
Self-regulatory hierarchical coevolution

MIKE ROSENMAN and ROB SAUNDERS
Key Centre of Design Computing and Cognition, School of Architecture, Design Science and Planning,
Faculty of Architecture, University of Sydney, Sydney, New South Wales, Australia

(Received January 24, 2003;Accepted August 28, 2003!

Abstract

An evolutionary model for nonroutine design is presented, which is called hierarchical coevolution. The requirements
for an evolutionary model of nonroutine design are provided, and some of the problems with existing approaches are
discussed. Some of the ways in which these problems have been addressed are examined in terms of the design
knowledge required by evolutionary processes. Then, a synthesis of these approaches as a hierarchical coevolutionary
model of nonroutine design is presented and the manner in which this model addresses the requirements of an
evolutionary design model is discussed. An implementation in the domain of space planning provides an example of a
hierarchical design problem.

Keywords: Evolutionary Design; Hierarchical Coevolution; Nonroutine Design; Self-Regulation

1. INTRODUCTION

Nonroutine designing can be characterized by a lack of
knowledge about the relationships between given design
requirements and possible forms satisfying those require-
ments~Rosenman, 1997!. Note that the term “nonroutine”
is relative. The determining characteristic is that, as far
as the designing agent is concerned, there is a lack of
knowledge between the problem and the solution; hence, it
does not merely copy a preexisting solution. As a conse-
quence, computational systems that use general-purpose,
knowledge-lean search processes, particularly evolutionary
algorithms, have proven popular as models of nonroutine
design~Bentley, 1999!.

1.1. Evolutionary algorithms for nonroutine design

Evolutionary algorithms have proved to be good general-
purpose, knowledge-lean search processes for nonroutine
design problems. An important feature of evolutionary algo-
rithms is that they efficiently balance exploration and exploi-
tation in the search of design spaces, allowing the effective

searching of ill-defined design spaces typical of nonroutine
design problems.

Despite these successes, the application of evolutionary
algorithms to nonroutine design can still be problematic. A
common problem is that traditional evolutionary algo-
rithms ~e.g., simple genetic algorithms! evolve complete
objects rather than the more naturally described com-
ponents of the design. The need to evolve holistic design
solutions can require complex forms of context-sensitive
reasoning or the use of ingenious data structures to repre-
sent the evolving designs. This article focuses on the task
of specifying design knowledge in an evolutionary algorithm.

2. KNOWLEDGE IN EVOLUTIONARY
DESIGN SYSTEMS

There are two common ways that a designer can specify
design knowledge in the application of an evolutionary algo-
rithm: first, in the specification of a fitness function, and,
second, in the design of the data structures to be manipu-
lated and the operators that manipulate them. Alternative
ways that a designer can add knowledge to an evolutionary
algorithm either require run-time interaction~i.e., super-
vision! or an intimate knowledge of the workings of the
algorithm itself.

The specification of a fitness function is the most com-
mon way that a designer encodes design knowledge for an

Reprint requests to: Mike Rosenman, Key Centre of Design Computing
and Cognition, School of Architecture, Design Science and Planning, Fac-
ulty of Architecture, University of Sydney, NSW 2006, Australia. E-mail:
mike@arch.usyd.edu.au

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2003!, 17, 273–285. Printed in the USA.
Copyright © 2003 Cambridge University Press 0890-0604003 $16.00
DOI: 10.10170S089006040317401X

273

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

evolutionary algorithm. The fitness function drives the evo-
lutionary process toward satisfactory solutions and thus has
a large influence on the efficiency of the process. The proper
specification of a fitness function is critical.

Even moderately complex designs often require the spec-
ification of multiple criteria as fitness functions. Multiple
criteria expressed as separate fitness functions can be prob-
lematic, because they require some means of combining
fitness measures so that an evolutionary algorithm may use
them. This problem is not confined to the application of
evolutionary algorithms to design; it has affected all multi-
criteria optimization methods~e.g., see Cohon, 1978!. In
evolutionary algorithms several approaches exist, each with
their own limitations and benefits~see Fonseca & Fleming,
1995, for an overview of multicriteria optimization research!.

Multicriteria fitness functions can pose computational
problems for evolutionary systems. As the number of crite-
ria to be evaluated increases, the size of the Pareto optimal
set increases exponentially. For complex problems the
demands of the increasing population size produces a heavy
computational burden. Badly designed multicriteria fitness
functions can result in the spread of a population across the
fitness landscape away from the desired optima, resulting
in an explosion in population size without an improvement
in the best designs. Conflicts of this type can be hard to
identify and can be particularly difficult to rectify.

The approach taken in this work has been to limit the
need for multicriteria fitness functions by restricting the
scope and objectives of any one evolutionary process. The
pragmatic use of a hierarchy of design problems that mirror
the natural decomposition of a problem by a designer per-
mits the number of criteria that must be considered for any
particular design problem to be relatively small compared
with the number of criteria affecting the complete design.
This approach avoids the rapid growth in population size
for complex design problems and limits the unintended inter-
action of fitness functions mentioned above.

Designing domain-specific data structures to be evolved
is a more subtle way of adding knowledge to an evolution-
ary algorithm, but it is just as important as other methods
that are used. The design of the data structure can drasti-
cally limit the forms that can be evolved. Careful con-
sideration of the design requirements can lead to better
representations of the form to be evolved. In particularly
complex cases, the design of the data structure may appear
to be as difficult and ill defined as the original design prob-
lem that the evolutionary algorithm is constructed to solve.

3. KNOWLEDGE RICH VERSUS
KNOWLEDGE EFFICIENT

From a knowledge-level perspective, there are two ways
that evolutionary algorithms could be improved: by incor-
porating additional knowledge or by increasing the effi-
ciency of the system’s use of its knowledge. The first

approach is to add domain knowledge to the algorithm out-
side of the fitness function and data structures. The second
approach is to make the algorithm more efficient in its use
of the domain knowledge that it already has in its fitness
functions and data structures.

