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Abstract
Many articles have summarized the changing epidemiology of Clostridium difficile infections

(CDI) in humans, but the emerging presence of C. difficile in foods and animals and possible

measures to reduce human exposure to this important pathogen have been infrequently

addressed. CDIs have traditionally been assumed to be restricted to health-care settings.

However, recent molecular studies indicate that this is no longer the case; animals and foods

might be involved in the changing epidemiology of CDIs in humans; and genome sequencing

is disproving person-to-person transmission in hospitals. Although zoonotic and foodborne

transmission have not been confirmed, it is evident that susceptible people can be

inadvertently exposed to C. difficile from foods, animals, or their environment. Strains of

epidemic clones present in humans are common in companion and food animals, raw meats,

poultry products, vegetables, and ready-to-eat foods, including salads. In order to develop

science-based prevention strategies, it is critical to understand how C. difficile reaches foods

and humans. This review contextualizes the current understanding of CDIs in humans, animals,

and foods. Based on available information, we propose a list of educational measures that

could reduce the exposure of susceptible people to C. difficile. Enhanced educational efforts

and behavior change targeting medical and non-medical personnel are needed.

Keywords: Clostridium difficile, community, foodborne, prevention, meat, vegetables,

seasonality, refrigeration, superdormancy, cooking

Introduction – why is Clostridium difficile
relevant today?

First associated with disease in humans in the mid-1970s,

Clostridium difficile is a spore-forming bacterium that

produces major toxins responsible for mild-to-severe

forms of gastrointestinal infections in most mammals.

Severe C. difficile infections (CDIs) in humans have

steadily increased in hospitals, and alarmingly in the

community, over the past three decades, especially

among elderly over 65 years old (Freeman et al., 2010).

Because the life expectancy in humans and the propor-

tion of elder citizens will rise globally (United-Nations,

2007), more CDIs are expected to occur in the future.

Correspondingly, health-care costs associated with treat-

ment are also expected to increase over time. Currently,

the USA spends over $1.1 billion treating over half million

CDIs every year.

To date, research has vastly focused on disease

diagnosis, treatment, and control in hospital settings

(Cohen et al., 2010; Barbut et al., 2011), but very little

has been reported on prevention at the community level.

Unlike in hospitals, younger individuals, pregnant

women, and children have emerged as susceptible groups

in the community since the mid-2000s (Barbut et al.,*Corresponding author. E-mail: axr503@case.edu
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2011). In addition, individuals with inflammatory bowel

diseases (IBD; i.e. Crohn’s disease and ulcerative colitis),

who mostly suffer life-long immune-mediated chronic

recurrent gastroenteritis, have increasingly experienced

more complications and mortality due to superimposed

CDIs (Nylund et al., 2011). In IBD patients (more than 1.4

million in the USA), who are often treated as outpatients (in

the community), CDI can be seen in as many as 10% of IBD

patients seeking hospital medical attention. Infection

without prior healthcare contact or antibiotic exposure is

common in IBD patients. Currently, there are growing

concerns that IBD flare ups can be due in part to CDIs.

Although there were earlier indications that C. difficile

could be contributing to IBD, traditionally patients were

not screened for CDI, because earlier studies found

no association with C. difficile (Goodhand et al., 2011).

Treatment of IBD superimposed with CDI is becoming

increasingly problematic, especially among adults with

ulcerative colitis, and children who are increasingly likely

to have concurrent CDIs (OR=11.42; 95% CI, 10.16–12.83)

(Nylund et al., 2011).

Outside hospitals, it is known that certain environ-

ments, animals and foods are predictable sources of

C. difficile (Gould and Limbago, 2010; Hensgens et al.,

2012), but this growing body of literature remains

poorly communicated to health care professionals and

the public in general. To date, no CDI cases have been

confirmed to be of zoonotic or foodborne origin. Never-

theless, an increasing number of studies have shown

that C. difficile with the toxins and potential to cause

disease can often be found in animals, recreational

waters, and raw and ready-to-eat foods, in variable

frequencies (i.e. 0–66%) (Rodriguez-Palacios et al., 2012;

C. difficile capable of producing toxins (which cause

intestinal lesions) has been isolated from at least 70.3%

(26/37) of food groups (representing independent studies

and over 3519 food items) tested with enrichment

methods in Europe and North America (see Rodriguez-

Palacios et al., 2012 for a review). The discrepancy

between studies that isolate C. difficile and reports with

0% prevalence can be due to culture method choice

(i.e., use of selective enrichment), and the increasingly

recognized effect of spore age, superdormancy, thermo-

resistance, and sample refrigeration on our ability to

detect C. difficile (Rodriguez-Palacios and LeJeune,

2011; Thitaram et al., 2011, Kho, 2012, Limbago et al.,

2012).

Although it is difficult to predict if a given food item,

animal, or water source will have sufficient C. difficile

(if any) to make someone sick, it is more feasible to predict

who are the most susceptible individuals so as to educate

and protect them. Although C. difficile may be introduced

into health-care centers (hospitals/nursing homes) via

the hands or clothing of new patients (both symptomatic

and asymptomatic), visitors, or healthcare workers them-

selves, next generation whole genome sequencing has

shown that patients during CDI outbreaks are getting ill

with C. difficile strains that cannot be explained by person-

to-person transmission alone (Eyre et al., 2012). Strains

affecting people appear to be coming from outside

healthcare centers. A recent study of C. difficile in the skin

of people in two community settings in the USA and Ireland

showed that it is more likely to be exposed to foods, which

have the potential to carryC. difficile (up to 42%) than to be

exposed to animals, recreational waters, hospitals settings,

or to C. difficile on unwashed hands (<0.7%) (Rodriguez-

Palacios et al., unpublished data). Even the general

ward environment of community hospitals has relatively

low prevalence of C difficile (2.4%) (Faires et al., 2012)

compared to some food groups (Rodriguez-Palacios et al.,

2012).

History and disease burden

Financial and social costs

CDI is a costly disease in most countries. In the

USA, estimates indicate that there are about 500,000

CDIs every year, which result in $1.1–3.2 billion in health

care costs every year (O’Brien et al., 2007). On average,

each new CDI infection costs $3000–5000, whereas

recurrent infections (more difficult to treat) cost

$13,000–18,000 (Dubberke and Wertheimer, 2009;

Ghantoji et al., 2010). Similar high treatment costs

have been documented in Europe (Wilcox et al., 1996;

Ghantoji et al., 2010).

With an increase in the number of human infections,

there has also been an increase in social concerns.

Over time the incidence of severe disease has increased

with more patients requiring surgical removal of the

inflamed colon (one in every ten CDI cases – 10%),

higher mortality rates, and concern about increased

liability (Pepin et al., 2005; Sailhamer et al., 2009; Marler,

2010). The effects of such medical consequences at the

individual and family level are difficult to quantify.

Infection control and surveillance initiatives have thus

been reinforced in hospitals to reduce the incidence of

C. difficile (Pepin et al., 2004; Barbut et al., 2011) with

variable success.

