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In this papera new concept called generalized stochastic convexity is introduced as
an extension of the classic notion of stochastic conveXitselies on the well-
known concept of generalized convex functions and corresponds to a stochastic
convexity with respect to some Tchebycheff system of functidnspecial case
discussed in detail is the notion of stochast@mnvexity(s € N), which is obtained
when this system is the family of power functioghe, x%,...,x31}. The analysis is
made first for totally positive families of distributions and then for families that do
not enjoy that propertyrurther integral stochastic orderingsaid of Tchebycheff-

type are introduced that are induced by cones of generalized convex fundtimns
s-convex functionsthey reduce to the-convex stochastic orderings studied re-
cently These orderings are then used for comparing mixtures and compound sums
with some illustrations in epidemic theory and actuarial sciences

1. INTRODUCTION

Let us consider a family of random variablgs,,6 € 0} valued in a subsef
of the real lineR and with lawP, indexed by a single parametére ® C R.
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Now, given a function¢: S — R, let us construct the new functioh™ defined
as

¢ :0 >R:0— p*(0) =Ed(Xy), (1.1)

provided that the expectation exists natural question is to which extent some
properties of the functiog can be transmitted to the functi@i. In other words
given the fact that) belongs to some specific class of functighg, does it imply
that¢* belongs to some remarkable class of functigy?

Such aquestion is rather general and has been discussed for various problems in
probability and statisticSOf special interest here is the work of Shaked and Shan-
thikumar[14] in which 7° and % are both classes dincreasing convex func-
tions When the property afincreasingnegsonvexity is transmitted fronp to ¢*,
then the family of lawsP(®) = {P,,0 € 0} is said to be stochasticalljncreasing
convex(Chap VI, Shaked and Shanthikumf5]).

It is well recognized howevey that the standard definition of convexity can
be restrictive for various purposes in mathematiosthe field of probabilistic
modeling this arisesfor instancewhen one wants to compare certain statistics of
practical importanceSq the more general concept sfconvex function(s € N)
introduced by Popovicifil2] is a very useful tool for comparing stochastic mod-
els in epidemic theory and actuarial scien¢ese some recent works by Lefevre
and Utev[9], and Denuit and Lefévrgl], Denuit Lefévre and Shaked2], and
Denuit, Lefévre and Utev[3]).

The s-convexity itself is a special case of the classic concept of generalized
convex functionsThis convexity is defined with respect to an arbitrary Tchebycheff
system of functions and reduces to theonvexity when the system is the family of
power functions{x? x%,...,x5"1}. A study of Tchebycheff systems with applica-
tionsin analysis and statistics is provided in Karlin and Stud@é(see also Pexic,
Proschapand Tong 11]).

In the present papgwe precisely investigate the possible transmission of the
generalized convexity from a functighto the functionp* given by(1.1). Thus 5°
being a class of generalized convex functionsSpwe would like to know whether
F is a class of generalized convex functions@nlf this is trug the family of
distributionsP(®) is said to be stochastically generalized conw&fe will present
basic facts concerning the generalized conve¥ity will then examine in detail the
possible transmission of the more specific propertg-obnvexity

The starting point of our approach is the analysisSection 3 of the general-
ized convexity for totally positive families of distributionis this casethe gener-
alized stochastic convexity for an appropriate Tchebycheff system is rather
straightforward Moreover the property of stochast&convexity is then satisfied
when roughly speakingeach moment of orddein (1.1), 1 = k= s—1, is a poly-
nomial ofé of orderk with positive highest coefficienf few standard distributions
will be given for illustration For this part we will make an extensive recourse to
results given in Karlif6].
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Though the technique based on the total positivity seems to be very effitient
does not allow us to cover all the desired examgieSection 4 using direct argu-
ments we derive complementary results for the stochastionvexity which do not
follow, surprisingly from the previous general theofjhese will be illustrated with
some standard distributior¥®) that are stochastically:convex

