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ABSTRACT

In areas of application, including actuarial science and demography, it is
increasingly common to consider a time series of curves; an example of this
is age-specific mortality rates observed over a period of years. Given that age
can be treated as a discrete or continuous variable, a dimension reduction
technique, such as principal component analysis (PCA), is often implemented.
However, in the presence of moderate-to-strong temporal dependence, static
PCA commonly used for analyzing independent and identically distributed
data may not be adequate. As an alternative, we consider a dynamic princi-
pal component approach to model temporal dependence in a time series of
curves. Inspired by Brillinger’s (1974, Time Series: Data Analysis and Theory.
New York: Holt, Rinehart and Winston) theory of dynamic principal compo-
nents, we introduce a dynamic PCA, which is based on eigen decomposition
of estimated long-run covariance. Through a series of empirical applications,
we demonstrate the potential improvement of 1-year-ahead point and interval
forecast accuracies that the dynamic principal component regression entails
when compared with the static counterpart.

KEYWORDS

Dimension reduction, functional time series, Kernel sandwich estimator, long-
run covariance, multivariate time series.

1. INTRODUCTION

In many developed countries, increases in longevity and an aging popula-
tion have led to concerns regarding the sustainability of pensions, health
care, and aged-care systems (e.g., Organization for Economic Co-operation
and Development [OECD], 2013). These concerns have resulted in a surge of
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interest among government policymakers and planners to engage in accurate
modeling and forecasting of age-specific mortality rates. In addition, forecasted
mortality rates are an important input for determining annuity prices and thus
are very important to pension and insurance industries (see, e.g., Shang and
Haberman, 2017). Many statistical methods have been proposed for forecast-
ing age-specific mortality rates (for reviews, see Booth and Tickle, 2008). Of
these, a significant milestone in demographic forecasting was the work by Lee
and Carter (1992). They implemented a principal component method to model
age-specific mortality rates and extracted a single time-varying index of the
level of mortality rates, from which the forecasts were obtained by a random
walk with drift.

The strengths of the Lee–Carter (LC) method are its simplicity and robust-
ness in situations where age-specific log mortality rates have linear trends
(Booth et al., 2006). The main weakness of the LC method is that it attempts
to capture the patterns of mortality rates using only one principal component
and its associated scores. To rectify this deficiency, the LC method has been
extended and modified. For example, from a time series of matrix perspective,
Renshaw and Haberman (2003) proposed the use of more than one compo-
nent in the LC method to model age-specific mortality. From a time series of
function perspective, Hyndman and Ullah (2007) proposed a functional time-
series method that uses nonparametric smoothing and higher-order principal
components.

A common feature of the aforementioned works is that a static princi-
pal component analysis (PCA) is often used to decompose a time series of
data matrix or curves. Under moderate-to-strong temporal dependence, the
extracted principal components may not be consistent because of temporal
dependence, leading to erroneous estimators. To overcome this issue, we con-
sider a dynamic approach that extracts principal components based on an
estimated long-run covariance instead of estimated variance alone. Note that
the long-run covariance includes the variance function as a component, yet
also measures temporal cross-covariance at different positive and negative lags.
Similar to the finite-dimensional time-series framework, the long-run covari-
ance estimation is the sum of empirical autocovariance functions and is often
truncated at some finite lag in practice (see Section 4).

While the LC method is commonly used for analyzing mortality rates at
discrete ages, the functional time-series method is often used for analyzing
mortality curves where age is treated as a continuum. With these two meth-
ods, the contribution of this paper is to demonstrate the improvement of point
and interval forecast accuracies that the dynamic principal component regres-
sion entails when compared with the static PCA for modeling and forecasting
age-specific mortality rates at a 1-year-ahead forecast horizon. In the longer
forecast horizon, the difference in forecast accuracy becomes marginal, and
these results can be obtained upon request from the author.

The rest of this paper is structured as follows. In Section 4, we describe
a kernel sandwich estimator for estimating long-run covariance. Based on
the estimated long-run covariance, we introduce an eigen decomposition that
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TABLE 1

THE 24 COUNTRIES EXAMINED IN THIS STUDY, WITH THE INITIAL YEAR OF 1950 AND THEIR FINAL
YEAR LISTED BELOW.

Country Abbreviation Final year Country Abbreviation Final year

Australia AUS 2014 Italy ITA 2012
Austria AUT 2014 Japan JPN 2014
Belgium BEL 2015 The Netherlands NLD 2014
Bulgaria BGR 2010 Norway NOR 2014
Canada CAN 2011 New Zealand NZ 2013
The Czech

Republic
CZE 2014 Portugal PRT 2015

Denmark DEN 2014 Spain SPA 2014
Finland FIN 2015 Slovakia SVK 2014
France FRA 2014 Sweden SWE 2014
Hungary HUN 2014 Switzerland SWI 2014
Iceland ICE 2013 The United Kingdom UK 2013
Ireland IRL 2014 The United States US 2015

extracts dynamic principal components and their associated scores in Section 5.
Illustrated by empirical data obtained from the Human Mortality Database
(2019) in Section 2, we evaluate and compare the 1-year-ahead point and inter-
val forecast accuracies between the LC and functional time-series methods
described in Section 3, using both the static and dynamic principal component
regression models in Section 6. Conclusions are given in Section 7.