Given that C. difficile also infects animals, the disease

can have a financial impact on companion animals and

livestock also. Financial loss estimates associated with

CDI in animals are not available. However, in horses and

other companion animals where C. difficile causes enteric

disease, the costs associated with veterinary medical

treatment are high (several thousand dollars in North

America) and generally assumed by the owners. In

livestock production, no estimates are yet available either,

although there is evidence that C. difficile causes disease

and possibly growth delays in production animals

(Songer, 2004; Kiss and Bilkei, 2005).
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Early history of C. difficile as a gut pathogen

C. difficile is a spore-forming anaerobic bacterium that

was first isolated from stools of healthy infants in 1935

(Bartlett, 2008). Although these first bacterial isolates were

fatal to hamsters, no attention was directed to the health

risks of C. difficile in adults until decades later; C. difficile

was deemed normal in the gut of children. In 1962, the

same bacterium was isolated from localized infections

(e.g. wounds and abscesses) in adults (Smith and King,

1962). Although these isolates were also fatal to hamsters,

the authors concluded that C. difficile was not pathogenic

for man.

Only in the late-1970s, additional studies in humans

and hamsters confirmed C. difficile as the cause of a

severe form of colitis in adults known since the 1890s

as pseudomembranous colitis (PMC) (Bartlett, 2008). In

PMC, marked inflammation and cellular debris accumu-

late over the intestinal surface giving the appearance of a

pseudomembrane. Microscopically, PMC was character-

ized by exuberant inflammatory plaques formed on the

surface of the colon protruding from the intestinal wall

(Price and Davies, 1977). In humans, the cause of PMC

was unclear for almost 80 years, until the 1970s when the

administration of antibiotics, especially clindamycin and

lincomycin, was linked to PMC (Tedesco et al., 1974).

Initially researchers thought that PMC resulted from a

viral infection and the concurrent use of antibiotics

(Steer, 1975), but finally C. difficile was identified as the

microbial cause secondarily linked to antibiotic use;

which disrupts the gut flora favoring the opportunistic

proliferation of C. difficile (Bartlett et al., 1978; George

et al., 1978; Larson et al., 1978).

Currently, PMC is almost always (>95%) linked to

C. difficile (Hurley and Nguyen, 2002), but not all CDIs

result in PMC. In animals, a similar form of inflammation

has been reported in a small fraction of piglets infected

experimentally with C. difficile. In other animals (e.g.

mice, hamsters, horses and calves), various forms of

colitis have been described, from mild in most species to

severe and fulminant in some horses (Colitis X, first

case report was linked to an emerging hyper-virulent

C. difficile PCR ribotype 027/NAP1 strain known to be

highly problematic in humans) (Songer et al., 2009).

During the last decade, the severity of the CDI,

including PMC, has increased in populations of children

who were previously rarely affected. Today the growing

epidemic and the more frequent lack of response to

conventional therapies have raised the awareness of CDI

to the point where it is increasingly recognized as a global

public health challenge, often surpassing the importance

of methicillin-resistant Staphylococcus aureus infections

(Lessa et al., 2012).

C. difficile in hospitals and risk factors

CDIs were first seen as sporadic cases in humans,

particularly in hospitals, but in the 1990s, the frequency

increased (>2-fold) as highlighted in an article entitled

C. difficile: a pathogen of the nineties (Riley, 1998). The

problem has been especially notorious in developed

nations (Pepin et al., 2004), and continues to extend into

the 2000s; now it has been documented in community

settings (Fig. 1) (Borgmann et al., 2008). Controlling for

confounding variables, it is known that such increase is

not due to reporting bias (Burckhardt et al., 2008). Other

studies have also shown the remarkable parallel between

the increased trend of disease in hospitals and the

community (Noren et al., 2004). However, the incidence

of CDI is much lower (1300-fold) in the community,

compared to hospitals, due in part to a lower (37-fold)

occurrence of antimicrobial consumption (Noren et al.,

2004). Compared to other drugs, mortality data associated

with drug consumption in the USA showed that among

diseases with significant drug-related etiologies,

C. difficile enterocolitis primarily associated with anti-

microbials had the largest percentage increase in total

mentions, with a 203% rise between 1999 and 2003

(Wysowski, 2007). Today, the increased resistance to
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Fig. 1. Paralell increase in hospitals and the community. C. difficile toxins in fecal samples from patients visiting 40 hospitals
and over 2000 physicians in southern Germany. (Reproduced with permission from Borgmann et al. 2008; Copyright
Eurosurveillance).
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many antimicrobials, especially fluoroquinolones has

become an emerging global health issue (Spigaglia

et al., 2008; Ashiru-Oredope et al., 2012). Among cases

with antimicrobial-associated diarrhea, CDIs account for

about 25–30% of all cases. For decades, antimicrobial

consumption has been the main predisposing factor for

CDI.

Elderly over 65 years old have been always more

susceptible to infections (Pepin et al., 2004). Regarding

the source of infection, by the end of the 1990s, humans

were considered to be the sole reservoirs for infection to

other humans (Kaatz et al., 1988). However, studies from

the 1980–1990s outside hospitals in the UK demonstrated

that C. difficile was present in water bodies in connection

with urban settings, soils, root vegetables, and household

pets (Borriello et al., 1983b; al Saif and Brazier, 1996). The

potential for animal–human and foodborne transmission

was then highlighted. Although genetic testing

of recovered strains determined that most isolates were

capable of producing toxins (necessary for intestinal

disease), no molecular typing was reported to determine

if they were the same strains affecting humans.

The increasing number of cases inside hospitals

maintained the attention on human-to-human transmis-

sion, mediated by environmental contamination of the

hospital wards and health care personnel (Kaatz et al.,

1988). Infections originating in the community, where

patients acquire CDI outside hospitals, were considered

infrequent and received no attention for disease preven-

tion. No connection or differentiation was acknowledged

between community- and hospital-acquired CDI until the

last decade. Currently, there are more defined criteria to

classify new CDIs as community- or hospital-associated

cases based on the site of acquisition or onset of clinical

signs (Kuijper and van Dissel, 2008). A similar differentia-

tion has importantly been used in epidemiological studies

in veterinary hospitals since the mid-2000s, especially in

Canada (Weese et al., 2006).

Despite the rapid recognition of increased virulence

and ecological aspects of C. difficile, medical textbooks

continue treating C. difficile as the traditional medical

condition acquired only in people exposed to hospitals or

long-term health care settings with little attention focused

on ecology and prevention. In veterinary medicine,

C. difficile is still invariably reported in reference medicine

books as an organism associated with clinical disease in

animals, with limited emphasis on public health. Most

veterinary literature largely remains as review articles.