3.1. Knowledge-rich evolution

Some ways of changing an evolutionary algorithm to add
design knowledge include the specification of the selection
process used to select individuals for reproduction, opera-
tors that perform reproduction, termination criteria to halt
an evolutionary run, and the type of evolutionary algorithm.

Knowledge can be added to an evolutionary algorithm
by using custom reproductive processes that increase the
likelihood that good, or at least viable, individuals are cre-
ated. This approach is particularly useful if standard evolu-
tionary algorithms prove inefficient because many invalid
individuals are created that must still be evaluated, slowing
the exploration of useful areas of the design space. New
reproductive operators can be as simple as ones that guard
against creating invalid data structures, or they can be as
complex as local search algorithms that perform local hill
climbing, as in the case of memetic algorithms~Moscato,
1989!. This approach is quite flexible and can be used to
add knowledge that is specific only to the type of data struc-
ture being evolved or to the domain.

Some restraint should be exercised when applying domain-
specific reproductive operators. One of the advantages of
using evolutionary algorithms is that they can discover solu-
tions that are unexpected by the implementer of the evolu-
tionary system. The more knowledge that is added to the
evolutionary algorithm in the form of heuristics restricting
the search of a design space, the less likely the evolutionary
system will discover unexpected solutions.

For problems that require the application of tacit knowl-
edge or aesthetic judgments, a designer may chose to inter-
act with the evolutionary process by providing subjective
evaluations instead of a mathematical function~Sims, 1991!.
This can be accomplished by having the design enter a
fitness value on a numerical scale that is translated into a
fitness measure by scaling the value to a standard range and
optionally combining it with other fitness measures~Wit-
brock & Reilly, 1999!.

Alternatively, a designer can interact more directly with
an evolutionary process by selecting which individuals in a
population will survive to reproduce and form the next gen-
eration. Examples of this are the biomorphs of Dawkins
~1986! and the selection of art alternatives by Todd and
Latham~1992!. Rosenman~1996, 1997! has the designer
selecting possible candidates for solutions to components
to be used in the next level assembly. Although interactive
approaches allow subjective judgments, they slow the pro-
cess and should be replaced by computational evaluation, if
possible.

274 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

A more direct approach to incorporate knowledge into an
evolutionary design system is to use a traditional knowledge-
intensive approach to guide the progress of an evolutionary
algorithm. In this hybrid model, an expert system, case-
based reasoning system, or some other form of knowledge-
rich, domain-specific design system would assist in the
selection and adjustment of various aspects of the evolu-
tionary design system in response to the particulars of a
design problem.

The problem with adding significant amounts of domain
knowledge to evolutionary algorithms is that they begin to
lose their advantages as knowledge-lean models for non-
routine design. Although each piece of domain-specific
knowledge that is added has the potential to produce a more
powerful specialized problem solver, it also limits the
possible forms that the evolutionary design system can gen-
erate. The evolution of unexpected solutions to design prob-
lems has been one of the hallmarks of evolutionary design
to the extent that some observers have proposed that evo-
lutionary design systems appear to be creative~Bentley,
1999; Goldberg, 1999!. Adding excessive domain knowl-
edge can strip the evolutionary algorithm of this ability, and
the model returns to one of a knowledge-intensive optimi-
zation process that is more akin to routine designing.

3.2. Knowledge-efficient evolution

A second approach to improving the handling of design
knowledge in evolutionary algorithms is to improve the
efficiency of their use of existing knowledge. The advan-
tage of this approach is that is allows the evolutionary algo-
rithm to remain knowledge lean, thereby maintaining the
greatest scope for evolving innovative solutions. Knowledge-
lean evolutionary algorithms do not rule out the possibility
of using knowledge-rich techniques at a later date. Increas-
ing the efficiency with which an evolutionary algorithm
uses domain knowledge generally involves some sort of
adaptation or learning~i.e., the evolutionary algorithm must
adapt the domain knowledge it is given to the specifics of
the evolutionary run!.

Genetic engineering~Schnier & Gero, 1996! is a good
example of adapting representations during evolutionary
search. Genetic engineering is founded upon the schema
analysis of Holland~1975! and the building block hypoth-
esis of Goldberg~1989!. Genetic engineering uses statisti-
cal analyses of the genotypes evolved to find the most useful
“building blocks” that emerge during an evolutionary run.
The genetic engineering system finds the building blocks
that appear most frequently in fit designs, extracts them
from the genotypes, and encapsulates them as evolved genes.
These evolved genes are then used to replace existing
sequences of genes for the construction of new genotypes.
This process of extracting useful building blocks and encap-
sulating them as evolved genes safeguards the knowledge
represented by the schema from future disruption. The
genetic engineering process allows the evolutionary system

to explicitly code knowledge about useful design forms that
is adapted to the specifics of the design problem.

3.3. Coevolution

Coevolution is the evolution of individuals within the con-
text of other individuals either in the same population or in
another population. Coevolution is pervasive in the natural
world, with species being dependent on many other species
for survival. A commonly cited case of coevolution is the
“arms race” observed between species of predator and prey.
Coevolution promises to solve the problem of providing
context-sensitive information without the need to add com-
plex context-sensitive fitness functions. The next two sub-
sections give detailed descriptions of two coevolutionary
approaches.

Maher and Poon~1996! proposed coevolutionary design
models for nonroutine designing that use coevolution to
evolve problems and solutions in tandem, permitting the
exploration of a wide range of possible forms to a class of
problems. They argue that designing is an iterative process
of searching the design problem space, as well as the design
solution space. The coevolutionary model of design searches
both the problem space and the solution~design! space in
tandem. The most important aspects of the coevolutionary
model of design are that solutions are evaluated in the con-
text of the evolved problems and problems are evaluated in
the context of the evolved solutions. As a consequence,
design proceeds as a compromise between solving the cri-
teria for the design problem and altering the problem to suit
the solutions at hand. In this way the coevolutionary pro-
cess transforms an ill-defined problem that lacks the knowl-
edge necessary to determine the relative importance of the
criteria into a well-defined problem that can be solved using
the resources available. The problem and solution search
processes cooperate to solve an ill-defined problem in an
efficient manner.