2. DATA SETS

The data sets used in this study were taken from the Human Mortality
Database (2019). For each sex in a given calendar year, the mortality rates
obtained by the ratio between “number of deaths” and “exposure to risk”
were arranged in a matrix for age and calendar year. Twenty-four countries,
mainly developed nations, were selected, and thus 48 sub-populations of age-
and sex-specific mortality rates were obtained for all analyses. The 24 coun-
tries selected all had reliable data series commencing during or before 1950.
As a result of possible structural breaks (i.e., two world wars), we truncated
all data series from 1950 onwards. The omission of Germany was because the
Human Mortality Database for a reunited Germany only goes back to 1990.
The selected countries are shown in Table 1, alongside their final year of avail-
able data. To avoid fluctuation in older ages, we considered ages from 0 to 99
in a single year of age, and the last age group was from 100 onwards.

2.1. Functional time-series plot

To present an evolution of age-specific mortality, we present a functional
time-series plot for the raw female log mortality rates in the US in Figure 1(a),
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FIGURE 1: Observed and smoothed age-specific female log mortality rates in the US. Data from the distant
past are shown in red, and the most recent data are shown in purple.

while the functional time-series plot for the smoothed data is shown in
Figure 1(b).

To smooth these functional time series, we assumed there was an underlying
L2 continuous and smooth function ft(x), such that

Yt(xj)= ft(xj)+ σt(xj)εt, j, j= 1, . . . , p, t= 1, . . . , n,

where Yt(xj) denotes the raw log mortality rates, ft(xj) denotes the smoothed
log mortality rates, {εt,j} represents independent and identically distributed
(IID) random variables across t and j with a mean of zero and a unit variance,
and σt(xj) allows for heteroskedasticity and can be estimated by

σ̂t(xj)= 1
exp{Yt(xj)}Et(xj)

,

where Et(xj) denotes population of age xj at June 30 in year t (often known as
the “exposure-at-risk”).

Given that the log mortality rates increased linearly over age, we used a
penalized regression spline with monotonic constraint, where the monotonicity
was imposed for ages at and above 65 (for details, see Hyndman and Ullah,
2007). With the weights equal to the inverse variances wt(xj)= 1/σ̂ 2

t (xj), the
smoothed log mortality rate was obtained by

ft(xj)= argmin
θt(xj)

M∑
j=1

wt(xj)|Yt(xj)− θt(xj)| + λ

M−1∑
j=1

|θ ′
t (xj+1)− θ ′

t (xj)|,

where xj represents different ages (grid points) in a total of M grid points, λ

denotes a smoothing parameter, and θ ′ denotes the first derivative of smooth
function θ , which can both be approximated by a set of B-splines.
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Figure 1 is an example of the rainbow plot, where the colors of the curves
follow the order of a rainbow with the oldest data shown in red andmost recent
data shown in violet (see also Hyndman and Shang, 2010). By analyzing the
changes in mortality as a function of both age x and year t, it can be seen that
mortality rates showed a gradual decline over the years. Mortality rates dipped
from their early childhood high, climbed in the teen years, stabilized in the early
20s, and then steadily increased with age. We further noted that, for both males
and females, log mortality rates declined over time, especially in the younger
and older ages.

2.2. Mortality improvement rate

In demography and actuarial science, a time series of age-specific mortality
rates is commonly modeled and forecast at a logarithmic scale. These series
are nonstationary, as the mean function changes over time. As an alternative
approach, we can model the improvement in mortality rates, rather than the
rate itself (see, e.g., Haberman and Renshaw, 2012). The advantage of model-
ing the mortality improvement is that the data series is stationary. As one way
of measuring mortality improvement, the year-on-year mortality improvement
rate of Haberman and Renshaw (2012) was considered and expressed as

zx,t = 2× 1−mx,t/mx,t−1

1+mx,t/mx,t−1
= 2× mx,t−1 −mx,t

mx,t−1 +mx,t
, t= 2, . . . , n, (2.1)

for age x in year t, where mx,t denotes the raw mortality rate, zx,t denotes the
transformed mortality rate, and n symbolizes the number of years.

The expression in Equation (2.1) can be seen as the ratio between the incre-
mental mortality improvement (mx,t−1 −mx,t) and the average (mx,t +mx,t−1)/2
of two adjacent mortality rates. By defining the denominator of the ratio in this
way, we avoided the small phase difference between the numerator and denom-
inator that would otherwise be the case. Thus, improving incremental mortality
rate changes implied zx,t > 0, while deteriorating incremental changes implied
zx,t < 0.

