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Abstract

Mullets inhabit a wide range of habitats from tropical to temperate regions and play a critical
role in their ecosystems. This commercially important fish group constitutes a significant
source of food in several geographic regions, and the production of some species for consump-
tion is an increasing trend. About 64 myxosporean species have been reported in mullets,
some of which are cryptic, as is the case of Myxobolus exiguus, and M. muelleri. This
paper provides, for the first time, a detailed and critical revision of the data available for myx-
obolids reported in mullets, determining the species that have bona fide mugiliform fish hosts,
in accordance with the original species descriptions, the available molecular data and the cur-
rently accepted taxonomic and phylogenetic criteria. Phylogenetic analyses using Bayesian
inference and maximum-likelihood methodologies suggest that the evolutionary history of
myxobolids with bona fide mugiliform fish hosts reflects that of its vertebrate hosts, while
reinforcing known evolutionary factors and old systematic issues of the clade of myxobolids.
A comprehensive morphological, ultrastructural and molecular redescription is also provided
for the cryptic species M. exiguus, from infections in the visceral peritoneum of the thinlip-
grey mullet Chelon ramada in the River Minho, Portugal.

Introduction

The order Mugiliformes comprises of a single family, Mugilidae Cuvier, 1829, which contains
about 70 species, distributed worldwide, commonly known as mullets. The great majority of
mullets are highly euryahaline, inhabiting tropical and temperate habitats that include rivers,
estuaries, coastal areas and seas (Hotos and Vlahos, 1998; Cardona, 2001; Durand et al., 2012).
Due to their omnivorous nature and benthic feeding strategy, mullets are able to feed on a
great variety of materials including epiphytic algae, insects, annelids, crustaceans, mollusks
and even detritus. As a result of their ecological plasticity, this family plays an important
role in the ecosystem, namely by contributing to the flow of energy and matter from the
lower to the upper levels (Cardona, 2001; Laffaille et al., 2002; Almeida, 2003; Zetina-Rejon
et al., 2003). At the commercial level, the importance of mugilids depends on the geographic
region and whether they are cultured for gathering roe or for food consumption. Nonetheless,
the world production of mullets is an increasing trend, both in fishery and aquaculture indus-
tries (Crosetti and Cataudella, 1995; Saleh, 2006).

Several studies have been conducted on the protozoan and metazoan microorganisms para-
sitizing mullets worldwide (e.g. Merella and Garippa, 2001; Bahri et al., 2003; Fioravanti et al.,
2006; Yurakhno and Ovcharenko, 2014; Ozer and Kirca, 2015; Sarabeev, 2015). According to
Yurakhno and Ovcharenko (2014), this fish group accounts for the description of about 64
myxosporean species from the genera of the families: Sphaeromyxidae Lom and Noble,
1984; Sphaerosporidae Davis, 1917; Myxidiidae Thélohan, 1892; Myxobilatidae Shulman,
1953 [the genus Ortholinea has been recently transferred to this family, and the family
Ortholineidae dismantled (Karlsbakk et al, 2017)]; Sinuolineidae Shulman, 1959;
Alatosporidae Schulman, Kovaleva and Dubina, 1979; Chloromyxidae Thélohan, 1892;
Kudoidae Meglitsch, 1960 and Myxobolidae Thélohan, 1892. The latter family is the largest
within the subclass Myxozoa Grassé, 1970, namely due to the species-richness of the genera
Mpyxobolus Biitschli, 1882 and Henneguya Thélohan, 1892. Worldwide, the genus
Mpyxobolus comprises over 850 species, the majority of which are histozoic in freshwater
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fish, less frequently infecting hosts from estuarine and marine
environments. Few species present coelozoic development and
even fewer have been reported to occur in amphibian hosts. On
its turn, the genus Henneguya comprises about 200 species that
mostly infect freshwater fish, with the exception of ca. 35 species
that are known to occur in marine hosts (e.g. Lom and Dykova,
1992, 2006; Eiras, 2002; Eiras et al, 2005, 2014; Eiras and
Adriano, 2012; Khlifa et al., 2012; Li et al., 2012; Azevedo et al.,
2014; Rocha et al., 2014a; Ozer et al.,, 2016a).

Traditionally, the taxonomy of myxosporeans was mainly
based on spore morphology, and its association with a particular
host and organ of infection. However, molecular analyses have
been shown that the comparison of spore morphological traits
is insufficient for classifying myxosporeans, both at the genus
and species level (e.g. Fiala, 2006; BartoSova et al., 2009; Fiala
and BartoSovd, 2010; Liu et al., 2010). In the case of myxobolids,
the artificiality of the morphological criterion hampers identifica-
tion at the species level, since many species share similar spore
shape and size and others present significant intraspecific varia-
tions (Lom, 1987; Mitchell, 1989; El-Matbouli et al., 1992).
Also, although most species are acknowledged to be host and tis-
sue restricted (Molnar, 1994), others have been reported to indis-
criminately infect a wide range of hosts and tissues (e.g. Forré and
Ezsterbauer, 2016). Taxonomic comparisons are further chal-
lenged by the paucity of reliable data from most original descrip-
tions, which relied solely on light microscopy and schematic line
drawings (e.g. Lubat et al., 1989), with few studies using transmis-
sion electron microscopy for ultrastructural characterization.
Consequently, several species have been identified as potentially
cryptic (Easy et al., 2005; Ferguson et al., 2008; Atkinson et al.,
2015), thus warranting authentication through the use of cur-
rently accepted taxonomic criteria, i.e. combined spore morph-
ology, host specificity, tissue specificity and molecular data.
Considering all of the above, this study provides, for the first
time, a detailed and critical revision of the data available for myx-
obolids reported in mullets, evaluating the reliability of these
reports through the comprehensive and careful analysis of original
species descriptions, available molecular data and currently
accepted taxonomic and phylogenetic criteria. Myxobolids,
which occurrence is considered to be reliable in mullets, are
herein referred to as having bona fide mugiliform fish hosts. A
morphological, ultrastructural and molecular redescription is fur-
ther performed for the cryptic species Myxobolus exiguus
Thélohan, 1895 from infections in the visceral peritoneum of
the thinlip-grey mullet Chelon ramada in the River Minho,
Portugal.

Materials and methods
Fish and parasite sampling

Between March 2015 and January 2018, 18 specimens of the
thinlip-grey mullet C. ramada (Risso, 1827) (Teleostei and
Mugiliformes) were captured from the River Minho (41°56'N,
08°45'W), Vila Nova de Cerveira, Portugal. Specimens were trans-
ported live to the laboratory and, prior to dissection, anesthetized
with ethylene glycol monophenyl ether until dead. The parasito-
logical survey of several organs and tissues was performed at both
the macro and microscopic levels. Cysts and parasitized tissues
were prepared for light microscopy, transmission electron micros-
copy and molecular procedures.

Light microscopy and morphological examination

Parasitized tissues were examined and photographed using a
Leitz-Dialux 20 microscope, equipped with a differential interference
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contrast (DIC) optics. Morphometry was determined from fresh
material (Lom and Arthur, 1989). All measurements include the
mean value + standard deviation (s.D.), range of variation and
number of spores measured (range, n).

Transmission electron microscopy

Fragments of parasitized tissue were fixed in 5% glutaraldehyde
buffered in 0.2 M sodium cacodylate (pH 7.2) for 20-24 h, washed
in the same buffer and postfixed in 2% osmium tetroxide also buf-
fered with 0.2 M sodium cacodylate (pH 7.4) for 3-4 h. All these
steps were performed at 4 °C. The samples were then dehydrated
in an ascending graded series of ethanol, followed by embedding
using a series of oxide propylene and Epon mixtures, ending in
EPON. Semithin sections were stained with methylene blue-
Azure II. Ultrathin sections were double-contrasted with uranyl
acetate and lead citrate, and then examined and photographed
using a JEOL 100 CXII TEM (JEOL Optical, Tokyo, Japan), oper-
ating at 60 kV.

DNA extraction, amplification and sequencing

Fragments of parasitized tissue were obtained from three fish spe-
cimens and preserved in 80% ethanol at 4 °C. Genomic DNA
extraction was performed using a GenElute™ Mammalian
Genomic DNA Miniprep Kit (Sigma-Aldrich, St Louis, USA), fol-
lowing the manufacturer’s instructions. The DNA was stored in
50 yL of TE buffer at —20 °C until further use.

