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Abstract

This paper studies the relation between two recent extensions of propositional Equilibrium

Logic, a well-known logical characterisation of Answer Set Programming. In particular, we

show how Temporal Equilibrium Logic, which introduces modal operators as those typically

handled in Linear-Time Temporal Logic (LTL), can be encoded into Infinitary Equilibrium

Logic, a recent formalisation that allows the use of infinite conjunctions and disjunctions. We

prove the correctness of this encoding and, as an application, we further use it to show that

the semantics of the temporal logic programming formalism called TEMPLOG is subsumed

by Temporal Equilibrium Logic.

1 Introduction

Many applications of the paradigm of Answer Set Programming (ASP) (Niemelä

1999; Marek and Truszczyński 1999; Brewka et al. 2011) involve temporal reasoning

in dynamic domains. In most cases, the representation of time in ASP follows

the methodology proposed in (Gelfond and Lifschitz 1993) and further developed

in (Gelfond and Lifschitz 1998; Baral 2003) where transition-based action theories

are translated into logic programs in a systematic way. In this methodology, time

has a linear structure (normally represented as an integer variable) and dynamic

laws describe, for any transition, how to derive fluent values in the resulting state

from their values in the previous one and the action occurrences. This situation

constitutes a perfect context for the application of temporal modal operators as

those typically used in Linear-Time Temporal Logic (LTL) (Kamp 1968; Manna and

Pnueli 1991).

� This research was partially supported by Spanish MEC project TIN2013-42149-P, Xunta de Galicia
GPC2013/070, the French Spanish Laboratory for Advanced Studies in Information, Representation
and Processing (LEA-IREP) and the Centre International de Mathématiques et Informatique de
Toulouse (CIMI).
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The combination of ASP with LTL operators has motivated the introduction

of Temporal Equilibrium Logic (TEL) (Cabalar and Vega 2007), a modal extension

of Equilibrium Logic (Pearce 1996; Pearce 2006), probably, the best-known logical

characterisation of ASP. Recent results about TEL (Aguado et al. 2013) have shown

its adequacy as a semantic framework for temporal ASP. For instance, there exists

a pair of tools (Cabalar and Diéguez 2011; Cabalar and Diéguez 2014) that allow

computing temporal stable models (represented as Büchi automata). These tools can

be used to check verification properties that are usual in LTL, like the typical safety,

liveness and fairness conditions, but in the context of temporal ASP. Moreover,

they can also be applied for planning problems that involve an indeterminate or

even infinite number of steps, such as the non-existence of a plan. In the theoretical

realm, the monotonic basis of TEL, the logic of Temporal Here-and-There (THT),

has been partially axiomatised (Balbiani and Diéguez 2015) and its satisfiability has

been shown to be a sufficient and necessary condition for strong equivalence (Cabalar

and Diéguez 2014). THT and TEL satisfiability have been respectively classified as

Pspace (Cabalar and Demri 2011) and ExpSpace (Bozzelli and Pearce 2015) complete

problems.

There is, however, one foundational point that remained unclear: although the

semantics for TEL obviously collapses to Equilibrium Logic for theories without

modal operators, it is natural to wonder up to which point the modal extension is

reasonable. In most practical cases, temporal formulas have an ASP “reading.” For

instance, a formula:

�(¬p→©p) (1)

has the informal reading of an infinite set of ASP rules of the form ¬(©ip)→ (©i+1p)

for i � 0 or, if preferred ¬p(i) → p(i + 1) if we reify the temporal index as a

predicate argument. Without additional information, the unique stable model of

such an infinite program would make p false at even states and true at odd states

– this corresponds indeed to the unique temporal equilibrium model. However,

in the general case, TEL semantics for arbitrary temporal theories had not been

actually compared to anything else. Most temporal expressions do not have a direct

correspondence to ASP. To put a pair of examples, consider the formulas:

�p (2)

¬��q → �(q U p) (3)

While (2) is still “understandable” as an existential formula ∃i.p(i), something not

possible in ASP but still interpretable in Quantified Equilibrium Logic, we did not

have a clear intuition whether the TEL interpretation of formulas like (3) had some

other reference to compare with.