Via back-transformation of Equation (2.1), we obtained

mx,t = 2+ zx,t
2− zx,t

×mx,t−1.

In Figure 2(a) and (b), we plot the observed and smoothed curves for the
age-specific female mortality rate improvements in the US. The curves are
stationary and more volatile in the early ages (i.e., ages between 0 and
40) than the later ages. We obtained smoothed mortality rate improvement
by computing the smoothed age-specific mortality curve, and then applying
Equation (2.1).
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FIGURE 2: Observed and smoothed age-specific female mortality rate improvements in the US.

3. FORECASTING METHODS

Given that the focus of this paper is a comparison of short-term forecast
accuracy between the static and dynamic principal component analyses, we
revisited the LC and functional time-series methods as two possible methods
for forecasting age-specific mortality rates. The LC model considers age a dis-
crete variable, while the functional time-series model treats age as a continuous
variable. We denoted with mx,t the observed mortality rate at age x in year
t, calculated as the number of deaths aged x in year t, divided by the corre-
sponding mid-year population aged x in year t. With mx,t, we first obtained
transformed series zx,t from Equation (2.1).

3.1. Adapted LC method

The original LC method was applied to model the log mortality rate (Lee and
Carter, 1992). Here, we extended it to model mortality improvement rate. The
formulation of our adapted LC model is given by

zx,t = ax + bxκt + εx,t, (3.1)

where ax denotes the age pattern of the mortality rates averaged over years, bx
denotes the first principal component at age x, κt denotes the first set of princi-
pal component scores at year t and measures the general level of the mortality
rates, and εx,t denotes the residual at age x and year t.

The LC model in Equation (3.1) is overparametrized, in that the model
structure is invariant under the following transformations:

{ax, bx, κt} �→ {ax, bx/c, cκt},
{ax, bx, κt} �→ {ax − cbx, bx, κt + c},
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To ensure the model identifiability, Lee and Carter (1992) imposed two
constraints given as

n∑
t=1

κt = 0,
xp∑

x=x1
bx = 1,

where n denotes the number of years and p denotes the number of ages in the
observed data set.

Instead of using a random walk with drift, the set of principal compo-
nent scores, κt, can be extrapolated using autoregressive integrated moving
average (ARIMA) models. We used the automatic algorithm of Hyndman
and Khandakar (2008) to choose the optimal orders of autoregressive p,
moving average q, and difference order d. d was selected based on succes-
sive Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests (Kwiatkowski
et al., 1992). KPSS tests were used to test the null hypothesis that an observable
time series was stationary around a deterministic trend. We tested the original
data (i.e., the first set of principal component scores) for a unit root; if the
test result was significant, then we tested the differenced data for a unit root.
The procedure continued until we obtained our first insignificant result. Having
determined d, the orders of p and q were selected based on the optimal Akaike
information criterion with a correction for finite sample sizes (Akaike, 1974).
After identifying the optimal ARIMAmodel, the maximum likelihood method
could then be used to estimate the parameters. Conditioning on the estimated
mean, the estimated first principal component b̂x, and the observed mortality
rate improvement, the h-step-ahead point forecast of zx,n+h can be expressed as

ẑx, n+h|n =E
[
zx, n+h

∣∣∣zx,1, . . . , zx,n, âx, b̂x]= âx + b̂xκ̂n+h|n,

where âx = 1
n

∑n
t=1 zx,t denotes the estimated mean, and κ̂n+h|n denotes the

h-step-ahead forecast of the principal component scores.
In Haberman and Renshaw (2012), the LC method does not include

the mean ax, since their generalized linear model approach uses a Newton–
Raphson iterative fitting algorithm to estimate bx and κt by minimizing a
deviance criterion. In contrast, we applied the PCA to mortality improve-
ment zx,t. The PCA often requires de-centering the data. In Figure 6, we also
compare the one-step-ahead forecast performances of the LC method under
a Poisson error structure without centering. We found that the difference
regarding whether or not to center the data was marginal in terms of forecast
accuracy. In Appendix B, we also compare the 5-step-ahead and 10-step-ahead
forecast accuracy using the LC method with and without centering.

3.2. Functional time-series method

Functional time series often consist of random functions observed at regular
time intervals. In the context of mortality, functional time series can arise when

https://doi.org/10.1017/asb.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.20


626 H.L. SHANG

observations in a time period can be considered together as finite realizations
of an underlying continuous function (e.g., Hyndman and Ullah, 2007). There
are several advantages to consider the functional time-series method:

(1) Data points may be observed sparsely. Via the functional time-series
method, the underlying trajectory may be recovered (for details, see Zhang
and Wang, 2016).

(2) With continuity, derivative information can provide new insight into data
analysis (see, e.g., Shang, 2019).