Although several risk factors for CDI have been

identified for humans over the past decades (see Table 1),

it is noteworthy to highlight that the ages at which

people get CDI (and possible exposure to other unknown

risk factors) are parallel but significantly different in

hospitals compared to the community. Younger indivi-

duals (although less likely to suffer CDI than the elderly)

are comparatively more often affected in the community

(Hirshon et al., 2011). The distribution of ages of CDI

patients depicted in Fig. 2 highlights that in hospitals most

inpatients are significantly older when compared to the

age of outpatients treated by the same center during the

same period. Regarding the traditionally known risk

factors (Table 1), the following excerpt illustrates that

disease trends are changing: 36% of patients had no

history of antibiotic use within 3 months before symptom

onset, and 25% had no underlying medical condition or

recent hospital admission and, moreover, were younger

than 45 (Kuijper and van Dissel, 2008; Hirshon et al.,

2011). CDI can no longer be considered a disease

exclusively acquired in hospitals.

Age is a very important risk factor for disease. Although

cases can occur in children elderly are more prone to

CDI. Recent studies in long-term care facilities showed

that over 50% of patients develop CDI beyond the fourth

week after hospital discharge, much longer than for

acute-health care settings, highlighting the importance of

long-term disease prevention (Pawar et al., 2012). In the

community, cancer patients, Crohn’s and ulcerative colitis

patients, and other individuals receiving immunosuppres-

sants and antibiotics are at risk for CDI. In humans,

between 20 and 27% of CDIs that require hospital-level

medical treatment are acquired in the community. Based

on risk factors known (Table 1), prevention measures

could be focused on susceptible individuals.

Theory of person-to-person transmission disproved

The concept of hospital clonality, long suspected to be

caused by a single highly infectious strain with clonal

dissemination within hospital wards based on fingerprint-

ing qualitative typing techniques, has been increasingly

questioned for CDI. Using the latest portable sequencing

technology, early in 2012, a whole-genome sequencing

study of C. difficile isolates from cases assigned to

three hospital outbreaks in UK demonstrated that most

consecutive CDIs were due to different strains and so (in

their own words) refuted the theory of person-to-person

transmission to explain the increase incidence of CDI

within hospital wards (Eyre et al., 2012). For one cluster

of CDI involving three people, over 4 days in the same

Table 1. Risk factors for CDIs

� Antimicrobials/antacids increase risk with combined use
or long treatments

� Elderly (over 65 years old) are more likely to become ill
� Colon diseases; i.e. IBD or colorectal cancer
� Debilitating illness; cancer or immune-suppressive

conditions/medications
� Abdominal surgery or gastrointestinal procedure
� Having had CDI already
� Current or past hospitalization or contact with CDI

patients
� Living in a nursing home/long-term care facility
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ward the authors concluded that next generation sequen-

cing refutes transmission between suspected linked cases

and that isolates of the same strain type are not

necessarily linked by person-to-person transmission.

Data from this and two other clusters demonstrated that

person-to-person transmission within hospitals is not as

exclusively high as previously thought. Clostridium

difficile strains appear to be introduced to hospitals by

incoming patients (and possibly foods/visitation animals)

more commonly than earlier suspected.

CDIs and toxin types

Numerous reviews describing the biology and epidemio-

logical changes of CDI in humans are available. In animals,

similar papers have been published since the first review

describing C. difficile as an emerging pathogen in food

animals in 2004 (Songer, 2004, 2010; Gould and Limbago

2010; Weese, 2010; Hensgens et al., 2012; Rodriguez-

Palacios et al., 2012). All reviews indicate that animals and

foods are reservoirs of C. difficile strains that produce

toxins. From experimental studies in animals, it is possible

to say that CDI occurs only when C. difficile opportunis-

tically proliferates in the intestinal tract of its host (animal

or human) and produces its toxins that are deleterious

to the intestinal wall. In this context, several factors are

needed including: (1) the ingestion of C. difficile spores

and the persistence of C. difficile in the intestinal tract,

(2) the proliferation of C. difficile and the production of

toxins in the gut, and (3) an immunologically susceptible

host with disarranged gut flora.

Soon after its identification as a pathogen it was deter-

mined that the pathogenicity of C. difficile, was mediated

via two similar, but structurally and immunologically

distinct, virulence factors: Toxins A and B (Bongaerts

and Lyerly, 1997). Once in the cell, these toxins affect

glycosylate Rho GTPase, a key enzyme in signaling

pathways regulating actin polymerization. The net effect

is a disruption of normal cytoskeletal architecture leading

to cell death followed by local and systemic inflammatory

reactions (Mazuski et al., 1998; Hamm et al., 2006; Sun

et al., 2010; Modi et al., 2011). Another toxin, called

binary toxin, present in a fraction of C. difficile strains

may also contribute to disease (Geric et al., 2004, 2006;

Terhes et al., 2004; Stare et al., 2007; Schwan et al., 2009;

Sun et al., 2010).

Almost always, strains capable of causing disease carry

both the toxins A and B, denoted A+B+. However, since

1999, naturally occurring C. difficile mutant strains, lackng

toxin A (A�B+), have caused major outbreaks in hospitals

internationally (al-Barrak et al., 1999; Loo et al., 2005;

Lyras et al., 2009; Kuehne et al., 2010; Sun et al., 2010). In

the past, A�B+ strains were uncommon (<5%); nowadays,

those strains are problematic and predominant (>30%)

in certain regions (Kim et al., 2008; Shin et al., 2008a, b).

Since the strains that do not produce either toxin A

or toxin B (A�B�) are non-pathogenic (Bongaerts and

Lyerly 1997; Rupnik et al., 2005), there has been interest

in therapeutic microbiology using these strains as

probiotics to prevent colonization in susceptible hospita-

lized people. Experiments in various animal species

support the potential benefit. Noteworthy, non-toxigenic

strains (A�B�) are comparatively more common in

mature food animals than in people and foods, but A�B+

in foods appear to be less common (Bakri et al., 2009;

Hensgens et al., 2012).

In addition to toxin-based studies, the advent of

genomics and systems biology have spurred the increas-

ing documentation of other possible virulence factors

since the early 2000s. Therapeutically, such knowledge

still has not yet resulted in new effective measures to treat

CDI in hospitals. Immunologically, most high risk or

severely ill patients have low levels of antibodies against
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toxins A and B, while healthy individuals appear to have

higher titers (Kelly and Kyne, 2011). Therapeutic interest

is now in the use of antibody supplementation to

currently approved therapies against CDI, largely based

on antimicrobials against C. difficile, i.e. metronidazole

and vancomycin, and DNA based vaccines against toxins

A and B (Jin et al., 2013). However, increased resistance

to such antimicrobials is also increasing (Sinh et al., 2011).