The SSU rRNA gene was amplified and sequenced using both
universal and myxosporean-specific primers (Table 1). Polymerase
chain reactions (PCRs) were performed in 50 L reactions using
10 pmol of each primer, 10 nmol of dANTPs, 2 mm MgCl,, 5 uL
10x Taq polymerase buffer, 2.5 units Tag DNA polymerase
(Nzytech, Lisbon, Portugal) and approximately 50-100 ng of gen-
omic DNA. The reactions were run on a Hybaid PxE Thermocycler
(Thermo Electron Corporation, Milford, Massachusetts), with ini-
tial denaturation at 95 °C for 3 min, followed by 35 cycles of 94 °
C for 45 s, 53 °C for 45 s and 72 °C for 90 s. The final elongation
step was performed at 72 °C for 7 min. Five microlitre aliquots of
the PCR products were electrophoresed through a 1% agarose 1x
tris-acetate-EDTA buffer (TAE) gel stained with ethidium bromide.
PCR products were purified using the ExoFast method, in which an
enzymatic clean-up that eliminates unincorporated primers and
dNTPs is performed with Exonuclease I (Escherichia coli) and
FastAP Thermosensitive (SAP).

The PCR products from different regions of the SSU rRNA
gene were sequenced directly. The sequencing reactions were per-
formed using BigDye Terminator vl1.l from the Applied
Biosystems Kit (Applied Biosystems, Carlsbad, California), and
were run on an ABI3700 DNA analyser (Perkin-Elmer, Applied
Biosystems, Stabvida, Oeiras, Portugal).

Distance estimation and phylogenetic analysis

The partial sequences obtained for the case isolate were aligned in
MEGA 6.06, allowing the construction of the parasite’s assembled
SSU rRNA sequence, with a total of 2013 bp. In order to calculate
distance estimation, a dataset was created solely for the SSU rRNA
sequence of the case isolate and all other SSU rRNA sequences
available for Myxobolus spp. that have been reported from mul-
lets. This includes M. bramae Reuss, 1906, M. branchialis
(Markevitsch, 1932) Landsberg and Lom, 1991 and M. rotundus
Nemeczek, 1911, despite these species having not been sequenced
from hosts of the order Mugiliformes. Of the several SSU rRNA
sequences available in the GenBank for M. rotundus, only one
(FJ851447) was chosen to represent this species in the dataset,
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Table 1. PCR primers used for the amplification and sequencing of the SSU rRNA gene.

Name Sequence (5'-3') Position Pared with Source

18e CTG GTT GAT CCT GCC AGT 1 ACT3r, MYX4R Hillis and Dixon, 1991
ACT3f CAT GGA ACG AAC AAT 900 18r Hallett and Diamant, 2001
MYX4F GTT CGT GGA GTG ATC TGT CAG 1300 18r Rocha et al., 2015

ACT3r ATT GTT CGT TCC ATG 900 18e Rocha et al., 2014a
MYX4R CTG ACA GAT CAC TCC ACG AAC 1300 18e Hallett and Diamant, 2001
18r CTA CGG AAA CCT TGT TAC G 1832 ACT3f, MYX4F Whipps et al., 2003

kn.‘m

Fig. 1. Light micrographs of Myxobolus exiguus infecting the peritoneum of Chelon ramada in the River Minho. (A) DIC micrograph showing some free fresh mature
myxospores, subspherical in valvular view and ellipsoidal in sutural view, and containing two polar capsules. (B) Free fresh mature myxospore displaying several
markings near the suture line. (C) Semithin section of the periphery of a cyst evidencing the vacuolated ectoplasm (arrow) adhering to loose connective tissue (*),

where some fibroblasts (F) are observed.

considering that all sequences were identical among each other,
with the exception of one (AY165179) that is misidentified
(Zhang et al., 2010) and, therefore, was not included. Similarly,
two SSU rRNA sequences of M. bramae (AF085177 and
AF507968) are available in the GenBank but, despite having
both been obtained from infections occurring in the cypriniform
host Abramis brama Linnaeus, 1758, only one is considered valid
(AF507968), thus having been included in the dataset. Sequences
were aligned using software MAFFT version 7 available online,
and distance estimation was performed in MEGA 6.06, with the
p-distance model and all ambiguous positions were removed for
each sequence pair.

For phylogenetic analyses, the dataset was widened to encom-
pass other representatives of the clade of myxobolids. The final
dataset comprised of a total of 93 SSU rRNA sequences, and
included Chloromyxum riorajum (FJ2624481), Myxidium lieber-
kuehni (X76638) and Sphaerospora oncorhynchi (AF201373) as
the outgroup. Sequences were aligned using software MAFFT ver-
sion 7 available online, and posteriorly manually edited in MEGA
6.06. Phylogenetic trees were calculated from the sequence align-
ments using maximum-likelihood (ML) and Bayesian inference
(BI). Models of nucleotide substitution were evaluated using
MEGA 6.06. The general time reversible substitution model
with estimates of invariant sites and gamma distributed among
site rate variation (GTR+1+1T") was chosen as the best suited
model for the dataset, and was used in both ML and BI analyses.
ML analyses were also conducted in MEGA 6.06 (Tamura et al.,
2013), with bootstrap confidence values calculated from 1000
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replicates. BI analyses were performed using MrBayes v3.2.6
(Ronquist and Huelsenbeck, 2003), with posterior probability dis-
tributions generated using the Markov Chain Monte Carlo
method, with four chains running, simultaneously, for 500 000
generations, and every 100th tree sampled.

Results
Revised description and taxonomic summary of M. exiguus

Diagnosis

Cysts whitish and spherical, about 1 mm in diameter, located
adjacent to the peritoneum lining the viscera. Mature myxospores
subspherical in valvular view and ellipsoidal in sutural view,
measuring 9.3+ 0.6 (8.4-10.7) um in length and 8.2+ 0.5 (7.6-
8.9) um in width (n=25). Valves are smooth presenting several
markings near the suture line. Two pyriform equal-sized polar
capsules located side by side at the myxospores’ anterior pole,
4.8+0.2 (4.4-5.3) um long and 2.8 £0.3 (2.2-3.1) um wide (n
=25), each containing an isofilar polar filament forming five
coils (Fig. 1A and B).

Ultrastructural description

Cysts’ wall with cytoplasmic expansions forming ladder-like junc-
tions that strongly adhere to mesothelial cells of the peritoneum.
Detachment of cytoplasmic portions of mesothelial cells by inser-
tion of the cysts’ wall expansions into connective tissue. Several
fibroblasts widely separated by bundles of collagen fibres in
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Fig. 2. Transmission electron micrographs of Myxobolus exiguus infecting the peritoneum of Chelon ramada in the River Minho. (A) Periphery of a cyst (C) adhering
to a mesothelial cell near its nucleus (N), and reaching the loose connective tissue (LCT), where fibroblasts (F) are observed widely separated by bundles of collagen
fibres. (B) Periphery of a cyst displaying numerous generative nuclei (Gn) and forming cytoplasmic expansions (arrows) that strongly adhere to the mesothelial cells
(Mc) and reach the LCT. (C) Detailed aspect of the cytoplasmic expansions forming ladder-like junctions (arrows) that connect the cyst (C) to the mesothelial cells
(Mc). Notice the numerous vacuoles (Vs) occupying the cyst’s ectoplasm. (D) Longitudinal section of a myxospore in valvular view, located within a vacuole-like
structure (*), and displaying its two polar capsules (PC) and binucleate sporoplasm (Sp). E. Longitudinal section of a myxospore in sutural view, depicting the
number of polar filament (PF) coils, as well as some sporoplasmosomes (Sps) randomly distributed in the sporoplasm. (F) Transverse section of a myxospore
showing its two valves united along a straight suture line (arrowheads), and its two PCs presenting a double-layered wall (arrow) that surrounds an electron-dense
matrix (*) and a coiled polar filament (PF). (G) Longitudinal oblique section of a polar capsule displaying its cap-like structure (arrow) in continuity with the valve’s

extrusion pore (*), located near the suture line (arrowheads).

loose connective tissue (Figs 1C and 2A-C). Cysts’ ectoplasm
highly vacuolated and devoid of cytoplasmic organelles (Figs 1C
and 2C); endoplasm rich in mitochondria, vegetative nuclei and
containing all sporogonic stages. Sporogony asynchronous and
centripetal: generative cells and young sporoblasts located at the
cysts’ periphery; immature and mature myxospores in the centre,
each within a vacuole-like structure (Figs 1C and 2B, D).
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Myxospores wall thin and smooth, comprised of two symmetrical
valves adhering together along a straight suture line. Polar cap-
sules with a double-layered wall formed by an outer thin
electron-dense layer and an inner thick electron-lucent layer.
Polar filament coils in an electron-dense homogenous matrix
(Fig. 2D-F). Cap-like structure at the apex of polar capsule, direc-
ted at the corresponding extrusion pore. Extrusion pores near the
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Fig. 3. Schematic drawing depicting the ultrastructural organization of a myxospore
of Myxobolus exiguus in sutural view.

suture line, corresponding to the portions of the valves with
diminished thickness (Fig. 2G). Sporoplasm at the myxospores’
posterior pole, with two nuclei and several sporoplasmosomes
randomly distributed in a heterogeneous matrix (Fig. 2D and E).