In this paper we cover this aspect in two different ways: first, we show that Kamp’s

translation from LTL to First Order Logic is also sound for translating TEL into

Quantified Equilibrium Logic. This means that there always exists a way of resorting

to first-order ASP and reifying time as an argument, as we did above with p(i) or

p(i + 1), so that modal operators are replaced by standard quantifiers. Second, we

provide a second translation into Infinitary Equilibrium Logic (Harrison et al. 2014),
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a recent extension that allows the use of infinite conjunctions and disjunctions. This

allows, for instance, to treat (1) as the infinite conjunction
∧
i�0[¬(©ip)→ (©i+1p)]

or (2) as the infinite disjunction
∨
i�0©ip. We prove the correctness of the infinitary

encoding and, as an application, we further use it to show that the semantics of the

temporal logic programming formalism called TEMPLOG is subsumed by Temporal

Equilibrium Logic.

The rest of the paper is structured as follows. In the next section, we recall the

basic definitions from Temporal Equilibrium Logic. Section 3 describes the encoding

into Quantified Equilibrium Logic and Section 4 the encoding into Infinitary

Equilibrium Logic. In Section 5 we use the latter to prove the correspondence

between TEMPLOG semantics and TEL. Finally, Section 6 concludes the paper.

Proofs have been included in Appendix A.

2 Temporal equilibrium logic

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We start

from a set of atoms At called the propositional signature. The syntax of THT is the

one from propositional LTL which we recall below. A temporal formula ϕ is defined

as:

ϕ ::= ⊥ | p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ©ϕ1 | ϕ1 U ϕ2 | ϕ1 R ϕ2 | (ϕ1)

where ϕ1 and ϕ2 are temporal formulas in their turn and p is any atom. Negation

is defined as ¬ϕ def
= ϕ → ⊥ whereas � def

= ¬⊥. Note that ‘¬’ will stand for default

negation in all non-monotonic formalisms described in this paper. Operators ©,

U and R are respectively read as “next,” “until,” and “release.” As usual, ϕ ↔ ψ

stands for (ϕ → ψ) ∧ (ψ → ϕ). Other usual temporal operators can be defined in

terms of U and R as follows:

�ϕ
def
= ⊥ R ϕ �ϕ

def
= � U ϕ

Operator � is read “forever” and � stands for “eventually” or “at some future

point.” We define the following notation for a finite concatenation of ©’s

©0ϕ
def
= ϕ ©i ϕ

def
= ©(©i−1ϕ) (with i � 1)

An LTL-interpretation is an infinite sequence of sets of atoms H0, H1, . . . with

Hi ⊆ At, i � 0. Given two LTL-interpretations H and T, we write H � T to stand

for Hi ⊆ Ti for all i � 0. As usual, H < T represents H � T and H �= T, that

is, the inclusion relation holds in all states but is strict Hj ⊂ Tj for some j � 0.

A THT-interpretation M is a pair of LTL-interpretations M = 〈H,T〉, respectively

standing for here and there, such that H � T. An interpretation M = 〈H,T〉 is said

to be total when H = T.

Definition 1 (THT-Satisfaction)

We say that an interpretation M = 〈H,T〉 satisfies a formula ϕ at state k ∈ �,

written M, k |= ϕ, when the following recursive conditions hold:

1. M, k |= p iff p ∈ Hk , for any p ∈ At.
2. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ.
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3. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ.

4. M, k |= ϕ→ ψ iff for all H′ ∈ {H,T}, 〈H′,T〉, k �|= ϕ or 〈H′,T〉, k |= ψ.

5. M, k |=©ϕ iff M, k + 1 |= ϕ.

6. M, k |= ϕ U ψ iff there is j � k s.t. M, j |= ψ and M, i |= ϕ for all i, k � i < j.

7. M, k |= ϕ R ψ iff for all j � k s.t. M, j �|= ψ, then M, i |= ϕ for some i, k � i < j.

8. never M, k |=⊥.

A formula ϕ is THT-valid if M, 0 |= ϕ for any M. An interpretation M is a

THT-model of a theory Γ, written M |= Γ, if M, 0 |= ϕ, for all formula ϕ ∈ Γ. It is

not difficult to see that THT-satisfaction for a total interpretation 〈T,T〉 collapses

to LTL-satisfaction for T. As a result:

Observation 1

〈T,T〉 |= Γ in THT if and only if T |= Γ in LTL.