Patented human monoclonal antibody technology is in

phase clinical trials. Thus far, the therapeutic benefit

seems to be present when antibodies are supplemented

in mild-moderate cases; but the response is poor in

severe CDIs. Epidemiological and experimental data

indicate that immune susceptibility and bacterial flora

disarrangements are major factors for CDI. Aside from

reinforcing hand washing, little has been done on actively

involving the communities at risk to prevent exposure to

C. difficile.

Increased antimicrobial resistance and ability to
produce toxins

Compared to isolates from before 2000, current C. difficile

isolates affecting people are more resistant to antibiotics

(Warny et al., 2005; Sinh et al., 2011). Further, some strains

arguably can produce up to 16-to-20 times more toxins

(A or B) in vitro compared to regular strains (Loo et al.,

2005; Warny et al., 2005). Therein, those strains increas-

ingly isolated in current times are often referred to as

‘hyper-virulent’ strains (Mulvey et al., 2010). The most

widely factor associated with the increased ability to

produce toxins in vitro is the presence of a genetic

mutation in a gene (tcdC) that normally down-regulates

the genes responsible for the production of toxins A and B.

In vivo, the association of tcdC polymorphisms with

disease severity is less clear. Other virulence factors such as

antibiotic-induced adherence to intestinal cells (Deneve

et al., 2008) and strain-dependent systemic toxin patho-

genicity are possibly contributing features (Lanis et al.,

2012). Of public health relevance, hyper-virulent strains,

associated with severe disease in humans, have been

increasingly isolated from food animals and foods since

2006 (Rodriguez-Palacios et al., 2007a; Hensgens et al.,

2012).

C. difficile recurrences are increasingly common

Following recovery from a CDI, reinfections in the

same individual and treatment failure are occurring with

more frequency. Recurrences after treatment of CDI with

metronidazole (first drug of choice) have increased from

7% before the year 2000 to 29% thereafter (Kelly and

LaMont, 2008; Sinh et al., 2011). Although not everyone

suffers reinfections, some individuals are overly sensitive.

The reasons for such susceptibility are currently under

investigation. Low antibody titers effective against the C.

difficile toxins (Wilcox, 2004), and disrupted intestinal

flora due to antimicrobials (Rupnik et al., 2009) are

among the factors that enhance susceptibility to reinfec-

tions. Increasingly, the administration of proton pump

inhibitors (widely prescribed antacid) confers more risk

for recurrence compared to other classes of antacids

(Linsky et al., 2010). More common since the year 2000,

reported rates of reinfections have varied between 15 and

30%, with recurrences commonly seen among elderly

(Kelly and LaMont, 2008).

The more recurrences a person has, the more likely he/

she is to have a recurrence again. The risk of recurrence

goes from about 20% after the initial CDI episode to about

40 and 60% after the first and two-or-more recurrences,

respectively (McFarland, 2008). In at least 10% of cases,

subsequent infections are caused by a new C. difficile

strain that is molecularly different from that of the first

CDI episode (Wilcox et al., 1998; Noren et al., 2004; Hell

et al., 2011). As more discriminatory typing methods

become available (e.g., multiple-locus variable number

tandem repeat analysis, MLVA; or next generation

sequencing) (Marsh et al., 2011; Eyre et al., 2012), it is

likely that more recurrences will be recognized to be

indeed due to different strains, and not due to persistent

infections. Currently, reinfection with different strains

indicates that there are unrecognized sources of

C. difficile in the community that serve as the source

of infection for convalescent people following hospital

discharge. Numerous studies have shown that animals,

foods, and recreational environments can be sources of

C. difficile strains similar or identical to those causing

diseases in humans (Janezic et al., 2012). Table 2

summarizes reported sources of C. difficile in the

community.

Table 2. Reported sources of C. difficile outside hospitals
(in the community)

� Contaminated foods (difficult to predict/notice; variable;
C. difficile has been found in food with good organoleptic
quality).
The prevalence ranges from 0 to 42%, although most
studies have reported prevalences below 7%

� Healthy animals shedding C. difficile (difficult to
predict/notice; animals look healthy).
The prevalence can be as low as 0% in adult healthy
animals, to 100% in young piglets.

� Diseased animals suffering CDI can shed C. difficile in
feces (predictable, possible but unclear role in human
disease; animal-to-animal transmission has been partly
documented)

� Animal waste (occupational risk is possible but unknown;
occupational risk has been documented for laboratory
personnel taking antimicrobials and working with
C. difficile carrying specimens).

� Contaminated environment (difficult to predict/notice
unless obvious influence of potential source of C. difficile;
for instance, sewage from human/animal facilities;
C. difficile has been found in recreational waters).

16 A. Rodriguez-Palacios et al.

https://doi.org/10.1017/S1466252312000229 Published online by Cambridge University Press

https://doi.org/10.1017/S1466252312000229


Animals, the environment, and foods

In animals, the first studies reporting the isolation of

C. difficile from companion animals and pigs were pub-

lished in the 1980s. However, it was early in the 2000s

when the association with enteric disease in animals

was confirmed. Later, molecular fingerprinting comparing

C. difficile isolates from companion animals and humans

indicated for the first time the potential for identical

strains to share human and animal habitats (Arroyo et al.,

2005). As an environmentally stable microorganism,

transmission from animals to humans may occur via

exposure to contaminated environments.

Although the possibility of animals being reservoirs of

C. difficile relevant for CDI had been suggested for years,

it was not until the mid-2000 that molecular evidence

became stronger while studying food animals. A large

microbiological survey conducted in dairy calves docu-

mented the etiological role of C. difficile in bovine

neonatal diarrhea in ill calves after controlling for other

pathogens; and the presence of epidemic human strains

of international relevance (PCR ribotypes 078, 027, 014,

and 017) in healthy calves (Rodriguez-Palacios et al.,

2006; Rupnik, 2007). Subsequently, C. difficile was

recovered from ground meats (Rodriguez-Palacios et al.,

2007a), which appears to have a reproducible seasonal

pattern that matches that of bovine, swine, and human

CDIs in North America (Rodriguez-Palacios et al., 2009)

(see seasonality section below). Noteworthy is to mention

that depending on the environment, not all animals

carry C. difficile (Bandelj et al., 2011; Rodriguez-Palacios,

2011). Predicting which animals are carriers is becoming

less challenging as knowledge increases. This is important

for prevention given growing indications of potential

zoonotic transmission for some C. difficile strains, namely

PCR ribotype 078; see Hensgens et al., 2012 for a review

on behalf of the European Society of Clinical Micro-

biology and Infectious Diseases Study Group for

C. difficile.

Companion animals – household pets

In modern times, especially in urban areas, pets are an

integral part of the family, sharing human lifestyles,

bedrooms, and beds. Recent estimates indicate that

between 14 and 62% of pet owners allow dogs and cats

on their beds (Chomel and Sun, 2011; Montgomery et al.,

2011). Although dogs and cats have been shown to carry

toxigenic strains of C. difficile in their feces since the

1980s (Borriello et al., 1983b), the current striking genetic

similarity between isolates from animals and humans

indicate that zoonosis may be occurring (Lefebvre et al.,

2006). Most companion animals that harbor C. difficile

do so asymptomatically (Weese et al., 2010a). However, if

risk factors are prevalent, that parallel those of humans

(antimicrobial administration), dogs and cats may develop

diarrhea (Weese et al., 2001). No PMC or C. difficile

bacteremia has being documented in dogs or cats.

