lane-level map, which contains the lane-level information severely lacking in widely used
commercial navigation maps, has become an essential data source for autonomous driving
systems. The linking relations between lane-level map and commercial navigation map can
facilitate an autonomous driving system mapping information between different applications
using different maps. In this paper, an approach is proposed to build the linking relations auto-
matically. The different topology networks are first reconstructed into similar structures. Then,
to build the linking relations automatically, the adaptive multi-filter algorithm and forward path
exploring algorithm are proposed to detect corresponding junctions and paths, respectively. The
approach is validated by two real data sets of more than 150 km of roads, mainly highway. The
linking relations for nearly 94% of the total road length have been built successfully.
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1. INTRODUCTION. In recent years, autonomous driving technology has drawn more
and more attention. The autonomous vehicle comprises several systems, including per-
ception and planning systems. Underlying these systems there is a public model: the map
(Bender et al., 2014). However, current widely used commercial navigation maps cannot
meet the demands of high level applications due to their serious lack of accuracy, contents
and completeness (Tao et al., 2013), hence the necessity of developing detailed lane-level
maps has been widely recognised (Naranjo et al., 2009; Nedevschi et al., 2013). In industry,
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lane-level maps have been deployed in autonomous vehicles, including by Google (Guizzo,
2011) and Daimler (Ziegler et al., 2014).

A lane-level map (LLM) that represents the detailed lane information on a road is antic-
ipated to provide higher resolution data to autonomous driving systems. Currently, there
are some LLM models available, such as the route network definition file (RNDF, DARPA
Urban Challenge, 2007), OpenDRIVE (Dupuis, 2010), Lanelets (Bender et al., 2014), and
the smart map (Liu et al., 2015). Meanwhile commercial navigation maps (CNM) are
widely used in human driving navigation today. However, CNMs model roads as poly-
lines, which causes loss of information about the road. Intuitively, CNM has ample global
attributes that go beyond on-board sensor visibilities and LLM has highly defined local
lane-level data. The autonomous driving system inevitably involves both global and local
data. For example, the hierarchical planning system, which consists of mission planning
and motion planning, has been employed in some autonomous vehicles (Leonard et al.,
2008; Fan et al., 2018). Mission planning is performed over the road network to find a
user-defined optimal route between origin and destination; motion planning generates an
appropriate path to achieve local objectives (Pendleton et al., 2017). CNM and LLM can
offer global and local information to autonomous driving systems and the linking relations
between CNM and LLM can greatly facilitate them, especially the hierarchical planning
system. For instance, in order to guide an autonomous car, Alonso et al. (2011) proposed
a two-level cartographic system to provide different linked map data. Analogously, in
the well-known open source autonomous driving platform Autoware, CNM was used to
search for a route, then the route was reflected onto a three-dimensional map to guide the
autonomous vehicle (Kato et al., 2015). The linking relations between LLM and CNM are
of great importance for mapping information between different applications using different
map data among autonomous driving systems. They also facilitate data sharing and interop-
eration between LLM and CNM, such as CNM’s error detection and correction via LLM.
Unfortunately, due to the different data capturing and processing methods and rules for the
different raw data that are used to generate CNM and LLM, it is impossible even for one
map supplier to make explicit one-to-one mapping between CNM and LLM. In this paper,
an approach is proposed to build the linking relations automatically.

The remainder of this paper is organised as follows. In Section 2, the literature on road
networks matching is reviewed. Section 3 gives an introduction and comparison of LLM
and CNM. In Section 4, the proposed road networks matching approach is elaborated. The
linking relations are built in Section 5. In Section 6, the experiments are conducted and the
results are discussed. Finally, Section 7 provides the conclusion and future works.

