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A weak turbulence theory is derived for magnetohydrodynamics (MHD) under
rapid rotation and in the presence of a uniform large-scale magnetic field which is
associated with a constant Alfvén velocity b,. The angular velocity 2, is assumed
to be uniform and parallel to by. Such a system exhibits left and right circularly
polarized waves which can be obtained by introducing the magneto-inertial length
d=by/$2y. In the large-scale limit (kd — 0, with k being the wavenumber) the left-
and right-handed waves tend to the inertial and magnetostrophic waves, respectively,
whereas in the small-scale limit (kd — 4-00) pure Alfvén waves are recovered. By
using a complex helicity decomposition, the asymptotic weak turbulence equations are
derived which describe the long-time behaviour of weakly dispersive interacting waves
via three-wave interaction processes. It is shown that the nonlinear dynamics is mainly
anisotropic, with a stronger transfer perpendicular than parallel to the rotation axis.
The general theory may converge to pure weak inertial/magnetostrophic or Alfvén
wave turbulence when the large- or small-scale limits are taken, respectively. Inertial
wave turbulence is asymptotically dominated by the kinetic energy/helicity, whereas
the magnetostrophic wave turbulence is dominated by the magnetic energy/helicity.
For both regimes, families of exact solutions are found for the spectra, which do
not correspond necessarily to a maximal helicity state. It is shown that the hybrid
helicity exhibits a cascade whose direction may vary according to the scale k; at
which the helicity flux is injected, with an inverse cascade if k;d < 1 and a direct
cascade otherwise. The theory is relevant to the magnetostrophic dynamo, whose
main applications are the Earth and the giant planets, such as Jupiter and Saturn, for
which a small (~10~°) Rossby number is expected.
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1. Introduction

Rotation is a commonly observed phenomenon in astronomy: planets, stars and
galaxies all spin around their axis. The rotation rate of planets in the solar system
was first measured by tracking visual features, whereas stellar rotation is generally
measured through Doppler shift or by following the magnetic activity (Tassoul 2000).
One consequence of the Sun’s rotation is the formation of the Parker interplanetary
magnetic field spiral (Parker 1958), which is well detected by space crafts. The Earth’s
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rotation has a strong impact on the turbulent dynamics of large-scale geophysical
flows (Shirley & Fairbridge 1997). These examples show that the study of rotating
flows is of interest in many areas, ranging from engineering (turbomachinery) to
geophysics (oceans, the Earth’s atmosphere, gaseous planets), weather prediction and
turbulence (Davidson 2004). Rotation is often coupled with other dynamical factors;
it is therefore important to isolate the effect of the Coriolis force to understand
precisely its impact. The importance of rotation can be measured with the Rossby
number
Uo

T Lo
where U,, Ly and £2, are, respectively, the typical velocity, length scale and rotation
rate. This dimensionless number measures the ratio of the advection term to the
Coriolis force in the Navier—Stokes equations; a small value of Ro means that
the dynamics is driven mainly by rotation. Typical large-scale planetary flows are
characterized by Ro~ 0.1 (Shirley & Fairbridge 1997), whereas liquid metals (mainly
iron) in the Earth’s outer core are much more affected by rotation, with Ro ~ 107°
(Roberts & King 2013). Note that for a giant planet like Jupiter in which liquid
metallic hydrogen is present in most of the planet’s volume, it is believed that the
Rossby number may be even smaller (see e.g. Jones 2011). These situations contrast
with the solar convective region where the magnetic field is believed to be magnified
and for which Ro ~ 1.

Inertial waves are a ubiquitous feature of neutral fluids under rapid rotation
(Greenspan 1968). Although much is known about their initial excitation, their
nonlinear interactions are still a subject of intensive research. Many papers have
been devoted to pure rotating turbulence (Ro < 1), but because of the different
nature of the investigations (theoretical, numerical and experimental), it is in general
difficult to compare directly the results obtained. From a theoretical point of view, it is
convenient to use a spectral description in terms of continuous wavevectors along with
the unbounded homogeneity assumption in order to derive the governing equations
for the energy, kinetic helicity and polarization spectra (Cambon & Jacquin 1989).
Although such equations introduce transfer terms which still need to be evaluated
consistently, it is already possible to show, using a weakly nonlinear resonant waves
analysis (Waleffe 1993), the anisotropic nature of that turbulence, with a nonlinear
transfer preferentially in the perpendicular (to $2, = 2¢) direction. For moderate
Rossby numbers the eddy-damped quasinormal Markovian model may be used as a
closure (Cambon, Mansour & Godeferd 1997), whereas in the small-Rossby-number
limit the asymptotic weak turbulence theory can be derived rigorously (Galtier 2003).
In the latter case, it was shown that the wave modes (k; > 0) are decoupled from the
slow mode (k; =0), which is not accessible by the theory, and the positive energy flux
spectra were also obtained as exact power-law solutions. The weak turbulence regime
was also investigated numerically; in particular, it was shown that the energy cascade
goes forward (Bellet et al. 2006). Recently, the problem of confinement (i.e. the study
of homogeneity effects due to two infinite parallel walls perpendicular to the rotation
axis) has been addressed explicitly in the inertial wave turbulence theory using discrete
wavenumbers (Scott 2014): three asymptotically distinct stages in the evolution of
the turbulence have been found, leading finally to a regime dominated by resonant
interactions. Numerical simulations are often used to investigate homogeneous rotating
turbulence (see e.g. Bardina, Ferziger & Rogallo 1985; Bartello, Metais & Lesieur
1994; Mininni & Pouquet 2010a). Several questions have been investigated, such
as the origin of the anisotropy of the flow (i.e. the fact that the turbulent cascade
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is mainly transverse to the rotation axis) and the origin of the inverse cascade
observed when a forcing is applied at intermediate-scale k;. However, depending
on the question addressed, the results may be affected by the discretization and by
finite-box effects at too-small Rossby numbers and too-long elapsed time (Smith &
Lee 2005; Bourouiba 2008). In particular, this seems to be the case for the question
of the inverse cascade mediated by the decoupling of the slow mode. For example, it
was found that the one-dimensional isotropic energy spectrum E(k) ~ k™ may follow
two different power laws, with 2 <x < 2.5 at small scales (k> k) and x~~ 3 at large
scales (k <ky) (Smith & Waleffe 1999); but it was also shown that the scaling at large
scales is strongly influenced by the value of the aspect ratio between the parallel and
perpendicular (to $2y) resolutions, such that a small aspect ratio leads to a reduction in
the number of available resonant triads and hence an alteration of the spectrum, with
the restoration of a k=/* spectrum for sufficiently small vertical resolutions. Several
experiments have been devoted to studying rotating turbulence with different types
of apparatus (Hopfinger, Gagne & Browand 1982; Jacquin et al. 1990; Baroud et al.
2002; Morize, Moisy & Rabaud 2005; van Bokhoven et al. 2009; Rieutord et al.
2012). In contrast to the theory and simulations, it is very challenging to reproduce
experimentally the conditions of homogeneous turbulence (see the discussion in Scott
2014). Nevertheless, one of the main results reported is that the rotation leads to
bi-dimensionalisation of an initial homogeneous isotropic turbulence, with anisotropic
spectra where energy is preferentially accumulated in the perpendicular (to $£2))
wavenumbers k,. Energy spectra with x > 2 were experimentally observed (Baroud
et al. 2002; Morize et al. 2005; van Bokhoven er al. 2009), revealing a significant
discrepancy with the isotropic Kolmogorov spectrum (x = 5/3) for non-rotating
fluids. Note that the wavenumber entering into the spectral measurements corresponds
mainly to k,. Recently, direct measurements of energy transfer have been made in
the physical space by using third-order structure functions (Lamriben, Cortet & Moisy
2011), and an increase of anisotropy at small scales has been found, in agreement
with some theoretical studies (Jacquin ef al. 1990; Galtier 2003; Bellet et al. 2006;
Galtier 2009a). The effect of kinetic helicity — which quantifies departures from mirror
symmetry (Moffatt 1969) — on rotating fluids has been the subject of few studies.
One reason is that it is difficult to measure the helicity production from experiments.
Another reason is probably linked to the negligible effect of helicity on energy in
non-rotating turbulence. Indeed, in this case one observes a joint constant flux cascade
of energy and helicity, with a k=3 spectrum for both quantities (Chen, Chen & Eyink
2003a; Chen et al. 2003b). Recently, however, several numerical simulations have
demonstrated a surprisingly strong impact of helicity on fast rotating hydrodynamic
turbulence (Teitelbaum & Mininni 2009; Mininni & Pouquet 2010a,b; Mininni,
Rosenberg & Pouquet 2012), the main properties of which can be summarized as
follows. When the (large-scale) forcing applied to the system injects only negligible
helicity, the dynamics is mainly governed by a direct energy cascade compatible
with an energy spectrum of E(k ) ~ kIS/ ?, which is precisely the weak turbulence
prediction (Galtier 2003). However, when the helicity injection becomes so important
that the dynamics is mainly governed by a direct helicity cascade, different scalings
are found following the empirical law

n+n=-—4, (1.2)

where n and 7 are the power-law indices of the one-dimensional energy and helicity
spectra, respectively. This law cannot be explained by a consistent phenomenology
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where anisotropy is used, which renders the relation (1.2) highly non-trivial. As shown
by Galtier (2014), an explanation can only be found when a rigorous analysis is
conducted on the weak turbulence equations: the relation corresponds in fact to the
finite helicity flux spectra, which are exact solutions of the equations.