Screening studies indicated that up to 10% of house-

hold pets may carry C. difficile, representing

a risk for owners (Weese et al., 2010a). Although no

direct transmissibility from pets to humans has been

documented, the presence of virulent strains of C. difficile

(including PCR ribotype 027) in ‘therapy’ dogs indicate

that in hospitals, visitation animals might carry strains

within and outside health-care facilities (Lefebvre et al.,

2006). Pets owned by an immune-compromised person

are more likely to be colonized by C. difficile (Weese

et al., 2010a). However, in one study that examined the

zoonotic risk, the strains isolated from dogs and house-

holds were different (Weese et al., 2010a) another

indication against direct-contact transmission. Although

the authors concluded that dogs were not a significant

source of household C. difficile contamination, all isolates

from dogs were indistinguishable from historical isolates

recovered from ill humans in the same geographical

region, including emerging PCR ribotype 027. Therefore,

it is advisable to prevent close contact between suscep-

tible people and pets with diarrhea. It is also important to

highlight that inadvertent infections with C. difficile

(or other enteric human pathogens) in healthy-looking

pets could occur in association with the consumption of

raw pet foods (Weese et al., 2005; Finley et al., 2006).

Avoiding the inclusion of raw meats in pet diets is always

a good practice to reduce the risk of transmission of

C. difficile and other zoonotic pathogens, especially if

high-risk individuals are in the household.

In veterinary hospitals, outbreaks of severe diarrhea

associated with C. difficile have been reported in small

animal clinics (Weese and Armstrong, 2003). Therefore,

pets may become inadvertent carriers of C. difficile spores

following routine veterinary visits or hospitalization. To

date no studies have assessed the potential of dogs and cats

to be vehicles of C. difficile strains out of veterinary

hospitals and within food or livestock production systems.

Companion animals – horses

C. difficile has also been studied in horses since the mid-

1980s (Ehrich et al., 1984). Today, it is known that in

the community up to 7% of healthy horses can carry

C. difficile (Medina-Torres et al., 2011), but the proportion

of animals shedding the pathogen varies across studies as

it depends on culture methods, the animals’ age, and

management conditions. Adult horses are less likely to

carry the bacterium compared to neonatal foals. Overall,

between 2 and 30% of horses were found to be carrying

spores at any given time without showing signs of disease

(Baverud et al., 2003). However, like other species, horses

can also develop diarrhea and forms of serious colitis

(Weese et al., 2006; Songer et al., 2009). As in humans,

antimicrobials increase the risk of horses being
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affected with CDI (Weese et al., 2006). In young foals,

antimicrobials are also a predisposing factor (Arroyo

et al., 2004). Co-infection with C. perfringens may explain

enterocolitis in some foals (Uzal et al., 2011). In equine

hospitals, strict isolation and infection control measures

are thus widely recommended to avoid outbreaks

(Baverud, 2004).

Some ethnic societies by tradition still rely on horse

power to work agricultural lands to produce foods,

especially fresh produce (Lengacher et al., 2011). In many

regions, regulated production and slaughter of horse meat

is allowed to sustain, at least partially, local economies

and traditions (USDA, 1997). Since horse manure can

contain C. difficile spores for years (Baverud et al.,

2003) its use as traditional organic fertilizer highlights

the risk for fresh produce contamination (Pell, 1997).

To date, there are no studies addressing the role of

horses in food and environmental health and safety

associated with C. difficile. Nevertheless, farmers and

animal handlers should be aware of the risk of finding

C. difficile on horse manure and the potential for dis-

semination to susceptible members of the family or the

community.

Food animals – pigs

As in companion animals, C. difficile was also isolated

from pigs in the early 1980s (Jones and Hunter, 1983).

Since then, over 60 published studies have served to now

recognize C. difficile as an enteric pathogen in this

domesticated species. Among pigs, young piglets have

the highest risk for disease development (Post et al.,

2002). For this reason, pigs have been increasingly used

as models to study the pathogenesis of this disease (Keel

and Songer, 2007, 2011; Steele et al., 2010; Scaria et al.,

2011). Mortality and morbidity rates in pigs are largely

uncertain, but some estimates indicate that up to 100%

of litters and individual piglets can be affected in

infected farrowing facilities (Songer, 2004). In non-fatal

cases, weaning weights of diseased pigs can be 10%

below the expected average weight (Songer, 2004).

In older animals, there is one report of an association

between C. difficile and increased mortality in sows

that received antimicrobial treatment (Kiss and Bilkei,

2005).

During processing, the isolation of C. difficile from

healthy pigs close to the harvest time, and from processed

carcasses (<2.5%) support the potential for food

contamination (Norman et al., 2009; Weese et al., 2011,

Susick et al., 2012). Recent isolation of C. difficile from

mesenteric lymph nodes at harvest (<1%) indicates that

pathogen dissemination from the gut to muscles tissues

via the circulatory and lymphatic system is possible

(Susick et al., 2012).

Swine-derived C. difficile isolates have garnered

the greatest attention from public health personnel

because PCR ribotype 078 – the increasingly documented

emerging human strain in the community – is the major

strain among porcine isolates. PCR ribotype 078 isolates

have accounted for up to 80% of all swine isolates in most

studies involving pigs in North America and Europe (Keel

et al., 2007; Debast et al., 2009; Songer et al., 2009). In

humans, the same strain has increased its association with

human disease by at least 6-fold from 2000 to 2008

(Goorhuis et al., 2008). Regarding the type of production

system, no differences have been found between the

prevalence of C. difficile in organic and conventional

swine operations (Keessen et al., 2011), or between

conventional and antibiotic-free operations (Susick et al.,

2012).

Food animals – cattle

Until recently little attention was directed to the study

of C. difficile in ruminants. The first published report

described C. difficile in veal calves with diarrhea in 2002

(Porter et al., 2002). The first published study quantifying

the impact of C. difficile in the bovine industry

determined in 2004 the role of the pathogen as a cause

of diarrhea in young calves, the effect of seasonality, and

its implications for public health (Rodriguez-Palacios

et al., 2006). In that study, a case-control study of calves

<28 days of age – from 102 dairy farms in Canada –

showed that significantly more calves with diarrhea

were positive for C. difficile toxins compared to the

control group, suggesting an association of C. difficile

with intestinal disease. In further experimental studies,

the same group could not induce disease when calves fed

colostrums were given orally high numbers of toxigenic

C. difficile (Rodriguez-Palacios et al., 2007a, b). Subse-

quent studies in calf ranches have supported the

association of intestinal lesions with C. difficile (Hammitt

et al., 2008). Colonization of neonatal calves infected

under natural conditions was detected within 24 h of birth

and lasted for at least 6 days after detection, indicating

that calves were indeed amplifiers of toxigenic C. difficile

(Rodriguez-Palacios et al., 2007a). Histological lesions

were mild and restricted to ileum and colon. In veal

calves, the rate of C. difficile shedding and associated

diarrhea increases as animals are treated with antibiotics

upon entry to finishing operations (Costa et al., 2011).