Potter and De Jong~1994! have proposed a quite differ-
ent type of cooperative coevolution to evolve solutions by
splitting up the evolutionary search of a single complex
solution space into separate evolutionary processes that each
search simpler solution spaces and cooperate to produce a
complete solution.

In the cooperative coevolution genetic algorithm~CCGA!,
a problem is decomposed into a set of simpler problems,
each of which is tackled by a separate evolutionary process.
Information is implicitly communicated between evolution-
ary processes through the use of a shared fitness function.
The shared fitness function provides a measure of how well
each component works within the context of the other com-
ponents evolved to solve the complete problem. This is
accomplished by selecting representatives from each pop-
ulation and combining them into a single composite struc-
ture that can be evaluated by the single fitness function
against the top level goal. Credit from evaluating the com-
posite structure flows back to the individual subcompo-

Self-regulatory hierarchical coevolution 275

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

nents to reflect how well they collaborate with the other
subcomponents to achieve the top level goal. Each individ-
ual solution is therefore evaluated within the context of the
representative best solutions at the current time. As a con-
sequence, the best solutions have a great deal of influence
on the evolution of other components.

Like the coevolutionary design algorithm, the CCGA uses
representatives, orcollaborators, from each population to
cooperate in solving the design problem. However, in this
model, the representatives collaborate to form a complete
solution rather than forming a problem–solution pairing.
Selecting representatives in either approach can be done in
many ways, but it is most easily done by selecting the mem-
ber with the highest fitness value from each collaborating
population.

Potter and De Jong~1994! have demonstrated their
approach to evolutionary design in a variety of domains
and have shown it to be effective. However, the problems
tackled thus far with the CCGA have not been decomposi-
tions in the same sense that a designer might decompose a
design problem in terms of subcomponents of different kinds
that have their own specific requirements; instead, they are
in terms of subsets of a set of similar elements that have the
same requirements as the composite structure. The compos-
ite structure is an aggregate of like atomic elements, not
“functional” components with differing requirements.

Chen and Brown~2002! have proposed a two-layered
system in which components are generated and evaluated
according to their success in making up a successful con-
figuration. This work is demonstrated in the configuration
of pipes on a Cartesian plane. It is limited to two levels.

4. HIERARCHICAL EVOLUTION

Specifying a fitness function that captures the important
aspects of a set of design requirements for a complex design
in a single quantitative value is a nontrivial problem. The
problems become even more complex as multiple criteria
are introduced, not only in the specification of fitness func-
tions but also in the unintended ways that the encoded
requirements can interact. For example, the work of Jo and
Gero ~1995! using a single fitness function in the genera-
tion of house plans showed that conflicting requirements
did not allow the process to converge on satisfactory solu-
tions. Rosenman~1996! presented a hierarchical evolution-
ary model for nonroutine design. This model was based on
recursively decomposing a complex artifact into subprob-
lems of designing components with lower levels of com-
plexity until a level is reached at which the design problem
becomes a routine one of generating a simple component.

This approach can significantly ease the burden of spec-
ifying data structures and fitness functions for evolutionary
algorithms because these structures and functions can be
made local to the component in question. There are two
potential advantages of decomposing a complex design prob-
lem into a hierarchy of simpler problems. The first is that

the decomposed problems are simpler and hence are more
likely to be easily solved. The search of multiple design
spaces that represent simple problems is more efficient than
searching a single design space that represents a complex
problem. As the number of design variables increases the
number of design spaces increases linearly, but each design
space remains small. In other words, the size of the geno-
types used by each evolutionary algorithm will never become
larger than is strictly necessary to solve the functional
requirements of the subcomponent. As discussed above, in
traditional evolutionary algorithms the size of the design
space will necessarily grow exponentially as the number of
design variables increases. This approach is comparable to
the advantage gained by stage–state approaches such as
dynamic programming~Bellman, 1957!.

The second advantage of specifying a set of simpler prob-
lems is that it becomes easier for the implementer of an
evolutionary design system to specify the data structures
and fitness functions, as they can be kept as simple as pos-
sible for each component problem. Evolutionary problems
solving different aspects of the design problem can use dif-
ferent data structures. This can result in a great simplifica-
tion of the specification task.

A complex artifact design problem is first broken down
into a hierarchy of increasingly simpler subcomponent design
problems. Each component within a hierarchy has an asso-
ciated evolutionary design process that must produce solu-
tions according to its own set of evaluation criteria. The
advantages of the hierarchical approach are that only those
factors relevant to the design of a component are consid-
ered, and factors relevant to the relationships among com-
ponents are treated at their assembly level.

A problem with this bottom-up hierarchical evolutionary
approach is that it does not have any mechanism for the
coordination of evolutionary processes through the sharing
of design knowledge provided in advance or discovered
during the design process. All of the subcomponents are
evolved before they are assembled into higher level com-
ponents. This requirement places a great deal of importance
on defining the correct fitness functions for subcomponents
in advance, because there is no opportunity to review the
evaluation criteria other than to start a completely new evo-
lutionary search. There is an assumption that by evolving a
sufficient number of suitable alternative solutions for each
component, a suitable solution will be available at the next
level. This hierarchical evolutionary model of designing is
therefore not well suited to tackling design problems that
have ill-defined requirements that must be propagated
throughout the component hierarchy.

Early implementations of hierarchical evolution~Rosen-
man, 1996! have included an interactive component to allow
the designer to specify which components are used in the
assembly of higher level components. This allows the
designer the opportunity to exercise control over the evo-
lutionary process while at the same time addressing the
problem of coordinating evolutionary processes. The type

276 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

of knowledge provided by the designer as selections of pre-
ferred components is particularly difficult to encode in fit-
ness functions in advance of an evolutionary run, because it
is not local to a single component design problem. In addi-
tion, this type of knowledge tends to be highly context sen-
sitive, which means that knowledge encoded in fitness
functions must be applied in a manner that depends on the
context of the component provided by other components
that may potentially include all of the components in the
hierarchy. Conventional approaches to the provision of
domain knowledge would require the augmentation of fit-
ness functions with potentially complex context-sensitive
decision mechanisms to determine whether a particular piece
of knowledge is applicable.