(3) A nonparametric smoothing technique can be incorporated into the model-
ing procedure to obtain smoothed principal components. Smoothing deals
with one criticism of the LC model; namely, that the estimated values, bx,
can be subject to considerable noise and, without smoothing, this would be
propagated into forecasts of future mortality rates. Smoothing can reduce
measurement error and increase the signal-to-noise ratio, and also deals
with estimating missing values for some ages at a given year.

(4) Given that the functional time-series method can consider more than one
component, Shang (2012) indicated that the functional time-series method
outperforms the LC method.

Many possible nonparametric smoothing techniques have been proposed, such
as basis spline (for details, see de Boor, 2001). We used a penalized regression
spline with a monotonic constraint (for details, see Hyndman and Ullah, 2007).
The smoothed log mortality rates f (x)= {f1(x), . . . , fn(x)} were treated as real-
izations of a stochastic process. In Hyndman and Ullah (2007), they considered
modeling the smoothed log mortality rates directly. Given that the log mortal-
ity rates are nonstationary, we considered modeling and forecasting mortality
rate improvement. From Equation (2.1), we could obtain a set of transformed
and smoothed series, denoted by z(x)= {z1(x), . . . , zn(x)}. Using functional
PCA, these smoothed mortality improvement curves were decomposed into

zt(x)= a(x)+
K∑
k=1

bk(x)κt,k + et(x), t= 1, . . . , n, (3.2)

where a(x) denotes the mean function estimated by â(x)= 1
n

∑n
t=1 zt(x),{b1(x), . . . , bK (x)} denotes a set of functional principal components,

{κt,1, . . . , κt,K} denotes a set of principal component scores in year t, et(x)
denotes the error function with mean zero, and K < n denotes the number of
principal components retained.

Decomposition in Equation (3.2) facilitates dimension reduction because
the first K terms often provide a reasonable approximation to the infinite
sums; thus, the information contained in z(x) can be adequately summarized
by the K-dimensional vector, � = [b1(x), . . . , bK(x)]. In contrast to the LC
model, another advantage of the functional time-series model is that more
than one component may be used to improve model fitting (see also Renshaw
and Haberman, 2003). Here, the number of components is determined as
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the minimum that reaches a certain level of the proportion of total variance
explained by the leading components, such that

K = argmin
K:K≥1

{
K∑
k=1

λ̂k

/ ∞∑
k=1

λ̂k1{̂λk>0} ≥ 85%

}
, (3.3)

where λ̂k represents the kth estimated eigenvalue, and 1{̂λk>0} is to exclude pos-
sible zero eigenvalues, and 1{·} represents the binary indicator function. The
threshold of 85% is advocated in Horváth and Kokoszka (2012, p. 41).

Conditioning on the estimated mean function â(x), the estimated functional
principal components �, and the observed mortality rate improvement z(x),
the h-step-ahead point forecast of zn+h(x) can be expressed as

ẑn+h|n(x)=E [zn+h(x)|z(x), â(x),�]

= â(x)+
K∑
k=1

b̂k(x)̂κn+h|n,k,

where â(x) denotes the estimated mean function, b̂k(x) denotes the kth esti-
mated functional principal component, and κ̂n+h|n,k denotes the kth estimated
principal component scores obtained via a univariate or multivariate time-
series forecasting method. Given that it can handle nonstationarity, we consid-
ered a univariate forecasting method, such as the ARIMA model with orders
selected automatically.

The critical component of the aforementioned forecasting methods is the
static PCA which was designed for IID data. In the presence of moderate-
to-strong dependent data, the static PCA is not optimal because it does not
incorporate autocovariance at different lags in a functional time series. As an
alternative, we introduced a dynamic PCA (DPCA) constructed from an eigen
decomposition of an estimated long-run covariance. The long-run covariance
included the variance and autocovariance at lags greater than zero.

4. LONG-RUN COVARIANCE AND ITS ESTIMATION

In statistics, long-run covariance enjoys vast literature in the case of finite-
dimensional time series, beginning with the seminal work of Brillinger (1974),
and is still the most commonly used technique for smoothing the periodogram
by employing a smoothing weight function and a bandwidth parameter. In the
functional time series, long-run covariance plays an important role in modeling
temporal dependence (see, e.g., Rice and Shang, 2017).

To provide a formal definition of the long-run covariance, let {zt(x)}t∈Z be
a stationary and ergodic functional time series. For example, zt(x) could be
used to denote the density of pollutants in a given city on day t at intraday
time x or the mortality rate in year t at age x. If zt(x) is nonstationary, it
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could be suitably transformed, so that the stationarity assumption holds. For
a stationary functional time series, the long-run covariance is defined as

C(x, u)=
∞∑

�=−∞
γl(x, u)

=
∞∑

�=−∞
cov [z0(x), z�(u)] .

Given that γ�(x, u) is symmetric and nonnegative definite for any �,C(x, u)
is also symmetric and nonnegative definite. By applying eigen decomposi-
tion to the long-run covariance, C(x, u), we obtained a set of eigenvalues and
eigenfunctions.