It has been long recognized that the Earth’s magnetic field is not steady (Finlay
et al. 2010). Changes occur across a wide range of time scales, from seconds —
because of interactions between the solar wind and the magnetosphere — to several
tens of millions of years, which is the longest timespan between polarity reversals.
To understand the generation and maintenance of a large-scale magnetic field, the
most promising mechanism is the dynamo (Pouquet, Frisch & Leorat 1976; Moffatt
1978; Brandenburg 2001). The dynamo is an active area of research which has seen
dramatic developments in the past few years (Dormy, Valet & Courtillot 2000). The
focus of this research is primarily on the Earth, for which a large amount of data
is available, allowing us to follow, for instance, occurrences of geomagnetic polarity
reversal over millions of years (Finlay & Jackson 2003; Roberts & King 2013).
Such chaotic behaviour contrasts drastically with the surprisingly regular behaviour
of the Sun, which changes the polarity of its magnetic field lines approximately
every 11 years. It is believed that the three main ingredients of the geodynamo
problem are the Coriolis, Lorentz—Laplace and buoyancy forces (Finlay et al. 2010).
This last force may be viewed as a source of turbulence for the conducting fluids
described by incompressible magnetohydrodynamics (MHD), whereas the first two
forces are more or less balanced. This balance leads to the strong-field regime —
the so-called magnetostrophic dynamo — for which we may derive magnetostrophic
waves (Lehnert 1954; Schmitt et al. 2008). This regime is thought to be relevant
not only to the Earth but also to giant planets such as Jupiter and Saturn, and by
extension probably to exoplanets as well (Stevenson 2003). In order to investigate
the dynamo problem, several experiments have been developed (Pétrélis, Mordant
& Fauve 2007). In one of them, the authors were able to successfully reproduce
with liquid sodium reversals and excursions of a turbulent dynamo generated by two
(counter-)rotating disks (Berhanu et al. 2007). This result follows a three-dimensional
numerical simulation of the Earth’s outer core, from which the reversal of the dipole
moment was also obtained (Glatzmaier & Roberts 1995). In this model, however, the
inertial/advection terms are simply discarded to mimic a very small Rossby number.
This assumption is in apparent contradiction to any turbulent regime (the Reynolds
number is approximately 10° for the Earth’s outer core; see Finlay et al. 2010) and in
particular to the weak turbulence regime in which the nonlinear interactions — though
weak at short time scales compared with the linear contributions — become important
for the nonlinear dynamics at asymptotically large time scales. As we will see below,
this is basically the regime that we investigate theoretically in this paper; a sea of
helical (magnetized) waves (Moffatt 1970) will be considered as the main ingredient
for the triggering of the dynamo through nonlinear transfer of the magnetic energy
and helicity. (In weak turbulence the main ingredients are waves instead of eddies: it
is the cumulative weak interactions of many dispersive waves that produces a weak
turbulence cascade; also, we shall often talk about a sea of waves to characterize this
regime.)

Weak turbulence is the study of the long-time statistical behaviour of a sea of
weakly nonlinear dispersive waves (Nazarenko 2011). The energy transfer between
waves occurs mostly among resonant sets of waves, and the resulting energy
distribution, far from thermodynamic equilibrium (a source is supposed to be present
to feed the turbulence and prevent the flow from reaching a state where the energy flux
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through scales is null; see Zakharov, L' Vov & Falkovich 1992), is characterized by a
wide power-law spectrum and a high Reynolds number. This range of wavenumbers
— the inertial range — is generally localized between large scales, at which energy is
injected into the system (sources), and small scales, at which waves break or dissipate
(sinks). Pioneering works on weak turbulence date back to the 1960s, when it was
established that the stochastic initial value problem for weakly coupled wave systems
has a natural asymptotic closure induced by the dispersive nature of the waves and
the large separation of linear and nonlinear time scales (Benney & Saffman 1966;
Benney & Newell 1967, 1969). In the meantime, Zakharov & Filonenko (1966)
showed that the kinetic equations derived from the weak turbulence analysis have
exact equilibrium solutions which are the thermodynamic zero-flux solutions and are
also — more importantly — finite-flux solutions that describe the transfer of conserved
quantities between sources and sinks. The solutions, first published for isotropic
turbulence (Zakharov 1965; Zakharov & Filonenko 1966) were then extended to
anisotropic turbulence (Kuznetsov 1972). Weak turbulence is a very common natural
regime with applications, for example, to capillary waves (Kolmakov et al. 2004),
gravity waves (Falcon, Laroche & Fauve 2007), superfluid helium and processes
of Bose-Einstein condensation (Lvov, Nazarenko & West 2003), nonlinear optics
(Dyachenko et al. 1992), inertial waves (Galtier 2003), Alfvén waves (Galtier et al.
2000, 2002; Galtier & Chandran 2006) and whistler/kinetic Alfvén waves (Galtier
2006D).

In this paper, the weak turbulence theory will be established for rotating MHD in
the limit of small Rossby and Ekman numbers, where the latter measures the ratio
of the viscous to Coriolis terms. We shall assume the existence of a strong uniform
magnetic field parallel to the fast and constant rotation rate. The combination of
the Coriolis and Lorentz—Laplace forces leads to the appearance of two types of
circularly polarized waves and a possible non-equipartition between the kinetic and
magnetic energies (Moffatt 1972; Favier, Godeferd & Cambon 2012). After a general
introduction to rotating MHD in § 2, a weak helical turbulence formalism is developed
in §3 by using a technique from Galtier (20065). The phenomenology of the weak
turbulence dynamo is given in §4, the general properties of the weak turbulence
equations are discussed in § 5, and the exact spectral solutions are derived in § 6. We
conclude with a discussion in §7.

2. Rotating magnetohydrodynamics
2.1. Governing equations

The basic equations governing incompressible MHD under solid rotation and in the
presence of a uniform background magnetic field are

u

E+ZSZO><u—|—u-Vu:—VP*—i—bO-Vb—l—b-Vb—i—szu, 2.1
ab

E+u-Vb:bo.Vu+b.Vu+nv2b, (2.2)

V.u=0, (2.3)

V.b=0, (2.4)

where u is the velocity, P, is the total pressure (including the magnetic pressure and
the centrifugal term), b is the magnetic field normalized with respect to a velocity
(b — /1opo b, with py the constant density), by is the uniform normalized magnetic
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field, 2y is the rotation rate, v is the kinematic viscosity and 5 is the magnetic
diffusivity. The Coriolis force appears in the first equation (second term in the
left-hand side). Note that the magnetic field b, must be interpreted in the context
of planetary dynamos as an external dipolar field. Turbulence can be maintained
only if a source is added to balance the small-scale dissipation. For example, in the
geodynamo problem, we may think of the role of external forcing as being played
by the convection (since the Rayleigh number is approximately 10°) along with the
buoyancy force (Braginsky & Roberts 1995). In our case, we shall perform a purely
nonlinear analysis, so the source and dissipation terms will be discarded. The weak
turbulence equations that will be derived can describe, however, different magnetic
Prandtl limits since the (linear) dissipative terms can be added to the equations after
the nonlinear asymptotic analysis is performed (see the end of appendix C). In the
rest of the paper, we shall assume that

QQ = QOéH s bo = boé”, (25a,b)
with &, a unit vector (|¢;| =1). We introduce the magneto-inertial length d, defined
as

bo
=—. 2.6
2 (2.6)

This length scale will be useful for characterizing the main properties of rotating
MHD. A physical meaning of d can be obtained by taking the ratio between the
Lorentz—Laplace force and the Coriolis force, which gives, dimensionally,

U2y

=0T
2820 xu| ut

2.7)

with V. ~ 1/£. We see that d gives a scale of reference for measuring the
dimensionless number .# when b/u is known (and vice versa); thus, it is not
the value of d that is important but the ratio d/¢. For example, when d/¢ > 1
(MHD limit) an equipartition between the fluctuating kinetic and magnetic energies
is expected (u ~ b), which corresponds to .# > 1, whereas when d/¢ <« 1 a balance
between the Lorentz—Laplace and Coriolis forces (.# ~ 1) is expected, which means
that b > u.

2.2. Three-dimensional inviscid invariants

The two inviscid (v =1 =0) quadratic invariants of incompressible rotating MHD in
the presence of a background magnetic field parallel to the rotation axis are the total
energy,

E:i/mﬂm%wc (2.8)

1 a-b

where a is the vector potential (b =V x a) and ¥ is the volume over which the
average is taken. The second invariant is a mixture of cross-helicity, H* = (1/2) [(u -
b)d¥, and magnetic helicity, H" = (1/2) f (a -b)dY, which are not conserved in the

and the hybrid helicity,
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present situation (Matthaeus & Goldstein 1982). Indeed, it is straightforward to show
from (2.1)—(2.4) that (see also Shebalin 2006)

% = —/(vw2+ﬂj2)d“f/, (2.10)
dH* .

o = SZO-/(bxu)d“//—(v—i—n)/(]-w)d”//, (2.11)
a% = bo-/(bxu)d”f/—zn/(i-b)d“//, (2.12)

where w is the vorticity and j the normalized current density. Therefore, the above
equations demonstrate that a second invariant may emerge if and only if by = d$2,.
Below, we will verify that for the weak turbulence equations these two inviscid
invariants are conserved for each triad of wavevectors.

2.3. Helical MHD waves

One of the main effects induced by the Coriolis force is modification of the
polarization of the linearly polarized Alfvén waves (solutions of the standard MHD
equations), which become circularly polarized and dispersive (Lehnert 1954). Indeed,
if we linearize (2.1)—(2.4) such that

bx)=¢b(x), ulx)=culx), (2.13a,b)

with € being a small parameter (0 <€ <« 1) and x a three-dimensional displacement
vector, then we obtain the following inviscid (v =0) and ideal (» = 0) equations in
Fourier space:

8,wk —2ik||S20uk —ik”b()ik =€ {W -Vu—-u-Vw+b- VJ—_]' Vb}k, (214)

0by —ikybouy =€{b-Vu—u-Vby, (2.15)

k-u,=0, (2.16)

kb, =0, (2.17)

where the wavevector k is decomposed as k =ke, =k, + kje; (with k= k|, k, =k, |

and |é;] =1) and i* = —1. The index k denotes the Fourier transform, defined by the
relation

u(x) = / u(k) e** dk, (2.18)

where u(k) = u;, = e (with the same notation as used for the other fields). The
linear dispersion relation (¢ =0) reads

22k
a)2+< : ”) »— b} =0, (2.19)

Ak

T R
{I;k} =Aie X {I;k} (2.20)

We obtain the general solution

ky 2
o, = 1240 (—sA+ V1 +k2d2) , 2.21)

k

with

w
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FIGURE 1. Dispersion relation for rotating MHD permeated by a background magnetic
field in (a) linear and (b) logarithmic coordinates, with X = ke’ /(sk;$2)). In each panel the
upper and lower solid branches correspond, respectively, to left- and right-handed polarized
waves; the Alfvén wave dispersion relation is also shown (as a dotted line).

where the value (£1) of s defines the directional wave polarity such that we always
have sk; > 0; then ? is a positive-definite pulsation. The wave polarization A tells us
whether the wave is right (A =s) or left (A = —s) circularly polarized. In the former
case we are dealing with the magnetostrophic branch, whereas in the latter case we
are dealing with the inertial branch (see figure 1). We see that the transverse circularly
polarized waves are dispersive and that we recover the two well-known limits, i.e. the
pure inertial waves (o’ = 2s§20k;/k = w;) in the large-scale limit (kd — 0) and the
standard Alfvén waves (w = skjby = w,) in the small-scale limit (kd — 4-00). For
the pure magnetostrophic waves we find the pulsation, ! = skjkdby/2 = w3 /w; = wy.
The Alfvén waves become linearly polarized only when the Coriolis force vanishes;
when it is present, whatever its magnitude, the modified Alfvén waves are circularly
polarized. It is interesting to note that this property is also found in MHD when,
instead of the Coriolis term, the Hall term is added to the incompressible equations
(Sahraoui, Galtier & Belmont 2007).