Some total models will be said to be in equilibrium if they satisfy the following

minimality condition in their “here” component.

Definition 2 (temporal equilibrium model )

A total THT-interpretation 〈T,T〉 is a temporal equilibrium model of a theory Γ if

〈T,T〉 |= Γ and there is no H < T, such that 〈H,T〉 |= Γ.

Since a temporal equilibrium model is a total model 〈T,T〉, by Observation 1, it

corresponds to an LTL model T, that will be called temporal stable model.

Definition 3 (temporal stable model )

If 〈T,T〉 is a temporal equilibrium model of a theory Γ then T is called a temporal

stable model of Γ (or TS-model, for short).

As an example, take the LTL formula �p from (2). Its LTL models are those

sequences of states where p is true in, at least, one timepoint. This can be captured by

the Büchi automaton1 (Büchi 1962) of Figure 1(a). In order to obtain the TS-models,

take any T where p is true more than once, say, at situations Ti and Tj , 0 � i < j.

We could build a sequence H such that, for instance, Hi = ∅ ⊂ {p} = Ti keeping

all the rest unchanged with respect to T. Obviously, H < T whereas 〈H,T〉 |= �p
because there still exists a future point Hj where p is true. If, on the contrary, we

take T such that p is true only at one situation, say Ti = {p} and Tj = ∅ for all

j �= i, then the only smaller LTL-interpretation H would make Hj = ∅ for all j � 0.

However, 〈H,T〉 �|= �p, and thus 〈T,T〉 is a temporal equilibrium model, i.e., T is a

temporal stable model. The automaton in Figure 1(b) shows the set of TS-models

of �p where, as we can see, p is made true once and only once.

After a similar analysis, it can be also checked that the unique TS-model of (1)

corresponds to an alternate sequence of states ∅,{p},∅,{p},. . . described by the Büchi

automaton depicted in Figure 2. Essentially, there is no evidence for p at the initial

1 A Büchi automaton accepts any infinite sequence (or word) that visits some final state infinitely often.
In the example, note how our temporal states (propositional interpretations ∅ and {p}) are represented
as symbols from the automaton alphabet (they occur as labels in the edges). They have no relation to
the automaton states, which configure the possible temporal ω-sequences.
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Fig. 1. LTL-models and TS-models of �p.

Fig. 2. TS-models of �(¬p→©p).

situation and this makes ©p true. Then, this “blocks” the rule for ©2p which

becomes false. But then,©3p is derived, and so on, leading to an alternate sequence

of states ∅,{p},∅,{p},. . . . With a little more effort2, we can also verify that the TS-

models of (3) are actually the same as those for �p, that is, they also correspond

to the automaton in Figure 1(b). An informal reading of (3) is: if we cannot prove

that q occurs infinitely often (¬��q) then make q until p (q U p) at some arbitrary

future point. As we minimise truth, we may then assume q false at all states, and

then �(q U p) collapses to �(⊥ U p) = �(�p) = �p.
Note that the consequence relation induced by temporal equilibrium models

is nonmonotonic. In fact, when we restrict the syntax to ASP programs and

the semantics to HT interpretations of the form 〈H0, T0〉, we talk about (non-

temporal) equilibrium models, which coincide with stable models in their most

general definition (Ferraris 2005). The result below establishes a more general

relation to non-temporal equilibrium logic/ASP.

3 Translating TEL into Quantified Equilibrium Logic

Quantified Equilibrium Logic (Pearce and Valverde 2008) (QEL) extends Equilibrium

Logic to the first-order case. As in the propositional setting, QEL defines a selection

of models among those from the monotonic logic of Quantified Here and There

(QHT).

The definition of QHT is based on a first order language denoted byL = 〈C, F, P 〉,
where C , F and P are three disjoint sets that represent constants, functions and

predicates, respectively. Given a domain D we define the sets:

• AtD(C, P ) stands for all atomic instances that can be formed from 〈C ∪D, F, P 〉.
• TD(C, F) all ground terms that can be obtained from 〈C ∪ D, F, P 〉.