In practice, we needed to estimate C from a finite sample z(x)=
[z1(x), . . . , zn(x)]. Given its definition as a bi-infinite sum, a natural estimator
of C is

Ĉh,q(x, u)=
∞∑

�=−∞
Wq

(
�

h

)
γ̂�(x, u), (4.1)

where h is called the bandwidth parameter, and

γ̂�(x, u)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n

n−�∑
j=1

[
zj(x)− z(x)

] [
zj+�(u)− z(u)

]
, � ≥ 0

1
n

n∑
j=1−�

[
zj(x)− z(x)

] [
zj+�(u)− z(u)

]
, � < 0,

is an estimator of γl(x, u), andWq is a symmetric weight function with bounded
support of order q. The estimator in Equation (4.1) was introduced in Horváth
and Kokoszka (2012) and Rice and Shang (2017), among others. As with the
kernel estimator, the crucial part is the estimation of bandwidth parameter h. It
can be selected through a data-driven approach, such as the plug-in algorithm
proposed in Rice and Shang (2017). In Appendix A, we briefly describe the
plug-in algorithm. With the estimated long-run covariance, we could obtain
dynamic functional principal components and their scores, as described in
Section 5.

4.1. Application to US age-specific mortality rates

Figure 3 presents the estimated long-run covariance and variance for the female
raw mortality rates in the US. With the input data as age-specific mortality
improvement over years, we computed the sample long-run covariance and
sample variance for a data matrix. The sample variance was computed by
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FIGURE 3: Comparison of sample long-run covariance and sample variance for US original female
mortality rates.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 20 40 60 80 100
0

20

40

60

80

100

Age

Ag
e

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0 20 40 60 80 100
0

20

40

60

80

100

Age

Ag
e

(a) (b)

FIGURE 4: Comparison of sample long-run covariance and sample variance for US smoothed female
mortality rates.

multiplying the data matrix by its transpose, while the sample long-run covari-
ance was computed by the kernel sandwich estimator. Compared with the
sample variance, the sample long-run covariance based on the kernel sandwich
estimator with plugged-in bandwidth could incorporate an autocovariance
structure, particularly for ages between 0 and 40. The mortality rate at the
young ages exhibited higher variance than the mortality rate at the other ages.

Compared with the long-run covariance based on the raw data series, the
estimated long-run covariance based on the smoothed data series was smoother
and showed a more explicit data structure in Figure 4. For estimating the long-
run covariance, the estimated optimal bandwidth was 4.07 for the raw female
data and 4.10 for the smooth female data.

https://doi.org/10.1017/asb.2019.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.20


630 H.L. SHANG

The computation of long-run covariance relies heavily on the fact that our
mortality improvement data were stationary time series. When the temporal
dependence was weak, variance could be sufficient to estimate the long-run
covariance. When the temporal dependence was moderate or high, one should
include more terms in the long-run covariance estimation. The inclusion of
autocovariance could improve forecast accuracy. From Figures 3 and 4, it is
clear that the long-run covariance also included the autocovariance at various
lags.

5. DYNAMIC FUNCTIONAL PCA

From the long-run covariance, we applied functional principal component
decomposition to extract the functional principal components and their asso-
ciated scores. Via the Karhunen–Loève expansion, a stochastic process, z, can
be expressed as

z(x)= a(x)+
∞∑
k=1

βkφk(x),

where zc(x)= z(x)− a(x). The principal component scores, βk, are given by the
projection of zc(x) in the direction of the kth eigenfunction φk—that is, βk =
〈zc(x), φk(x)〉. The scores constitute an uncorrelated sequence of random vari-
ables with zero mean and variance λk. They can be interpreted as the weights
of the contribution of the functional principal components φk(x) to zc(x).

Given that the long-run covariance, C(x, u), is unknown, the population
eigenvalues and eigenfunctions can only be approximated through realizations
of z(x). A realization of the stochastic process, z, can be written as

zt(x)= â(x)+
K∑
k=1

β̂t,kφ̂k(x)+ et(x), t= 1, 2, . . . , n,

where β̂t,k is the kth estimated score for the tth year and et(x) denotes residual
function.

In Figure 5, we present the first eigenfunction extracted from the sam-
ple variance and sample long-run covariance, respectively, for the US female
mortality. Visually, the first dynamic principal component appears differently
to the first static principal component. Conditioning on the estimated mean
function â(x), the estimated dynamic functional principal components � =
{φ1, . . . , φK}, and observed mortality rate improvement, z(x), the h-step-ahead
point forecast of zn+h(x) is

ẑn+h|n(x)=E [zn+h(x)|z(x), â(x),�]

= â(x)+
K∑
k=1

β̂n+h|n,kφ̂k(x),
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FIGURE 5: First eigenfunction extracted from the static principal component decomposition based on the
sample variance, and first eigenfunction extracted from the dynamic principal component decomposition

based on the sample long-run covariance. We considered the raw US mortality data in the top row, as well as
the smooth US mortality data in the bottom row.

where φ̂k(x) denotes the kth estimated functional principal component, β̂n+h|n,k
denotes the kth estimated principal component scores obtained via a univariate
forecasting method, and K < n denotes the number of principal components
retained. In practice, the optimal value of K can be selected by explaining at
least 85% of total variation in the data; refer to Equation (3.3).