2. LITERATURE ON ROAD NETWORKS MATCHING. In GIS (geographic infor-
mation systems), geographic data set integration is the process of establishing relations
between corresponding object instances in different geographic data sets of a certain region
(Uitermark and Cadastre, 1996). Saalfeld (1988) initially proposed an automatic method to
consolidate two vector maps. Doytsher et al. (2001) detected counterpart nodes and con-
structed paths between the nodes at first; then detected the corresponding paths by average
distance. Similarly, Volz (2006) detected ‘seed nodes’ and then matched the emanating
edges through a weighted sum function. Due to being governed by many fixed thresholds
and weightings, the approach might fail when applied to other map databases; and it was a
nontrivial work to determine the thresholds and weightings. Distance is commonly used to
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measure the similarity of geometric objects. Mustière and Devogele (2008) used Euclidean
and Hausdorff distances to pre-match nodes and arcs. Devogele (2002) cast the process
of matching homologous objects as identifying homologous points using Frechet distance.
Aiming to speed up the matching process, Safra et al. (2006) detected homologous roads
merely relying on the polyline’s endpoint location. The distance based methods might be
invalid if the maps were of great positional difference. Unlike these approaches, Zhang
et al. (2005) chained the line objects that shared the same attribute together to construct
reference lines to match road networks. Following corresponding objects detection, some
operations were performed to achieve particular goals, such as shifting one map to align
with another (Doytsher et al., 2001), improving the positional accuracy (Devogele, 2002),
detecting the difference between the datasets (Koukoletsos et al., 2012; Abdolmajidi et al.,
2015), and building the linking relations for homologous objects (Volz and Walter, 2004;
Volz, 2006).

Although the above approaches matched the networks with different positional accu-
racy, date and details, etc., there was a common feature of the networks – using a polyline
to represent a road. The road networks matching could be regarded as the process of
detecting homologous one-dimensional linear objects. However, in LLM, the road is no
longer treated as a one-dimensional linear object. To date, there are few available methods
designed to cope with automatic networks matching for LLM and CNM.

3. LLM AND COMMERCIAL NAVIGATION MAP.
3.1. LLM. LLMs have a prominent role not only in improved positional accuracy, but

also in higher resolution. LLM represents many geometrical entities that are not present in
CNM, such as lane centreline. An instance of LLM is shown in Figure 1 that includes
detailed LLM models of the road.

The LLM model is illustrated by Figure 2. Road is composed of a sequence of RoadSec-
tions. Within a RoadSection, some attributes of the road remain constant. For example, in
Figure 2, Road1 consists of RoadSection1 and RoadSection2; the driver can change lanes
freely in RoadSection2, but it is forbidden in RoadSection1. RoadSection contains all the
lanes inside it. Lane boundaries and lane centreline form the lane. Lane centrelines are con-
nected at lane node. Lane centreline and lane node form the lane-level network of LLM.
The leftmost line of the road is named the road reference line, denoted as r. In order to
maintain the continuity of the road, only one instance of r is defined between two adjacent
junctions.

3.2. LLM’s cartographic primitives and network. In LLM, lane node and lane cen-
treline are the cartographic primitives and the atomic construction elements of the network.
The lane-level network is a directed graph, denoted as TNLLM , where lane node is vertex
and lane centreline is edge. The sets of lane nodes and lane centrelines are denoted as LN
and LCL respectively, and TNLLM = (LN, LCL).

3.3. CNM. The node/link model has a significant advantage in supporting navigation
and is the prevailing network model for navigation maps (Goodchild, 2000). In CNM, the
road is modelled as a link and represented by its centreline. The node is the topological
junction of two or more links. The properties of the road network are inherently modelled
as attributes of nodes and links. Various navigation oriented data are attached to the CNM
network, such as guiding data, addresses and POI (points of interest). Using the centreline
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Figure 1. An instance of LLM.

Figure 2. Model of LLM.

to represent the road causes the CNM to lose most lane information. The road section of
Figure 2 is simplified in CNM, as Figure 3 shows.

3.4. CNM’s cartographic primitives and network. The cartographic primitives and
atomic construction elements of CNM are node and link, denoted as node and link; they
form the road-level network TNCNM = (NODE, LINK), where NODE and LINK denote the
set of nodes and links, respectively.
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Figure 3. Model of CNM.

Table 1. Comparison of LLM and CNM.