Strain clonal diversity and shedding prevalence in young

farm animals decrease with age (Rodriguez-Palacios et al.,

2006; Zidaric et al., 2012).

In older cattle, C. difficile shedding decreased over

time during the finishing period and was not affected by

the administration of antimicrobials (Rodriguez-Palacios

et al., 2011b). At the time of harvest, C. difficile can be

found in healthy feedlot steers and culled dairy cattle,

highlighting the risk for carcass and food contamination

(Rodriguez-Palacios et al., 2011a, b; Thitaram et al., 2011).

In Belgium, the frequency of shedding at slaughter was
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about 7% (Rodriguez et al., 2012). Younger cattle used for

food production, i.e. veal calves, although representing

<2% of all meat consumed in the USA, can also have

C. difficile strains of relevance for disease in humans

(Costa et al., 2011; Houser et al., 2012). Regardless of its

association with enteric disease, C. difficile isolates

derived from cattle were the first to draw attention to

the potential for foodborne transmissibility involving

current epidemic human strains PCR ribotypes 017, 027,

077, 014, and 078 (Rodriguez-Palacios et al., 2006, 2009,

2012; Keel et al., 2007; Hammitt et al., 2008) (Compare

Fig. 3 and 4). Antimicrobial resistance against new-class

linezolid, but not tigecycline, has been observed in

C. difficile from cattle at harvest in the USA (Rodriguez-

Palacios et al., 2011a).

Food animals – poultry

This is the food animal species that has been studied the

least. The first studies that highlighted the potential

relevance of poultry as carriers of toxigenic strains are

from Africa (Simango, 2006; Simango and Mwakurudza,

2008). In Zimbawe, Simango and colleagues showed

that up to 30% of free-range chickens carried toxigenic

C. difficile with antimicrobial resistance patterns of

relevance for humans (Simango, 2006; Simango and

Mwakurudza, 2008). These results indicate that the risk

of transmission via foods/animals to susceptible people in

Africa, where the rate of HIV-infected patients in the

community at risk for CDI is high (Onwueme et al., 2011),

might be a relevant factor to consider for targeted

intervention. The prevalence of C. difficile in free range

poultry in Zimbabwe could be extrapolated to compar-

able societies where free range poultry is common

practice including some Asian and Latin American

countries where C. difficile has been problematic in

humans (Legaria et al., 2003; Rupnik et al., 2003; Huang

et al., 2008; Balassiano et al., 2012).

Recent studies on poultry commercial operations have

also documented the relevance of C. difficile in Europe

and North America, where free-range production contri-

butes less to the food supply. In Slovenia, one study

conducted on an intensive commercial farming system

reported that the percentage of birds colonized with

C. difficile was higher than that reported in African free-

range poultry, with prevalence decreasing with age

(Zidaric et al., 2008), as shown in calves, other animals,

and children (Rodriguez-Palacios et al., 2006; Enoch et al.,

2011). In that study, over 60% of birds carried C. difficile

in early production, but it was significantly less frequent

(below 2%) as animals approached harvest time. In

Austria, 5% of poultry tested had C. difficile (Indra et al.,

2009). In agreement, the percentage of poultry and turkey

colonized at harvest in the USA approached zero in

intensive rearing facilities in Ohio (Rodriguez-Palacios

et al., unpublished data). More recently, the prevalence of

C. difficile in commercial chickens was also comparable

at 2% prior to harvest in Texas in a study conducted by

the U.S. Department of Agriculture (Harvey et al., 2011).

Clearly, much more work needs to be done in this field

also, especially because, inexplicably, the prevalence of

C. difficile in poultry meats, at least in North America, is

significantly higher postharvest, ranging between 6

and 12% of chickens (Weese et al., 2010b; Harvey et al.,

2011). Considering that Campylobacter illnesses in

humans are often associated with the consumption of

poultry (Moran et al., 2009; Scallan et al., 2011), it is

possible that the risk of infection with C. difficile via

ingestion of contaminated foods is comparable, simply

because spores are expected to be more resistant to heat

than the vegetative and viable but not culturable forms of

Campylobacter spp.

In summary, from the available reports of C. difficile in

animals, two general conclusions can be drawn. First,

similar to humans, newborn and young animals are more

frequently colonized by C. difficile than adult animals;

however, unlike humans neonatal animals are at higher

risk of being affected with enteric disease. Second, also

similar to humans, animals in most studies exhibit a small

diversity of C. difficile strains, although the high strain

diversity observed in some cattle and poultry studies

(Rodriguez-Palacios et al., 2006; Zidaric et al., 2008;

Avbersek et al., 2009) could be a reflection of culture

methodology and farm variability. High strain diversity

usually indicates successful colonization with minimal

selection forces. Environmental and host associated

C. difficile PCR ribotypes from humans, The Netherlands-
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factors are possibly contributing to the selection of a few

predominant strains.

Waters and the environment

In general, spore-forming bacteria including clostridia are

microorganisms that last a long time in the environment.

With very few exceptions, C. difficile produce spores that

can survive for months in the environment (Baverud

et al., 2003), but not many publications are available in

this regard. A British publication described the presence

of toxigenic C. difficile in soils, wells, recreational waters,

veterinary clinics, and in households (al Saif and Brazier,

1996). In Africa, soils in rural areas of Zimbawe inhabited

by free-range chicken also had toxigenic C. difficile

(Simango, 2006). Despite these publications, little atten-

tion has been placed on the environment as a source of

infectious spores and on its role in human and animal

infections. C. difficile spores are disseminated via air in

indoor environments (Roberts et al., 2008) (see Dissemi-

nation below). At the farm level, this area of research

remains largely unexplored.

C. difficile in foods

Discovering that a particular microorganism becomes an

emerging food safety concern should not be surprising.

Foods have been a historic source of exposure for many

pathogens. However, despite the expectedness of such an

event, skepticism is natural. C. difficile was first recovered

from foods and animals in 1980. In 1982, it was suspected

as the cause of PMC that occurred after an elderly patient

consumed canned salmon (Gurian et al., 1982). However,

the patient had other health issues (hypochloremia) and

the food item was not cultured. During 1981–1983, two

studies reported finding no C. difficile in cooked foods

from hospital menus; but the studies did not acknowledge

that fresh foods or undercooked foods could be

a source of exposure. It is important to note that culture

methodology for food and environmental samples might

have been suboptimal at the time since concurrent

sampling of hospital air and walls yielded no C. difficile

in the same studies. Further discussion about potential

foodborne transmission went on until 1983 (Borriello et al.,

1983a).
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In retrospect, we now know that thorough cooking

(at least 96�C, 15 min) should eliminate the amount of

C. difficile expected to be found in most foods (Rodriguez-

Palacios and LeJeune, 2011). During the 20-year period

1982–2002, there was only one publication on C. difficile

and foods. It was a report of an incidental finding of

C. difficile in packed meats published by Broda et al.

(1996).