5.1. Constructing prediction intervals

We considered a nonparametric bootstrap method for constructing prediction
intervals (for details, see Hyndman and Shang, 2009). The source of uncer-
tainty stemmed from the estimation error in the principal component scores
and model residual errors.
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Using a univariate time series forecasting method, we could obtain multi-
step-ahead forecasts for the principal component scores, {β̂1,k, . . . , β̂n,k}. Let
the h-step-ahead forecast errors denote

ξ̂t,h,k = β̂t,k − β̂t|t−h,k, t= h+ 1, . . . , n.

The estimation errors were then sampled with replacement to give a bootstrap
sample of βn+h,k:

β̂
(b)
n+h|n,k = β̂n+h|n,k + ξ̂

(b)
∗,h,k, b= 1, . . . ,B,

where ξ̂
(b)

∗,h,k are sampled with replacement from ξ̂t,h,k, and B denotes the number
of bootstrap replications. As long as the first K principal components approx-
imate the data relatively well, the model residual should be random noise.
We could bootstrap the model error by sampling with replacement from the
residual term {̂e1(x), . . . , ên(x)}.

Through combining the two sources of uncertainty, we obtained B variants
for ẑ (b)

n+h|n(x):

ẑ (b)
n+h|n(x)= â(x)+

K∑
k=1

β̂
(b)
n+h|n,kφ̂k(x)+ ê (b)

n+h|n(x).

Pointwise prediction intervals were produced from the bootstrap variants using
quantiles.

6. RESULTS

6.1. Forecast evaluation

We presented 24 countries with data that began in 1950 and ended in the
final year listed in Table 1. We retained the final 30 observations for fore-
casting evaluation, while the remaining observations were treated as initial
fitting observations, from which we produced the one-step-ahead forecast (i.e.,
1-year-ahead forecast). Via an expanding window approach, we re-estimated
the parameters in the time-series forecasting models by increasing the fitted
observations by 1 year and producing the one-step-ahead forecast. We iterated
this process by increasing the sample size by 1 year until reaching the end of
the data period. This process produced 30 one-step-ahead forecasts. We com-
pared these forecasts with the holdout samples to determine the out-of-sample
forecast accuracy.

6.2. Forecast error criteria

To evaluate the point forecast accuracy, we considered the mean absolute
forecast error (MAFE) and root mean squared forecast error (RMSFE). These
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criteria measured the closeness of the forecasts in comparison with the actual
values of the variable being forecast, regardless of the direction of forecast
errors. The MAFE and RMSFE are defined as

MAFEh = 1
p× q

q∑
j=1

p∑
i=1

∣∣mj(xi)− m̂j| j−h(xi)
∣∣,

RMSFEh = 1
p× q

q∑
j=1

p∑
i=1

√[
mj(xi)− m̂j| j−h(xi)

]2
,

where q represents the number of years in the forecasting period, p× q counts
the total number of data points in the forecasting period, mj(xi) represents the
actual holdout sample for age xi in year j, and m̂j(xi) represents the forecasts
for the holdout sample.

To evaluate the pointwise interval forecast accuracy, we considered the
coverage probability deviance (CPD) of Shang (2012) and interval score cri-
terion of Gneiting and Raftery (2007). We considered the common case of the
symmetric 100(1− α)% prediction intervals, with lower and upper bounds that
were predictive quantiles at α/2 and 1− α/2, denoted by m̂l

j(xi) and m̂
u
j (xi). The

CPD allows comparison of interval forecast accuracy for each method by mea-
suring the differences between the empirical coverage and nominal coverage
probabilities. The CPD is defined as∣∣∣∣∣1

{
mj(xi)< m̂l

j(xi)
}+ 1

{
mj(xi)> m̂u

j (xi)
}

p× q
− α

∣∣∣∣∣ ,
where 1{·} denotes binary indicator, and α denotes the level of significance,
customarily α = 0.2.

As defined by Gneiting and Raftery (2007), a scoring rule for evaluating the
pointwise interval forecast accuracy at time point xi is

Sα[m̂l
j(xi), m̂

u
j (xi) ;mj(xi)]=

[
m̂u
j (xi)− m̂l

j(xi)
]

+ 2
α

[
m̂l
j(xi)−mj(xi)

]
1
{
mj(xi)< m̂l

j(xi)
}

+ 2
α

[
mj(xi)− m̂u

j (xi)
]
1
{
mj(xi)> m̂u

j (xi)
}
.