2.4. Polarization

The polarizations s and A can be related to two well-known quantities, the reduced
magnetic helicity o™ and the reduced cross-helicity o¢. The reduced magnetic helicity
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is defined as
_ak-b;H—a,’ﬁ °bk
2]ai| |by|

m

o , (2.22)

where * denotes the complex conjugate. For circularly polarized waves, we can use

relation (2.20), which gives o” = A. On the other hand, the reduced cross-helicity is

defined as

_ uy - by +uj - by
2{ug | by

c

(2.23)

The linear solution implies wby = —s|k;|bouy, which leads to o¢= —s. The use of both
relations yields
"o =—As. (2.24)

This result is valid only for the linear solutions but may be generalized to any
fluctuations in order to derive the properties of helical turbulence (Meyrand & Galtier
2012).

2.5. Magnetostrophic equation

The governing equations of rotating MHD can also be written in the following form:

3
ait” =V x [ X (W +220) +] x (b +dRy)] + vV>w, (2.25)
ab
P V x [u x (b+by)] +nV?b, (2.26)

where the relation by = d€2, has been introduced. The magnetostrophic regime
corresponds to a balance between the Coriolis and Lorentz—Laplace forces (Finlay
2008). If we balance such terms in the linear case, we obtain the relation

ou=—dj. (2.27)
which can be substituted into (2.26) to give

%’; = —gv x [(V x b) x (b +by)] + nV?b. (2.28)
Expression (2.28) is the magnetostrophic equation which describes the nonlinear
evolution of the magnetic field when both the rotation and the uniform magnetic field
are relatively strong. It is asymptotically true in the sense that it corresponds only to
the lower part of the magnetostrophic branch shown in figure 1. We note immediately
its similarity to the electron MHD equation introduced in plasma physics (Kingsep,
Chukbar & Yankov 1990) to describe the small space—time evolution of a magnetized
plasma. The difference resides in the coefficient d/2, which is the ion skin depth d;
in electron MHD. It is then not surprising that the linear solution gives the same (up
to a factor of 1/2) dispersion relation as for whistler waves, which are also right
circularly polarized. We will see in §5.6 that in the large-scale right-polarization
limit the general weak turbulence equations indeed give the same equation (up to a
constant factor) as in the electron MHD case (Galtier & Bhattacharjee 2003).
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2.6. Complex helicity decomposition

Given the incompressibility constraints (2.16) and (2.17), it is convenient to project
the rotating MHD equations in a plane orthogonal to k. We will use the complex
helicity decomposition technique, which has been shown to be effective in providing
a compact description of the dynamics of three-dimensional incompressible fluids
(Craya 1954; Kraichnan 1973; Waleffe 1992; Lesieur 1997; Turner 2000; Galtier
2003, 2006b). The complex helicity basis is also particularly useful because it allows
us to diagonalize systems dealing with circularly polarized waves. We introduce the
complex helicity decomposition

h* (k) = h} =&, +iAé,, (2.29)

where o
N N N N €| X e
€y =€y X €, €p=——"7, (2.30)

|eH X ek|

with [&(k)| = |ée (k)| = 1. We note that (¢, hy, h;) form a complex basis with the
following properties:

h*=ht,, (2.31)
ér x b} =—iAh}, (2.32)
k-h!=0, (2.33)
R Ry =268_4. (2.34)

We project the Fourier transform of the original vectors u(x) and b(x) onto the helicity
basis (see also appendix B):

we =Y Un()hi=>_ Urh, (2.35)
A A
b = > Buloht=>" Bih. (2.36)
A A
In particular, we note that
wi = k> AUk, (2.37)
A
Jo = kY ABAR. (2.38)
A

We substitute the expressions for the new fields into the rotating MHD equations
written in Fourier space and multiply by the vector h”,. First, we focus on the linear
dispersion relation (e =0), which reads

02 = —iw', 2, (2.39)

with
B = Uy + 8B, (2.40)
£ = —skd (2.41)

4T A+ T+ R
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Equation (2.39) shows that the 2} are the canonical variables for our system. These
eigenvectors combine the velocity and the magnetic field in a non-trivial way through
a factor &) (with ', = —bok;/&)). In the small-scale limit (kd — +00), we see that
&), — —s; the Elsidsser variables used in standard MHD are then recovered. In the
large-scale limit (kd — 0) we have & — —skd/2 for A = —s (inertial waves), or
& — (—2s/kd)~' for A =s (magnetostrophic waves). Therefore, 2 1 can be seen as
a generalization of the Elsdsser variables to rotating MHD. In the rest of the paper,
we shall use the relation

Zy=(&, — &) al e, (2.42)

where @’ is the wave amplitude in the interaction representation for which we have,
in the linear approximation, d,a’, =0. In particular, this means that weak nonlinearities
will modify the helical MHD wave amplitudes only slowly in time. The coefficient in
front of the wave amplitude is introduced in advance to simplify the algebra that we
are going to develop.

3. Helical weak turbulence formalism
3.1. Fundamental equations

We decompose the inviscid nonlinear MHD equations (2.14) and (2.15) using the
complex helicity basis introduced in the previous section. Then, we project the
equations onto the vector h’_‘k. After simpliﬁcations we obtain

21A 820k .
it~ =S i B = 5 [ 5 00— a0, = 0,5
X (q - B) B 1) 8,0 dp dg G.1)
and
. ie _
8~ bk U = / SO U, B, — Un, Ba) @ B2 B 1) 8, dp dg, (32)
Ap, Ag

where 8, =8 + q — k). The delta distributions come from the Fourier transforms
of the nonlinear terms. We introduce the generalized Elsédsser variables as follows:

Uy = Z —Sa - e (3.3)
Ey— 6
gs
Br = A (3.4)
— =&,
Then, in the interaction representation (the variable a’,) we have
AApAy .
da', = — / > L b a}’ ay e ks, dpdg, (3.5)
ol
where
Lli?:‘::q — pA” — qA‘f S_Sps_sq -1 +§s S_SP . g_—‘fq (q 'h;p) (h;q °hllci)
kpg Ak A >4 SN e &y — &4
(3.6)
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FIGURE 2. Local decomposition for a given wavevector p.

and
Rpgr =4, + 04 — Y. (3.7)

Equation (3.5) is the wave amplitude equation, from which it is possible to extract
some information. As expected, we see that the nonlinear terms are of order €. This
means that weak nonlinearities will modify only slowly in time the helical MHD wave
amplitude. They contain an exponentially oscillating term which is essential for the
asymptotic closure. Indeed, weak turbulence deals with variations of spectral densities
at very large times, i.e. for a nonlinear transfer time much greater than the wave
period; in other words, we assume a time scale separation between the fast oscillations
of the waves due to the phase variations in the exponential and slow variations of the
wave amplitudes. As a consequence, most of the nonlinear terms are destroyed and
only a few of them, namely the resonance terms (for which £2,,, =0), survive (see
e.g. Newell, Nazarenko & Biven 2001). The expression obtained for the fundamental
equation (3.5) is classical in weak turbulence. The main difference between different
problems is localized in the matrix L, which is interpreted as a complex geometric
coefficient. We will see below that the local decomposition allows us to obtain a polar
form for such a coefficient, which is much easier to manipulate. From (3.5) we see
that, in contrast to incompressible MHD, there is no exact solution to the nonlinear
problem in incompressible rotating MHD. This difference arises from the fact that in
MHD the nonlinear term involves Alfvén waves travelling only in opposite directions,
whereas in rotating MHD this constraint does not exist (we have a summation over
A and s). In other words, if one type of wave is not present in incompressible MHD,
then the nonlinear term cancels, whereas in the present problem this is not the case
(see e.g. Galtier et al. 2000).

3.2. Local decomposition

In order to evaluate the scalar products of complex helical vectors found in the
geometric coefficient (3.6), it is convenient to introduce a vector basis local to each
particular triad (Waleffe 1992; Turner 2000; Galtier 2003). For example, for a given
vector p, we define the orthonormal basis vectors

~ (1) N

0 (p)=n, (3.8)
0”7 (p)=é, x i, (3.9)

~ (3) N

0 (p)=e, (3.10)
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where €, =p/|p| and

pxk gxp kxgq

— = . (3.11)
Ip <kl |gxp| |kxgq|

n=

We see that the vector 72 is normal to any vector of the triad (k P, q) and changes sign
if p and ¢ are 1nterchanged ie. n(kq = —n(k .- Note that 7z does not change under
cyclic permutation, i.e. g gy =Rgpr =NMprqg- A sketch of the local decomposition
is given in figure 2. We now introduce the vectors

. . A (1) ERPNC)
gh(p)=Er=0 (p)+i4,0" (p) (3.12)
and define the rotation angle @, so that

e (p), (3.13)
-0 (p). (3.14)

>

cos @,

-

sin®, =

The decomposition of the helicity vector hlfl’ in the local basis gives (with similar
forms obtained for k and q)

hr = E4 M, (3.15)

p P

After some algebra we obtain the following polar form for the matrix L:

AdpA,
SSpSq pA[’ B qu —5Sp ¢ =8¢ 5 —Sp —sq
i = (P (e ) e (s

1(ADp+ApPp+AqPg) M sin Wk
Ex—&0 Kk
The angle v refers to the angle opposite k in the triangle defined by k =p + ¢

(siny, =n-(q x p)/|(g x p)]). To obtain (3.16), we have also used the well-known
triangle relations

X ie kg (AA,+cos ). (3.16)

siny _ siny,  sinyy,
k p q
Further modifications are needed before we can apply the spectral formalism. In

particular, the fundamental equation has to be invariant under interchange of p and gq.
To ensure this, we introduce the symmetrized matrix

(3.17)

1 AN, Ay AAgAp
o) o

Finally, by using the identities given in appendix A, we obtain

ed? %-qu SASP ANy A '
=S [ S e M e S dpdg, (19

Ap.Ag
SpSq
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where
A</<\'){‘q AP+ A, ®p+A,Py) sin Y Sp &S
M S0 = AN EEALD (A A+ Ag)kpg ENET E
kpq k
—S\2 (& TP\2 (& 5a\2 —5\2 —Sp\2 —Sq\2
x (24 6PN E = (6207 = (647 = E27) . (3:20)

The matrix M possesses the following properties:

AAp Ay * —A—=Apy—Ay A Ay Ag
M S5 =M %%« =M S Sp Sq , (321)

kpq kpgq ~k—p—gq
Ady A, AAGAy

M S Sp Sq — —M §8q Sp , (322)
kpgq kqp
AN, A AgApA

M SSp Sq — _M SqSp S s (323)
kpq qpk
ANy A, ApAdy

M SSp Sq — _M Sp $8q . (324)
kpq pkq

Equation (3.19) is the fundamental equation that describes the slow evolution of the
wave amplitudes due to the nonlinear terms of the incompressible rotating MHD
equations. It is the starting point for deriving the weak turbulence equations. The
local decomposition used here allows us to represent complex information concisely
in an exponential function (polar form). As we will see below, this representation
simplifies significantly the derivation of the asymptotic equations.