5. HIERARCHICAL COEVOLUTION

This section introduces an evolutionary algorithm, which
attempts to be knowledge lean and relatively simple, to
apply to complex problems. It presents a synthesis of the
evolutionary approaches to nonroutine designing as described
above. Hierarchical coevolution combines the pragmatic
decomposition of design problems and the knowledge clar-
ity of hierarchical evolutiontogether with the efficient use
of design knowledge demonstrated by cooperative coevo-
lution and the coevolutionary model of design. Hierarchical
coevolution aims to provide the necessary interrelationship
knowledge between the various components and levels of
assembly to produce a self-regulatory evolutionary system.

5.1. Intrinsic and extrinsic fitness

Hierarchical evolution and cooperative coevolution share
the concept of problem decomposition, although they differ
to the degree to which the decomposition is applied. How-
ever, they have quite different means of defining evaluation
criteria: hierarchical evolution evaluates components accord-
ing to criteria defined at the component level, whereas coop-
erative coevolution evaluates components only at the superior
problem level. The coevolutionary model of design devel-
oped by Maher and Poon~1996! is closer to hierarchical
evolution in this regard. Even though it appears to evaluate
both problem and solution at the same time, evolutionary
searches are treated as independent “components” of the
design situation and are evolved using quite separate fitness
functions.

Hierarchical coevolution combines these two means of
evaluating individuals by defining two types of fitness:intrin-
sicandextrinsic. Intrinsic fitness, as used by the evaluation
criteria for hierarchical evolution, measures the success of
a component to satisfy the criteria unique to its function.
Evaluation criteria that define intrinsic fitness deal only
with those aspects of the problem that affect a component
directly. Extrinsic fitness, similar to the fitness evaluation
in cooperative coevolution, measures the ability of compo-
nents to cooperate with other components at the same level

within thedesign situationof the immediately superior prob-
lem. Extrinsic fitness is the fitness of an individual with
respect to its immediately superior assembly.

Representatives from the lower level component solu-
tion population are used to evolve new higher level prob-
lems by contributing to the intrinsic fitness evaluation of
the higher level component solutions. In this way, the coevo-
lutionary model of design exploration is mirrored in hierar-
chical coevolution between adjacent levels of the component
hierarchy. Like the coevolutionary model of design explo-
ration, hierarchical coevolution treats immediately superior
solutions in the hierarchy of components as a population of
potential problem definitions that define the design prob-
lem for lower level solution populations. The hierarchical
coevolutionary model uses representatives from the prob-
lem population to define the extrinsic fitness function of
lower level component by evaluating them within the con-
text of the representative problems. At each level of the
hierarchy the cooperative coevolution of components is
guided by the evaluations of the assembly of the compo-
nents evolved at the immediately superior level. The coevo-
lution of components with a common fitness function at a
higher level allows the communication of context-sensitive
knowledge about the relationships between components.
Knowledge is transferred implicitly from one evolutionary
process to another through the shared evaluation of the two
components at the assembly level. Intrinsic evaluations cover
aspects of the design problem that are limited to the scope
of a component and the subcomponents that make it up.
Extrinsic evaluations cover aspects of the design problem
that relate to its ability to function within the context of an
assembled superior level component. As a consequence,
intrinsic and extrinsic evaluations are related, and in gen-
eral, the intrinsic evaluation of a component at one level is
the extrinsic evaluation of its subcomponents.

The separation of intrinsic and extrinsic evaluations allows
the context of a component to be limited to avoid the prob-
lems of having to evaluate a component within the context
of all other components. The use of higher level intrinsic
evaluations as lower level extrinsic evaluations over two
levels of a hierarchy allows some information to be shared
vertically without a need to reevaluate all of the other com-
ponents that go to make up the tree. The determination of
an overall fitness for an individual from the intrinsic and
extrinsic fitness measures can be done in many ways. How-
ever, a simple means of combining intrinsic and extrinsic
fitness functions is used in which the fitness evaluations are
combined using a weighted sum to produce a fitness value
that reflects the relative importance given to the intrinsic
and extrinsic evaluation criteria. In this work, different
weights for the intrinsic fitness and the extrinsic fitness
were used.

During the initialization phase, only the intrinsic fitness
is used to define the fitness of individuals. This is used as a
bootstrapping process to provide some initial components
for the coevolutionary processes to use.

Self-regulatory hierarchical coevolution 277

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

Comparing hierarchical evolution and hierarchical coevo-
lution, we can observe some important differences between
the two approaches. Most important, the hierarchical coevo-
lutionary model does not block the evolution of new solu-
tions at any level of the component hierarchy until the lower
levels have been completed. In the previous hierarchical
evolution approach~Rosenman, 1996!, each component pop-
ulation at the lower level was fully evolved over a number
of generations, and potentially suitable components were
selected before the next level of components~assemblies!
was, in turn, evolved. In hierarchical coevolution, for each
generation, components are evolved and used to generate
the next level of component assemblies. The former approach
was a breadthwise bottom-up approach, whereas the hier-
archical coevolution approach is a depthwise bottom-up and
then top-down approach.

6. IMPLEMENTATION OF HIERARCHICAL
COEVOLUTION

To illustrate the behavior of the hierarchical coevolutionary
an implementation has been tested against a set of simple
layout problems. Although this problem uses domain-
specific data structures and fitness functions, the focus of
this work is the hierarchical nature of the problem. This
continues the experiments done by Rosenman~1996! evolv-
ing house layouts using hierarchical evolutionary systems.
In Rosenman’s experiments, a user guided the evolutionary
process by selecting components interactively, allowing the
evolutionary system to be applied to complex component
design problems. In particular, Rosenman used a cellular
growth model to combine atomic units to form rooms and
used the same model to assemble rooms together into larger
components. The representations involved allow great flex-
ibility in the shape of the rooms evolved and in close pack-
ing of nonrectangular rooms to form assemblies.