2 We can also use the tool ABSTEM (Cabalar and Diéguez 2014) that allows the automated computation
of TS-models for arbitrary temporal theories.
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A QHT-interpretation3 is a tuple M = 〈(D, σ) , Ih, It〉 such that

• σ : TD(C, F)→ D is a mapping from ground terms into elements of the domain

satisfying that σ(d) = d if d ∈ D
• Ih, It are two sets of ground atoms from AtD(C, P ) such that Ih ⊆ It

Given two QHT interpretations, M = 〈(D, σ), Ih, It〉 and M′ = 〈(D′, σ′), I ′h, I ′t〉, we

say that M �M′ iff D = D′, σ = σ′, It = I ′t and Ih ⊆ I ′h. If, additionally, Ih ⊂ I ′h we

say that the relation is strict (denoted by M <M′).

Definition 4 (QHT semantics from (Pearce and Valverde 2008))

The satisfaction relation for a QHT interpretation M = 〈(D, σ), Ih, It〉 is defined as

follows:

• M |= �, M �|= ⊥
• M |= p(τ1, · · · , τn) iff p(σ(τ1), · · · , σ(τn)) ∈ Ih
• M |= τ = τ′ iff σ(τ) = σ(τ′).

• M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ

• M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ

• M |= ϕ→ ψ iff M �|= ϕ or M |= ψ, and 〈(D, σ), It, It〉 |= ϕ→ ψ

• M |= ∀ x, ϕ(x) iff M |= ϕ(d), for all d ∈ D
• M |= ∃ x, ϕ(x) iff M |= ϕ(d), for some d ∈ D

As usual, we say that a QHT-interpretation M is a model of a first order theory

Γ iff M |= φ for all φ ∈ Γ.

Definition 5 (quantified equilibrium model from (Pearce and Valverde 2008))

Let ϕ be a QHT formula. A QHT total interpretationM is a first-order equilibrium

model of ϕ if M |= ϕ and there is no model M′ <M of ϕ.

For our purposes, it is convenient to define a particular subclass of QHT theories.

We define the fragment of QHT called monadic here-and-there with inequality,

MHT(�), by syntactically restricting all predicates to monadic, excepting a binary

predicate �. Moreover, we also fix the domain D to be the set of natural numbers

D = � so that � captures the standard ordering among them. We only consider one

time constant 0 to stand for the initial situation. Given that both the domain and

the interpretation of � are fixed, interpretations will only vary for ground atoms in

At(�, P ), that is, those formed with the set of monadic predicates P and elements

from �. Then, MHT(�) interpretations can be simply given by pairs 〈H,T〉 with

H⊆T ⊆ At(�, P ).

As usual, we write x > y to stand for ¬(x � y). We will also use the following

abbreviations:

∀x � t. ϕ
def
= ∀x(t � x→ ϕ)

∃x � t. ϕ
def
= ∃x(t � x ∧ ϕ)

∀x ∈ [t, z). ϕ
def
= ∀x(t � x ∧ x < z → ϕ)

∃x ∈ [t, z). ϕ
def
= ∃x(t � x ∧ x < z ∧ ϕ)

3 We assume here a version of QHT taking static domain and decidable equality. Briefly, this means
that the domain D is common to worlds h and t and that equality is a “decidable” predicate, that is, it
satisfies the excluded middle axiom x = y ∨ ¬(x = y).
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Fragment MHT(�) imposes exactly the same restrictions on QHT than the so-called

monadic first-order logic with inequality, FOL(�), does on classical First-Order Logic

(FOL). This subclass of FOL was used by Kamp in his famous theorem (Kamp

1968) where he proved that LTL is exactly as expressive as FOL(�), so that we can

actually see the former as a fragment of the latter. This result was separated into

two directions: proving that LTL can be translated into FOL(�) and vice versa.

For the first direction, Kamp defined the following translation from modal formulas

into quantified first-order expressions:

Definition 6 (Kamp’s translation)

Kamp’s translation for a temporal formula ϕ and a timepoint t ∈ �, denoted by

[ϕ]t, is recursively defined as follows:

[⊥]t
def
= ⊥

[p]t
def
= p(t), with p ∈ At.