From (3.19), we note that the nonlinear coupling between helicity states associated
with the wavevectors p and ¢ vanishes when the wavevectors are collinear (because
then sin ¥, =0). This property is similar to one found for pure rotating hydrodynamics.
It seems to be a general property of helical waves (Kraichnan 1973; Waleffe 1992;
Turner 2000; Galtier 2003, 2006b). Additionally, we note that the nonlinear coupling
between helicity states vanishes whenever the wavenumbers p and g are equal, if their
associated wave and directional polarities (A,, A, and s,, s,, respectively) are also
equal. In the case of inertial waves, for which we have A = —s (left-handed waves),
this property was already observed (Galtier 2003). Here, this finding is generalized to
right and left circularly polarized waves. Note that in the large-scale limit for which
we recover the linearly polarized Alfvén waves, this property tends to disappear (see
also §5.4).

We are interested in the long-time behaviour of the helical wave amplitudes. From
the fundamental equation (3.19), we see that the nonlinear wave coupling will come
from resonant terms such that

k=p+q.
ko a (3.25)
£ & Ex

The resonance condition may also be written as

&' =y G &8 326
q) P ky
As we shall see below, relations (3.26) are useful in simplifying the weak turbulence
equations and demonstrating the conservation of inviscid invariants.
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3.3. Asymptotic weak turbulence equations

Weak turbulence is a state of a system composed of many simultaneously excited and
interacting nonlinear waves where the energy distribution, far from thermodynamic
equilibrium (Zakharov et al. 1992), is characterized by a wide power-law spectrum.
This range of wavenumbers — the inertial range — is generally localized between
large scales at which energy is injected into the system and small dissipative scales.
The origin of weak turbulence dates back to the early 1960s, and since then many
papers have been devoted to the subject (see e.g. Hasselmann 1962; Benney &
Saffman 1966; Zakharov 1967; Sagdeev & Galeev 1969; Kuznetsov 1972; Zakharov
et al. 1992; Galtier 2009b; Nazarenko 2011). The essence of weak turbulence is
the statistical study of large ensembles of weakly interacting dispersive waves via a
systematic asymptotic expansion in powers of the small nonlinearity. This technique
leads to the derivation of kinetic equations for quantities such as the energy and,
more generally, the (quadratic) invariants of the system under investigation. Here, we
will follow the standard Eulerian formalism of weak turbulence (see e.g. Benney &
Newell 1969).
We define the density tensor g’ (k) for a homogeneous turbulence, such that

(@) (k) @ty (k) = @}y (k) Sk + k') 800 B, (3.27)

for which we shall write an asymptotic closure equation. The presence of the deltas
44 and 8,y means that correlations with opposite wave or directional polarities have
no long-time influence in the wave turbulence regime; the third delta distribution
8(k + k') is a consequence of the homogeneity assumption. Details of the derivation
of the weak turbulence equations (which include the dissipative terms) are given in
appendix C. After a lengthy calculation, we obtain the following result:

244 : 2 s .
0, = oo / 3 (Smkl”"> R (Ak+ Ap+ AP ED €L ED?
0 Ap-Ag

Sq Sp 2
(’EA" a ) (24 €2 EPE = €07 — € = €0

(S )2) 9, k) 4 (p) 44, (@)

jxpp Wy,
T & U+ &L @ 1+ E) (,,)]
X 8(82k pq) Sk.pg dp dg. (3.28)

Equation (3.28) is the main result of the helical weak turbulence formalism. It
describes the statistical properties of weak turbulence for rotating MHD at the lowest
order, i.e. for three-wave interactions.

4. Phenomenology of the weak turbulence dynamo

Before going into the detailed analysis of the weak turbulence regime, it is
important to have a simple picture in mind of the physical process that we are
going to describe. According to the properties given in § 3.2, if we assume that the
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FIGURE 3. (a) Collision between counterpropagating circularly polarized waves.
(b) Heuristic view of the magnetic energy and hybrid helicity spectra with a forcing
applied at an intermediate scale k;d < 1; the inverse cascade of helicity can drive the
energy to the largest scales of the system. We do not consider the case where the inertial
ranges satisfy the condition k,d > 1, which corresponds to pure weak Alfvén wave
turbulence.

nonlinear transfer is mainly driven by local interactions (k ~ p ~ g), then we can
consider only stochastic collisions between counterpropagating waves (Iroshnikov
1964; Kraichnan 1965) of the same kind to derive the form of the energy spectra
(see figure 3); in other words, a left-handed (respectively, right-handed) wave going
upward will interact much more strongly with another left-handed (respectively,
right-handed) wave propagating downward than with one going upward.

To find the transfer time and then the energy spectrum, we first need to evaluate
the modification of a wave produced by one collision. Starting from the momentum
equation (for simplicity we write the wave amplitude as %, and assume anisotropy
with k~ k), we have

02 27
Zit+m) ~ L)+~ L0+ 1 (@.1)
L

where T, is the duration of one collision; in other words, after one collision the
distortion of a wave is A{ %, ~ 1, EZ?/E 1. This distortion is going to increase with
time in such a way that after N stochastic collisions the cumulative effect may be
evaluated like a random walk:

N

[t
ZA,Q’}NQ—[,/—. (4.2)
e £y T

The transfer time, t,, that we are looking for is the time for which the cumulative
distortion is of order 1, i.e. of the order of the wave itself:

¥ [T
F o~ ot [ 43)
EJ_ T1

16 o
Ty~ — kL 4.4
t T %2 7 ( )

Then we obtain
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This is basically the formula that we are going to use to evaluate the energy spectra.
Let us consider inertial waves for which 7; ~ 1/w;. A classical calculation, with & ~
%7 /7, leads finally to the bi-dimensional axisymmetric kinetic energy spectrum

E“(ky, ky) ~ /e 20 kK 12, (4.5)

which is the prediction for weak inertial wave turbulence (Galtier 2003). Note that this
solution corresponds to a constant kinetic energy flux ", whereas a constant kinetic
helicity flux may give other solutions (Galtier 2014). For magnetostrophic waves we
have t; ~ 1/wy, but a subtlety arises because, instead of the momentum equation, we
now use (2.28) for which the nonlinear term leads to oy, ~ €2 /(d 7). Then, we obtain
the bi-dimensional axisymmetric magnetic energy spectrum

o
E*(ky, ky) ~ ,/870 I (4.6)

which corresponds to a constant magnetic energy flux &” solution.

The same heuristic analysis can be done for the other invariant, the hybrid helicity.
Let us consider the most interesting case, namely the magnetostrophic regime in which
the hybrid helicity is dominated by the magnetic helicity (with kd < 1). By using the
transfer time derived above (with the helicity flux € ~ H,/t,), we find that

m Eby 3. _ip

H(kJ_,kH)’\’H (kJ_,kH)’\’ ?kj_ kH . (47)
An inverse cascade may occur for the hybrid helicity (see figure 3), which in turn
can drive the magnetic energy at the largest scales of the system. It is through this
mechanism that the large-scale magnetic field can be regenerated by the weak
turbulence dynamo. It is important to keep in mind that this cascade happens
because the hybrid helicity is an inviscid and ideal invariant (in turbulence a cascade
mechanism can only happen for the inviscid invariants of a fluid; see Frisch 1995) of
rotating MHD; for example, without rotation an inverse cascade of magnetic helicity
is impossible in weak incompressible MHD turbulence (Galtier & Nazarenko 2008),
and in pure three-dimensional incompressible hydrodynamics the cascade mechanism
applies only to the kinetic energy and the kinetic helicity, which are both inviscid
invariants. In other words, the inverse cascade should stop as soon as the mean
magnetic field and the rotation rate are not collinear anymore (see also the discussion
about the inviscid invariants in §2.2). It is likely, however, that the inverse cascade
is only weakly reduced when the mean magnetic field and the rotation rate become
slightly out of alignment (weak tilt case) and is completely inhibited in the strong
tilt case (because the hybrid helicity is still roughly conserved in the former case but
clearly not conserved in the latter case). This comment might explain why planetary
magnetic fields are often dipolar with a weak tilt (<10°) of the dipole relative to
the rotation axis. We recall that in our approach the uniform magnetic field by
can be interpreted as the dipolar external magnetic field of a planet that we need
to regenerate by a dynamo process. Also, the inverse cascade at a planetary scale
would correspond to the successive nonlinear excitation of magnetic modes whose
wavelengths increase with the cascade to finally reach the wavelength of the dipolar
magnetic field. This scenario seems to be acceptable for planets like Earth, Jupiter
or Saturn, but not for Uranus and Neptune, where a large angle exists between the
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rotation axis and the large-scale magnetic field, which is not a dipole. The origin
of this difference is still unclear but could be attributed to the internal geometry of
Uranus and Neptune, which is likely to be more complex than that of the other three
planets (Stanley & Bloxham 2006). In particular, if the MHD fluid is confined to a
thin layer instead of a thick layer, then the homogeneity assumption and therefore the
present theory become less relevant. As we shall see, the increase of the magnetic
field at large scales can lead to a state where the ratio between the magnetic and
kinetic energies is significantly greater than 1. This situation is very different from
the pure MHD case (i.e. without the Coriolis force), where an equipartition is found
in the weak turbulence regime (Galtier et al. 2000).

5. General properties

In this section we present the general properties of the weak turbulence equations
(3.28). We also write the simplified form of (3.28) in the three relevant limits of
Alfvén, inertial and magnetostrophic waves in order to demonstrate the compatibility
with previous works. This last point is particularly important as the derivation is long
and non-trivial; also, it can be seen as a verification or check of the calculation.

5.1. Basic turbulent spectra

In §2.2 we introduced the three-dimensional inviscid invariants of incompressible
rotating MHD. The first test that the weak turbulence equations have to pass is the
detailed conservation of these invariants, that is to say, the conservation of invariants
for each triad (k, p, g). Starting from the definitions (2.8) and (2.9), we find the total
energy spectrum

ER)=> 1+ EN g0 =) &), (5.1)
A,s A,s

which is composed of the magnetic spectrum,

Bt =) q,k). (52)
As
and the kinetic spectrum,
E'(k)=> (") qy(K). (5.3)
A,s

We also find the cross-helicity spectrum

HU)y=—>_ & q,(k) (5.4)
A,s
and the magnetic helicity spectrum

A
H' ()= - q, (). (5.5)

A,s
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Note that each of these spectra may be decomposed into right (A =s) and left (A =
—s) polarization spectra. From the last two expressions we find the second inviscid
invariant, the hybrid helicity spectrum

HOEDY <5A I ) @,k =) ;). (5.6)
As

A,s

Below we shall demonstrate conservation of the energy and the hybrid helicity.