Raw and ready-to-eat foods
Raw ground beef and pork were among the first food

products to be found contaminated with C. difficile. In

1994, Broda and her colleagues, studying microorganisms

that caused gas ‘blown pack’ spoilage in ready-to-eat

meats incidentally found C. difficile (Broda et al., 1996).

The next study conducted on raw meat commercial diets

for dogs and cats also found C. difficile in a sample of

turkey-based diet (Weese et al., 2005). Despite the

frequent occurrence of C. difficile in foods, its public

health significance has generally been under-recognized

or viewed with skepticism. A specially designed study

base on MLVA have highlighted that the isolation (and

prevalence) of C. difficile in the food supply is real and

not due to laboratory contamination of the food samples

(Curry et al., 2012).

In 2007, the first study documenting human epidemic

strains of C. difficile in foods (specifically, in 20% of retail

ground meats), documented the regional and interna-

tional relevance of the finding (Rodriguez-Palacios et al.,

2007a). Subsequent studies have confirmed that this

pathogen can be found in other foods tested. Now,

scientific reports describe toxigenic C. difficile in meats in

several countries. Although the percentages of meat

packages that have been contaminated with C. difficile

have ranged from 3 to 42%, the overall expected real

prevalence of C. difficile contamination under natural

conditions at the store level (by sampling 1–2 retail

packages of meat per store) has been determined to be at

about 6% (Rodriguez-Palacios et al., 2009). Poultry has

been the type of meat least studied. One study found no

C. difficile in retail poultry (Indra et al., 2009); however

recent studies indicate that poultry meats can also carry

toxigenic strains (Weese et al., 2010b; Harvey et al., 2011).

In the USA, the frequency of contamination of retail

chicken has been documented to be between 9 and 18%,

with all the edible animal parts (legs, wings, thighs, etc.)

having comparable frequencies of contamination (Weese

et al., 2010b). Of concern, emerging C. difficile PCR

ribotype 078 strains was found in retail chicken in both

Canada and the USA (Weese et al., 2010b; Harvey et al.,

2011). This strain is an emerging strain in humans, in

hospitals, and the community, in food production

environments and in retail foods (Rupnik et al., 2008).

The earlier identification of C. difficile in animals, with the

subsequent increase of incidence of PCR ribotype 078

among people with CDI over the last decade indicates

that this pathogen strain is likely moving from animals to

humans (Goorhuis et al., 2008; Hensgens et al., 2012). At

the processing plant, there is now molecular evidence to

suspect persistence and potential cross-contamination

of retail food (pork) products with unique MLVA types

belonging to the PCR ribotype 078 clone over time (Curry

et al., 2012).

Convenient ready-to-eat products (deli meats and

minimally processed fruits and vegetables) are gaining

market share. Unlike other infamous foodborne bacteria,

such as Escherichia coli O157:H7, the spores formed by

C. difficile that are often found in these products are

highly resistant to current recommended cooking food

safety guidelines. Molecular studies confirmed in Scotland

that ready-to-eat salads were contaminated with

C. difficile strains linked to human disease (Bakri et al.,

2009). Clostridium difficile was first isolated from root

vegetables in 1996 (al Saif and Brazier, 1996). More

recently, it has been isolated from vegetables in North

America; (J. G. Songer, 2007, personal communication;

Rodriguez-Palacios and LeJeune (2007), unpublished

data; Metcalf et al., 2010). C. difficile have also been

isolated from shellfish and fish, which are often con-

sumed undercooked or raw (Metcalf et al., 2011). In

Europe, the highest rate of food contamination was re-

ported last year in edible mollusks in Italy, 49% (Pasquale

et al., 2012). Several reviews are available summarizing

the studies documenting C. difficile in foods (Indra et al.,

2009; Gould and Limbago, 2010; Weese, 2010). In Latin

America, the first report is from Costa Rica, where a

molecular clinical genotype was found in 2% of food

samples; notoriously, the isolates were susceptible to the

antibiotics to which the clinical isolates were highly

resistant (Quesada-Gomez et al., 2013). Unless proven

otherwise, antimicrobial discrepancy between genetically

related strains should not be used to deem two isolates as

non-related (Eyre et al., 2012).

Seasonality

As with many other diseases, there could be parallel in the

seasonal trends in CDI associated with the prevalence of

the causative bacterium in animals, foods and humans

(Rodriguez-Palacios et al., 2009). The number of cases of

CDI in humans is higher during winter months, at least in

northern latitudes (Burckhardt et al., 2008; Rodriguez-

Palacios et al., 2009; Reil et al., 2012). That seasonal

increase has been partly attributed to a larger number of

cases associated with seasonal respiratory and enteric

viral infections that require antimicrobial administration

or hospitalization (Polgreen et al., 2010). In foods and

food animals, at least three independent studies docu-

ment the same seasonal pattern in North America (higher

prevalence in winter) (Rodriguez-Palacios et al., 2006,

2009; Norman et al., 2009; Kho 2012). Although season-

ality patterns could occur independently in parallel as a

function of climatic variations (Naumova et al., 2007), it is
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also possible that the prevalence of C. difficile at least

in food animals, some foods, and people could be

epidemiologically connected. It is important to note that

earlier studies did not identify seasonal patterns in human

disease (Tvede et al., 1990).

Together, the molecular characteristics and virulence

markersof foodand foodanimal-derivedC.difficile isolates

indicate that the presence of emerging strains in vegetables

and meats (and possibly the seasonality) might have a

direct, yet unproven, connection with the epidemiology of

CDI in humans. Although confirming such a connection

might take some time, there is enough epidemiological

evidence to take action and enhance prevention through

education to minimize the risk of inadvertent exposure to

C. difficile among individuals at risk.

Irrespective of the type of food product tested, the

most important and concerning finding is that emerging

hyper-virulent strains of C. difficile (PCR ribotypes

027 and 078) are among the most predominant geno-

types recovered from foods (Fig. 4). The reasons for

the predominance of these ribotypes are unknown,

but increased sporulation rates could favor some strains

(Akerlund et al., 2008) to become endemic in the

environment.

Dissemination of C. difficile

More recently there have been growing concerns regard-

ing biosecurity and further global dissemination (Clem-

ents et al., 2010). Hyper-virulent strains of C. difficile that

were first reported in humans and animals in Eastern

North America and Western Europe in the early 2000s

(Warny et al., 2005; Kuipjer et al., 2008) have been

identified in sporadic cases and outbreaks of disease in

humans in more distant locations, including Australia,

Japan, Korea, and Singapore, since 2007 (Sawabe et al.,

2007; Tae et al., 2009; Clements et al., 2010; Lim et al.,

2011). Transcontinental commercial flights and the

importation of live animals from places where emerging

strains are documented have been listed as possibilities

for dissemination (Clements et al., 2010) of lineages that

emerged in North America (He et al., 2012). At the

regional level, studies in white-tailed deer (common

visitors to livestock grazing areas and abundant in North

America, Europe, and New Zealand) and wild birds have

been documented to be an important factor for C. difficile

dissemination in a suburban agricultural region, with

tangible exposure potential to humans and animals in the

USA (Rodriguez-Palacios et al., unpublished data; French

et al., 2010). C. difficile has been isolated from several

other wildlife species since the 1980s, including feral

swine populations (Thakur et al., 2011). Air dissemination

studies have increased in recent years. Studies conducted

around the vicinity of pig farms indicate that aerial

dissemination for short distances is possible with down-

stream currents. In bathrooms, C. difficile has been found

surrounding toilets, presumably due to aerosolization of

fecal particles during flushing. Not surprisingly, this is of

preventive relevance since seemingly identical C. difficile

strains have been isolated from pigs and from toilets used

by the farm workers in an integrated swine operation

(Norman et al., 2009).