Next, we introduce a broad class of integral stochastic orderisgil of
Tchebycheff-typethat are induced by cones of generalized convex functibimsse
orderings are considered implicitly {f7]. In the special case afconvex func-
tions they correspond to the-convex stochastic orderings studied and used re-
cently in the four papers mentioned befov®de briefly give some properties of
these new ordering&Ve then focus on the-convex comparison of mixtures and
compound sumswvith some illustrations in epidemic theory and actuarial sciences

Itis worth indicating thatfor s= 1 or 2, further results can be obtained using the
alternative concept of sample path convexige e.g., [15], Chap VI). Whether
this approach can be generalized to any intesgeB is an interesting open problem

2. MATHEMATICAL BACKGROUND

We start by recalling some standard definitions and basic rgjlts

2.1. Tchebycheff Systems

Asystem of linearly independent real-valued functids- {{so, 4, ..., defined
on an ordered subs8tof the real lineR is called a Tchebycheff systeff-system in
shorpifforall xo < x; < --- < X E S,

Po(Xo) Po(X1) ... Po(Xs)
D <li07l)/([l""7fs> = ' ' .. : > 0. (21)
PRAYEEREERAYY lﬁs(XO) ¢s(xl) e l/fs(xs)

A systemW; such thaf{yg, 1, ..., ¥} is aT-system for everk = 0,1,...,s, is
called a complet@-system(CT-systen).

2.2. Convexity with Respect to a T-System

A function ¢: S — R is said to be convex with respect to thesystemW¥,_, if
{fo,P1,...,¥s 1,0} is aweak Fsystemthat is if for all xg < x; < --- < X5 € S,

D <¢07¢1a"'7¢’51’¢> =0. (22)

Xos X1y« v 5 Xs—15 Xg

The set of the convex functions with respectitg ; is denoted byCS o (¥s_,).
Obviously this is a convex cone closed in the topology of pointwise convergénce
is usually referred to as a cone of generalized convex functions

A special situation of interest is when tiesystem¥;_, is the CT-system of
functionsIly_; = {x%x,..., x5 1}. In this caseCs (IIs_,) corresponds to the class
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of the s-convex functionsit is denoted byi/$ .. If Sis an interval andp has a
derivative of degres (denoted byp®), then

b EUS = ¢ =0.
A function ¢ : S — R is said to be increasing convex with respect to @l
systemWg_, if

¢ € [S] Cf—cx(\l,k—l)v (23)

thatis if {0, 1, ..., ¢} is aweakT-system fok = 0,1,...,s— 1. The set of such
functions is denoted bgs i (¥s_,). In particular C5_.(Ils_,) represents the class
of thes-increasing convex functiongenoted by/$ ..

2.3. Total Positivity

A real function (called a kernel K(.,.) of two variables ranging over linearly
ordered subset®® andS of R, respectivelyis said to be totally positive of order
(TRjinshory ifforall 0, <0, < --- <6, € O andx; < X, < --- < X € S, with

k=12,...,s
K(01,%1) K(01,%) ... K(601,X%c)
01702"~"6k . . . .
K . X w )= : : " : =0. (2.4)
RIS K (X)) K(BoX) . K(6 %)

When the subscripts® is omitted then the property is understood for all values of
s. Some classic examplesDPkernels are the exponentigpbwer triangulay Cauchy
and Gauss kernels

Afunction¢ : R — R is said to be #0lya functionof orders (PF;in shor} if
K(0,Xx) = ¢(x— 0) is TRswhend, x € R. Fors= 2, Pélya functions correspond to
log-concave functions

2.4. Totally Positive Family of Distributions

Let us assume that there exists a sigma-finite dominating megsfarethe family
of distributionsP(0) = {P,,6 € @}, and letf, denote a density function for the
distributionP,. The familyP(0) is said to beT P, (resp TP) if the kernelK (0, x) =
fo(x) is TR, (resp TPs for anys). A density functiong is PFif K(60,X) = ¢(x— 6)

is TR,whend, x € R.