5.2. Triadic conservation of inviscid invariants

We will first check the energy conservation. From expression (3.28) we may write

dE(t) = 9, / E(k) dk = 9, / D &tk dk
A,s

nerd sin ¥\ s
= / > (,f) Rpq(Ak+ A+ A, 9) (61 €0 &)
0 A Ap. A

$.5p.sq

s s\ 2

= 3 y =S, N —S 2

x (5% . t ) (2 P E 6N = € = € = E?)
I

w’ n a)ilpp " sq

Ealk) &4 (p)

x q,(k)q} (p) 45 (@) &

] (‘Qkpq) ‘Skpq dk dp dq

(5.7)

éasq()

This equation describes the time variation of the total energy of the system in the
inviscid case. As this quantity is an inviscid invariant, we expect to get no variation
in time. Equation (5.7) is invariant under cyclic permutations of wavevectors; it leads
to

TT 62 d4 sin K/f 2 ) Sp K
UEWD = 1o5p7 / > (,j) Kp*q* (Ak+ App + 4,9)(E1)* (5 ) (EA)°
0 A, Ap,Ag

$.5p.sq

5 g\ 2
x <§Ak§A> (24 @ E EY — 6 — 0 - E)
I

® Gt (P 6@ Dy | o Dy O

X q { 4+ ="+ —

R P G AT )

% 8(2ipg) S1pg Ak dp dg. (5.8)

As we can see, with the presence of delta functions, we must consider the case
where £2;,, =0, which corresponds (using the relation k +p +¢ =0) to the resonance
condition (see also the discussion in §3.1). Since the equation depends linearly
on £24,,, the total energy is conserved exactly for each triad: we have detailed
conservation of the total energy.
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For the second invariant, it is straightforward to show using relation (A 3) that

8,/H(k)dk58,/zjf/f(k)dk
el dt
T 64n / 2

A Ap,Ag
rrp Sq

0.H ()

(Slnlﬁk) 'S 2612(/1k+APP“‘AqQ) (%_A) (%_Ap) (SA‘I)Z

s o 2
é q_s ! -, —S, — -, - 2
x <k> (24 2 EPE — € = € - €0

Sp S &) A, 28 e 25/?, " 28 /qu wi[xl
XQ(k)q’()Q’() : (e S
A P [%’ﬁ(k) Ay (p) | A

X S(Qkpq) (Skpq dde d‘I (59)

Equation (5.9) describes the time variation of the hybrid helicity of the system in
the inviscid case. Since it is an inviscid invariant, we expect no time variation. This
equation is also invariant under cyclic permutations of wavevectors. Then, one is led
to

2d4 s
OH() = T / S <S“””") Rpq (Ak+ Ayp + Ag) (€ €4 E )

AAp Aq

—s0 =5\ 2 ,
x (g 3 E) (24 €@ € — €2 — € — €7

x q,(k) q,1,(p) 44, (@ Ky +p; +4q))

ky i q)
+ — + —
Sk Ay (p) A, (@) ]
e S(Qkpq) (Skpqdkdpdq, (5.10)

which is exactly equal to zero because of the resonance condition and cancellation of
the term k; + p; + ¢;. Thus, we have the triadic conservation of the hybrid helicity.

5.3. Helical properties

From the weak turbulence equations (3.28), we deduce several general properties.
Some of them can be obtained directly from the wave amplitude equation (3.19), as
explained in § 3.2. First, we observe that there is no coupling between helical waves
associated with wavevectors p and ¢ when the wavevectors are collinear (sin ¥, =0),
which means that this type of wave interaction does not contribute to the (direct
or inverse) cascade mechanism. Second, we note that there is no coupling between
helical waves associated with vectors p and ¢ whenever their magnitudes p and
g are equal, if their associated polarities, s, and s, on the one hand and A, and

A, on the other, are also equal (since then SX:‘I — &, = 0). Physically, this means
that the strongly local interactions between two hehcal waves of the same kind
cannot contribute significantly to the cascade. In particular, if we excite a wavepacket,
the cascade mechanism will be triggered by non-local self-interactions. This property
holds for the inviscid invariants and generalizes what was found previously for rotating
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hydrodynamics (Galtier 2003), where one only has left circularly polarized waves
(A =—s). It seems to be a generic property of helical wave interactions (Kraichnan
1973; Waleffe 1992; Turner 2000). As noted before, this property tends to disappear
when the large-scale limit is taken, i.e. when we tend to the standard MHD. Third,
it follows from the previous observations that a strong helical perturbation localized
initially in a narrow band of wavenumbers will lead to a weak transfer of total energy
and hybrid helicities. Note that these properties can be inferred from the fundamental
equation (3.19) as well.

5.4. Small-scale dynamics: Alfvén waves

We start with the general weak turbulence equation (3.28) and take the small-scale
limit (kd — 400), for which we have, at leading order,

§r—> =, (5.11)
(st,, 5751’) — (55— 5p)% (5.12)
2
(2 + (S;Y)Z(S/:,‘jp)z(glzjq)z — (é‘;y)z _ (é;ﬁ*ﬁ)Z . (S/::q)z)
16 (sAk +5,A,p + quqq) 2

5.13
T kpq (>-13)
Cl)i\ d Sk”b() = 4. (514)

After substituting the above expressions into (3.28), we obtain

sin vy —5p 2
16b0/AZA:( > (Ak+ 4y Ay ( ki )

v[’ T(1

2 s S, S,
X (sAk+s,4,p +5,A49)" skyqy (k) g5 (p) G.1, ()

8ij1 (k) =

sky SpP| 849
ol - = - — 3(sky — s,py — S4q) Sx.pg dp dgq. (5.15)
[qA & qi(p ail| T

This equation tells us that we only have a nonlinear contribution when the wave
polarities s, and s, are different. We recover here a well-known property of
incompressible MHD: the nonlinear interactions are only due to counterpropagating
Alfvén waves. This remark leads eventually to the following simplified form:

0400 = 7+ / > (Sm m) (Ak+ A+ A,0)" (Ak— A+ Agq)”

Ap,Agq k
X q,(p) [qi,, @ —q, (k)} 8(py) Sk pg dp dg. (5.16)

This result is exactly the same as in Galtier (20060) (see in particular appendix D),
where the MHD limit was discussed in the more general context of Hall MHD (the
difference of a factor of 8 disappears after renormalization of the density tensor
q’,(k)). Note that the comparison with Galtier et al. (2000) is not direct since the
complex helicity basis was not used. The presence of §(p;) is due to the three-wave
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frequency resonance condition. This means that in any triadic resonant interaction,
there is always one wave that corresponds to a purely two-dimensional motion
(py = 0), whereas the other two have equal parallel components (p; = k;). In other
words, there is no nonlinear transfer along by, and a cascade happens only in the
perpendicular direction.

5.5. Large-scale dynamics: inertial waves

We consider the large-scale (kd — 0) limit of (3.28) for left-handed (A = —s)
fluctuations. Then, at leading order we have

gie—ﬁ, (5.17)
s . ) 64\’
(2+ EPEPE = 60— €7 - 6) - <W> . (5.18)
290SkH
Wl — % = wj. (5.19)

After substituting the preceding expressions into (3.28), we obtain

) sin ), (Ayqg — Ap)? Ko,

k
_ . Roz®  Po,” o,
_A A A A Ap Ay
xq,"(k)q,,"(P)qa," (@) - - —
! o0 0. g @
X 8(2kpg) Sk pg dp dg. (5.20)

This result is exactly the same as in Galtier (2003), provided that the density tensor
is correctly renormalized.

5.6. Large-scale dynamics: magnetostrophic waves

The last limit that we shall consider is the large-scale (kd — 0) limit for right-handed
(A = s) fluctuations. This limit is the most interesting one in the context of the
magnetostrophic dynamo, because it describes the slow dynamics of the magnetic
field which includes, as will be shown later, a direct and an inverse cascade. We
have, at leading order,

2s

& — %’ (5.21)
‘ RN
2+ EPEPE — @ - @ - ) —4 (52
Sk”kdb()
- ——— =wy. (5.23)

After substituting the preceding expressions into (3.28), we obtain

d,q, k) = bz /Z (Smkwk> (Ak+ Anp-+ A0)" (Arp = Asa) %
i

Ap.Ag
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A Ay Ay
A Ap A Wy Wy, Wy,
X qy (k) g, (P, (q) - -
AT @ g p) g (@)
X 8(2% pg) Skpg dp dg. (5.24)

This system has never been analysed before; however, it is similar to the electron
MHD case (Galtier & Bhattacharjee 2003). It is thought that this regime is relevant to
describing solar wind turbulence at the sub-ion scale (Galtier 20090); the observations
and theoretical developments made in that context may also be useful in investigating
the magnetostrophic regime, as they can be a source of inspiration. For example, it is
interesting to mention that the existence of an inverse cascade of magnetic helicity in
electron MHD has been proved numerically (Cho 2011).