Much simpler representations and construction pro-
cesses have been used in these experiments to facilitate
hierarchical coevolution without the need for human guid-
ance. The experiments described below use rectangular-
shaped rooms and constrain higher level assemblies to be
joined along the edges of their bounding boxes. Although
the domain problems are in house planning, the process is
applicable generally to all complex problems capable of
being decomposed hierarchically.

6.1. Facility layout problems

Layout problems of the type described below are also known
as facility layout problems and have been extensively stud-
ied in design computing, artificial intelligence, and com-
puter science. The facility layout problem is applicable to
several fields, including the layout of space in a building,
the layout of components on printed circuit boards, and the
packaging of goods in containers. Computer systems capa-
ble of solving layout problems have been developed using

both knowledge-rich and knowledge-lean approaches. Dif-
ferent evolutionary algorithms~e.g., GA, genetic program-
ming, evolutionary strategy, etc.! have been applied to layout
problems using different representation schemes and have
been shown to be good general-purpose methods when
matched with appropriate representation schemes.

In general, the facility layout problem deals with a set of
n rectangular facilitiesF 5 $ f1, f2, . . . , fn% that have to be
located within a planar site. A connectivity matrixM 5
@mij # i, j 51, . . . ,n defines the connection weights between
each pair of facilitiesfi and fj . The objective is to find a
nonoverlapping arrangement of the facilities with minimal
connectivity costs, calculated as(i, j51

n dij mij , wheredij is
the distance between facilitiesfi andfj . Variants of the facil-
ity layout problem have been introduced. For example, facil-
ity layout problems have been devised for irregular sites,
sites with preoccupied regions, or multiple sites~Kuziak &
Heragu, 1987; Meller & Gau, 1996!.

6.2. The house layout problem

The house floor plan design problem set for the evolution-
ary algorithms below differs from the typical facility layout
problems in several ways. The first is that the problem
involves laying out a set of nonidentical, flexible facilities,
in this case rooms. The size of the rooms are not predeter-
mined; instead, constraints are supplied as ranges of valid
areas and desired length to width ratios. The evolutionary
algorithm must determine the most appropriate sizes and
shapes of the rooms. The problem then naturally decom-
poses into a two-level hierarchy of subproblems~i.e., a stan-
dard facility layout problem to assemble rooms and a set of
subproblems to determine size and shape of each room!. In
other words, this is both a topology and geometry problem.

The second difference in the layout problem is that the
rooms can be grouped into zones in advance of an evolu-
tionary run, such that each zone contains rooms that share
related functions. The introduction of zones allows a designer
some additional control over the placement of related rooms,
beyond the specification of connection weights. The addi-
tion of a zone level also allows complex facility layout
problems to be broken down into a set of simpler facility
layout problems for the sake of efficiency. It provides a
way for designers to add knowledge about the design pro-
cess in a natural way.

As a consequence, the layout problem breaks down into
a hierarchy of at least three levels. First, at the room level,
an appropriate size and shape of each room must be deter-
mined. Second, at the zone level, related rooms must be
arranged to minimize the connectivity costs of rooms within
the zone. Third, at the house level, zones must be arranged
to minimize the connectivity costs of rooms in different
zones. The requirements of a house layout problem can be
represented with the diagram shown in Figure 1. The dia-
gram clearly illustrates the connectivity relationships between
rooms and how rooms that have many connectivity require-

278 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

ments are grouped together into zones. Although for this
implementation example the decomposition structure is
given, in a full design situation, different evolutionary
runs could be implemented with different decomposition
structures.

The subproblems at each level of the problem hierarchy
have different objectives, and the fitness functions used to
evolve possible solutions reflect this. The details of the
evolutionary processes, representations, and evaluation func-
tions used to evolve rooms, zones, and houses are given in
the next subsection. At each level, the weighted function
for combining intrinsic and extrinsic fitnesses used in the
examples was a 2:1 ratio. That is, the intrinsic fitness was
weighted twice as much as the extrinsic fitness.

6.3. Hierarchical coevolution of house layouts

6.3.1. Room evolution

Rooms are represented using integer genotypes with two
genes. The first gene is used to encode the width of the
room, and the second gene is used to encode the length. The
actual length and width of a room are calculated by multi-
plying the integer value of each gene by 0.1 m. Expressed
genotypes are represented as rectangular shapes that can be
rotated and positioned within higher level assemblies as
required.

Rooms are evaluated using an intrinsic fitness function
that compares each room’s area and length to width ratio
with predefined ranges of desired areas and aspect ratios.
The fitness functions for a room are defined by specifying
minimum and maximum values for area and width to length
ratio, Areamin, Areamax, Ratiomin, and Ratiomax. The evalu-

ation functions take a common approach in evolutionary
computing by turning the hard constraints that would dis-
allow rooms that fall outside the minimum and maximum
values into soft constraints that allow rooms to have areas
and ratios outside these ranges but with increasing penal-
ties, incurred as loss of fitness. The shape of the fitness
function used for evaluating the area of a room is illustrated
in Figure 2; a similar function is used for evaluating the
shape of a room.

Some of the evaluation functions for rooms in the follow-
ing examples have been made deliberately vague by speci-
fying wide ranges of acceptable areas and ratios. As a result,
the evaluation functions define a large plateau in the intrin-
sic fitness landscape for rooms that are equally “good” from
the perspective of a room’s requirements. Vague descrip-
tions of requirements are common in design when the accept-
ability of a design relies on contingent factors. The objective
of using them in the following experiments has been to
show that hierarchical coevolution can help resolve vague
requirements by allowing different levels of the hierarchy
to interact.

The evaluation of the area and width to length ratio of
each room provides the hierarchical coevolutionary algo-
rithm with a measure of the intrinsic value of the room~i.e.,
the ability of the room to support its assigned function!.
Each room is also evaluated within the context of the zone
to which it belongs, providing a measure of its extrinsic
fitness. The details of the zone evaluation functions are
given in the next subsection. When a zone is being evalu-
ated, it uses the best rooms currently available. However,
when a room is being evaluated in the context of a zone, it
replaces the current best room of its type.