Morphology of the myxospores is represented in a schematic
drawing (Fig. 3) depicting the ultrastructural features here
described.

Type host: the thinlip-grey mullet C. ramada (Risso, 1827)
(Teleostei, Mugiliformes).

Site of infection: the visceral peritoneum.

Prevalence: three infected in 18 specimens analysed (16.7%).

Type locality: France (Vivier-sur-Mer, Marseille, Banyuls).

Other localities: Tunisia (Ichkeul Lake); Portugal (River
Minho).

Pathogenicity: long-term pathological assessments were not
performed, but collected and analysed fish did not present evident
external symptoms of infection or disease.

Vouchers: one glass slide containing semi-thin sections of the
hapantotype was deposited in the Type Slide Collection of the
Laboratory of Animal Pathology at the Interdisciplinary Centre
of Marine and Environmental Research, Porto, Portugal, reference
CIIMAR 2018.19.

Sequences: one assembled SSU rRNA gene sequence with a
total of 2013 bp and GenBank accession no. MH236070.

Molecular comparison of the case isolate to other Myxobolus
spp. reported from mullets

Pairwise comparisons between the SSU rRNA sequence here
obtained and all others available in the GenBank for Myxobolus
spp. reported from mugiliform fish hosts (Table 2) revealed the
case isolate presenting 100% of similarity to two sequences: one
identified as M. exiguus (AY129317), and the other identified as
M. muelleri Biitschli, 1882 (AY129314), with these also sharing
100% of similarity between each other. The other SSU rRNA
sequences of M. exiguus (AY129316) and M. muelleri
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(AY129313) obtained from infections in mugiliform fish hosts
followed, with 99.4% of similarity to the case isolate, and 100%
of similarity between each other. The two remaining available
sequences of M. muelleri (AY325284 and DQ439806), which cor-
respond to infections of this species in the cypriniform fish host
Squalius cephalus (Linnaeus, 1758), shared 97.0% of similarity
between each other, but differed significantly from its conspecific
sequences available from mugiliform fish hosts, as well as from
those of M. exiguus and the sequence in study, with percentages
of identity that varied between 72.2 and 73.4%. All other species
resulted in percentages of similarity lower than 90%.

Phylogenetic positioning of M. exiguus and other myxobolids
reported from mugiliform fish hosts

BI and ML analyses resulted in similar topologies, with some
entropy in the middle of the tree, namely due to the unstable posi-
tioning of the subclade comprising SSU rRNA sequences from
myxobolids that infect marine perciform fish hosts. The phylo-
genetic analyses here performed revealed the case isolate cluster-
ing to form a well-supported clade together with most of the SSU
rRNA sequences available for myxobolid species described from
mugiliform fish hosts: M. exiguus (AY129316 and AY129317);
M. muelleri (AY129313 and AY129314); M. parvus Schulman,
1962 (KX242161); M. episquamalis Egusa, Maeno and
Sorimachi, 1990 (KC733437); M. bizerti Bahri and Marques,
1996 (AY129318); M. ichkeulensis Bahri and Marques, 1996
(AY129315); Mpyxobolus sp. Kim, Kim and Oh, 2013
(KC733438); M. spinacurvatura Maeno, Sorimachi, Ogawa and
Egusa, 1990 (AF378341); and also with members of the sphaerac-
tinomyxon, endocapsa and triactinomyxon collective groups.
Exceptions to the mugiliform-infecting clade are the other two
SSU rRNA sequences available for M. muelleri (DQ439806 and
AY352284), as well as those of M. bramae (AF507968), M. bran-
chialis (JQ388887) and M. rotundus (FJ851447), which cluster
among cypriniform-infecting myxobolids (Fig. 4).

Discussion
Overview of mugiliform-infecting myxobolids

In this paper, we summarize the data available for myxobolids
that have mugiliforms as bona fide fish hosts (Tables 3 and 4),
with measurements from the original descriptions (whenever
given), and updated scientific names for host species (according
to FishBase). The vast majority of mugiliform-infecting
Mpyxobolus species are registered from the genus Mugil
Linnaeus, 1758, with the flathead grey mullet M. cephalus
Linnaeus, 1758 accounting for an astonishing number of 19 spe-
cies infecting several of its organs in coastal waters of the
Mediterranean Sea, Atlantic Ocean, Indian Ocean and North
Pacific Ocean; while white mullet M. curema Valenciennes,
1836 accounts for two species from the Atlantic coast off
Senegal, and lebranche mullet M. liza Valenciennes, 1836 for
one species in Brazilian waters. The genus Chelon Artedi, 1793
accounts for 12 species: four from several organs of golden grey
mullet C. auratus (Risso, 1810) (syn. Liza aurata) in the
Mediterranean Sea and North Atlantic Ocean; three from thicklip
grey mullet C. labrosus in European and North African waters;
two from several organs of the leaping mullet C. saliens (Risso,
1810) [syn. L. saliens (Risso, 1810)] in Eurasian coastal waters;
one from goldspot mullet C. parsia (Hamilton, 1822) in India;
one from tade grey mullet C. planiceps (Valenciennes, 1836),
also in India; and one from C. ramada (Risso, 1827) [syn.
L. ramada (Risso, 1827)] in Europe and North Africa. Seven spe-
cies have been reported from hosts of the genus Planiliza Whitley,


https://doi.org/10.1017/S0031182018001671

ssa.d Alssanun sbprique) Aq auljuo paysiiand 129100810281 LE00S/ZLOL0L/BI0 10p//:sd1y

Table 2. Comparison between the SSU rRNA sequences of the case isolate and all other Myxobolus spp. infecting mugilids: percentage of identity (top diagonal) and nucleotide difference (bottom diagonal)

ID Myxobolus spp. GenBank pb (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
(1) M. exiguus (this study) MH236070 2013 - 100 100 99.4 99.4 89.6 88.4 85.3 85.2 84.8 84.1 84.0 74.5 74.4 73.4 72.6 72.0
(2) M. exiguus AY129317 1591 0 = 100 100 100 88.8 87.0 84.1 85.2 84.8 83.8 84.0 72.5 74.3 733 72.5 72.0
(3) M. muelleri AY129314 1591 0 0 = 100 100 88.8 87.1 84.2 85.2 84.8 83.9 84.1 72.5 74.3 73.4 72.6 72.0
(4) M. exiguus AY129316 828 9 0 0 = 100 85.5 87.1 82.7 7.2 79.9 78.4 79.6 75.3 71.8 72.5 72.2 713
(5) M. muelleri AY129313 828 5 0 0 0 = 85.5 87.1 82.7 7.2 79.9 78.4 79.6 75.3 71.8 72.5 72.2 713
(6) M. parvus KX242161 1727 179 175 175 94 94 = 86.9 84.1 85.2 84.1 83.0 83.5 74.0 73.6 73.5 73.0 73.1
(7) M. episquamalis KC733437 1881 218 205 204 95 95 224 = 88.1 88.7 87.7 84.2 86.3 5.7 75.1 73.8 74.2 3.7
(8) Myxobolus sp. KC733438 1938 283 250 249 134 134 271 222 - 85.1 93.7 82.5 94.7 5.7 73.8 73.2 74.0 73.2
(9) M. bizerti AY129318 1594 233 233 233 108 108 229 179 235 = 85.2 82.8 84.8 73.0 74.0 72.0 71.8 71.6
(10) M. ichkeulensis AY129315 1594 240 240 239 96 96 245 194 929 234 - 82.7 93.8 74.4 73.6 3.7 73.9 73.5
(11) M. supamattayai HQ166720 1666 259 255 254 109 109 268 257 283 272 272 = 82.1 73.5 72.9 72.8 723 71.8
(12) M. spinacurvatura AF378341 1537 244 244 243 97 97 251 210 81 233 95 273 - 73.8 73.1 73.2 73.2 73.3
(13) M. rotundus FJ851447 1985 496 420 420 192 192 431 440 454 410 388 419 385 = 79.1 88.3 88.7 87.7
(14) M. branchialis JQ388887 1333 334 334 334 135 135 345 325 341 338 344 358 350 271 = 78.4 78.7 78.2
(15) M. muelleri AY325284 1616 420 414 413 138 138 409 414 422 434 407 430 402 184 287 = 97.0 96.0
(16) M. muelleri DQ439806 1589 426 425 424 134 134 413 402 403 436 403 434 401 176 282 48 - 97.5
(17) M. bramae AF507968 1580 433 433 433 135 135 409 407 413 440 409 439 399 190 288 63 40 =
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Myxobolus diversicapsularis (GU968199)
Myxobolus parviformis (AY836151)
Myxobolus rotundus (F1851447)
Myxobolus lamellobasis (KF314824)
Myxobolus shaharomae (EU567312)
Myxobolus erythrophthalmi (EU567311)
Myxobolus leuciscini (DQ439811)
Myxobolus bramae (AF507968)
Myxobolus muelleri (DQ439806)
Myxobolus bliccae (HM138772)
Myxobolus muelleri (AY325284)
Myxobolus arrabonensis (KP025680)
Myxobolus macrocapsularis (AF507969)
Thelohanellus jiroveci (KJ476885)
Myxobolous cuttacki (KF465682)
Thelohanellus catlae (KT768348) - . :
0-69/52 Myxobolus nielii (JQ690358) cypriniform-infecting
0-86/811L Henneguya doneci (LC011456)