6. Exact solutions for the turbulent spectra

We shall derive the exact solutions of the weak turbulence equations in three
different limits: the large- and small-wavenumber limits, with in the latter case a
distinction between right and left polarizations. To do so, we need to write the
expression of the spectral density g (k) in terms of explicit quantities such as the
kinetic and magnetic energies and the cross- and magnetic helicities. We invert the
system (E“, E°, H°, H")(q,) and obtain

1
2[(51)% — (64°)7]
x [(€)°E" (k) — E"(k) + (& + §,)H (k) + A{(€))* — kH" ()] . (6.1)

Substitution of expression (6.1) into (3.28) leads to weak turbulence equations for
E*, E*, H° and H™. However, since we are only interested in the three asymptotic
limits (of Alfvén, inertial and magnetostrophic wave turbulence) for which we are
able to derive the solutions, we may simplify the problem by taking the asymptotic
values of the coefficients £} (see §5). Note that for simplicity we will not consider
interactions between left and right polarized waves in the large-scale (kd <« 1) limit.
We may suppose that these interactions are negligible anyway because of their
different nonlinear time scales.

q, (k) =

6.1. Solutions for Alfvén wave turbulence

The small-scale limit of Alfvén wave turbulence is very well known and has been
analysed in detail by Galtier et al. (2000). For application to the dynamo it is not
the most relevant limit, since the magnetic energy is expected to accumulate at the
largest scales of the system. Therefore, we will not give details about this regime but
only recall the main properties. In the small-scale limit (kd — 4-o0), for which terms
like (¢,°)% tend to 1, an equipartition between the kinetic and magnetic energies is
obtained and their dynamical equations tend to be identical. If we neglect the helicity
contributions, the equation for the total energy gets reduced (see the derivation given
in Galtier (2006b), where the helicity decomposition is used), and it is then possible
to demonstrate that the axisymmetric bi-dimensional total energy spectrum follows the
universal solution

E(ky, ky) ~k*f(k), (6.2)

where f is an arbitrary function which traduces the dynamical decoupling of parallel
planes in Fourier space. In other words, in Alfvén wave turbulence the cascade
towards small scales happens only in the perpendicular direction. This regime with
its predictions has been observed in direct numerical simulations (Bigot, Galtier &
Politano 2008; Perez & Boldyrev 2008; Bigot & Galtier 2011).
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6.2. Solutions for inertial wave turbulence

When the large-scale limit (kd — 0) is taken with only the left polarization retained,
one arrives at the inertial wave turbulence regime, which was derived analytically
by Galtier (2003) and studied numerically by Bellet et al. (2006). Since &% — O,
we see immediately from relation (6.1) that the magnetic energy becomes negligible
compared to the kinetic energy: in other words, the magnetic and kinetic energies
with a left polarization are decoupled. Additionally, a simple analysis of (5.20) allows
us to conclude that this turbulence becomes anisotropic. Indeed, if we assume that
the nonlinear transfer is mainly the result of local interactions (in hydrodynamic
turbulence, it is believed that the cascade mechanism is mainly due to local
interactions: an eddy of a given size interacts mainly with eddies of slightly larger
or smaller size; also, it is reasonable to start with the local interaction assumption
in order to simplify the analysis, i.e. with equilateral triads k& ~ p =~ ¢), then the
resonance condition (3.26) simplifies to

Sp= 8 Sp=8q S5

) (6.3)
SSpq) SpSqky SSgp)

From (5.20), we see that only the interactions between two waves (p and q) with
opposite polarities (s = s, = —s, or s = —s, = §5,, with s = —A) will contribute
significantly to the nonlinear dynamics. This implies that either g, ~ 0 or p; ~ 0,
which means that only a small transfer is allowed along $2,. In other words, the
local nonlinear interactions lead to anisotropic turbulence, where small scales are
preferentially generated perpendicularly to the external rotation axis. The anisotropy
of the flow has been clearly observed experimentally in rotating hydrodynamics with
different apparatus (Jacquin et al. 1990; Baroud et al. 2002; Morize et al. 2005;
van Bokhoven et al. 2009). Note that this approximation is particularly well verified
initially if the turbulence is mainly excited in a limited band of scales; then, by nature
the nonlinear interactions will be local and will produce anisotropy. In the Earth’s
dynamo, with the forcing being due to convection, we would think that the range of
excited scales is relatively limited (see figure 4). Then, this nonlinear mechanism of
anisotropy production should operate. This short analysis allows us to consider the
anisotropic limit of (5.20) for which k; > k;. We obtain the following equations:

3 (E Q%2 k gL — 2
{ k} - Z/ - IISppH (squ S,Ju) (SkJ_+SppJ_+SqQJ_)2 sin 6,

ot ki piqi Wy
9 { E,(p.Ex—k, E,))+ (pisHy/k, —kis,H,/p.)s,H,/q. }

sk [E,(pisH/k, —kis,H,/p.) + (p1Ex — k. E,)s,H,/q.]
X 8(swy + spw, + s,04) 8(ky + py + q;) dp. dg, dp; dgy, (6.4)

YYY

where E, = E“(ky, k) and H, = H"(k,, k;) are the axisymmetric bi-dimensional
kinetic energy and kinetic helicity spectra, respectively, 6, is the angle between the
perpendicular wavevectors k; and p, in the triangle formed with (k,, p,, ¢,) and
wy =282k, /k,. In (6.4), the integration over perpendicular wavenumbers is such that
the triangular relation k; +p, + ¢, =0 must be satisfied. The exact solutions of (6.4)
were derived initially for a positive and constant kinetic energy flux (Galtier 2003);
they read

Ep ~ k72, (6.5)
Hy ~ k7712 (6.6)
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FIGURE 4. Magnetic energy spectrum with a (e.g. convective) forcing applied in
a range of intermediate scales k;, in (a) the pure magnetostrophic regime, (b) the
magnetostrophic—Alfvén regime and (c¢) the pure Alfvén regime. In practice, the inertial
ranges are limited by the largest scale of the system, k, (e.g. the size of the outer core),
and the dissipative scale, k, (e.g. the magnetic one). In (a), while the direct energy cascade
gives a unique scaling, the inverse helicity cascade may lead to a family of solutions
confined between k;” and k7°, due to the entanglement of the helicity and energy. In (b),
the same is expected, except for the smallest scales where we observe a transition from
the magnetostrophic regime to the Alfvén regime with a change of slope. In the pure
Alfvén regime of (c) we only have a direct cascade of energy and helicity, which does
not allow a dynamo.

In a situation where the turbulence is dominated by a (forward) helicity flux, it
is necessary to consider the equation for the kinetic helicity to derive the other
exact power-law solutions. If we seek stationary solutions in the power-law form
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E; ~ k" |ky|™ and H; ~ k" |k;|™, then the constant helicity flux solutions are more
general and read (Galtier 2014)

nti o= —4, (6.7)
m+i = —1. (6.8)

These solutions correspond to a positive helicity flux and thus a direct cascade. The
cascade along the rotation axis being strongly reduced, the most important scaling
law is therefore the one for the perpendicular wavenumbers. It is remarkable to see
that the exact solution (6.7) corresponds to the empirical law observed in many direct
numerical simulations where the helicity transfer dominates the energy transfer (see
e.g. Mininni & Pouquet 2009; Mininni et al. 2012). The domain of validity of this
family of solutions is given by

—3<n+m< -2, (6.9)
—2<n+m<—1. (6.10)

The power-law indices are exact solutions of the weak turbulence equations only if
the inequalities are satisfied: power-law spectra that do not satisfy the inequalities still
describe weak turbulence in principle, but they cannot be produced by the system.
The spectral solutions of the inertial wave turbulence regime are at the borderline
of the domain of convergence. However, since the problem is strongly anisotropic
and the inertial range in the parallel direction is strongly reduced with a cascade
almost only in the perpendicular direction, we may neglect the inertial range in the
parallel direction, which is equivalent to saying that m = m = 0. Then, we obtain a
classical result of weak turbulence in the sense that the power-law indices of the exact
solutions (6.5) and (6.6) fall exactly in the middle of the domains of locality, (6.9) and
(6.10). In conclusion, we see that the turbulent spectra do not correspond necessarily
to the so-called maximal helicity state, which is a particular solution of the Schwarz
inequality H(k) <kE(k) (here we consider directly the weak turbulence limit for which
the polarization term, as in Cambon & Jacquin 1989, does not contribute) and for
which n =#n — 1 = —5/2. As the helicity transfer increases, the power-law indices n
and n get closer. The condition of locality gives, however, a limit to this convergence,
namely n=n=—2.

6.3. Solutions for magnetostrophic wave turbulence

The large-scale limit (kd — 0) of expression (3.28) can lead to the magnetostrophic
wave turbulence equations if only the right polarization is retained. Under this limit,
the kinetic energy becomes negligible compared to the magnetic energy; in other
words, the magnetic and kinetic energies with a right polarization are decoupled. As
for inertial wave turbulence, we may show from (5.20) that this turbulence becomes
naturally anisotropic. Indeed, if we consider that the nonlinear transfer is mainly due
to local interactions (k= p & q), the resonance condition (3.26) simplifies to

Sp—8 _Sp—58q 55

(6.11)
qj ky P

From (5.24), we see that only the interactions between two waves p and g with
opposite polarities (s = s, = —s, or s = —s, = 5, with s = A) will contribute
significantly to the nonlinear dynamics. This implies that either g, ~ 0 or p; ~ 0,
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which means that only a small transfer is allowed along $2,. As for inertial wave
turbulence, (i) the local nonlinear interactions lead to anisotropic turbulence where the
cascade is preferentially generated perpendicularly to the external rotation axis, and
(ii) the approximation is particularly well verified initially if the turbulence is mainly
excited in a limited band of scales, as then by nature the nonlinear interactions will
be local. From this discussion, it seems relevant to take the anisotropic limit (k; > k)
of (5.24), which gives

Ei e’d spprkipy (s0q0— 01\ -
3t{Hk} - 8770 Z/ q. k| (ski +spp1 +5,q1)° sinf,

SSqu

{Skj_ (E,(pLE — ki E,)/(kipiqg.)+ s, H, (sHy — spHp)]}
E,(sH,—s,H,)/q. +s,H,(p Ey — k. E,)/(kipy)

x 8(ky +py + q) 8(sk_ k) + s,p1p) + 549.9)) dpi dg. dpydgy,  (6.12)

where E, = E"(ky, kj) and H, = H"(k,, k;) are the axisymmetric bi-dimensional
magnetic energy and magnetic helicity spectra, respectively, and as before 6, is the
angle between the perpendicular wavevectors k; and p, in the triangle formed by
(ki,p..q,) In (6.12), the integration over perpendicular wavenumbers is such that
the triangular relation k; +p, +¢, =0 must be satisfied. To derive the exact solutions,
we have to introduce the following power-law forms for the spectra E; ~ k| |k;|" and
H; ~ K'lky|™, and apply a bi-homogeneous conformal transform (Kuznetsov 1972;
Zakharov et al. 1992; Nazarenko 2011) which involves performing the following
manipulation on the wavenumbers p,, g, p; and g:

pL— ki/lu,
qL— kiq./p1,

6.13
il = K/Ipyl, (©13)
lgy| — lkyllgyl/1pyl-

This exercise for the energy equation gives the positive and constant energy flux
solutions

E~ kP 1k 712, (6.14)
Hi~ k" k|72, (6.15)

The same transform applied to the helicity equation extends the preceding solutions
to a family of solutions (a detailed derivation is given in appendix D)

n+in = —6, (6.16)
m+m = —1. (6.17)

This family of solutions corresponds to a negative and constant magnetic helicity
flux, hence implying the possible existence of an inverse cascade of helicity and
the accumulation of magnetic energy at large scales (see appendix E for a rigorous
demonstration). Since the cascade along the uniform magnetic field is strongly
reduced, the most important scaling law is therefore the one for the perpendicular
wavenumbers. The domain of validity of these solutions can be written as

-3 <n+m< -2, (6.18)
—4<n+m<-3. (6.19)
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We see that with the previous solutions (obtained from the energy or the helicity
equations) we are at the borderline of the domain of convergence. However, we
also know that this problem is strongly anisotropic and the inertial range in the
parallel direction is strongly reduced with a cascade almost only in the perpendicular
direction. Actually, if we neglect the inertial range in the parallel direction (which is
equivalent to taking m =m =0) we again obtain — as for the inertial wave turbulence
regime — a classical result of weak turbulence in the sense that the power-law indices
of the exact solutions (6.14) and (6.15) fall exactly in the middle of the domains
of locality (6.18) and (6.19). Note that the solutions found do not allow a crossing
of the spectra, since the case n =n = —3 appears as an asymptotic limit. Note also
that the classical phenomenology presented in §4 gives the particular asymptotic
solution n = —3. It is only through a deep mathematical treatment that this family
of solutions may be discovered. This situation is also found for the inertial wave
turbulence regime, to which many papers have been devoted but where no consistent
anisotropic phenomenology has been proposed. For that reason, these exact solutions
may be considered highly non-trivial. Finally, it is interesting to note that the process
of inverse cascade described here is limited in scale, since the basic assumption
made for the analysis is that k; > k. When this condition is violated (with k; <k,
for example), the previous local analysis done on the resonance condition becomes
irrelevant and the theoretical predictions are not possible.