Item CNM LLM

Purpose human driving navigation autonomous driving
Resolution road level lane level
Precision metre level centimetre level
Data contents

Address
√ ×

POI
√ ×

guiding data
√ ×

road marking × √
road attribute rich poor
lane attribute poor rich
geometry road level lane level
topology road level lane level

Functions
global routing

√ ×
lane-level planning × √
ADAS

√ √
fusion with sensor data × √
precise positioning assistance × √

3.5. Comparison of LLM and CNM. Table 1 summarises the difference between LLM
and CNM. It can be found that LLM and CNM mainly differ in purpose, resolution and
precision; in data content and function aspects, LLM and CNM are complementary, which
gives a strong reason to link them together. The most significant difference between LLM
and CNM is their networks. Compared with the road-level network TNCNM , TNLLM is a
more complicated lane-level network. Figure 4 illustrates the difference through real data,
where the red is TNCNM and the black is TNLLM .

4. MATCHING THE NETWORKS OF LLM AND CNM. In this paper, a finite con-
nected road sequence is called a path. The junction of LLM and CNM is respectively
denoted as jun and cnmjun. It is hypothesised that there is one and only one path between
two adjacent junctions. Based on the hypothesis, the principle of the approach is depicted
in Figure 5. For network1 and network2, if the homologous junction pairs could be dis-
tinguished, e.g., 〈jun1, cnmjun1〉, then the paths between the two adjacent homologous
junction pairs, e.g., 〈jun1, cnmjun1〉 and 〈jun2, cnmjun2〉, are seen as corresponding, e.g.,
〈path1, path1’〉.

The overall process of the approach is shown in Figure 6, where the solid and dotted
arrow indicate the process and the dependence of process, respectively. First, TNLLM and
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Figure 4. TNLLM (black) and TNCNM (red).

Figure 5. Principle of the proposed approach.

TNCNM are reconstructed into the graphs with common structure (Section 4.1), then corre-
sponding junctions are detected using a strategy called multi-filter (Section 4.2). Following
that, in stages 3 and 4, a so-called forward path exploring algorithm is developed to find and
validate the corresponding paths (Section 4.3). Finally, the linking relations of networks of
LLM and CNM are built automatically (Section 5).

4.1. Topology reconstruction for TNLLM and TNCNM. Generally, the networks to be
matched are preprocessed to build specific structures to pave the way for network matching
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Figure 6. The processes and their dependence.

Figure 7. Types of junction.

(Volz, 2006; Mustière and Devogele, 2008; Abdolmajidi et al., 2015; Zhang et al., 2016).
In this paper, topology reconstruction is performed initially to eliminate the topological
inconsistencies between CNM and LLM.

Physically, a junction connects at least three road segments. In this paper, junctions are
classified into three broad families: diverging, merging and crossing. As shown in Figure 7,
the diverging junction connects one incoming road segment and two outgoing road seg-
ments; the merging junction connects two incoming road segments and one outgoing road
segment; and the crossing junction connects more than three road segments.

For both TNLLM and TNCNM , road and junction are regarded as atomic construction ele-
ments to construct new networks. In TNLLM = (LN, LCL), a junction is defined as a set
of lane nodes. As defined above, the diverging/merging junction owns the sole incom-
ing/outgoing road (the crossing junction is regarded as several independent junctions;
each junction uses an inside virtual road to connect the incoming and outgoing road).
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Therefore, Equation (1) is used to identify all the lane nodes of the same junction. Diverg-
ing, merging and crossing junctions are denoted by jundiv , junmer and juncro, respectively.
Lane node (denoted as ln) has a junction type attribute that is returned by function type
(ln). For example, in Figure 2, based on our specification, type (ln2) = Diverging, yet
type (ln1) = Null. For lane centreline set setLCL, the road set it belongs to is denoted as
setRoad, namely setRoad = Belongto(setLCL). Function InLCLs(ln)/OutLCLs(ln) returns
the lane centreline set incoming to/outgoing from ln; and ∅ represents the empty set. For
example, in Figure 2, based on Equation (1), the lane nodes, ln2 and ln3, of Junction1
can be identified and collected from LN because type(ln2) = type(ln3) = Diverging and
Belongto(InLCLs(ln2)) ∩ Belongto(InLCLs(ln3)) = Road1 �= ∅.

jundiv = {ln|type(ln) = Diverging, ∩Belongto(InLCLs(ln)) �= ∅}
junmer = {ln|type(ln) = Merging, ∩Belongto(OutLCLs(ln)) �= ∅}

juncro =

⎧⎨
⎩ln|type(ln) = Crossing,

⋂
i�=j

(Belongto(InLCLs(lni))

∩ Belongto(OutLCLs(lnj ))) �= ∅
⎫⎬
⎭

(1)

The topological connection of ln is the set of the incoming and outgoing lane centrelines,
as expressed in Equation (2).