Every density isTP,;, and theTP, densities are those having a monotone like-
lihood ratia Various standard distributions afé® (e.g., the one-parameter expo-
nential families the noncentraj? andt densitie$. Moreover several standard
densities aré’F, (e.g., the normal gamma and Weibull densitigs but this is not
true for the Cauchy law and many othdéssich as in Lemma.42).
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In the sequelwe will apply several classic results from the theory of convexity
and total positivity For clarity and brevity reasonws/e prefer to refer to them di-
rectly in the work and not to recall them explicitly in this section

3. STOCHASTIC CONVEXITY FOR 7P FAMILIES OF DISTRIBUTIONS

We are going to point out that the property of generalized stochastic convexity is
satisfied by the families of distributions that are totally positive

3.1. Generalized Stochastic Convexity

Let{X,,0 € O} be a family of random variables valued$hC R, and letP(0) =
{R,,0 € 0} be the family of associated distributiafihe question raised is whether
the generalized convexity is transmitted from a functiao the functionp ™ defined

in (1.1).

DerINITION 3.1: Consider an arbitrary functiorp that belongs ta@s_,(¥,_,) for

some TFsystem¥ ;. If the function¢*:0 — ¢*(6) = E¢p(X,) belongs to
C& (Vs_,) for some Tsystem¥,_, related toys_,, thenP(0) is said to be sto
chastically comex in the pair(¥,_;,¥,_;). When for a CTsystemis_q, ¢ €

CS iex(Ws_,) implies thatp* € C& o (¥,_,) for some CTsystem¥,_,, P(0) is said
to be stochastically increasing coex in(Ws_,, Vs_,).

From the classic composition formul8, p. 284] we easily deduce that a suf-
ficient condition for this property is that the famif§(®) is TR..

PROPERTY 3.2: Let ¥, , be a Fsystem(resp a CT-systen. If the familyP(0) is
TR, then P(0) is stochastically corex (resp increasing copex) in the pair
(¥s_1,P5_,), where the functiong,, k= 0,1,...,s— 1, constituting¥_, are given
by

Pi(0) = E(Xy) =f Sl/fk(X)fe(X) du(x),  6€0. 3.1

Now, let us examine the three cases indicated below where the parametrization
in P(®) is achieved by shift or convolution of random variables with Pélya density
functions From the definition oPFsand the closure-type property Bfs densities
by convolution[6, p. 286], we know thatP(®) is TR, under each of these transfor-
mations Therefore applying Property 2 yields directly the following result

PropPErTY 3.3: Let{Y,Y,:n = 1} be a sequence ofiid. real-valued randomvari-
ables with PEdensity functionConsider a family of randomariables{X,,6 € 0}
that is defined by one of the three following transformations
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i. X, =Y+ 6, with® = R;

i. X, =X%_,Y,, with ® = N and under the additional assumption thatY
Oas;

iii. X,=3N,Y,, under the assumption thatzY 0 a.s. and where{N,,6 € 0}
is a family of noAnegative integervalued randomvariables independent
of the Y;'s, and with TR distributions

Then the associated family of distributior?(®) = {P,,0 € 0} is stochastically
(increasing corvex in any pair(W_,, ¥_;).

3.2. Stochastic s-Convexity

A particular situation met in many applications is whenThgystemsp,_, and¥,_,
correspond to the familyl,_; = {1 x,..., xS }. If the s-convexity is transmitted
from¢ to ¢ thatis if ¢p* € UL o, (respU.i,) whenevewp € US ., (respUs_icy),
then{P,,0 € O} is said to be stochasticalyconvex(resp s-increasing convexFor
s=1or 2 P(0) is stochastically increasing or convex in the usual s¢h445].