= Myxobolus hearti (GU574808)

| Myxobolus turpisrotundus (AY165179)
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1/85 Myxobolus anatolicus (KF537629)
1/94 Myxobolus branchialis (JQ388887)

0.98/75
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Myxobolus wulii (EF690300)
'\ Myxobolus cerebralis (U96492) | " salmoniform-infecting

P Myxobolus batalhensis (MF361090)
Myxobolus aureus (KF296348)
0-65/- Myxobolus hilarii (KM403404)
1/99 Unicauda pelteobagrus (KC193254)

Hennegoides pangasii (EU732605) | Silur 'f‘:"“""“fe““"g ; )
1/96 98— Cardimyxobolus japonensis (AB873007 : i :
1/70| Tn‘an?u!a percae (KX886735) perciform-infecting
——————————————— Thelohanellus marginatus (K)434181) | siluriform-infecting
Myxobolus filamentum (K1849240)
Myxobolus oliveirai (HM754633)
Henneguya rotunda (K1416130) : " "
Myxobolus pantanalis (KF296349) | characiform-infecting
Myxobolus cf. cuneus (KP981637)
Henneguya pellucida (KF296352)
Henneguya lobosa (EU732600)
Henneguya sp. ex. Esox lucius (EU732601)
Henneguya psorospermica (EU732602)
Henneguya sp. ex. PeE"ca ﬂuviarﬂ;‘s (EU732599)
Henneguya creplini (EU732597 : % 1
Henneguya doori (HDU37549) perciform-infecting
Myxobolus lepomis (KY203391)
«— Henneguya bulbosus (KMD00055)
1737 Henneguya sutherlandi (EF191200)
.go7s7 Henneguya gurlei (DQ673465)
Henneguya mississipiensis (KP404438) | siluriform-infecting
4 Henneguya exilis (AF021881)
Henneguya ictaluri (AF195510)
———— Myxobolus miyairii (KT001495)
Sphaeractinomyxon type 9 of Rangel et al., 2016 (KU569318)
Triactinomyxon of Szekely et al., 2007 (DQ473515)
Myxobolus exiguus (AY129316)
Myxobolus muelleri (A¥Y129313
Myxobolus exiguus (this stud MH236070
Myxobolus exiguus (AY129317)
[Myxobolus muelleri (AY129314)]
Myxobolus parvus (KX242161)
g8l . Endocapsa rosulata (AF306791) mugiliform-infecting
0-92/80
Myxobol pisq lis (KC733437)
Myxobolus bizerti (AY129318)
Myxobolus spinacurvatura (AF378341)
Myxobolus sp. WSK2013 (KC733438)
Sphaeractinomyxon type 2 of Rangel et al.,, 2016 (KU569311)
bolus ichkeulensis (AY129315)
My I ttayai (HQ166720)
Henneguya cynoscioni (JNO17203)
Henneguya lateolabracis (AB183747)
Henneguya akule (EU016076)
Henneguya yokoyamai (AB693052)
Henneguya ogawai (AB693050) perciform-infecting
Myxobolus khaliji (KC711053) (marine)
0:63/51— Henneguya rhinogobii (AB447992)
Henneguya pseudorhinogobii (AB447994)
Henneguya shaharini (EU643630)
«j Myxobolus fryeri (EU346370)

Myxobolus insidiosus (EU346373)
Myxobolus arcticus (KM870563) salmoniform-infecting
Myxobolus kisutchi (AB469988)
Myxobolus neurobius (AB469987) )
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esociform-infecting
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0-95/79)

¥
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1/95

0-2

Fig. 4. Tree topology resulting from the Bayesian analysis of 93 SSU rRNA sequences representative of the clade of myxobolids. Numbers at the nodes are Bayesian
posterior probabilities/ML bootstrap values; asterisks represent full support in both methodologies; dashes represent a different branching for the ML tree or a
bootstrap support value under 50. Bold taxa correspond to species that have been reported from mugiliform fish hosts, with the invalid sequences of M. muelleri

contained within square brackets. The SSU rRNA sequence obtained in this study for M. exiguus is marked with a dark grey box. Final host groups are indicated by
vertical lines.

https://doi.org/10.1017/50031182018001671 Published online by Cambridge University Press


https://doi.org/10.1017/S0031182018001671

ssa.d Alssanun sbprique) Aq auljuo paysiiand 129100810281 LE00S/ZLOL0L/BI0 10p//:sd1y

Table 3. Summary of data available for Myxobolus spp. with bona fide mugiliform fish hosts

Site of
Myxobolus spp. Hosts Location infection SL SW ST PCL PCW PFc Source
M. achmerovi M. cephalus, Japan Sea off Fins, gills, 12.0-14.0 9.0-10.0 - 4.0-5.3 2.3-3.5 - Eiras et al., 2005;
Schulman, 1966 Planiliza Russia mesentery Yurakhno and
haematocheila Ovcharenko, 2014
M. adeli (Isjumova, Chelon auratus Mediterranean Digestive 6.2+0.3 (5.6-6.8) 7.2+0.3 (6.6-7.8) 4.6+0.4 (3.5-5.3) 3.1+0.3 (2.4-3.8) 1.8+0.2 (1.3-2.3) 4 Yurakhno and
1964) Yurakhno and Sea off Spain, tract, swim Ovcharenko, 2014
Ovcharenko, 2014 Azov and Black bladder, gills,
Seas muscle
M. anili Sarkar, 1989 R. corsula, India Ocean: Bay Duodenal 10.7 (9.8-11.1) 8.6 (7.9-9.8) - 4.8 (4.7-5.0) 3.0 (24-3.1) 5-6 Sarkar, 1989
possibly also in of Bengal mesentery
Planiliza
macrolepis
M. bankimi Sarkar, S. cascasia India Gall bladder 10.6+0.4 (10.0-11.0) 8.7+0.3 (8.0-9.0) - 3.9+0.5 (3.4-4.5) 2.7+0.3 (2.5-3.0) 4-6  Sarkar, 1999
1999
M. bizerti Bahri and M. cephalus Mediterranean off  Gills 14.2 (14.0-14.5) 14.2 (14.0-14.5) - 6.5 (6.0-7.0) 5.8 (5.5-6.0) 6-7 Bahri and Marques,
Marques, 1996 (syn. Tunisia, Atlantic 1996
M. hannensis Fall Ocean off Senegal
et al., 1997)
M. cephalis (Iversen M. cephalus Atlantic Ocean off  Brain 14.1 (14.0-15.0) 11.0 (10.0-11.0) 9.0 (8.0-10.0) 4.7 (4.0-5.0) 3.2 (3.0-4.0) 4-5 lversen et al., 1971
et al., 1971) Florida meninges,
Landsberg and Lom, gills, oral
1991 cavity, jaw
bone, crop
tissue
M. cheni Schulman, M. cephalus, L. China Trunk muscle 8.0-8.5 6.0-6.5 - 4.5-5.0 2.0 - Eiras et al., 2005
1962 haematocheila
M. chiungchowensis M. cephalus Off China Intestine 10.8 (10.2-11.8) 10.5 (9.6-11.0) 6.2 (6.0-6.6) 6.0 (5.6-6.2) 3.6 (3.4-3.8) 6-8 Eiras et al., 2005
Chen in Chen and Ma,
1998
M. dasguptai Haldar C. planiceps India Gills, muscle 14.1 (11.4-19.5) 6.4 (4.9-8.1) - 9.1 (7.3-11.4) 2.6 (1.6-4.0) - Eiras et al., 2005
et al., 1996
M. egyptica 0. labiosus Red Sea off Egypt  Gills 10.0+0.6 (9.5-10.5) 8.5+0.4 (8.0-9.0) 8.7+0.5 (8.4-9.2) 5.2+0.5 (5-6) 2.3+0.4 (2.0-3.0) 3-4 Abdel-Baki, 2011
Abdel-Baki, 2011
M. episquamalis M. cephalus Off Japan Scales 8.6 (7.5-9.5) 6.8 (6.0-7.5) 5.1 (4.5-5.5) 4.4 (3.8-5.0) 2.2 (2.0-3.0) - Egusa et al., 1990
Egusa et al., 1990
M. exiguus Thélohan, C. ramada, France Visceral 9.3+0.6 (8.4-10.7) 82+05 (7.6-89) - 4.8+0.2 (4.4-5.3) 2.8+0.3 (2.2-3.1) 5 Thélohan, 1895;
1895 (syn. possibly also in (Vivier-sur-Mer, peritoneum Kudo, 1919;
Myxosporidium C. auratus, C. Marseille, Schulman, 1966;
mugilis Perugia, 1891)  saliens, C. Banyuls), Tunisia Siau, 1978; Lubat
labrosus, and M. (Ichkeul Lake), et al., 1989; Bahri
cephalus Portugal (River et al., 2003
Minho) (measurements