TopoLN(ln) = InLCLs(ln) ∪ OutLCLs(ln) (2)

Similarly, the topological connection of a junction is the set of the incoming and outgoing
roads. For the lane centreline set TopoLN(ln), the road set it corresponds to can be obtained
by Belongto(TopoLN(ln)). For a junction jun, all the connecting roads can be extracted by
Equation (3), where x denotes the number of lane nodes of jun.

TopoJun(jun) =
x⋃
i

Belongto(TopoLN(lni)), lni ∈ jun (3)

Through Equations (1–3), the connection of the junction can be extracted; for
instance, in Figure 2, it can be known that Junction1 connects Road1, Road2 and

Road3, because {Road1, Road2, Road3} =
2⋃

i=1
Belongto(TopoLN(lni)), lni ∈ {ln2, ln3}. Sup-

pose JUN DIV, JUN MER and JUN CRO are the set of diverging, merging and crossing
junctions respectively, namely jundiv ∈ JUNDIV, junmer ∈ JUNMER, juncro ∈ JUNCRO, then
JUN = JUNDIV ∪ JUNMER ∪ JUNCRO, where JUN is the vertex set, jun ∈ JUN. Taking r
as the edge (road reference line represents road, geometrically), R denotes the edge set.
Consequently, the reconstructed network of TNLLM is TNLLM_rec = (JUN, R).
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For the CNM network TNCNM = (NODE, LINK), the nodes are directly marked as
different junctions according to Equation (4).

cnmJUNDIV = {node|Indegree(node) = 1, Outdegree(node) = 2} ;

cnmJUNMER = {node|Indegree(node) = 2, Outdegree(node) = 1} ;

cnmJUNCRO = {node|Indegree(node) + Outdegree(node) > 3} ;

cnmNODE = {node|node /∈ cnmJUNDIV, node /∈ cnmJUNMER, node /∈ cnmJUNCRO} .
(4)

Function Indegree(node) and Outdegree(node) return the in-degree and out-degree of
node; cnmJUNDIV, cnmJUNMER, cnmJUNCRO and cnmNODE denote the set of diverg-
ing, merging, crossing and general nodes, respectively. Through Equation (4), TNCNM
is reconstructed into TNCNM_rec = (cnmJUN, LINK), where cnmJUN = cnmJUNDIV ∪
cnmJUNMER ∪ cnmJUNCRO ∪ cnmNODE.

4.2. Detecting the corresponding junctions in TNLLM_rec and TNCNM_rec. Most of
the topological difference has been eliminated through topology reconstruction. Thus, the
design of the corresponding junction detection algorithm should consider the geomet-
ric inconsistencies between LLM and CNM. There are two ways to make the algorithm
stronger: (1) not using sensitive thresholds and (2) avoiding using weightings based on
limited experience. Taking into account the principles, the so-called multi-filter algorithm
is designed for homologous junction detection.

4.2.1. The filters. As Tobler’s first law indicates: near things are more related than
distant things. In reality, spatially close objects usually have similar spatial features. It is
hard to distinguish the junctions if only spatial characteristics are considered because some
spatial metrics are usually correlated, as two nearby road segments generally have a similar
direction due to the limitation of terrain. Due to the geometric inconsistencies between
LLM and CNM and the spatial features correlation between near objects, heterogeneous
metrics selected from different aspects, like geometry, topology and semantics, should be
utilised to distinguish the junctions. In this paper, the following five filters are used.

(1) Euclidean Distance (ED): ED is a geometric metric. For each jun ∈ JUN, the nearest
10 candidate junctions (denoted as cnmjuncd) in TNCNM_rec are selected to ini-
tialise the candidate set, Setcandidates, where the corresponding junction of jun is
anticipated to be picked out.