The result below follows from Karlif6, p. 24] and gives a sufficient condition
that guarantees this properiiycorresponds to a special case of Properyehd will
be illustrated with several standard distributions

PrOPERTY 3.4: LetP(®) be a TRfamily such that for k=1,2,...,s—1,

EQu(Xy) = f

Xe

SfH(X)Qk(X) dux) = Q(6), €0, (3.2)

where Q is an arbitrary real polynomial of exact degree k with pasitihighest
coefficient and), is an associated real polynomial of the same tyfieen P(0) is
stochastically gincreasing corvex

Example 3.5:The following families of distributions are stochasticaHgincreasing
convex(for anys € Ny):
i. the family of the Poisson distributions with meére R ;

ii. the family of the continuous uniform distributions [@6 ], with parameter
0 ERS;

iii. the family of the negative binomial distributions with fixed exponeand
with meanng, 6 € R{;

iv. the family of the negative exponential distributions parameterized by its
meand € R§.

Proor: Itis well known that each of these familiesTi®. Thus it suffices to check
that condition(3.2) is satisfied For the Poisson distributigmve have

9 k

+oo
Ee“’—lxk=28(k,j)91, keN,
x=0 X i=0
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where theS(k, j)'s are Stirling numbers of the second kjahich are positiveso
that(3.2) holds true This is also the case for the uniform distributj@ince

1(° 0¥
—f xKdx= —, ke N,
0 Jy—o k!

for the negative binomial random variab¥g, since

£ Xo n+k—1 . .
K= K 0% EN,
and for the exponential random varialdg, since

EXS=K@X KkEN, ]

Example 3.6:Let{X, = (&) 0 € O} where&, is an exponential random variable
with meand anda is some positive non-integer real numbEnis family isTP, but
it does not transfer moments into polynomjalsce

EXS =T'(ka+1)6% k€ N.

By Property 32, however we see thatP(®) is stochastically convex in the pair
(Ms_1, Vs 4), with i : 0 — 0% k=0,1,...,s— 1.

4. STOCHASTIC CONVEXITY FOR NON-7P FAMILIES OF DISTRIBUTIONS

In this sectionwe derive complementary results for families of distributions that are
not necessarily totally positive

4.1. Generalized Stochastic Convexity

Hereafter¥;_, is assumed to have the following rather general representgijon
p. 276]. Let S = [a,b], a,b € R, b possibly infinite and letwg, w,,...,ws_1 be
positive functions oib such thatw, € C3(S) (i.e., w, has a continuougth derivative
in the interior ofS). Then y(X) = we(x) and fork =1,2,...,s— 1,

X

&1 k-1
100 =00 [ o) [ onten [ ot dé..deades
&

é=a ér=a k=a
(4.1)

Such arepresentation does hold true whem/Afepossess certain smoothness prop-
erties In this case¢p € CS_(V,_;), s= 2, implies thatp € C3?(S); fors=1, it
implies thatg /i is nondecreasing of. Moreover Cs_ . (V._;) N C3(S) is weakly
dense inCS (Vs 1). Now, let ¢q ¢ (X) be the functionwy(x) for x =t and 0 other-
wise and whers = 2, define
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X & és—2
@s-1.1(X) = wo(X) w1(£1) wy (). .. L ws 1(€5-1) dés_...dE,AE

&=t &=t s-1=t
4.2)

for t = x. It is well known that for anyt, ¢s_1+ € C$ (¥s_;), and that anyp €
CS o(¥s_1) can be expanded in terms of thg,'s, k=0,1,...,s— 1 andt € S[7,
p. 387]. This implies the next result

PropPERTY 4.1: The familyP(®) is stochastically generalized increasing cem in
the pair (¥s_1,¥s_,) if and only if ¢* € C i(Vs_,) for all ¢ € CS ie(¥s 1) N
C5(S), or, equbalently, forall ¢ € {@g a, @1 as--->Ps-1.a; Ps-1.t, L E S}t P(O) is sto
chastically generalized coex in the pair (¥, ,, %, ;) if and only if ¢* €
CE (W,_y) for all ¢ € CS (¥s_1) N C(S), or, equivalently, for all ¢ €
{ZP0aTPrar--»TPs1a5 Ps-11, 1 € S}

4.2. Stochastic s-Convexity

Property 41 leads to the following characterization of the stochastincreasing
convexity which generalizes Theorem/6 in Shaked and Shanthikumidr5].