7. Discussion

In this paper a weak turbulence theory has been developed for rotating MHD
in the presence of a parallel uniform magnetic field. The theory is expected to be
relevant for the magnetostrophic dynamo, with applications to the Earth and to giant
planets for which a small (~10~°) Rossby number is expected. An important question
investigated here is the mechanism of regeneration of a large-scale magnetic field
through an inverse cascade of hybrid helicity. A key length scale in this problem
is the magneto-inertial length d, which indicates the basin of attraction for the
dynamics. Basically, if the scales considered are larger than d (in other words, if
kd < 1), we fall in the inertial or magnetostrophic wave turbulence regime, the
precise localization being determined by the nature of the polarization (left or right,
respectively). If, however, the scales are smaller than d (kd > 1) and the conditions
for weak turbulence are still satisfied (with a wave period much smaller than the
eddy-turnover time; otherwise the turbulence is strong), then we fall in the Alfvén
wave turbulence regime. It is interesting to note that the magnetostrophic regime — also
called the strong-field regime — is driven by the nonlinear equation (2.28), similar
to a well-known system in plasma physics called electron MHD (Kingsep et al.
1990), which finds applications in space plasmas (Galtier 2006a), for example. We
have checked that a derivation of the weak turbulence equations made directly from
expression (2.28) also gives (5.24). Thus, the magnetostrophic regime characterized by
a balance between the Coriolis and Lorentz—Laplace forces can be described simply
by (2.28) instead of the system comprising (2.1) and (2.2).

By using a complex helicity decomposition, the asymptotic weak turbulence
equations have been derived which describe the long-time behaviour of weakly
dispersive interacting waves via three-wave processes. For magnetostrophic wave
turbulence, the theory predicts that the magnetic energy is asymptotically larger than
the kinetic energy when one goes to large scales, whereas the reverse holds for
inertial wave turbulence. Analysis of the resonance conditions has been used to prove
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the anisotropic nature of the nonlinear transfer, with a stronger cascade perpendicular
than parallel to the rotation axis. Then, the reduced forms of the general equations
of weak turbulence were obtained in the three relevant limits discussed above, along
with their exact power-law solutions, after application of the Kuznetsov—Zakharov
transform (see figure 4). The large-scale (magnetostrophic and inertial) solutions
can be highly non-trivial (i.e. impossible to find intuitively) in the sense that the
classical phenomenology of weak turbulence that we introduced in §4 is only able
to predict the correct scaling for the constant energy flux solutions. The solutions for
the constant (magnetic or kinetic) helicity flux are, however, not recovered with the
phenomenology. The non-trivial solutions implying the energy and helicity spectra
power-law indices can be found only after a long and rigorous derivation.

At large scales (kd < 1), whereas a direct cascade of kinetic helicity is expected
which is well observed in direct numerical simulations of pure rotating hydrodynamic
turbulence (see e.g. Mininni & Pouquet 2009; Mininni et al. 2012), an inverse
cascade of magnetic helicity is predicted. Since the magnetostrophic wave turbulence
regime is similar to the electron MHD one, where an inverse cascade has already
been observed in direct numerical simulations (Shaikh & Zank 2005; Cho 2011), we
think that it is a reasonable prediction. Then, in the context of the dynamo problem,
the main question is: at which scale k; is the system driven? Indeed, if the forcing
scale is such that k;d <1, we fall in the large-scale regime (magnetostrophic basin of
attraction; see figure 4), and the dynamo mechanism may happen through an inverse
cascade of hybrid helicity which is dominated by the magnetic helicity. However,
if the scale is such that k;d > 1, then we fall in the small-scale regime (Alfvén
basin of attraction), and the regeneration of the magnetic field becomes more difficult
since the hybrid helicity is dominated by the cross-helicity which cascades in the
forward (to small scales) direction (Galtier et al. 2000). It is important to recall that
the magnetic helicity is not an inviscid invariant in the weak (non-rotating) MHD
turbulence regime where a uniform magnetic field is present; in our framework, the
question of the regeneration of a large-scale magnetic field therefore needs a new
ingredient such as the Coriolis force to be relevant.

The present theory may be useful in gaining a better understanding of the
magnetostrophic dynamo, with applications to the Earth and giant planets. Although
our theory is a crude model for such a problem (for instance, we assume a magnetic
Reynolds number large enough for the development of an extended inertial range
and do not include the geometry effects with boundary conditions), it is believed
that the dynamics obtained here at asymptotically small Rossby numbers opens
up new perspectives. For example, in the case of the outer core of the Earth, a
rough evaluation of the magneto-inertial length gives d &~ 1 km (Finlay et al. 2010).
If we consider that the forcing due to convection has a typical length scale of
1/k; ~ 100 km, then the conditions for an inverse cascade are satisfied. Another
question concerns the surprising axisymmetry of planets like Earth, Jupiter or Saturn,
where the rotation and magnetic axes are close — even almost perfect for Saturn. The
present turbulence theory gives a possible (although speculative) answer. Indeed, the
rotating MHD equations in the presence of a uniform magnetic field have in general
only one inviscid invariant, namely the total energy. It is only when the rotation and
magnetic axes are aligned that a second inviscid invariant appears, namely the hybrid
helicity. It is precisely this second invariant which can generate a turbulent dynamo
through an inverse cascade. We believe that as long as the angle 6 between $2, and
b, remains reasonably small, the inverse cascade can still operate. According to this
remark, it is not surprising that a strong alignment, with 6 < 10°, is generally observed
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for the aforementioned magnetized planets. The initial phase of the dynamo has not
been discussed so far, but it deserves a brief mention. Since in the absence of a
uniform magnetic field the magnetic helicity is an inviscid invariant of rotating MHD,
an inverse cascade may happen. This mechanism is, however, under the influence
of the Coriolis force, which renders the dynamics anisotropic. We may then expect
the generation of a large-scale magnetic field preferentially aligned with the rotation
axis. After this initial phase, it seems natural to consider the regime described in the
present paper. By extension, it may even be that the present analysis is relevant for
exoplanets and some magnetized stars (Morin et al. 2011).

Appendix A. Useful relationships

From the quantity
—skd
= Al
Ry S e AD

it is possible to derive the following useful identities:

E364 =1, (A2)
Ta=—& (A3)
K -5 _ S A4
e =— (A4)
2

G-t ==V 1+ 0, (AS)
R (A6)

AT ok A

We also have the remarkable relations

a)ia)s_g = (k||bo)2, (A 7)
(@)* < (kybo)* < (7). (A8)

Appendix B. Helicity decomposition

Projection of the Fourier transform of the original vectors u(x) and b(x) onto the
helicity basis gives

we =Y Usk)hy, B1)
A
b = Y Balh. (B2)
A
If we invert the system, we find the following relations for the velocity components:
U, (k) = 21<1ch Koy, + kykyuy, — k3w, + ik (kg — k)] (B3)
U (k) = %lh ke + kykyy — k3w, — ik (kyu, — k)] (B4)

Similar relations are found for the magnetic field. Note that such a helicity
decomposition cannot be used for the modes k; =0.
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Appendix C. Derivation of the weak turbulence equations

The starting point of the derivation of the weak turbulence equations is the
fundamental equation (3.19). We write successively equations for the second- and
third-order moments,

ed? %- —Sq é- —Sp AN, A,

s Ay Ap K S, 4 —i

K _ SSp S, r Sq s 12 1t

8t<aA = / g —F M kp E (aA,,aAqu/> pa (Spq,kdpdq
Ap.Aq —kpq

SpsSq

2 Sq Sp A’A,,Aq
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o | M e e by dpdy
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: ed’ €4, 4 'fAJp
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o W " Pq
I.QMJ\.//! apq,k” dp dq (C 2)

We shall write an asymptotic closure (Nazarenko 2011) for our system. For that, we
basically need to write the fourth-order moment in terms of a sum of the fourth-
order cumulant and products of second-order ones. The asymptotic closure depends
on two ingredients: one is the degree to which the linear waves interact to randomize
phases, and the other relies on the fact that the nonlinear regeneration of the third-
order moment by the fourth-order moment in (C2) depends more on the product of
the second-order moments than it does on the fourth-order cumulant. The fourth-order
moment decomposes into the sum of three products of second-order moments and a
fourth-order cumulant. The latter does not contribute to secular behaviour, and of the
other products one is absent because of the homogeneity assumption. If we use the
symmetric relations (3.21)—(3.24) and perform wavevector integrations, summations
over polarities and time integration, then (C2) becomes

ed’
s 5 s
(ayayayn) = 16 A (L) S
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where
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t
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Plugging the symmetric relations (3.21)—(3.24) into (C3) allows us to simplify the
previous equation further; one obtains

J e 6 dz AA A”
Y
((li‘ai‘,(li‘ﬂ = 78 A(Qkk’k”) 8kk’k” M 555
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(C5)
We substitute expression (C5) into (C 1); this leads to
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The long-time behaviour of the weak turbulence equation (C6) is given by the
Riemman-Lebesgue lemma, which tells us that for t — 400,

e—iX’A(x)zA(—x)—)TC(S(X)_L@(I/X)’ C7

where & is the principal value of the integral. The two terms of (C6) are complex-
conjugates, so if in the second term we replace the dummy integration variables p
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and ¢ by —p and —q, we can simplify (C 6) further since, in particular, principal value
terms compensate each other exactly. Finally, we obtain the weak turbulence equation