[¬α]t
def
= ¬[α]t

[α ∧ β]t
def
= [α]t ∧ [β]t

[α ∨ β]t
def
= [α]t ∨ [β]t

[α→ β]t
def
= [α]t → [β]t

[©α]t
def
= [α]t+1

[α U β]t
def
= ∃x � t. ([β]x ∧ ∀y ∈ [t, x). [α]y)

[α R β]t
def
= ∀x � t. ([β]x ∨ ∃y ∈ [t, x). [α]y)

where [α]t+1 is an abbreviation of ∃y � t.
(
[α]y ∧ ¬∃z(t < z ∧ z < y ∧ [α]z)

)
.

Note how, per each atom p ∈ At in the temporal formula ϕ, we get a monadic

predicate p(x) in the translation.

The effect of this translation on the derived operators � and � yields the quite

natural expressions:

[�α]t ≡ ∀x � t. [α]t [�α]t ≡ ∃x � t. [α]t

As a pair of examples, the translations of our running examples (1), (2) and (3) for

t = 0 respectively correspond to:

∀x � 0. (¬p(x)→ p(x+ 1)) (4)

∃x � 0. p(x) (5)

∀x � 0.

(
∀y � x. ∃z � y. q(z)→ ∃y � x. ∃z � y.

(
p(z) ∧ ∀t � y. zq(t)

))
(6)

Definition 7 (THT-MHT(�) interpretation correspondence)

Given a THT interpretation M = 〈H,T〉 on a signature At, we say that the MHT(�)-

interpretation M = 〈H,T〉 corresponds to M iff

• p ∈ Hi iff p(i) ∈ H, for all i ∈ �.

• p ∈ Ti iff p(i) ∈ T, for all i ∈ �.
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We now prove that when considering this model correspondence, Kamp’s translation

allows us to translate a THT theory into a corresponding QHT one.

Theorem 1

Let ϕ be a THT formula built on a set of atoms At, M = 〈H,T〉 a THT-interpretation

on At andM = 〈H,T〉 its corresponding MHT(�)-interpretation from Definition 7.

It holds that M, i |= ϕ in THT iff M |= [ϕ]i in MHT(�).

In other words, we can consider THT as subclass of theories in the fragment

MHT(�) of QHT. We show next that this correspondence is still valid when we

consider TS-models versus (first-order) stable models.

Theorem 2

Let T be a temporal interpretation, T its corresponding first-order interpretation

and ϕ some temporal formula. Then, T is a TS-model of ϕ iff T is a stable model

of [ϕ]0.

4 Translating TEL into infinitary equilibrium logic

The use of Infinitary Formulas (Scott and Tarski 1958; Karp 1964) in ASP was first

proposed in (Truszczyński 2012). The syntax uses only three different connectives:

{}∧, which stands for an infinite conjunction, {}∨, which is a shorthand of an

infinite disjunction and, finally, → which corresponds to the implication used in

logic programming.

Definition 8 (syntax from (Truszczyński 2012))

Let At be a propositional signature (we assume the existence of a constant ⊥, different

for all symbols in At that plays the role of falsity). We define the sets F0,F1, · · ·
by induction as follows:

1. FAt
0 = At ∪ {⊥}

2. FAt
i+1 is obtained from FAt

i by adding expressions H∧ and H∨ for all subsets

H of FAt
i , and expressions F → G for all F,G ∈ FAt

i .

The elements of
⋃∞
i=0FAt

i are called (infinitary) formulas over At.

The rest of the connectives can be easily defined in terms of these ones. For instance,

G ∧ F def
= {F,G}∧, G ∨ F def

= {F,G}∨, ¬F def
= F → ⊥, G ↔ F

def
= (F → G) ∧ (G → F)

and � def
= ¬⊥, as happened in THT and QHT. Several results from ASP can be

extended to the case of infinitary logic. Among others, we recall here the extension

of Ferraris’ reduct (Ferraris 2005) to the infinitary case (Truszczyński 2012):

Definition 9 (from (Truszczyński 2012))

Let ϕ be a infinitary propositional formula and I an interpretation (a set of atoms).

We write I |= ϕ meaning that I satisfies ϕ in infinitary propositional logic. The

reduct of ϕ relative to I , denoted by ϕI , is recursively defined as follows:

• If I �|= ϕ then ϕI = ⊥,

• If I |= a (with a an atom) then aI = a,
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• If I |=H∧ then
(
H∧

)I
= {ψI | ψ ∈ H∧}∧,

• If I |=H∨ then
(
H∨

)I
= {ψI | ψ ∈ H∨}∨,

• If I |= ϕ→ ψ then (ϕ→ ψ)I = ϕI → ψI

Broadly speaking, the reduct ϕI can be alternatively defined as the formula obtained

from ϕ by replacing by ⊥ every outermost subformula not satisfied by I .