Genome association studies

Whole-genome, microarray-based studies indicate that

food animals might have been the original sources of

some emerging epidemic strains of C. difficile, particu-

larly newly emerging PCR ribotype 078 (Stabler et al.,

2006; Goorhuis et al., 2008; Bakker et al., 2010). MLVA

analysis continues to indicate that hospitalized humans

and food animals, and foods are carrying clonally related

strains (Marsh et al., 2011; Koene et al., 2012). However,

no conclusive studies are available to determine if animal

shedding or food contamination are associated with

changing patterns of disease in humans. Rather, it is

possible that the pathogen constantly moves between

humans, animals, and the environment, partly evolving

and adapting as it moves across temporal and spatial

niches. Given the spore forming nature of C. difficile, it

is possible that inter-species transmission occurs from

environmental sources and that some level of host

adaptation (Janvilisri et al., 2009) and clonality has also

ensued in parallel over millions of years (Stabler et al.,

2006; He et al., 2010). Horizontal gene transfer and

homologous recombination are very frequent genetic

events in C. difficile. It is possible that the epidemiology

of C. difficile will continue to evolve. Genomic

approaches are increasingly used to understand virulence

pathways and to provide modern alternatives for rapid

diagnosis and treatment (Forgetta et al., 2011; Eyre et al.,

2012), but prevention strategies remain a challenge

mostly due to limited information on disease ecology

(outside hospitals) and inherent problems with integra-

tion of knowledge across disciplines. Addressing this

issue, here we identify areas where recommendations

should be expanded (Table 3). We have also proposed a

list of simple educational measures for prophylactic use,

which is under multidisciplinary consideration.

Reducing risks by targeted prevention in
the community

Many aspects of ecology and epidemiology of C. difficile

are still unknown. Achieving an increased under-

standing of the factors that contribute to the survival

and persistence of this organism in different environments

is a critical step to enhance environmental health,

food safety, and disease prevention. Reducing the

presence of this pathogen at preharvest, harvest, and

postharvest stages of food production will allow the
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development of science-based strategies to prevent food

contamination. Meanwhile, if foodborne transmission of

this important pathogen is significant, cooking, and

hygiene measures to enhance the elimination or destruc-

tion of C. difficile spores from potentially contaminated

retails foods or from areas where food is prepared

could mitigate the incidence of human disease. Although

no infective dose data are available for humans, the

number of spores needed for infection is presumed to be

small based on CDI hospital epidemiology and studies

with animals. Considering that (1) immune-compromised

laboratory mice require about two environmental

C. difficile spores/cm2 to become ill (Lawley et al.,

2009), (2) that contaminated foods carry 20 to 240

C. difficile spores per gram (Weese et al., 2009, 2010b),

and (3) that infected healthy animals shed between 1,000

and 10,000 spores per gram of feces (Rodriguez-Palacios

et al., 2011), it is important to emphasize the need of new

and expanded measures to reduce pathogen exposure

(Table 3), which is necessary for CDI induction. Not only

would these measures impact the exposure to C. difficile

complementing existing infection control guidelines

(Gerding et al., 2008), enhanced food hygiene and

thorough cooking would also reduce illnesses associated

with other enteric pathogens.

Recommending thorough cooking, kitchen hygiene,
and minimize exposure

To date, most food safety guidelines available to the

community instruct people to cook most foods at

determined minimum internal temperatures to achieve a

significant (6 log units) reduction of major foodborne

pathogens to make most meals safe. These ranges vary

from 63�C to 74 or 85�C (CFIA, 2010; USDA, 2011).

Because recent quantitative studies have shown that

C. difficile spores can survive extended heating at 71�C

(160�F), the minimum temperature recommended for

cooking of meats (Rodriguez-Palacios et al., 2010), it is

necessary to heat foods at higher temperatures to

inactivate C. difficile spores. Based on quantitative

analysis with C. difficile isolates derived from foods, food

animals, and humans (Meisel-Mikolajczyk et al., 1995;

Rodriguez-Palacios and LeJeune, 2011), heating foods to

85�C for 10–15 min could be a reasonable strategy to

minimize the counts of C. difficile in foods. Alternatively,

heating at 96�C (sub-boiling) could reduce 6 log10 within

2–3 min (Rodriguez-Palacios and LeJeune, 2011).

Thorough cooking at boiling temperatures, a common

household practice, is ideal, and could be emphasized. As

C. difficile could still survive cooking temperatures and

multiply in heated foods, it is also recommended that

foods be properly chilled and stored as indicated for other

clostridial foodborne pathogens.

Conclusion

C. difficile has been associated with disease in people

since 1975, but recently the identification of emerging

multidrug resistant hyper-virulent strains from animals

and foods indicate that there is the potential risk for

transmission and infection in humans, especially among

high-risk populations. Since CDIs have been traditionally

considered as hospital acquired diseases, little attention

has been paid to the sources of infection and risk

factors in the community. Community-onset CDIs as they

are admitted to health care centers have the potential

to influence the overall epidemiology of this disease.

Although there are no scientific reports explicitly confirm-

ing that C. difficile can be acquired via foods or

contact with animals, there is sufficient laboratory and

epidemiological research data and the mechanistic

rationale (i.e. principles of fecal–oral transmission of

enteric pathogens) to propose and adopt interventions

to prevent transmission. Understanding the risk factors

associated with disease and the sources of C. difficile

where the pathogen is acquired by food animals and by

humans can assist in developing strategies to enhance

food safety and protect human health. Prevention at

various levels is especially important as the theory of

person-to-person transmission is being reexamined.
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Table 3. Need of new and improved recommendations to
reduce exposure to C. difficile

Currently publicized:

� Hand washing – Requires emphasis for people
at risk and for food/animal health professionals.

� Use of antimicrobials and antacids – Requires emphasis
to target susceptible communities outside hospitals, and
involvement of pharmacists.

Not existent, not publicized:

� Contact precautions regarding human and animals with
CDI, healthy pets and wild animals.

� Cleaning and disinfection – Addressing food,
home, kitchen and laundry environments.

� Thorough cooking – Current food safety guidelines
are ineffective against C. difficile.
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