6.3.2. Zone evolution

Zones are represented as slicing tree structures~STSs;
see Schnecke & Vornberger, 1997!. An STS forn rooms is
a binary expression tree in which each leaf node is a label
indicating a type of room and each internal node represents
the spatial relationship between its two child substructures.
Using the STS, zones are constructed using a sequence of
join operations between pairs of rooms or between pairs of
partially constructed zones that place the second substruc-
ture directly north, south, east, or west of the first substruc-
ture, as illustrated in Figure 3.

Fig. 1. A diagrammatic representation of the relationships between rooms,
zones, and the house with three zones.

Fig. 2. The shape of the fitness function for the evaluation of the area of
a room.

Self-regulatory hierarchical coevolution 279

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

As well as being illustrated as a tree, STSs can also be
written as symbolic expressions, using Polish notation. For
example, the STS expression~N R1R2! places roomR2

directly north of roomR1, and the STS expression~N ~W
R1R2!R3! places roomR2 west of roomR1 and roomR3

north of the substructure~R1{R2! that contains roomsR1

andR2. Each join operation also specifies whether either of
the substructures should be rotated and if so by how much.
Rotations are specified clockwise in 908 increments. The
result of joining two rooms is a partially constructed zone.
Zones are combined in much the same way as rooms. When
zones are joined, they may be rotated. The Polish notation
represents the genotype for zones and houses. The bound-
ing box of each zone is used to calculate the relative posi-
tions of the zones such that the bounding boxes of the rotated
zones touch.

The intrinsic fitness of each zone is evaluated in terms of
the connectivity between the rooms it contains. The fitness
measures for a zone are assessed by substituting the labels
in the STS with the current best rooms available from the
lower level. To evaluate the connectivity between rooms, a
matrix of connection strengths between rooms is used. A
simple connectivity matrix together with the graph of con-
nections that it defines between rooms is shown in Figure 4.
Each zone is also assigned an extrinsic fitness based on
how well the zone works with other zones in the current
best house. The zone being evaluated is constructed with
the current best rooms. It is then used in place of the best
zone of its type in the evaluation of the best house. This
method of evaluating the extrinsic fitness of a zone works
in much the same way that rooms are evaluated in the con-
text of zones.

6.3.3. House evolution
Houses are represented in similar way to zones~i.e., using

a STS genotype!, but they contain zone identifiers. Houses
are constructed in a very similar way to zones. Houses are
composed by joining and rotating zones, or partially con-
structed houses, according to the operators at the internal
nodes of the tree. Figure 5 illustrates the construction pro-
cess for a house consisting of three zones and shows how a
complex house can be built with only two join operations.

Each house is evaluated by assessing the connectivity
between rooms in different zones and the compactness of
the house. In addition, each house can also be evaluated in
terms of its fit to a predetermined site. The connectivity of
rooms in different zones is used to evaluate the connectiv-
ity of the house. Only the interzone connections between
rooms in different zones are considered because connec-
tions between rooms in the same zone are evaluated by the

Fig. 3. The bottom-up construction of a zone using a slicing tree structure
~STS!.

Fig. 4. A connectivity matrix for a zoneZ1 and two possible solutions for the room layout.

280 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

appropriate zone. By assessing the connectivity of two rooms
in different zones, a pressure to rotate one of the zones may
be exerted if the zones are adjacent but the rooms are sep-
arated. For example, although we could define that a utility
zone should be connected to a living zone, it does not say
how these two zones should be connected; instead, by defin-
ing that the laundry should be connected to the kitchen, we
can provide additional domain knowledge. Commonly,
interzone connections are defined between hallways in dif-
ferent rooms thereby specifying their function as a means
of getting between various parts of a house.

The compactness of a house is evaluated by penalties for
not using all of the space within its bounding box. In addi-
tion to the compactness measure, a house can be evaluated
within the context of a site. The site evaluation function
penalizes a house for extending beyond the bounds of a site
or for underutilizing the available area in the site. Figure 6
illustrates the calculation of site evaluation.

6.4. Example 1: Evolving a hallway

The aim of this experiment is to show that the desired topol-
ogy of rooms, specified in the connectivity matrix for a
zone, can have a significant effect on the development of
rooms. This simple experiment is again limited to the coevo-

lution of rooms within a single zone. There are five rooms
in this example, four of which have been constrained to
evolve toward squarelike shapes, and the fifth of which has
been constrained only in its size. Figure 7 shows the con-
nectivity graph and the area and aspect ratios for this
example.

The connectivity graph shows that four of the rooms,
R1, R2, R4, andR5 are connected to the fifth roomR3. The
fifth room is thereby defined to act as a hallway connecting
all of the other rooms. The zone must arrange the rooms
R1, R2, R4, and R5 aroundR3 to minimize connectivity
costs. Figure 8 illustrates three stages of the evolution of a
zone, including the genotype representation of the zones.

The first STS shown in Figure 8 shows an early solution
to the problem of connecting all of the other rooms toR5

after all of the rooms have adapted to the arrangement
evolved by the zone. This solution is good, but it is subopti-
mal, which allows the continued search for better zone lay-
outs. The second STS in Figure 8 shows a later stage in the
evolutionary process, when the zone has rearranged the
rooms into a zone with a better connectivity evaluation at
the expense of compactness.

The room evaluations for this stage are also lower in
general than for the earlier stage because the rooms are
adapting to the requirements of the new zone arrangement.
One of the most interesting observations to make about the
evolutionary process illustrated in Figure 8 is the way that
R3 elongates from the second to the third STS to fill all of
the space left between the two pairs of rooms:R1 andR2

andR4 andR5. The elongation ofR5 is entirely caused by
the extrinsic evaluations of the room at the zone level in the
context of its function as a hallway.