The optimal interval score is achieved when mj(xi) lies between m̂l
j(xi) and

m̂u
j (xi), with the distance between the upper bound and lower bound being

minimal. To obtain summary statistics of the interval score, we take the mean
interval score across different ages and forecasting years. The mean interval
score can be expressed as

Sα,h = 1
p× q

q∑
j=1

p∑
i=1

Sα[m̂l
j(xi), m̂

u
j (xi) ;mj(xi)].
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6.3. Comparisons of forecast errors

In Figure 6, we compare the one-step-ahead point forecast errors between
the dynamic and static principal component regression models using the LC
method with and without centering and functional time-series method.

In Figure 7, we compare the one-step-ahead interval forecast errors between
the dynamic and static principal component regression models using the LC
method with centering and functional time-series method.

In Table 2, we compare the summary statistics of the one-step-ahead point
forecast errors between the dynamic and static principal component regression
models using the LC method with and without centering and functional time-
series method. Given that the point forecast errors between the LC method
with and without centering are marginal, in Table 3, we compare the summary
statistics of the one-step-ahead interval forecast accuracy between the dynamic
and static principal component regression models using the LC method with
centering and functional time-series method.

We observed the following evidence:
(1) Averaged over the 24 mainly developed countries in Table 1, the

dynamic principal component regression outperformed the static principal
component regression in terms of point and interval forecast accuracies, as
measured by summary statistics of the MAFE and RMSFE, CPD and mean
interval score criteria.

(2) In contrast to the results of the LC method, it was advantageous to
smooth the data before computing the long-run covariance and variance,
because this approach generally produced smaller point and interval forecast
errors.

(3) Among the female, male, and total series, it was generally easier to fore-
cast the total series as evident from smaller forecast errors, while it was harder
to forecast the male series as evident from larger forecast errors. This could be
because the total variation of the male series was larger than that of the total
series.

The superiority of the dynamic principal component regression could
be because it captures temporal dependence better than the static principal
component regression.

We also considered the 5-step-ahead and 10-step-ahead point forecast
accuracy, and found a marginal difference between the dynamic and static
approaches. The results are provided in Appendix C. In time-series forecast-
ing, many time-series extrapolation models were no longer optimal when we
projected long term. As the forecast horizon increased, the proposed DPCA
reduced back to the static PCA used in the LC model. The difference between
the two derived crucially from the criterion used to extract latent components.
In the DPCA, the criterion was long-run covariance, which was a sum of the
variance and autocovariance. In the static PCA, the criterion was variance
alone. In the long-term forecast, the distant future value was almost IID to the
most recent value. In turn, the autocovariance was small, if it existed at all, at a
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FIGURE 6: Boxplots of one-step-ahead point forecast errors between the DPCA and static PCA using the
LC method with and without centering and functional time-series method. The red circle represents the mean.
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FIGURE 7: Boxplots of one-step-ahead interval forecast errors between the dynamic and static principal
component regression using the LC method with centering and functional time-series method. The red circle

represents the mean.

long-term forecast horizon. Therefore, the proposed DPCA (almost) reduced
back to the static PCA, and the DPCA did not display advantages over the
static PCA at a long-term forecast horizon. In addition, as the forecast horizon
increased, the forecast of principal component scores was likely to be centered
around zero. When that occurred, the forecasts of mortality rates were not so
informative and would likely center around the mean function.

7. DISCUSSION

PCA performs dimension reduction (also known as data coarsening) with a
minimal loss of information, and is a workhorse in time-series modeling of
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age-specific mortality data and application to annuity pricing in actuarial
science. The core techniques in the existing demographic literature use static
PCA and may not incorporate temporal covariance into the eigen decomposi-
tion. When the temporal dependence is moderate or strong, the static principal
components extracted from variance are no longer optimal. As an alternative,
we proposed a DPCA where the principal components could be extracted from
an estimated long-run covariance.

The long-run covariance encompasses the autocovariance at lag 0 (i.e., vari-
ance), as well as the autocovariance at other lags. To estimate the long-run
covariance, we considered a kernel sandwich estimator used in Andrews (1991).
A crucial parameter in the kernel sandwich estimator is the selection of optimal
bandwidth. To determine the optimal lags, we presented a plug-in algorithm of
Rice and Shang (2017) to determine the optimal bandwidth parameter in the
kernel sandwich estimator.

Given that the estimation of the long-run covariance requires stationarity,
we chose to work with mortality rate improvement via the forward transforma-
tion. Through using static PCA or DPCA, we modeled and forecast mortality
rate improvement. Through backward transformation, we obtained the fore-
cast mortality rate in the original scale. Using 24 mainly developed countries,
we demonstrated improvement of point and interval forecast accuracies that
the dynamic principal component regression entails when compared with the
static analysis using the LC and functional time-series methods.