(2) Topological Structure (TS): TS is a topological metric and characterised as diverging,
merging and crossing as shown in Figure 7. The cnmjuncd with different TS against
jun will be rejected from the candidate set.

(3) Type of Main Road (TMR): The road incoming to a diverging junction (r1 in Figure 7)
or outgoing from a merging junction (r2 in Figure 7) is defined as the main road.
Because the junction has a sole main road, the characteristics of the main road can be
used to distinguish the junction efficiently. TMR is a semantic metric. In this paper,
road is roughly classified as: highway and non-highway. The candidate with different
TMR against jun will be kicked out. TMR is just applied to the junction whose degree
is 3.

(4) Direction of Main Road (DMR): DMR is a geometric metric related to the main road.
For the road incoming to a junction, its direction vector consists of the point at a
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Figure 8. Different shapes of junctions.

distance of 10 m behind its end point (as initial point) and the end point (as terminal
point). For the road outgoing from a junction, its direction vector consists of the
start point (as initial point) and the point at a distance of 10 m front of its start point
(as terminal point). The direction vectors of the main roads of jun and cnmjuncd are
compared; the candidate that induces an angle greater than 30 degrees is rejected.
DMR is also just applied to the 3-degree junction.

(5) Geometrical Shape (GS): Some inappropriate candidates can be kicked out via the
above filters, however, it is hard to distinguish the junctions with the same TS, TMR
and DMR, as shown in Figure 8. To cope with this situation, a junction shape sim-
ilarity measurement function is proposed. GS is the third geometric metric. The
junction’s shape is formed by a set of vectors and the angles between vectors reflect
its shape, as shown in Figure 8. Taking the direction vectors of the roads con-
necting to jun, the normalised direction vector set is Vjun = {v1, v2, · · · , vn}; and
the normalised direction vector set of cnmjuncd is Vcnmjun = {v1, v2, · · · , vm}. Then
simM = VT

jun × Vcnmjun, and the similarity measure function is:

Sim(junk, cnmjuncd) =

∑n
j =1 max(simM(j ))

max(m, n) · (d/a)
(5)

In Equation (5), simM(j ) returns j -th row of simM; d is the distance between jun
and cnmjuncd, and a is the scaling parameter. In this paper, a = 50 m, the similarity
of junctions within 50 m will be enhanced; otherwise, diminished.

4.2.2. Adaptive multi-filter algorithm for corresponding junction detection. In this
algorithm, the five filters are employed to eliminate the inappropriate candidates, gradually.

The entire process of multi-filter algorithm is explained by Figure 9. First, the candi-
date set, Setcandidates, is initialised; then the conflict candidates are rejected by TS, TMR
and DMP filters. The three filters are of distinguishable and error-free characteristics; for
example, it is very easy to recognise two junctions of different TS; and whether LLM or
CNM, it is almost impossible to assign wrong TS and TMR related attributes to the released
maps. The DMR of 30 degrees threshold is relaxed enough to avoid misjudgement. After
the screening process, if there are more than one candidates, the best matching will be
directly determined by GS filter. In our experiments, most of the corresponding junctions
were found by ED, TS, TMR and DMR filters and only four junctions were determined by
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Figure 9. Flowchart of multi-filter algorithm.

GS. The final survival is considered as the corresponding junction of jun. If no one sur-
vives, new candidates will be pushed into Setcandidates. The pushing is not more than two
times, otherwise the algorithm fails.

4.3. Finding the corresponding paths in TNLLM_rec and TNCNM_rec. The strategy
Figure 10 illustrates is used to find the corresponding paths between two adjacent
corresponding junction pairs in TNLLM_rec and TNCNM_rec.

(1) First, starting from any junction junS of TN LLM_rec, Pexplorer (forward path explor-
ing algorithm, see Figure 11) walks along the road until reaching the matched
adjacent junction junA. The road passed through is marked as an element of the path,
e.g. pathLLM = {r1, r3}.

(2) Based on the junction correspondence built in Section 4.2, it is easy to find the
corresponding junction of junS in TNCNM_rec, namely cnmjunS.