This example shows the effectiveness of the coevolution-
ary process at influencing the evolution of rooms as the
extrinsic zone evaluations change radically. We can also
observe a shift in the style of the evolutionary design pro-
cess in early and late stages of the design process. The style
of the design process shifts from the evolution of approxi-
mate room shapes in the early stages of design to a more
detailed design process once a good zone has been found.
In the early stages of the evolutionary process, when many
different room arrangements compete in the zone evolution-

Fig. 5. The bottom-up construction of a house using a slicing tree struc-
ture ~STS! to represent the zones to join at leaves and the join operations
at internal nodes.

Fig. 6. An illustration of the evaluation of a house in the context of a site.

Self-regulatory hierarchical coevolution 281

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

ary process, the room shapes have to alter radically from
one generation to the next. As the zone-level evolutionary
process settles on a good arrangement of rooms, it provides
a more stable environment for the room evolutionary pro-
cesses to evaluate new rooms. The style of the evolutionary
processes shifts from the development of approximate room
shapes to a process of fitting rooms into the stable zone.
This example shows the coevolutionary process of reformu-
lating intrinsic fitness in a two-level hierarchy. In the next
example, it will be shown how this process can be extended
across multiple levels.

6.5. Example 2: Evolving a small house

This example shows how a hierarchy of coevolving pro-
cesses exchanges information that reduces the complexity

of specifying the design problem a priori. In this experi-
ment the hierarchy was extended to all three levels to dem-
onstrate that evolutionary pressure~i.e., information! can
flow from one level to another, even when those levels are
not adjacent and the pressures must be transmitted through
an intermediate level. In this example, a small house layout
is evolved. The small house~SH! contains two zones: a
living zone~LZ ! and a sleeping zone~SZ!. The living zone
contains a living room~LR!, a dining room~DR!, a kitchen
~Ki !, and an entrance~En!. The sleeping zone contains two
small bedrooms~B1 and B2!, a master bedroom~MB!, and
a bathroom~Ba!. The constraints placed on each room and
the connectivity relationships between them are illustrated
in Figure 9.

The zones are evaluated according to the connectivity
requirement on their respective rooms and do not have a

Fig. 7. The connectivity graph for the zone and the room evaluation parameters used to evolve a hallwayR3 that connects roomsR1,
R2, R4, andR5.

Fig. 8. Three stages in the evolution of a zone in hierarchical evolution, showing the evolution of a hallway.~Rotations of 08 have
been omitted from the descriptions of the tree structures for brevity.!

282 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

compactness evaluation function. Without this criterion, the
zones are free to evolve into a wide range of possible
configurations.

At the house level, the entrance and the hallway must
connect. This requirement forms part of the extrinsic fit-
ness measure for the zones. Therefore, between the hallway
in the sleeping zone and the entrance in the living zone, the
weight of the connection is 10.0 because the connectivity
between these two spaces is essential. The house is also
evaluated on the compactness of the overall shape. The
compactness of house designs is the result of an evaluation
function defined at that level rather than of the careful manip-
ulation of compactness evaluation functions throughout the
hierarchy. The entrance has an additional requirement over
previously presented hallways that it must touch the bound-
ary of the house. This requirement is implemented as an
evaluation function of evolved houses. The addition of the
requirements that En touches one of the outside edges of
the house and connects with Ha in the sleeping zone means
that En must touch two outside edges of LZ.

Figure 10 shows the results of the best run out of 15 runs
of the hierarchical coevolution on the above problem. Each
run was implemented for 300 generations. Five of the 15

runs generated satisfactory designs: 6 were reasonably sat-
isfactory, and the other 4 solutions were not satisfactory.

Figure 10a–f shows the best house for each of the gen-
erations shown. At generation 10, the room sizes and room
connectivities have been satisfied, but the house compact-
ness is still poor, as there is some amount of “white space”
in the bounding box. In addition, the entrance and hallway
are not connected. Note, however, that the pressure at the
house level for the entrance to have external access has
resulted in a change of shape of the entrance. At generation
50, the compactness is increased; at generation 200 the house
is fully compacted but now the entrance and hallway are
out of line; at generation 250 all the room size constraints
are satisfied, the zone room connectivities are maximized,
the house is fully compacted, the entrance and hallway con-
nectivity is maximized, and the entrance access to the exte-
rior is satisfied.

7. SUMMARY

This article has presented an approach to the nonroutine
design of complex objects based on hierarchical coevolu-
tion. It has shown that whereas the local design of lower

Fig. 9. The design problem specification for a small house.

Self-regulatory hierarchical coevolution 283

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

level components can simplify the design of a complex
object, the self-regulating mechanism can provide the nec-
essary transfer of information necessary across the various
components and levels of the hierarchy. Whereas the imple-
mentation shown is in the domain of space layout prob-
lems, the focus is on the hierarchical nature of the problem
and the decomposition and integration issues. The coevolu-
tion approach reformulates the given or intrinsic fitnesses
by formulating extrinsic fitnesses that take into account a
component’s contribution to the assembly that uses it. By
working with two levels at a time, it is possible to propa-
gate requirements at a given level to all the lower levels.
The automatic reformulation of the fitness function based
initially on intrinsic fitnesses to take into account the extrin-
sic fitnesses provides for the necessary relationships between
components and the assemblies at different levels. This has
been demonstrated in the house example by the pressure
exerted by the house requirements on the zones and rooms.
In the example, knowledge emerges that shapes the hallway
and the surrounding rooms so that not only are they arranged
satisfactorily according to the zone fitness but they are sized
to meet the requirements coming from the house level. The
generation of new knowledge that is appropriate to the prob-
lem at hand is fundamental to creative design. The knowl-
edge generated~i.e., regarding the interrelationships between
the components at different levels! is not present in any of
the given evaluation functions but emerges as a result of the
evolutionary process for that situation. Because this knowl-
edge is specific to the particular situation, it would be impos-
sible to specify it a priori. It is this ability of the hierarchical

evolutionary process that demonstrates its suitability for
nonroutine design. Compared with the previous work in
hierarchical evolution, no interaction was present, eliminat-
ing the need for including run-time implicit knowledge.