It is noteworthy that, given a sufficient number of static principal com-
ponents, they can capture a similar amount of information that the dynamic
approach entails. For some countries, the temporal dependency is very weak,
and then the long-run covariance almost reduces to the variance alone. In
that case, the static and dynamic approaches lead to the same or similar point
and interval forecast accuracies. We observed that there are small differences
between the static and dynamic principal component regression models for the
5-step-ahead and 10-step-ahead forecasts. For the one-step-ahead forecasts,
the differences in point and interval forecast accuracies were rather apparent.
Thus, it should be recommended as a valuable technique in statistical modeling
and short-term forecasting.

There are a number of ways in which the current paper could be further
extended, and we briefly mention three. First, a future extension could be
to take a cohort perspective on the mortality improvement rate, as taken by
Haberman and Renshaw (2013). Second, given that most, if not all, extrapo-
lation methods do not perform well in long-term forecasts, it may be useful
to propose a Bayesian version of dynamic functional PCA, where the prior
knowledge can be incorporated. Finally, we have demonstrated the usefulness
of the DPCA using the LC and functional time-series models; however, it can
be applied to other mortality models that use PCA in whole or in part (see, e.g.,
Shang et al., 2011).
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APPENDIX A

A.1. Estimation of long-run covariance

Under the asymptotic mean squared normed error, Rice and Shang (2017) show that the
optimal bandwidth parameter hopt has the following forms:

hopt = c0n
1

1+2q ,

c0 =
(
2q‖C(q)‖2

) 1
1+2q

⎧⎨⎩
⎡⎣‖C‖2 +

(∫ 1

0
C(u, u)du

)2
⎤⎦ ∫ ∞

−∞
W2

q (x)dx

⎫⎬⎭
− 1

1+2q

, (A.1)

where q denotes the order of derivative, and Wq(x) denotes a kernel (weight) function of
order q. The crux of the problem is that the quantities involvingC(q) andC in Equation (A.1)
are unknown, and we use a plug-in algorithm to estimate them, from which we obtain ĉ0 and
ĥopt.
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The plug-in bandwidth selection method is given as follows:

(1) Compute pilot estimates of C(p), for p= 0, q:

Ĉ(p)
h1,q1

(x, u)=
∞∑

�=−∞
Wq1

(
�

h1

)
|�|pγ̂l(x, u),

which utilizes an initial bandwidth choice h1 = h1(n), and an initial kernel functionWq1
of order q1.

(2) Estimate c0 by

ĉ0(h1, q1)=
(
2q
∥∥∥Ĉ(q)

h1,q1

∥∥∥2) 1
1+2q

{[
‖C‖2 +

( ∫ 1

0
C(u, u)du

)2] ∫ ∞

−∞
W2

q (x)dx

}− 1
1+2q

,

whereWq denotes a final kernel function of order q.
(3) Use the bandwidth

ĥopt(h1, q1)= ĉ0(h1, q1)n
1

1+2q

in the definition of Ĉh,q in Equation (5) in the paper.

In terms of the initial and final weight functions, Rice and Shang (2017) advocated the use of
a flat-top weight functionW∞ for the initial kernel function, and a Bartlett kernel function
as the final kernel function. A flat-top weight functionW∞ is of the form

W∞(t)=

⎧⎪⎨⎪⎩
1 0≤ |t| < k1;
k2−|t|
k2−k1 k1 ≤ |t| ≤ k2;
0 |t| ≥ k2;

where k2 > k1. Let us take k2 = 1 and k1 = 0.5. The Bartlett weight function W1 is of the
form

W1 =
{
1− |x| for |x| ≤ 1;
0 otherwise.

APPENDIX B

In Haberman and Renshaw (2012), the LC method does not include the mean term, since
their Generalized Linear Model approach uses an iterative fitting algorithm to estimate
parameters by minimizing a deviance criterion. In Figure B1, we present the point fore-
cast results for the 1-step-ahead, 5-step-ahead, and 10-step-ahead forecasts. The results are
similar to the LC method with the mean term given in Table 2 of the paper and results given
in Appendix C.
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FIGURE B1: Comparison of 1-step-ahead, 5-step-ahead, and 10-step-ahead point forecast errors between the
dynamic and static principal component regression using the LC method without centering (i.e., Haberman

and Renshaw’s (2012) method). h denotes forecast horizon.
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APPENDIX C

Using the LC and functional time-series methods, these longer-horizon forecast results
are reported in Figure C1 for h= 5. For h= 10, these results are reported in Figure C2.
As measured by MAE, RMSE, and interval score, there are marginal difference between
the DPCA and static PCA, although the maximum forecast error of the DPCA is often
smaller than that of the static PCA. As measured by CPD, DPCA often outperforms the
static PCA.
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FIGURE C1: Comparison of five-step-ahead point and interval forecast errors between the dynamic and
static principal component regression using the functional time-series method and LC method with centering.
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FIGURE C2: Comparison of 10-step-ahead point and interval forecast errors between the dynamic and static
principal component regression using the functional time-series method and LC method with centering.
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