(3) Similarly, in TNCNM_rec, starting from cnmjunS, Pexplorer walks to the matched
adjacent junction cnmjunA, and the passed path is pathCNM = {link1, link3, link4}.

(4) Finally, the correspondence of junA and cnmjunA will be validated. If they are cor-
responding, pathLLM and pathCNM are regarded as corresponding; otherwise, the
algorithm fails.

Pexplorer is explained through the pseudocode in Figure 11. Function OutR(jun)/InR(jun)
is used to obtain the roads outgoing from/incoming to junction jun; JunRIn(r) is used to find
the junction that road r is incoming to. If jun is matched, isMatched(jun) returns true, else
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Figure 10. Finding the corresponding paths in TNLLM_rec and TNCNM_rec.

false. In TNLLM_rec, Pexplorer takes junS as input, and outputs the adjacent junction junA
and the path between junS and junA, pathLLM . And so it does for TNCNM_rec.

5. BUILDING THE LINKING RELATIONS. The relationship of road correspondence
is related to the element numbers of pathLLM and pathCNM . If both pathLLM and pathCNM
contain only one element, it is 1:1 (1 to 1) relationship; if one or both of them contain
more than one element, then they are 1:m (1 to m) or m:n (m to n) relationships. The
1:1 relationship is explicit; however, relationships of 1:m and m:n provoke ambiguities.
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Figure 11. Pseudocode of forward path exploring algorithm.

For instance, for pathLLM = {r1, r3} and pathCNM = {link1, link3, link4}, it is hard to know
which road section in LLM link3 corresponds to. In this section, a uniform and explicit
method is proposed to describe the road correspondence.

5.1. Length proportion based projection. It is easy to know the corresponding road
section if there is a locational referencing scheme, and one knows where the section starts
and ends. The locational reference scheme in this paper is similar to the link and node
locational reference proposed by Nyerges (1990).

Start and end positions are used to project each link of pathCNM to pathLLM . For the
corresponding paths: pathLLM = {r1, r2, · · · , rm} , m ≥ 1 and pathCNM = {link1, link2, · · · ,
linkn}, n ≥ 1, each linki ∈ pathCNM can derive the locational referencing positions with
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Figure 12. Physical data model for the linking relations.

respect to pathLLM through Equation (6).

Start_S =

∑i−1
j =1 Length(linkj )∑n
j =1 Length(linkj )

m∑
j =1

Length(rj ),

End_S =

∑i
j =1 Length(linkj )∑n
j =1 Length(linkj )

m∑
j =1

Length(rj ) (6)

5.2. Physical data model for the linking relations. The linking relations’ physical
data model is given in Figure 12, where the junction relations table and road relations table
store the junction and road correspondence, and the path table records the roads of pathLLM .

6. EXPERIMENTS AND RESULTS.
6.1. Study areas and data. Two data sets were used to validate the approach. Test

area A was a section of highway (mainly) in Beijing, northern China, with a total length of
about 120 km. Test area B was a section of beltway (mainly) in Changsha, Hunan Province,
southern China, with a total length of about 30 km. The LLM data of areas A and B were
captured in 2015 and 2016. The CNM data of areas A and B were released in 2013 and
2016. It should be pointed out that the CNM and the LLM were made by two different map
suppliers.

The LLM contained data of captured roads and the vicinities, whereas the CNM con-
tained the whole city’s data. For reducing unnecessary calculation, a 500 m buffer around
the captured roads was created, and only the CNM data within the buffer was used. The
experimental data sets are shown in Figure 13, where the red is TNLLM and the black is
TNCNM . The microscopic views of where the blue arrows point are on the lower right. The
statistics of the used TNLLM and TNCNM of each data set are summarised in Table 2. Quan-
titative differences of data sets A and B were caused by: (1) the lengths of the captured
roads, (2) map specification change and (3) different cities.
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Figure 13. Test data sets.

Table 2. Statistics of data sets A and B.