Although the solution achieved may not seem innovative
~to a human viewer! in the wider context of house design, it
can be considered nonroutine to the extent that the design-
ing agent, the program, has generated this design from basic
components without any explicit knowledge of the forms
and relationships required to satisfy the requirements.

At present, the algorithm is based on a predetermined
weighting for intrinsic and extrinsic fitnesses. The weight-
ing ratios have a large influence on the results of the pro-
cess. Too large a weight on the extrinsic fitness and the
intrinsic fitness has little, if any, influence. Too large a weight
on the intrinsic fitness and the important context criteria can
be ignored. Current work is aimed at automating the influ-
ence of the extrinsic fitness on the overall fitness function.

ACKNOWLEDGMENTS

This work is supported by Australian Research Council Large
Grant A8970053.

REFERENCES

Bellman, R.~1957!. Dynamic Programming. Princeton, NJ: Princeton Uni-
versity Press.

Bentley, P.~Ed.! ~1999!. Evolutionary Design by Computers. San Fran-
cisco, CA: Morgan Kaufmann.

Fig. 10. The results of the hierarchical coevolution of a small house.

284 M. Rosenman and R. Saunders

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

Chen, Z.F., & Brown, D.C.~2002!. Explorations of a two-layered A-Design
system.Int. Workshop Agents in Design: WAID’02. Cambridge, MA:
MIT.

Cohon, J.L.~1978!. Multiobjective Programming and Planning. New York:
Academic.

Dawkins, R.~1986!. The Blind Watchmaker. Harlow, UK: Longman Sci-
entific and Technical.

Fonseca, C.M., & Fleming, P.J.~1995!. An overview of evolutionary algo-
rithms in multiobjective optimization.Evolutionary Computation, 3(1),
1–16.

Goldberg, D.E.~1989!. Genetic Algorithms in Search, Optimization and
Machine Learning, Reading, MA: Addison–Wesley.

Goldberg, D.E.~1999!. The race, the hurdle and the sweet spot: lessons
from genetic algorithms for the automation of design innovation and
creativity. In Evolutionary Design by Computers~Bentley, P.J., Ed.!.
San Francisco, CA: Morgan Kaufmann.

Holland, J.H.~1975!. Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan Press.

Jo, J.H., & Gero, J.S.~1995!. A genetic approach to space layout planning.
Architectural Science Review, 38(1), 37–46.

Kuziak, A., & Heragu, S.~1987!. The facility layout problem.European
Journal of Operational Research, 29, 229–251.

Maher, M.L., & Poon, J.~1996!. Modelling design exploration as
co-evolution.Microcomputers in Civil Engineering, 11, 195–210.

Meller, R.D., & Gau, K.-Y.~1996!. The facility layout problem: recent
trends and perspectives.European Journal of Operational Research,
57, 351–366.

Moscato, P.~1989!. On Evolution, Search, Optimization, Genetic Algo-
rithms and Martial Arts: Towards Memetic Algorithms. Technical Report
No. 790. Pasadena, CA: California Institute of Technology, Caltech
Concurrent Computation Program.

Potter, M., & De Jong, K.A.~1994!. A cooperative coevolutionary approach
to function optimization. InLecture Notes in Computer Science. Proc.
Third Conf. Parallel Problem Solving from Nature 2~Davidor, Y.,
Schwefel, H.-P., and Manner, R., Eds.!, Vol. 866, pp. 249–257. New
York: Springer–Verlag.

Rosenman, M.A.~1996!. A growth model for form generation using a
hierarchical evolutionary approach.Microcomputers in Civil Engineer-
ing, 11, 161–172.

Rosenman, M.A.~1997!. The generation of form using an evolutionary
approach. InEvolutionary Algorithms in Engineering Applications~Das-
gupta, D., & Michalewicz, Z., Eds.!, pp. 69–85. New York: Springer.

Schnecke, V., & Vornberger, O.~1997!. Hybrid genetic algorithms for
constrained placement problems.IEEE Transactions on Evolutionary
Computation, 1(4), 266–277.

Schnier, T., & Gero, J.S.~1996!. Learning genetic representations as
alternative to hand-coded shape grammars. InArtificial Intelligence in

Design ‘96~Gero, J.S., & Sudweeks, F., Eds.!, pp. 39–57. Dordrecht:
Kluwer.

Sims, K. ~1991!. Artificial evolution for computer graphics.Computer
Graphics, 25(4), 319–328.

Todd, S., & Latham, W.~1992!. Evolutionary Art and Computers. New
York: Academic.

Witbrock, M., & Reilly, S.N.~1999!. Evolving genetic art. InEvolution-
ary Design by Computers~Bentley, P.J., Ed.!, pp. 251–259. San Fran-
cisco, CA: Morgan Kaufmann.

Mike Rosenmanis a Senior Lecturer at the Key Centre of
Design Computing and Cognition, School of Architecture,
Design Science, and Planning, University of Sydney. He is
an architect with an interest in the general processes involved
in design. His research, which spans over more than 35
years, has included design optimization, design methods,
and artificial intelligence in the design domain. Dr. Rosen-
man has presented work at a number of international con-
ferences and workshops and is the author of over 80
publications. He has been conducting research into hierar-
chical evolutionary systems for design since 1995.

Rob Saunderscompleted his PhD at the University of
Sydney, where he developed a computational model of curi-
osity to investigate its role in individual and social creative
processes. He currently works as a freelance artificial intel-
ligence consultant, specializing in assisting artists and
designers in the development of state of the art computa-
tional systems. Before becoming a consultant, Rob studied
artificial intelligence at Edinburgh University, where he
developed an award-winning project that examined the use
of evolutionary computing systems in the exploration of
novel design spaces. Dr. Saunders is continuing his long-
term interest in the research and development of advanced
computations systems to model and support creative
processes.

Self-regulatory hierarchical coevolution 285

https://doi.org/10.1017/S089006040317401X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040317401X