from this study)
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M. goensis Eiras and M. cephalus Off India Gills 9.7 (9.5-10.5) 6.6 (6.0-7.5) 5.2 (5.0-6.0) L 5.3 (4.5-6.0) L 2.4 (2.0-3.0) 5 Eiras and D’Souza,

D’ Souza, 2004 S 2.4 (2.0-3.0) S 1.8 (1.5-2.0) 2004

M. hani Faye et al., M. curema Off Senegal Branchial 8.0+0.5 (7.0-9.0) 73+0.3 (7.0-8.0) - - - - Faye et al., 1999

1999 spines

M. ichkeulensis Bahri M. cephalus Mediterranean Gills 13.5 (13.0-14.0) 12.5 (12.0-13.0) - 5.5 (5.0-6.0) 4.1 (4.0-4.3) 7-8 Bahri and Marques,

and Marques, 1996 Sea off Tunisia, 1996; Bahri et al.,

(syn. M. goreensis Fall Turkey and Spain, 2003; Maillo-Bellén

et al., 1997) Atlantic Ocean off et al., 2011; Ozak
Senegal et al., 2012

M. lizae P. macrolepis India Outer wall of 9.0-9.5 4.6-5.2 - 3.2 2.0 5-7 Narasimhamurti and

(Narasimhamurti and gut Kalavati, 1979

Kalavati, 1979)

Landsberg and Lom,

1991

M. macrolepi Dorothy  P. macrolepis India Intestine 6.3 (5.2-6.9) 5.3 (4.3-6.9) - 2.8 (1.7-3.4) 2.0 (1.7-2.5) 6-7 Eiras et al., 2014

and Kalavati, 1992

M. mugauratus C. auratus Black Sea off Abdominal 6.5 5.0 - 4.0 3.0 - Eiras et al., 2014

(Pogoreltseva, 1964) Ukraine serosa

Landsberg and Lom,

1991 [syn. M. mugilis

(Pogoreltseva, 1964)

(praeocc. Perugia,

1981)]

M. mugcephalus M. cephalus Off India Gills 4.8-5.2 4.8-5.2 - 1.6-2.0 1.0-1.2 - Narasimhamurti

(Narasimhamurti et al., 1980

et al., 1980)

Landsberg and Lom,

1991

M. mugchelo C. labrosus Off Italy Gills or 5.9 (5.8-6.0) 4.6 (4.0-5.0) - - - - Eiras et al., 2005

(Parenzan, 1966) mesentery?

Landsberg and Lom,

1991

M. mugilii Haldar M. cephalus Off India Gills 11.7 (8.1-16.3) 5.5 (4.0-7.3) - 6.1 (2.4-8.1) 2.7 (1.6-4.0) - Haldar et al., 1996

et al., 1996

M. narasii E. vaigiensis Off India Gut 12.5-13.5 8.6-9.5 - 2.9-3.6 1.6-1.8 - Eiras et al., 2005

(Narasimhamurti, epithelium

1970) Landsberg and

Lom, 1991

M. nile Negm-Eldin M. cephalus Off Egypt Gills 7.4 7.3 - L 3.6 L21 L 6-8 Eiras et al., 2005

et al., 1999 S24 S1.2 S 5-6

M. parenzani C. labrosus Off Italy Gills 5.4 (5.0-6.0) 5.4 (5.0-6.0) - - - - Eiras et al., 2005

Parenzan (1966)

Landsberg and Lom,

1991

M. parsi Das, 1996 C. parsia India Gills 9.1 (9.0-9.5) 8.1 (8.0-8.5) - 4.4 (4.0-4.5) 2.8 (2.5-3.0) 5 Eiras et al., 2014

M. parvus Schulman, M. cephalus, C. Gills, kidney, 6.5-7.0 5.5-6.0 4.0-4.2 3.8-4.2 2.0 - Iskov, 1989; Eiras

1962 auratus, C. liver, and D’Souza, 2004;

(Continued)
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Table 3. (Continued.)

887

Myxobolus spp. Hosts Location Site of SL SW ST PCL PCW PFc Source
infection
saliens, P. China, Ukraine, mesentery, Eiras et al., 2005;
haematocheila Black Sea, Indian gall bladder, Ozer et al., 2016b
Ocean intestine,
lower jaw
M. platanus Eiras M. liza Brazil Spleen 10.7 (10.0-11.0) 10.8 (10.0-11.0) 5.0 7.7 (7.0-8.0) 3.8 (3.5-4.0) 5-6 Eiras et al., 2007
et al., 2007
M. raibauti Fall et al., M. cephalus Off Senegal Liver 15.3 (14.0-16.0) 12.1 (12.0-13.0) - 5.9 (5.0-6.5) 3.6 (3.0-4.0) - Fall et al., 1997
1997
M. rohdei Lom and M. cephalus Off Australia Kidney 11.0 (9.8-11.8) 8.9 (8.4-9.1) 6.5-7.0 4.3 (3.7-5.0) 2.8 (2.5-3.1) 3-4 Lom and Dykova,
Dykova, 1994 1994
M. sphaeralis Dorothy  P. macrolepis India Gills 14.1 (13.0-15.0) 7.8 (6.5-8.0) - 7.5 (7.0-8.0) 2.3 (2.0-3.0) 4-5 Dorothy and
and Kalavati, 1992 Kalavati, 1992
M. spinacurvatura M. cephalus Off Japan, off Brain, 10.5-12.5 9.0-11.0 6.0-7.5 3.5-5.0 2.5-35 - Maeno et al., 1990;
Maeno et al., 1990 Tunisia mesentery, Bahri et al., 2003
liver, spleen
and pancreas
M. supamattayai M. seheli Off Thailand Skin 6.6 (6.2-7.0) 6.5 (6.2-6.7) - 3.5 (3.4-3.6) 2.0 (1.9-2.2) 4-5 U-taynapun et al.,
U-taynapun et al., 2011
2011
Myxobolus sp. Faye M. curema Atlantic Ocean off  Heart - - - - - - Falletal, 1997
et al., 1997 Senegal
Myxobolus sp. Kim M. cephalus Korea Intestine 10.4 (9.0-11.9) 8.4 (7.3-10.1) - 3.7 (2.5-4.5) 2.2 (1.8-2.9) - Kimetal, 2013
et al., 2013
Myxobolus sp. | M. cephalus Mediterranean Liver 12.0-14.0 10.0-12.0 - 5.0-7.0 3.0-35 5-6 Yemmen et al., 2012
Yemmen et al., 2012 Sea off Tunisia
Myxobolus sp. Il M. cephalus Mediterranean Heart 10.0-12.0 10.0-11.0 - 4.0-5.5 2.0-2.5 4-5 Yemmen et al., 2012
Yemmen et al., 2012 Sea off Tunisia