Definition 10 (from (Truszczyński 2012))
An interpretation I is an answer set of a formula ϕ if I is the minimal model of ϕI .

As an example, take the infinite disjunction ϕ:

ϕ
def
= {p(i) | i � 0}∨ (7)

where we have an atom p(j) in the signature for each j ∈ �. Taking any

interpretation I with more than one atom true, say p(i), p(j) ∈ I with i < j,

the reduct ϕI would be a disjunction with all true atoms in I and, obviously, I

would not be a minimal model for that disjunction (it suffices with making just one

atom true). Therefore, it is clear that the answer sets of ϕ are all the singletons {pi}
for any i � 0.

An alternative definition of answer sets for infinitary formulas was provided

in (Harrison et al. 2014) where the authors defined infinitary versions for the logic

of Here-and-There and for Equilibrium Logic. We define an HT -interpretation

M = 〈H,T 〉 on a signature At as a pair of sets of atoms H ⊆ T ⊆ At. As happens

in the finitary case, when H = T we say that M is total.

Definition 11 (from (Harrison et al. 2014))
The HT satisfaction of formulas for infinitary formulas is defined as follows:

• M |= p if p ∈ H , with p ∈ At.
• M |=H∧ if for every F ∈ H, M |= F .

• M |=H∨ if there exists F ∈ H such that M |= F .

• M |= F → G if either M �|= F or M |= G and 〈T ,T 〉 |= F → G.

Definition 12 (from (Harrison et al. 2014))
An HT-interpretation 〈H,T 〉 is an equilibrium model of an infinitary formula F if

H = T and there is no H ′ ⊂ T such that 〈H ′, T 〉 |=F.

For our purposes, given a propositional signature At, our infinitary formulas will

use the expanded infinite signature:

At∞
def
= {©ip | p ∈ At and i ∈ �}

where we can read ‘©ip’ altogether as an atom name. The use of infinitary operators

implies an increase of expressive power with respect to LTL. For instance, the

conjunction of the formulas:

{©ip | i÷ 2 = 0}∧ {©ip ∨ ¬©i p | i÷ 2 �= 0}∧

yields answer sets where p is true at all even states and varies freely in odd states,

something that is well-known to be non-representable4 in LTL. However, we can

4 It is still an open question whether problems like this are representable in TEL or not.
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regard TEL as a fragment of infinitary equilibrium logic, as shown in the following

translation:

Definition 13

The translation of ϕ into infinitary HT (HT∞) up to level k � 0, written 〈ϕ〉k , is

recursively defined as follows:

• 〈⊥〉k
def
= ∅∨

• 〈p〉k
def
= ©k p, with p ∈ At.

• 〈©ϕ〉k
def
= 〈ϕ〉k+1

• 〈ϕ ∧ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∧

• 〈ϕ ∨ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∨

• 〈ϕ→ ψ〉k
def
= 〈ϕ〉k → 〈ψ〉k

• 〈ϕ U ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k � j < i}∧ | k � i}∨

• 〈ϕ R ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k � j < i}∨ | k � i}∧

It is easy to see that the derived operators � and � are then translated as follows:

〈�ϕ〉k = {〈ϕ〉i | k � i}∨ 〈�ϕ〉k = {〈ϕ〉i | k � i}∧

As an example, 〈�p〉0 = {©ip | i � 0}∨ which is a simple rewriting of (7). The

translations for our running examples 〈(2)〉0 and 〈(3)〉0 respectively correspond to:

{¬©i p→©i+1p | i � 0}∧

{{{©kq | j � k}∨ | i � j}∧ → {{©kp,©hq | j � h < k}∧ | i � j � k}∨ | i � 0}∧

We define now how a THT model is translated into HT∞ in the sense of (Harrison

et al. 2014) and then we will prove that, there exists a one-to-one correspondence

between the set of THT models of a formula ϕ and the HT∞ models of 〈ϕ〉0.