ProOPERTY 4.2: For S = [a,b], a,b € R, b possibly infinite the familyP(0) is
stochastically sncreasing conex if and only if¢* € U2, for all ¢ € ULZE N
C([a,b]) ={¢:[a,b] 5> R|p®(x) =0fork=12,...,s Ox € [a,b]}, or, equi-
alently, forall ¢ € {(x—a)k k=12,...,s—1; (x—t)S 1, t € S}. P(0) is stochas
tically s-corvex if and only if¢* € U2, for all ¢ € UL N cs([ab]) =
{¢:[a,b] > R|¢p®(x) = 0 Ox € [a,b]}, or, equialently, for all ¢ € {+(x — a)X
k=12,....,s—1;(x—t)s1 te S

With the composition of twea-increasing convex functions giving afincreasing
convex functionwe directly obtain the following property that points out the pres-
ervation of the stochastiincreasing convexity by some transformations

PROPERTY 4.3:

i. Lete:S— R be ameasurable function that belong$ .. If {X,,0 € 0}
is stochastically sncreasing conex, then{¢(X;),0 € 0} also is

ii. Letd:0 — O be a function belonging & ;... If {X,,0 € 0} is stochas
tically s-increasing conex, then{X;,0 € 0} also is

The three results below are concerned with cases where the parametrization in
‘P(®) corresponds to changes of scale or origarts(i) and(iii ) extend Examples
6.A.5 and 6A.12 in[15]. We note that for these parthe convexity result directly
follows from a propertyhere strongerof sample patls-convexity
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PROPERTY 4.4:

i. LetY be anonnegat randonvariable, and define X=0Y. Then {X,,0 €
R} is stochastically gincreasing corvex, for any s& Nj,.

ii. LetY be areabalued randonvariable with a symmetric density 8t and
define X = 0Y. Then {X,,0 € R"} is stochastically2s-(increasing con
vex, for any s€ Np.

iii. Let Y be a reabalued randonwariable, and define X =Y + 6. Then
{Xy,0 € R} is stochastically gincreasing corvex, for any s€ Nj.
Proor: We will only establistii). Givene € Ui N C?5(R), we have that fok =
1s 23 LR ] S)

2k

d62k

¢*(0) = E[Y*$@9(X,)] =0,

and

2k—1

T 7(0) = E(Y* L[4 (X,) — 6B V()] + 9V OBV =0,

since EY?*"1 = 0 (Y being symmetric about)0and y,,[¢% P(gy) —
¢V (0)] = 0 for ally € R (becausep® = 0 andd € R*). Thus by Property
4.2 we deducsii).

Example 4.5:The family of the normal distributions with mean 0 and with standard
deviationos € R* is stochastically &(increasing convex while the family of the
normal distributions with meap € R and with fixed standard deviatian is sto-
chasticallys-(increasing convex

We underline that in Property.4(iii ) it is not assumeds it is in Property 3
(i), thatY has aPF density functionIn other wordsworking with the stochastic
s-(increasing convexity leads to a stronger result which does not follow from the
previous general thearyhis will be supported by Lemma2 (i).

In the next propertywhich extends Example.A.3 in Shaked and Shanthiku-
mar[15]), 6 is assumed to take valuesin We recall[3] thati/l' ., can be defined
equivalently as

U ={d:N—>R|AH(i1)=0 foralli € N}, (4.3)

whereAs is thesth iterated of the forward difference operatgrdefined for a func-
tiong:N —>RbyA¢(i) =i +1) — ¢(i).