SL, myxospore length; SW, myxospore width; ST, myxospore thickness; PCL, polar capsule length; PCW, polar capsule width; PFc, number of polar filament coils; S, smaller; L, larger. Measurements are means +s.o. (range) (when available), given in um.
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1945: four from the gills and gut of large-scale mullet P. macrole-
pis (Smith, 1846) [syn. C. macrolepis (Smith, 1846)] in India; and
three from several organs of so-iuy mullet P. haematocheila
(Temminck and Schlegel, 1845) [syn. L. haematocheila
(Temminck and Schlegel, 1845)] in Eurasian coastal waters.
Other hosts accounting for a single species are: the corsula
Rhinomugil corsula (Hamilton, 1822), the yellowtail mullet
Sicamugil cascasia (Hamilton, 1822) and the squaretail mullet
Ellochelon vaigiensis (Quoy and Gaimard, 1825), all from in
India; the hornlip mullet Oedalechilus labiosus (Valenciennes,
1836) in the Red Sea off Egypt; and the bluespot mullet
Moolgarda seheli (Forsskal, 1775) oftf Thailand. On its turn,
only two species of Henneguya have been reported from the
gills and brain of M. cephalus off Senegal (Table 4). Some of
these parasite species have been reported, and even originally
described, from more than one mugiliform fish host; it is the
case of M. achmerovi Schulman, 1966, M. anili Sarkar, 1989,
M. cheni Schulman, 1962, M. exiguus and M. parvus. Also,
some have been indiscriminately reported from several organs
and tissues; it is the case of M. achmerovi, M. adeli, M. cephalis,
M. dasguptai, M. parvus and M. spinacurvatura (Table 3). The
great biodiversity of Myxobolus spp. parasitizing mugiliform fish
hosts reflects not only the species-richness of this myxosporean
genus, which is the most common in freshwater environments,
but probably correlates with the migratory patterns and feeding
strategies of mullets. The catadromous nature of mullets allows
these fish species to move into freshwater and brackish environ-
ments, thus increasing risk of exposure to typically freshwater
parasites, such as Myxobolus spp. Also, being benthic feeders,
mullets have increased proximity to infected annelids and, there-
fore, are more prone to contact with waterborne actinosporean
stages. The high number of Myxobolus spp. parasitizing M. cepha-
lus in particular, might suggest that this species possesses higher
susceptibility than other mullets to myxosporean infection, but
most likely simply reflects the higher number of parasitological
surveys that have been conducted in this fish species, as a result
of its economic importance in fisheries and aquaculture.

Most mugiliform-infecting species are without molecular data,
so that their reports (original and subsequent) have been solely
based on morphological traits, which molecular-based systematics
reveal are artificial for the reliable description of myxobolids (e.g.
Fiala, 2006; Bartosova et al., 2009; Fiala and Barto$ova, 2010; Liu
et al., 2010). Thus, the legitimacy of these species, and their occur-
rence in the several reported sites of infection and hosts, must be
evaluated through the use of molecular tools; a task that it might
prove more difficult than expected, not only due to the frequent
occurrence of co-infections (e.g. Molnar et al, 2006), but also
due to the vague boundary between intraspecific and interspecific
variability of myxobolids. For instance, our molecular analysis
shows that the SSU rRNA sequence provided by Molnar et al.
(2006) for M. muelleri displays only 97% of similarity to its con-
specific sequence by Eszterbauer (2004), while it also shares a
similar percentage of identity (97.0-97.5%) to the SSU rRNA
sequences of M. arrabonensis (KP025680), M. bliccae
(HM138772) and M. bramae (AF507968). Similarly, high values
of intraspecific variability have been reported for different isolates
of M. koi (3.0%), M. flavus (1.9%), H. corruscans (2.3%) and H.
maculosus (1.9%) (Camus and Griffin, 2010; Carriero et al,
2013). On the other hand, very low interspecific variability has
been reported between M. pseudodispar, M. musculi and M.
cyprini (0.3-0.6%); M. pendula and M. pellicides (0.4%); M. fryeri
and M. insidiosus (0.5%); M. intramusculi and M. procerus (2.1%);
M. paksensis and M. cycloides (2.4%); and M. szentendrensis and
M. intimus (2.8%) (Kent et al., 2001; Molnar et al., 2002; Easy
et al, 2005, Ferguson et al, 2008; Cech et al, 2015).
Considering all of the above, it is clear that the reliable
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classification of myxobolids can only result from the comprehen-
sive evaluation of biological, morphological and molecular fea-
tures. Another problem that researchers face when studying
myxobolids, as well as myxosporeans in general, is the amount
of unpublished, incomplete, erroneous and confusing data in
the GenBank. Thus, it is important to recognize and avoid the
use of poor records. In fact, Molnar (2011) identified and deemed
invalid several SSU rRNA sequences of Myxobolus spp. In this
study, it is further acknowledged that some SSU rRNA sequences
of M. exiguus are erroneously attributed to M. muelleri
(AY129313 and AY129314), as are the cases of the SSU rRNA
sequences of M. turpisrotundus, M. toyamai and M. cutanei, erro-
neously designated as M. rotundus (AY165179), T. toyamai
(HQ338729) and U. caudatus (JQ388890), respectively.

Assessment of the legitimacy of mugiliform fish as hosts for
cryptic species, with the redescription of M. exiguus

The great majority of myxobolids are host specific (Molnar,
1994), with few having been recognized to infect a wide range
of hosts belonging to the same taxonomic family or order. For
instance, M. pseudodispar has been shown to infect a wide
range of cypriniforms (Molnar et al, 2002; Forré and
Ezsterbauer, 2016) and, in the same manner, M. cerebralis is
known to parasitize several species of salmonids (El-Matbouli
et al, 1999; Hoffman, 1999; Hedrick et al, 2001; Ferguson
et al., 2008). Similarly, most myxobolids have well-defined sites
of infection (Molndar, 1994; 2002; Molnar et al., 2006), but several
species have been indiscriminately reported from multiple organs,
either due to misidentifications, or to the parasite’s specificity to a
given tissue. For instance, the plasmodia of M. diaphanus develop
in the connective tissue of several different organs of the banded
killifish Fundulus diaphanus (Lesueur, 1817) (Cone and Easy,
2005). As such, indicating specific tissue tropism, rather than
just the organ of infection, is necessary for the correct character-
ization of myxobolids, and myxosporeans in general.
Furthermore, recent phylogenetic studies have consistently
shown vertebrate host group as the strongest evolutionary signal
for myxobolids (e.g. Ferguson et al., 2008; Carriero et al., 2013;
Rocha et al., 2014a), followed by the aquatic environment of
the host species and tissue tropism (Kent et al, 2001;
Eszterbauer, 2004; Holzer et al., 2004; Fiala, 2006).