Data set A Date set B

Networks TNLLM (2015) TNCNM (2013) TNLLM (2016) TNCNM (2016)

Node number – 9677 – 2542
Link number – 36,387 – 7737
Lane node number 5664 – 131 –
Lane centreline number 5593 – 125 –

6.2. Evaluation. The classical indicators of precision and recall defined in Equation
(7) were used to assess the quality of the experimental results.

recall =
|SC|
|SA| , precision =

|SC|
|SR| ,

recalllength =
∑

r∈SC length(r)∑
r∈SA length(r)

, precisionlength =
∑

r∈SC length(r)∑
r∈SR length(r)

(7)

where SC denotes the set of correct pairs appearing in the results; SA denotes the set of all
correct pairs among the whole data set; and SR is the set of results. Generally, the longer
road is of greater importance than the shorter. Therefore, length-based recall and precision
were employed as another two indicators.

6.3. Results. The approach in this study was coded in C++ and run on a general per-
sonal computer. It was completed in an acceptable time (A = 114 s, B = 11 s). The results
were checked manually and are summarised in Table 3.

In data set A, the reconstructed network TNLLM_rec consisted of 76 junctions and 172
roads, where 68 junctions and 69 roads were correctly matched. The length of correctly
matched roads was nearly 113 km. In data set B, 11 junctions and 17 roads were correctly
matched among the total 26 junctions and 40 roads. The total length of correctly matched
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Table 3. Statistics of results.

Test data Correctly matched Unmatched Mismatched Total

Data set A jun number of TN LLM_rec 68 8 0 76
r number of TN LLM_rec 69 103 0 172
r length of TN LLM_rec (m) 112,950·88 7659·05 0 120,609·93

Data set B jun number of TN LLM_rec 11 15 0 26
r number of TN LLM_rec 17 23 0 40
r length of TN LLM_rec (m) 28,953·78 1851·42 0 30,805·20

Figure 14. Recall and precision of the results.

roads was nearly 29 km. All the unmatched junctions were confirmed by the operator. In
data set A, the eight unmatched junctions of LLM were built after 2013, thus they were
not present in the CNM. They could not and should not be matched. Compared with the
approach proposed by Mustière and Devogele (2008), our approach did not fail in this
situation; the homologous parts of the roads had been matched. In data set B, where the
LLM’s specification had changed slightly against that of data set A, 15 pseudo junctions
near the actual junctions were constructed to make TNLLM_rec connective. Matching pseudo
junctions was also not necessary.

Most of the roads connecting with the unmatched junctions were matched successfully
because Pexplorer could pass through the roads and mark them as elements of the path,
which explains the high length-based recall undergoing low recall of junction matching in
data set B, see Figure 14. In Table 3, the average lengths of unmatched roads of data set
A and B are 74 m and 80 m, respectively; however, the average lengths of matched roads
are 1,637 m and 1,703 m. This indicates most of the important roads were matched. It was
found that most of the unmatched roads were located at the highway interchanges, where
very few of them were captured because of the limited range of on-board sensors. These
roads were represented as dead ends in TNLLM .

As Figure 14 shows, regarding road matching, although the recall is below 50%, the
length-based recall is nearly 94%, with precision of 100%. That means most of the roads
in LLM have been matched correctly.

Compared with the methods that built linking relations semi-automatically (Volz and
Walter, 2004), in this paper, the linking relations were built automatically. Tables 4–6
give a short extract (incomplete) of the linking relations between LLM and CNM for
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Table 4. Examples of junction relations.

jun_ID cnmjun_ID

0 221
1 158
2 157
3 156
4 130
5 131
7 132
8 136
12 84

Table 5. Examples of paths.

r_ID path_ID

1010003 0
1010005 1
2010016 2
3010003 3
9010003 3
10010005 3
10010012 3
18010202 4
18010204 5

Table 6. Examples of road relations.