PrOPERTY 4.6: Let{Y,,n = 1} be a sequence ofiid. randomuvariablesvalued
in S = N or R*, and define X = 3/_,Y,. Then {X,,0 € N} is stochastically
s-(increasing corvex
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Proor: The argument is inspired from Rolski3, Ex. 2.6]. Let us considerfor
instancethes-convex case whefi=R™. LetF be the distribution function of; and
let F*®) be thedth convolution ofF. We have to show that the functiesi given by

¢*:N%R:HH¢*(0)EE¢<2Y,1> = (x) dF*@(x)

xeR*

belongs td/ ., for all ¢ € UX,. Define a functionp onR* by

e(t) =f . d(x+t) dF* (x).

Sincep € UF ., we directly see thap € UF . Denote byA, the forward difference
operator with incremertit Using awell-known resulsege.g.,[11, Formula(1.4.1)]),
we then get that for aly, h,,...,hs € R,

hy &1thy &s-1thg
(Ap, A, ... An) ¢ (0) :f f f 09 (&) dé 1 dé, .. dé= 0.
1=0 3

2=¢&1 s=&s-1
(4.4)

Now, we notice thaip*(6) = ¢(0), and it is easily checked thaf¢*(6) can be
expressed as

A6 (6) :LER+LER+...L€R+ (An, An, .. A ) @(0) dF(hy) dF(hy)...dF(hy).

(4.5)
Therefore from Egs (4.4) and(4.5), we deduce that3¢*(#) = 0 as required H
Example 4.7:The following families of distributions are stochastical{increasing
convex

i. the family of the chi-square distributions with parametet N;

ii. the family of the binomial distributions with parametere N and with
meannp;

i . the family of the negative binomial distributions with parametet N and
with meanné.

Here tog we indicate that Property.@ does not relyas does Property.3(ii),
on the assumption that thé's have aPF; density function See Lemma 42 (ii)
below for a supporting example

Property 46 together with Property.8 (i) allow us to state the following result
which generalizes Theorem6% in Shaked and Shanthikumidrs].

ProPERTY 4.8: Let{Y,,n = 1} be a sequence ofiid. randomvariableswvalued in
S=NorR" Let{N,,0 € O} be a family of nomegatie integervalued random
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variables independent of the¥, and define %= 32, Y,. If {N,,0 € 0} is sto
chastically sincreasing conex, then{X,,0 € O} also is

Example 4.9:The family of the compound Poisson sums with parameeiR™*, for
random variables valued N or R, is stochasticallys-increasing convex

By comparison with Property.3(iii ), we observe again that Propertp4loes
not ask that thé&},’s have aPFsdensity functionThis is importantin particulay for
the compound Poisson sunsee Lemma 4.2 (iii ) below

Sometimes it is simpler to check the stochastic convexity by a direct argument
rather than by a general techniqitere are two illustrations

Example 4.10:The family of the binomial distributions with fixed exponenand
with meannp, p € [0,1], is stochastically-(increasing convex Indeed it is easily
shown that

k |

ap* o (p) = -k
[0.1]

so thate € UL ;. Obviously implies thath* € Us"i)cx-

EAp(Xo-)y  1=k=n,

Example 4.11:The family of the discrete uniform distributions 6@ 1, ..., n}, with
parameten € Ny, is stochasticallyg-(increasing convex This is a consequence of
the following formula which can be proved by inductipn

n+s n(k+s
(n+s+1)< s )Asdf“(n):E( s >A5¢(k)-
k=0

The following lemma illustrates that when dealing with the stochastic
s-(increasing convexity rather than with the generalized stochastic convekity
possible to relax th&P hypothesis for certain resulfas stated befoje