=S5, =S, 2
e d4 é_- q %- P AApAq
0,q, (k) = / ST R M | 8(2upg) St
Ap.Aq SA —k q
)p.\q
S L B E
x | g qy + g, ),
A, —&a, A,, —&4,
é o s jp Sy S,
+2— gy gy | dpdg. (C8)
Ex—&4
where
2
As?[’sAq sin ¥ ) * 22 2 2085\2 085 \2 g5 2
M—kppqq =\ 7% kp g (Ak+ App + Agg)*(53)°(E4,)7(E4,)

. Lo \2
x (24 € E 6N = €2 = €7 = ED?) - (€9)

The last step that we have to take to obtain the same expression as (3.28) is to
include the resonance relations (3.26) in the previous equations. Additionally, since
the dissipative terms are linear, one can easily add their contributions to the weak
turbulence equations. Then, we obtain

aq, (k)

2 74
— 2ckq o+ T / > (S“‘ ‘”") Rpq (At A,p+4,9) (5, € )6

64 b3

Sp .Sq

s e\ 2 | 2
<§’<> (24 P E 6N = €29 = € = E)?)
II

S
w’ Wy,

I+ EDI® 1+ E"2q)L (p)

Wy 5 5
(1+(§'A)2) q,k) q;,(p) 44, (q)

— 8(82¢ pg) Sk pg dp dq. (C10)
L+ E ) (q)] e
where L4 V)z
+ m XA
—p (2 EmSa ) C11
"( T+, ) ) 1D

with P, =v/n being the magnetic Prandtl number. These weak turbulence equations
are valid for any magnetic Prandtl number. In particular, we note the following
relevant limits:

(i) k =v=n when P,=1;

(i1)) k > v when kd — 0 and A = —s (inertial waves);
(iii)) x — n when kd — 0 and A =s (magnetostrophic waves);
@iv) k = (v+1n)/2 when kd — +oo (Alfvén waves).
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Appendix D. Exact solutions at constant magnetic helicity flux

In this appendix, we give details of the derivation of the constant magnetic helicity
flux solutions (6.16) and (6.17). We start with the weak turbulence equations (6.12):

ks S —5
OH, = Z/pi 150 ( quk ”pL> (sky 4 $,p1 +5,91)° siné,
0 [I

SSpSq

X |:q(SHk SpH)+ (pLEk kLEp):|
q.1 kipi
x 8(ky —py — q) 8(sk ky — sp,p1p) — $4q9.1q)) dpy dg. dp dg. (D1
We define the spectra

E(ky, k) = Cgk'} [ky|™, (D2)
H(ky, k) = Cyk'| |k|", D3)

where Cr and Cy are some constants. We substitute the previous expressions into
the weak turbulence equations and obtain, after simple manipulations (e.g. using the
identity relation for a triangle),

sin 6 -5
OH (ks kg > 0) = = Z/( k>mlkllpul< ppl)
0

X (ks + 5,1 + 5,9 CeCu [ lay "KLy ™ = s, Ipy ™)
+ 544" gy " (P Ipy 1™ — kT'Ikul’")}S(ku =PI —q)
x 8(sk k) — sppip) — S4q1q)) dp. dg, dp; dg;. (D4)

Then, we split the integral into two identical integrals and apply the Kuznetsov—
Zakharov transform on one of them. This yields

sin 6 2
Z / : polkylipyl 4L~ Pl (ski +s,p1 +5,4.)°
16b0 <

x CgCy [CIL g™ (kL Ly 1™ = 5,07 oy ™) + 5o gy 1" (P py 1™ = K kg I™)]
X 5(k|| —py—q)) 0(sk k) — SpPLPu — 54919y dp1 dq, dpdg

Z/ <sm9kpl) K b [(sqcu—sph) lqlpul]2
16bo ky "ipyl i po Ikl

AJS

oH, =

2
L n n —n m m —m
X <(SpkL +sp1 +Sqqﬁp> CeCh [kl g nan v
1

x (SK |k ™ — s,k p 7" 1k P 1oy |77 4 5K gL p T ey ™ gy 7 |py |~

n— —N m —m n— m |p|
x (K 2p "k P py |7 — K k| )} S(ky+qy — p")lk:ll
pilpyl (kelkyl
x 8(spk k) +5,q.9) — SpLp) (i ) dpy dg, dp, dg;. (D5)
kilkyl \pLlpyl
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In the second integral, we interchange the dummy variables s and s, and use relation
(3.26) in the anisotropic limit (k; > k;); we obtain

sin 0 2
E / . pLlkllpyl S = SPL (sky + spp1 +5,q1)
16b0

SSS

oH, =

x CpCy [q" gy " sk 1y 1™ = 5,07 oy ™) + 540" gy " (P oy I = Kk 1]
X 5(k|| —pi — q)) 8(skLky — s,p1p) — s,q.1q)) dp1 dg. dpy dg

sin 6, —SpP1 : , (ki :
16b0 Z/( )Pl|k||||P|< ) (sky+spp1+54q.1) oL

SSS

x CgCy [k]flé]'i U kM g™ o) T (R k)™ — sk ey P g 1™

+ squqﬁpI"lk” |rh|q” " Py |~ K2 kg P g I = Kk |m)}
x 8(ky +qy — py) 8(skiky +5,9.9) — spp1p))

Ik |
X < ) |p”| dpl dql dp“ dq” (D6)
I

After some other manipulations, we eventually find that

sin S.q
O = —1 Z/( k>pl|p|| < e ) (ski +5,p1 +5,91)°
0

() 8 (e >:;m>>

() el (- ()

n+n—1 m+m+1
CeChk'| |y |

—n—n—>6 —m—in—1
PL 4
x [1- (52 al 8k —py —qp)
( <k¢> ‘k” ) I —P1—q
x 8(skoky — sppipy — 54919y dp. dg, dpy dg;. D7)

The exact power-law solutions can now be extracted by cancelling the integrand,
which corresponds to stationary solutions at constant magnetic helicity flux. The most
general solutions (often called the Kolmogorov—Zakharov spectra) are obtained by
taking

n+i=—o0, (D3)
m+m=—1. (D9)

Appendix E. Existence of an inverse cascade

In this appendix, we demonstrate the existence of an inverse cascade of magnetic
helicity by finding the sign of the magnetic helicity flux. We start with the weak
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turbulence equation (D7) characterizing the magnetostrophic regime:

9 2
16b0 Z/ <Sln k>pL|pII| (quL L) (sky +SppL+SqQL)2
(fu) Tl <M) "
S s—8,
[ ko ki ky
(‘h)u a|" (m) -
— 5, (o (P
ki) Tk ki

0, Hy

]
ky

pII

. CECHkn+n 1|k| |m+m+1
I

—n—n—6 —m—m—1
pPL P
x [1— (5= al S(ky —py— qp)
( (lﬁ ) k” ) I — Pl q)
x (ko |kyl —polpyl —q1lqyl) dpy dg. dpydgy. (ED)

Additionally, we have (Zakharov et al. 1992)

1 ok, P oP
8H,=—V - p__ig il }

, E2
k. 0ky ok, 2

where P is the magnetic helicity flux vector, with P, and P, being the perpendicular
and parallel components of this flux vector, respectively (axisymmetric turbulence is
assumed). Upon introducing the notation p, =p,/k,, q. =q./k., py = Ipyl/lk| and
) = lqyl/1ky|, we obtain

d . )
&H, =€’ - CeCuk™™ k) ™™ I(m, n, in, 7t) (E3)
0

with

+ 1 2~ - - - N2
I(m, n, m,n) = ——— Z/\/ PLTE- > pip) (quL_sppi)

S35 2p1q.
X (s 5y + 5,80 |33 (s = 5,5L])
—s,q1 gy (1 =P IPT)} (1=p" %)
X 8(s = spp = 54q1) 8(1 —p1py —q.qy) dp1 dq. dpy dgy.  (E4)
From the flux equation (E2), we obtain that at constant k|,

dkiP)  ,d

L boc eCk" " k| I(m, n, i, 71). (E5)

After an integration, we have the general relation

d _ _I(m, n, m, n)
P, = —€>—CrCyk" 3| fe """ ————~ E6
1 GbOEHJ_ |H| n+it6 (E6)
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The constant flux solution (D 8) that we seek corresponds precisely to the cancellation
of the denominator and the numerator /. This indeterminacy can be evaluated using
L’Hospital’s rule; for this solution we find that

,d CgCy

=€ — , ET
bo ko |ky|
with (upon introducing the exact solutions (D 8) and (D9))
aI b 9 i 9 n
A= <(m n ”)> (E8)
8(n +n+ 6) n+n=—6, m+m=—1
2
— Z \/ PLtd- 1) Pubi (s4qe — s,ps)’
$SpSq 2pL‘IL H ! "
X (s spp 1+ 840> (1) |G (s = s,p1"P"")
—s,q," g (1 =P IPT)} 8(s — spPy — Sqqy1)
x8(1 —pipy—q.rq)) dp. dq, dp; dg;. (E9)

The sign of A can be investigated numerically (the constants Cr and Cy are taken
to be positive): a negative sign is found for different values of (n, m) (satisfying the
conditions (6.18) and (6.19)), which proves the presence of an inverse cascade in the
transverse direction.

In a similar way, from the flux equation (E2) we find that at constant &,

P ,d
— = e CuCyk Tk " I (m, n, i, 7). (E10)

After an integration, we find the general relation

d n ;l m ’;l I(m§ n’ ﬁl’ ;l)
Py= _fzb*CECka ke Hm- (E11)
0

As above, the constant flux solution (D9) corresponds to cancellation of the
denominator and /. Thanks to L'Hospital’s rule, we find that

,d CgCy
Py=e¢"— , E12
=€ b K (E12)

with (upon introducing the solutions (D 8) and (D 9))
ol(m, n, m, n)

B=|—1—-—- (E13)

8(’/n +m+ 1) n4-n=—6, m+m=—1

2
= Z \/ Pitd- 1> pip (Séi—sﬁi)2
SSI;Sq 2plql H ! "

X (5 spp 1+ 5,10 (P 7137 (5 = b P ")
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5,0 (1= BB | 865 = sy — s,0)

x8(1 —pipy—q.qy)dp.dg, dp;dg. (E14)

The sign of B has also been evaluated numerically for different values of (n, m)
(satisfying the conditions (6.18) and (6.19)). A negative sign is found, which
demonstrates that the parallel cascade is inverse. This cascade is, however, expected
to be much weaker than the perpendicular one, since the combination of relations
(E7) and (E 12) gives in particular the flux ratio (we recall that k; < k)

Pr_k B

= , E15
Pl kLA ( )

which is small because A and B are of the same order (as verified numerically).
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