link_ID path_ID Start_S End_S

339012 0 0 66·25
339009 0 66·25 97·42
318849 1 0 116·58
318855 2 0 610·52
319607 3 0 319·19
337679 3 319·19 1117·16
337704 3 1117·16 1436·34
337707 3 1436·34 1755·53
430523 3 1755·53 3989·84

data set A. Compared with the approaches that can only deal with 1:1 correspon-
dence (Devogele, 2002) or 1:1 and 1:2 correspondence (Volz, 2006), our approach is
able to build the relationships of 1:1 (e.g., {r_ID :101005} :{link_ID :318849}), 1:m (e.g.,
{r_ID :101003} :{link_ID :339012, 339009}), and m:n (e.g., {r_ID :301003, 901003, . . .} :
{link_ID :319607, 337679, . . .}). With Tables 5 and 6, each link (e.g., link_ID: 339012)
of CNM is linked to the corresponding road section of LLM (the road section from 0 m
to 66·25 m of r_ID :101003). Conversely, with the length of road (e.g., r_ID :301003,
length 500 m), it is easy to derive the corresponding link section in CNM (whole of
link_ID :319607 and section of link_ID :337679 from 0 m to 180·81 m).
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7. CONCLUSION. In this paper, an approach has been proposed to build linking rela-
tions automatically between LLM and CNM. In order to facilitate network matching,
similarly-structured networks are built for LLM and CNM, initially. The adaptive multi-
filter algorithm and forward path exploring algorithm are proposed to detect corresponding
junctions and roads, respectively. The algorithms are able to match the greatly-differing
networks of LLM and CNM and achieve high recall and precision. This approach can also
build 1:1, 1:m and m:n linking relationships between LLM and CNM. With the linking
relations, for the link in CNM it is easy to find the corresponding road section in LLM,
and vice versa. The linking relations built in this paper can facilitate autonomous driving
systems, especially the hierarchical planning system, and pave the way for interoperation
and data sharing between LLM and CNM.

There are still some issues to be improved. As most map suppliers mainly focus on high-
way LLMs currently, this paper aims to build linking relations automatically for LLMs and
CNMs of highway, primarily; in future, the approach should be enhanced to address urban
road networks. The topology reconstruction targets eliminating topological inconsisten-
cies to help with network matching; however, it may fail in topologically complex areas
(like the tollgate in Figure 4(b)), complex intersections (like roundabouts), and areas with
incomplete/wrong connections. The topology reconstruction logic needs to be enhanced
and the non-topological matching methods, like geometric and semantic methods, should
be explored. Finally, the spatial features were treated in a two-dimensional plane in this
paper; in future, the altitude of the object should also be considered.
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APPENDIX A. ABBREVIATIONS

The definitions of the abbreviations used in this paper are listed below.

Abbreviation Meaning Abbreviation Meaning

CNM Commercial navigation map link Link of CNM
cnmJUN Junction set of CNM LLM Lane-level map
cnmjun Junction of CNM ln Lane node
cnmjunA Matched adjacent junction in

CNM
LN The set of lane nodes of LLM

cnmjuncd Candidate junction in
TN CNM_rec

NODE The node set of CNM

cnmJUN CRO Crossing junction set of CNM node Node of CNM
cnmJUN DIV Diverging junction set of CNM path The path between two adjacent

junctions
cnmJUN MER Merging junction set of CNM pathCNM An explored path in CNM
cnmjunS Starting junction of Pexplorer in

CNM
pathLLM An explored path in LLM

cnmNODE General node set of CNM Pexplorer Forward path exploring
algorithm

DMR Direction of main road filter r Road reference line
ED Euclidean distance filter R Road reference line set of LLM
GS Geometrical shape filter SA All corrected pairs among whole

data set
jun Junction of LLM SC The set of correct pairs

appearing the matching results
JUN Junction set of LLM Setcandidates Candidate set in multi-filter

algorithm
junA Matched adjacent junction in

LLM
setLCL A certain lane centreline set, a

subset of LCL
JUN CRO Crossing junction set of LLM setRoad A certain road set A subset of R
juncro Crossing junction of LLM SR The set of matching results
JUN DIV Diverging junction set of LLM TMR Type of main road filter
jundiv Diverging junction of LLM TN CNM Topology network of CNM
JUN MER Merging junction set of LLM TN CNM_rec Reconstructed TN CNM
junmer Merging junction of LLM TN LLM Topology network of LLM
junS Starting junction of Pexplorer in

LLM
TN LLM_rec Reconstructed TN LLM

LCL The set of Lane centreline of
LLM

TS Topological structure filter

LINK Link set of CNM
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