Lemma 4.12: Let{Y,Y,: n=1} be a sequence ofiid. real-valued randomvariables
with a density function(fx) = 0.5 when x& [0,1] U [2,3]. Consider a family of
randomvariables{X,,0 € 0} that is defined by one of the three following trans
formations

i. Xg=Y+6,withe =R;
ii. Xg = EgzlYn, with ® = N,
iii. X, =3, Y, with® = R™ and where{N,,0 € R*} is a family of Poisson
randomvariables with paramete#, independent of the,s.
Then the associated family of distributiori3(®) = {P,,# € 0} is stochastically
s-(increasing corvex but not TR.
ProOF:

Case (i): By Property 44 (iii ), {X,,6 € R} is stochastically-(increasing convex
Let us show that the kern&l(9, x) = f(x — 0) is notTP,, so thatf is notPF. First,
take 0< 0; < x; < 1 and 2< 6, < X, < 3, yieldingx; — 6, < 0 and thus
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01, 0, 1
K =f(X1—01)f(X2—92)=—>0.
Xz 4

Xl’

NOW,f0r01<Xl_:L1<02<X1<2,2+01<X2<3,WehaVel<X1_01<2
and thus

(™ %) = 0.)f 6,)- -+ <0
X, Xo) (X2 D (X, b) = 4 .

Case (ii): By Property 46, {X,,0 € N} is stochastically-(increasing convex We
now prove that the kernel

K(0,x) = f*®(x), # €N, xER",
is notTPR,. Indeed for x; < X,

K( . X2> = f(x) F*@(x) — f(x2) F*@(xp), (4.6)

X1, 2

and we observe th&t@(t) > 0forallt € [0,6],t+ 0,2,4,6. Thus for0 < x, < 1
and 1< x, < 2, (4.6) is equal tof (x;) f *@(x,) > 0, while for 1 < x; < 2 and 2<
X, < 3, (4.6) is equal to—f(x,) f*@(x,) < 0.

Case (iii): By Property 48, {X,,0 € R"} is stochasticallys-(increasing convex
The corresponding kernel is given by

“+oo
K(6,x) = D, P(N, =n)f*™(x), f € R', x € R,
n=1

and we now check that it is ndtP,. Clearly we have forg, h, x; andx, > 0,

1 0, 6+h K(0 + h,x,) — K(8,x
_K< )IK(M) (64 h, %) = K(6,%,)

h X1, X2 h
K(8 + h, — K(9,
K Xlr: (6.%) (4.7)
Putting
oK (0, X5,) 0K (0, X,)
T(0, %0 %) = K(8,%1) == = K(6,%,) —— =, (4.8)
we obtain that
+oo0 +oo
T(60,%X1, %) = 2 X £ (x) F*M™(xy)
n=1m=1
d d
X {P(Ny = )d P(Ny, =m) — P(N, = m) P(Ne n)
+oo +oo —n
= > > (%) F*™(x2)P(N, = n)P(N, = m) T’
n=1m=1

https://doi.org/10.1017/50269964899133023 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964899133023

GENERALIZED STOCHASTIC CONVEXITY 287

which yields

1 6726

?T(ﬁ, X1, Xp) = [ F(x2)F*@(x5) — F (%) F*@(x1)] + 0(0). (4.9)
Now, by (4.7) and(4.8), K(6, x) TP, would imply thatT (6, X1, X,) is always non-
negative but this does not hold true frofd.9) and(ii) above |

5. STOCHASTIC ORDERINGS OF MIXTURES

We start by introducing integral stochastic orderings that are induced by cones of
generalized convex functions

DEeFINITION 5.1: Consider two randomariables X and Yalued inS C R. Given a
T-systemy,_, of theforn’(4 1), Xis saidto be smallerthan Y inthg_;-Tchebycheff
ordering denoted by)ﬁ Y, when Bp(X) =E(Y)forall ¢ € CS_c(¢hs1) for
which the expectations exrﬁruen a CTFsystem¥;_, of the form(4.1), X is said to
be smaller than Y in thel, j-increasing Tchebycheff orderinglenoted by
X =9, —iex Y, When Bp(X) = E¢(Y) for all ¢ € CZ_iex(¥5_,) for which the expec
tations exist