Definition 14 (HT∞-THT interpretation correspondence)

Let M = 〈H,T〉 be a THT interpretation. We define its corresponding HT interpre-

tation M∞ = 〈H∞, T∞〉 as:

H∞
def
=

⋃
i�0

{©ip | p ∈ Hi} T∞
def
=

⋃
i�0

{©ip | p ∈ Ti}

Theorem 3

Let ϕ be a temporal formula, M = 〈H,T〉 a THT interpretation andM∞ = 〈H∞, T∞〉
its corresponding HT∞ interpretation. For all i ∈ �, it holds that:

(i) M, i |= ϕ if and only if M∞ |= 〈ϕ〉i.
(ii) M is a temporal equilibrium model of ϕ if and only if M∞ is an (infinitary)

equilibrium model of 〈ϕ〉0.

5 Relation between TEL and TEMPLOG

Although the introduction of temporal operators for ASP is relatively new, the ex-

tension of Prolog with modal operators is a well-developed field that was extensively
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studied in the past (Fariñas del Cerro 1986; Bieber et al. 1988). In particular, there

exist several proposals for extending Prolog with LTL operators (Fujita et al. 1986;

Gabbay 1987; Moszkowski 1986; Orgun and Wadge 1992; Baudinet 1992). The

latter, a formalism called TEMPLOG, is perhaps a prominent case from a logical

point of view. It provides a logical semantics in terms of a least LTL model, in the

spirit of the well-known least Herbrand model for positive5 logic programs (van

Emden and Kowalski 1976).

In this section, we will show that TEMPLOG is actually subsumed by TEL, that

is, the latter can be used as a generalisation of the former for an arbitrary temporal

syntax that includes default negation. The syntax of TEMPLOG is defined by the

following grammar:

Non-empty Body: B ::= P ‖ B1, B2 ‖ ©B ‖ �B
Body: D ::= ε ‖ B
Initial clause: IC ::= N ← D ‖ �N ← D

Permanent clause: PC ::= �(N ← D)

Goal clause: G ::= ← D

where P stands for an atom, N for a next-atom (that is, a formula of the form

©iP for some i > 0) and ε denotes the empty expression. A TEMPLOG program

is a set of temporal clauses that, as we can see, involve implications that can be of

three types: initial clauses are only applicable at the initial state; permanent clauses

are preceded by a � operator and are always applicable; and goal clauses have an

empty head and play the role of constraints. In all cases, both the antecedent and

the consequent of each implication can be enhanced by a selective use of temporal

operators.

Any TEMPLOG program can be equivalently translated into a (possibly infinite)

positive program Π∗ containing a set of clauses in which the only occurrences of

temporal operators are in the form of next-atoms ©iP . For instance, a clause with

a body like �
(
p,©�q

)
can be replaced by the set of clauses with all bodies of the

form ©i
(
p,©j+1q

)
for any i, j ranging on �. In (Baudinet 1992) the © operator

was further pushed inside the expressions until it only formed temporal atoms like

©iP . Each clause generated in this way was called a Temporal Ground Instance

(TGI) of the original general clause. We rephrase below the definition of TGI’s in a

more formal way:

Definition 15 (Temporal Ground Instance of a body, TGI )

Let B be a temporal body and i � 0. Then, TGI(B, i) is a (possibly infinite) set of

bodies recursively defined as follows:

• TGI(ε, i) def
= ∅

• TGI(P , i) def
= ©iP , with P a propositional atom.

• TGI((B1, B2) , i)
def
= {(B′1, B′2) | B′1 ∈ TGI(B1, i) and B′2 ∈ TGI(B2, i)}.

5 Note that semantics for default negation were still in their early steps at that moment.
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• TGI(©B, i) def
= TGI(B, i+ 1).

• TGI(�B, i) def
=

⋃∞
k=0 TGI(B, i+ k).

Then, we extend the definition of TGI for clauses in the following way.

Definition 16 (TGI of a clause)

We say that a temporal clause C∗ is a temporal ground instance (TGI) of a temporal

clause C iff:

(i) If C = ©iA ← B is an initial clause and C∗ = ©iA ← B∗ with i ∈ � and

B∗ ∈ TGI(B, 0).

(ii) If C = �©i A← B is an initial clause and C∗ =©i+kA← B∗ with k ∈ � and

B∗ ∈ TGI(B, 0).