Opverall, about 38 species and four records of Myxobolus have
been performed from mugiliform fish hosts worldwide (Table 3;
Naidenova et al, 1975; Donets, 1979; Ibragimov, 1987;
Yurakhno and Maltsev, 2002; Yurakhno, 2004; Eiras et al,
2007, 2014), with C. ramada being host to M. exiguus and M.
muelleri (Siau, 1978; Lubat et al, 1989; Thélohan, 1895; Bahri
et al., 2003). Both these species are cryptic, having been described
from a wide range of tissues and hosts. The original description of
M. exiguus simultaneously reported the parasite from the stomach
epithelium, pyloric caeca, kidney and spleen of the mugilids
C. labrosus and C. ramada in France, and from the gills of the
cypriniform fish host A. brama (Linnaeus, 1758), with basis on
a single schematic line drawing and some spores’ measurements
(Thélohan, 1895). Since then, this parasite was reported from sev-
eral other cypriniform and mugiliform fish hosts inhabiting fresh-
water across Europe and the Mediterranean Sea, including:
Alburnus alburnus (Linnaeus, 1758), Leuciscus aspius (Linnaeus,
1758), Blicca bjoerkna (Linnaeus, 1758), Chondrostoma nasus
(Linnaeus, 1758), L. idus (Linnaeus, 1758), Pelecus cultratus
(Linnaeus, 1758), Rutilus rutilus (Linnaeus, 1758), Scardinius ery-
throphthalmus (Linnaeus, 1758), C. auratus, C. saliens and Mugil
cephalus (Kudo, 1919; Siau, 1978; Lubat et al., 1989; Bahri et al.,
2003). Bahri et al. (2003) sequenced the SSU rRNA gene of this
parasite (AY129316, AY129317) using samples obtained from
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the intestine of C. ramada from the Ichkeul Lake, Tunisia.
However, these authors also provided two SSU rRNA sequences
for M. muelleri (AY129313 and AY129314) obtained from the
mesenteric vessels of C. ramada, which our analysis shows, are
equal to the ones provided for M. exiguus. According to the
phylogenetic analysis performed by Bahri et al. (2003), the
sequences obtained for M. muelleri and M. exiguus differed solely
by three nucleotide substitutions, with the myxospores exhibiting
subtle morphological differences and undergoing sporogony in
different organs (M. muelleri in mesenteric vessels and M. exiguus
in the intestine). However, acknowledging that C. ramada should
not be considered as a bona fide host for M. muelleri, it seems
probable that Bahri et al. (2003) sequenced the SSU rRNA gene
of the same parasite, M. exiguus, from the visceral peritoneum,
which lines the intestine and double-folds to form the mesentery
attaching to the gastrointestinal organs. Molecular comparison of
the SSU rRNA sequence here obtained to those obtained by Bahri
et al. (2003) identified the parasite in study as M. exiguus. This
identification is corroborated by the specificity of the site of infec-
tion and host species, but also by the morphological characters of
the myxospores, which dimensions are congruent with those pro-
vided in the original description of M. exiguus by Thélohan
(1895), as well as those provided by Bahri et al. (2003) (albeit
being slightly bigger, and presenting fewer polar filament coils
(five) than those (six to seven) described for the myxospores col-
lected from the mesenteric vessels and misidentified as M. muel-
leri). Bahri et al. (2003) further described the valves as smooth,
with 10-12 markings appearing near the suture line, as it was
also observed in this study. Considering that M. exiguus was ori-
ginally described on the basis of a single schematic line drawing,
and that its morphometrics were obtained from myxospores that
most probably belong to different Myxobolus spp., as shown by
the several tissues of infection and hosts accounted for in the ori-
ginal description, this paper aims to present a comprehensive
morphological and molecular redescription of this myxobolid
species. Chelon ramada is here suggested as type host for M. exi-
guus, not only because it is among the host species included in the
original description, but also because the parasite gained its
molecular identity from infections in the visceral peritoneum of
this mullet species. Thus, other fish species, namely cypriniforms,
should be disregarded as bona fide hosts for M. exiguus. Similarly,
the visceral peritoneum is suggested as type tissue, so that other
tissues and organs of infection, such as the gills, should also be
disregarded as sites of infection for M. exiguus.

On its turn, M. muelleri, type species of the genus, was origin-
ally described from the gills of several cypriniforms, without indi-
cation of a type host, and since then reported from several
different tissues and organs in a great number of fish hosts
from Eurasia and North America, including: the kidney and ovar-
ies of Phoxinus phoxinus (Linnaeus, 1758); the eyes of Symphodus
melops (Linnaeus, 1758) and A. alburnus; the gills of Zingel asper
(Linnaeus, 1758), Barbus barbus (Linnaeus, 1758), R. rutilus and
Lota lota (Linnaeus, 1758); the pseudobranches of Cottus gobio
(Linnaeus, 1758); and the gills, fins, eyes, mesentery, intestine,
gall bladder, urinary bladder, liver, kidney, spleen, gonads, heart
and muscle of M. cephalus, C. auratus, C. saliens and C. ramada
(Kudo, 1919; Shulman, 1984; Lom and Dykova, 1992; Bahri ef al.,
2003; Molnar et al., 2006; Umur et al., 2010; Yurakhno and
Ovcharenko, 2014). Considering the currently accepted evolution-
ary signals of Myxosporea, namely the importance of host affinity
for myxobolids (Carriero et al., 2013), it is clear that M. muelleri
constitutes a species-complex, comprising several species that are
phenotypically similar and, therefore, have been misidentified.
This is further supported by the astonishing variation in the
shape and size of the myxospores of M. muelleri between reports.
In their taxonomic revision of the genus Myxobolus, Landsberg
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and Lom (1991) suggested settling S. cephalus as the type host for
M. muelleri. Eszterbauer (2004) provided a SSU rRNA sequence
(AY325284) for the parasite sampled from the gills of the chub
S. cephalus from the River Danube, Hungary; but it was Molnar
et al. (2006) who characterized M. muelleri by providing a com-
prehensive morphological and molecular redescription of the spe-
cies from samples obtained from the gills, as well as from the
swimbladder of S. cephalus in Hungary (DQ439806). Bahri
et al. (2003) had supposedly sequenced M. muelleri from the mes-
enteric vessels of C. ramada from the Ichkeul Lake, Tunisia.
Nonetheless, our molecular analyses show that the sequences
obtained from the mugilid fish host (AY129313 and AY129314)
display lower percentage of identity (72.2-73.4%) than those
obtained by Eszterbauer (2004) and Molnér et al. (2006), reveal-
ing that the parasite infecting C. ramada is not M. muelleri, but
M. exiguus, as previously stated. Thus, our study agrees with
Molndr (2011) in that the SSU rRNA sequences obtained by
Bahri et al. (2003) for M. muelleri should be deemed invalid.
We further suggest disregarding C. ramada and other mugilids
has bona fide hosts for M. muelleri, as well as gadids, percids
and scorpaenids.

Analysing the legitimacy of mugiliform fish as hosts for other
Mpyxobolus spp. reported from mullets, some species require obvi-
ous attention, as their original descriptions were performed from
cypriniforms. Myxobolus acutus (Fujita, 1912) Landsberg and
Lom, 1991, originally S. acuta, was first described from the gills
of Carassius auratus gibelio in Japan, and later reported from
the scales of M. cephalus and P. haematocheila from several
Russian Rivers, and from the Sea of Japan (Landsberg and
Lom, 1991; Eiras et al., 2005; Yurakhno and Ovcharenko, 2014).
Mpyxobolus bramae was originally described from the gills of A.
brama in Russia, and later reported from a wide range of organs
and tissues of M. cephalus in the Black Sea, including the gills,
skin, fins, heart, muscle, mouth, oesophagus, intestine, swim blad-
der, liver, gall bladder, spleen and kidney (Iskov, 1989; Eiras et al.,
2005; Yurakhno and Ovcharenko, 2014). Both Andree et al.
(1999) and Eszterbauer (2004) deposited an SSU rRNA sequence
for this parasite obtained from the gills of its type host in Hungary
(AF085177 and AF507968, respectively), which turned out shared
very low percentage of similarity between each other. Considering
that the common bream is the host for several other gill-infecting
Mpyxobolus spp. in Hungary (Molndr and Székely, 1999),
Eszterbauer (2004) and Ferguson et al. (2008) suggested that
the samples used by Andree ef al. (1999) were probably contami-
nated by myxospores of another species and the corresponding
SSU rRNA sequence was ultimately deemed invalid (Molnar,
2011). Myxobolus rotundus, which was also originally described
from the gills of A. brama in Germany, as well as from the gud-
geon Gobio gobio (Linnaeus, 1758), was later reported from the
gills, heart and other internal organs of C. auratus in the Black
Sea (Donets, 1979; Iskov, 1989; Eiras et al., 2005). This parasite
ultimately had its SSU rRNA gene characterized from infections
in its type tissue and host (Székely et al., 2009). Myxobolus bran-
chialis, originally Myxosoma branchialis, was first described from
the gills of B. barbus in Ukraine, but then reported from the gills,
kidney and spleen of M. cephalus, C. auratus and C. saliens in the
Caspian Sea and Black Sea (Schulman, 1966; Ibragimov, 1987;
Iskov, 1989; Eiras et al., 2005). Molnar et al. (2012) gave molecu-
lar identity to the parasite upon its redescription from the gills of
common barbel and Iberian barbel Luciobarbus bocagei
(Steindachner, 1864) in Hungary and Portugal. Finally, M. circu-
Ius (Achmerov, 1960) Landsberg and Lom, 1991, originally M.
circulus, was first described from the gills of Cyprinus carpio
Linnaeus, 1758 in Russia, being later reported from the gills,
fins, muscle and kidney of M. cephalus in the Black Sea
(Naidenova et al, 1975; Iskov, 1989; Yurakhno, 2004; Eiras
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et al., 2005). Given the molecular trends accepted for myxobolids
(Andree et al, 1999; Kent et al., 2001; Eszterbauer, 2004; Fiala,
2006; Carriero et al, 2013), it is highly unlikely for a
cypriniform-infecting species to parasitize members of the order
Mugiliformes. Thus, we suggest disregarding mullets as legitimate
hosts for all these species, which should be considered restricted
to their original hosts, and others proven through means of
molecular tools (as is the case of M. branchialis) (Table 5). For
the same reason, we suggest disregarding the cyprinid C. carpio
haematopterus as a bona fide host for M. achmerovi Schulman,
1966, which original description was performed from the gills,
fins and mesentery of M. cephalus and P. haematocheila (Eiras
et al., 2005; Yurakhno and Ovcharenko, 2014).

Ultrastructure of M. exiguus

Ultrastructural studies of the plasmodial and sporogonic develop-
ment can provide valuable supplementary information for the
distinction of individual species and, more importantly, for
understanding host-parasite interactions (Hallett and Diamant,
2001; Rocha et al., 2013; 2014b). Current (1979) further suggested
that certain ultrastructural differences in the plasmodium wall
may partially correlate with the degree of pathogenicity of the
parasite.

In general, the wall of cyst-forming myxosporeans is structured
similarly between different species and genera, with few variations
that probably result from the physical and biological conditions of
the tissue/organ of infection, as well as the host immune response
(Lom and Dykova, 1992; Hallett and Diamant, 2001; Rocha et al.,
2013). Most histozoic species present a smooth plasmodial wall,
with pinocytosis or phagocytosis being widely accepted as the
processes supplying the nutrients necessary for the parasite’s
development (Current and Janovy, 1976; Mitchell, 1977;
Current, 1979; Current et al, 1979; Casal et al., 2006; Azevedo
et al., 2011). The ultrastructural features of the plasmodial devel-
opment of M. exiguus is similar to that of other histozoic myxos-
poreans only in that pinocytotic activity is evidenced by the large
number of vacuoles occupying the ectoplasmic layer. Its plasmo-
dial wall, however, displays an irregular outline, with peripheral
projections expanding the parasite-host interface, probably for
optimizing nutrient intake. This feature has been reported for
few other histozoic species, e.g. M. insignis (Azevedo et al., 2013)
and M. filamentum (Naldoni et al., 2015), since the differentiation
of peripheral projections is common to the plasmodial develop-
ment of coelozoic species (Sitja-Bobadilla and Alvarez-Pellitero,
1993; 2001; Rocha et al,, 2011). Overall, the ultrastructural study
performed revealed significant unique features of the plasmodial
development of M. exiguus, namely in its attachment to the meso-
thelial cells. In turn, the sporogony of M. exiguus is essentially
similar to that of other myxobolids with centric asynchronous
development (e.g. Current, 1979; Current et al., 1979; Naldoni
et al, 2015), in that the ectoplasm appears highly vacuolated
and devoid of cytoplasmic organelles, while the endoplasm is
riddled with organelles and the parasite’s different developmental
stages: generative cells and developing sporoblasts at the periphery,
and immature myxospores at the centre.

Phylogenetic analysis

The phylogenetic analysis here performed is congruent with pre-
viously published cladograms (e.g. Kent et al., 2001; Fiala, 2006;
Ferguson et al., 2008; Carriero et al, 2013; Rocha et al., 2014a),
in that it shows the vertebrate host group as the most relevant
evolutionary signal for myxobolids, with tissue tropism and aquatic
environment playing less conspicuous roles. Accordingly, all SSU
rRNA sequences available for myxobolids with legitimate
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Table 5. Summary of valid data for Myxobolus spp. erroneously reported from mugiliform fish hosts

[43%

Site of

Myxobolus spp. Hosts Location infection SL SW ST PCL PCW PFc Source

M. acutus (Fujita, C. auratus gibelio Russia Gills 8.0-10.0 7.0-8.0 5.0-6.0 5.0 4.0 - Landsberg and

1912) Landsberg Lom, 1991;

and Lom, 1991 Eiras et al.,

2005

M. bramae A. brama Russia Gills 10.0-12.0 8.0-10.0 4.5-6.5 4.0-5.5 2.3-35 4-5 Eiras et al.,

Reuss, 1906 2005

M. branchialis B. barbus, L. Ukraine Gills 6.8-8.4 5.8-6.4 4.0-4.8 2.5-3.2 1.6-2.0 - Landsberg and

(Markevitsch, bocagei Lom, 1991;

1932) Landsberg Eiras et al.,

and Lom, 1991 2005; Molnar

et al., 2012

M. circulus C. carpio Russia Gills 8.5-12.0 7.5-12.0 - 3.5-6.0 2.0 - Landsberg and

(Achmerov, Lom, 1991;

1960) Landsberg Eiras et al.,

and Lom, 1991 2005

M. muelleri S. cephalus, and Hungary Gills 9.8+0.2 (9.5-10.0) 7.5+0.2 (7.5-8.0) 5.2+0.2 (5.0-5.5) 4.6+0.5 (4.0-5.0) 3.6+0.5 (3.0-4.0) 5-6 Kudo, 1919;

Blitschli, 1882* possibly in P. Lom and
phoxinus, A. Dykova, 1992;
alburnus, B. Eiras et al.,
barbus, R. rutilus, 2005; Molnar
and other et al., 2006
cypriniforms

M. rotundus A. brama, the Germany, Gills 10.0 9.8 3.0 3.8-5.0 - - Eiras et al.,

Nemeczek, 1911 oligochaete Hungary 2005; Molnar
Tubifex tubifex, et al., 2009;
and possibly G. Székely et al.,
gobio 2009

SL, myxospore length; SW, myxospore width; ST, myxospore thickness; PCL, polar capsule length; PCW, polar capsule width; PFc, number of polar filament coils; S, smaller; L, larger. Measurements are means +s.o. (range) (when available), given in um.

*Data from the morphological redescription and molecular identification of the parasite from its original site of infection and host species in Hungary (Molnar et al., 2006).
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mugiliform fish hosts are here shown clustering together to form a
well-supported subclade of the clade of myxobolids. Members of
the sphaeractinomyxon, endocapsa and triactinomyxon collective
groups that probably play a role in the life cycles of myxobolid spe-
cies from mullet hosts also cluster within this subclade. In turn, the
valid SSU rRNA sequences available for M. bramae, M. branchia-
lis, M. muelleri and M. rotundus, which were obtained from their
cypriniform type hosts, all cluster within the clade comprising
cypriniform-infecting myxobolids. This emphasizes the incongru-
ence of reporting these species from mugiliform fish hosts, as well
as the artificiality of using morphological characters for species
identification. The fallibility of morphology as an evolutionary sig-
nal for myxobolids has been well reported in several studies (e.g.
Fiala, 2006; BartoSovd et al., 2009; Fiala and Barto$ova, 2010;
Liu et al,, 2010). For instance, traditional taxonomy separates the
genera Myxobolus and Henneguya according to the absence or
presence of caudal appendages, respectively (Lom and Dykovd,
2006). Nonetheless, molecular-based taxonomy has consistently
shown the convergent evolution of caudal appendages (Fiala and
Barto$ovd, 2010; Liu et al., 2010), revealing that this morphological
trait bares little insight into the relationships of myxobolids. In
fact, abnormal spore extensions have been reported for some
Myxobolus spp. (Mitchell, 1989; Cone and Overstreet, 1997;
Bahri, 2008; Liu et al, 2010, 2013, 2014, 2015; Zhang et al,
2014), including M. bizerti from the gills of M. cephalus, and M.
exiguus (misidentified as M. muelleri, as previously mentioned)
from the mesenteric vessels of C. ramada (e.g. Longshaw et al,
2003; Eiras et al., 2005; Kaur and Singh, 2010; Camus ef al., 2017).

It has been suggested that the origins and radiations of myxos-
porean parasites probably reflect the evolution of their fish hosts
(e.g. Carriero et al., 2013; Kodadkova et al., 2015). Evolutionary
phylogenies of fish reveal that the order Mugiliformes is mono-
phyletic in relation to its sister taxa, despite the polyphyly and/
or paraphyly that takes place at the genera-level, due to systema-
tics based in poorly informative anatomical characters (Durand
et al., 2012). The phylogenetic analyses here performed supports
the coevolutionary history of myxosporeans and their vertebrate
hosts, as it shows all legitimate mugiliform-infecting myxobolids
clustering together to form a monophyletic well-supported sub-
clade within the clade of myxobolids. In the future, it would be
interesting to unravel the significance that this coevolutionary his-
tory had in the adaptive strategies of myxosporeans to different
micro- and macroenvironments.
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