(iii) If C = �
(
©iA← B

)
is a permanent clause and C∗ = ©i+kA ← ©kB∗ with

k ∈ � and B∗ ∈ TGI(B, 0).

Given a TEMPLOG program Π, we define Π∗ as the union of all temporal ground

instances of clauses in Π. It is easy to see that Π∗ is a positive program for signature

At∞ that can be understood as a classical propositional signature with atoms ‘©ip’.

Therefore, Π∗ has a least model that defines the TEMPLOG semantics.

This definition in terms of an infinite expansion of TGI’s is a clear example

where the infinitary HT translation can be applied: it is not difficult to see that the

expansion results from applying distributive properties among infinite conjunctions

and disjunctions. Indeed, we begin proving that the TGI’s of a clause body have a

clear translation into infinitary HT:

Proposition 1

Let M∞ = 〈H∞, T∞〉 be an HT∞ interpretation and B a TEMPLOG body. Then:

M∞ |= {α | α ∈ TGI(B, i)}∨ iff M∞ |= 〈B〉i
where we assume that the comma ‘,’ operator in each body in TGI(B, i,) is interpreted

as ‘∧’ in HT∞.

We obtain next a similar infinitary encoding for program Π∗.

Theorem 4

Let Π be a TEMPLOG program for a signature At and M∞ = 〈H∞, T∞〉 be an

infinitary HT interpretation for that signature. Then:

M∞ |= Π∗ iff M∞ |= 〈Π〉0

As a result, if we consider now the THT interpretation M corresponding to M∞, we

can use Theorem 3 to conclude that M∞ |= Π∗ iff M, 0 |= Π in THT. Then, it is not

difficult to prove that:

Theorem 5

Let Π be a TEMPLOG program and L the least model of Π∗. Then, the unique

TS-model of Π is T defined as Ti = {p | for any ©i p ∈ L}.
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6 Conclusions

In this paper, we have provided a pair of sound translations of Temporal Equilibrium

Logic (TEL) into (a fragment of) Quantified Equilibrium Logic (QEL) and into

Infinitary Equilibrium Logic. The correctness of these translations provide a solid

justification for the semantics of TEL for arbitrary temporal theories. In the case

of the translation into QEL, we have simply proved that Kamp’s translation from

LTL into monadic First Order Logic with linear order, FOL(�), is also correct for

translating TEL into QEL. This is also a good property confirming the adequacy of

TEL semantics. An interesting open topic is whether the other direction of Kamp’s

theorem, i.e., that FOL(�) can also be translated into LTL, also holds for translating

back the corresponding QEL fragment into TEL. The study of this property is left

for future work.

Regarding the infinitary translation, it provides a second encoding that can be

more comfortable than QEL for some purposes, since the obtained expressions can

be manipulated until a “propositional” program (formed with atoms preceded by

next operators) is obtained. In fact, we have used this technique to prove that a

temporal extension of Prolog, TEMPLOG, is subsumed by TEL, adding again one

more justification for the suitability of TEL semantics.

The paper contributions are mostly fundamental and their practical implications

are still to be studied. For instance, we expect that the use of infinitary propositional

formulas opens new possibilities to explore other non-standard logical constructs

that may be useful for Knowledge Representation in the spirit of the recent

results (Harrison et al. 2014) where some syntactic extensions of GRINGO6, such as

conditional literals or aggregates, are captured as infinitary propositional formulas.

Apart from the already mentioned completion of Kamp’s theorem for TEL, future

work will be focused on further exploring the infinitary encoding as a tool for proving

other expressiveness properties of THT and TEL that remain open like, for instance,

checking whether U can be expressed in terms of R and the other connectives, or

checking whether the set of TS-models of a theory is representable with an LTL

formula. We also plan to extend this study for other variants of LTL. For instance, we

are considering the introduction of past operators (Kamp 1968) that, although they

do not increase the expressive power (Gabbay et al. 1980), they allow exponentially

more succint representations (Lichtenstein et al. 1985) and seem more convenient

from a Knowledge Representation perspective when formulating antecedents of

temporal rules in transition based systems. Another interesting extension is the case

of finite traces (De Giacomo and Vardi 2013), which is the actual setting in most

applications for AI planning.
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