These orderings have been considered implicithf inChap 1V, Sect 5].
In the particular casevhereV_, is the familyIls_,, they correspond to the sto-
chastics-convex ands-increasing convex orderingdenoted by<: _ and<? _,
respectively

Note that sincet iy € C5_o(¥s_;) fork=0,1,...,s— 1, we have

X< o Y= Ep(X) =Ep(Y) fork=0.1,...,s— 1. (5.1)

In other wordsthe orderlng<5 o Can only be used to compare random vari-
ables such that the expectatlons of their transformationg ¥, ...,¢s 1 are
identical For the orderlngiS «o the constraint is that the random variables have
the sames — 1 first moments

This observation highlights natural reasons for generaliziﬁﬁCX into
_f, —ox Indeed for some random variablg, the momentsEZ* may not exist
but, for instance all the expectationE[Z exp(—2)] do exist Thus <o o IS
not applicable but one could conS|d5|5 - where(x) = x®exp(—x), k =
0,1,...,s — 1. Furthermorein probablllstlc modelingthe comparison of models
often Ieads us to fix certain expected valugébese quantitieshowever are not
always the moments of some random variabléut can represent the expectation
of certain functionsmore complexof Z.

As with Property 41, a density argument yields the following characterization
of <

— W5 g—ex’

ProPERTY 5.2: For two randonvariables X and Yalued inS, X < _\I, _iex Yifand
only if Ep(X) =E¢(Y) forall ¢ € C5_iex(Vs_;) N C3(S) for which the' expectations
exist or, equialently,
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Eoa(X) = Epca(Y) fork=0,1,...,s—1,
Eps_11(X) = Eps_1:(Y) forallte S.

X =3 o Yif and only if B5(X) = E¢(Y) for all ¢ € C5 (¥ 1) N C(S) for
which the expectations exjsitr, equvalently,

X<S v Egok,a(X) = E¢Ka(Y) fOI’kZO,L.,S—L
T¥s1mCX Eps-11(X) = Eps_1:(Y) forallte S.

S
X< - —icx Yo {

To check the possible existence O‘in «ordering it is convenient to have
a condition of crossing-type between the dlstrlbutlcb.rBS (¢) denote the number
of sign changes of the functighon its domainThe same argument as|i2] for the
s-convex ordering yields the sufficient condition bel¢see alsd7, p. 407]).

PropErTY 5.3: For two randomvariables X and Yvalued inS, X < —\1/ o Y If
E(X) = Egy(Y) for k= 0,1,...,s — 1, and if either the distribution functions
satisfy S (Fx — Fy) = s— 1 and K = Fy near oo, or the density functions satisfy

S (fy —fy) =s and { = fx nearco.

Now, these concepts of generalized stochastic convexity and stochastic order-
ings of Tchebycheff-type allow us to deduce directly a rather general result for the
comparison of mixtures

ProPERTY 5.4: Let{X,,0 € O} be a family of randonrariablesvalued inS and
with law P,. Let X, denote a randomariable distributed as a mixture of thesg'X
with mixing lawA, that is

P(X, Sx)=f P(X, =x)dP(A = 0), XES.
0E®
If the familyP(®) = {P,,0 € 0} is stochastically(increasing corvex in the pair

(qfsfla @571), then

(€]

AL =g e A2 = X, S0 e, (5.2)
In particular, if P(0) is stochastically gincreasing corvex, then
Al —s— (I)CX AZ = XA1 —: (|)c><x\ . (53)

Example 5.5:Let X, = (£,)2whereé, is a mixed exponential random variable with
random meamn as mixing parameter arads some positive non-integer real number
From Property 3 and Example B, we deduce that

R+
Al S‘f’

s—1—(1)ex

whereW,_; = {1,x3 x?2 ... x5~ Ya},

A= Xy, < X, (5.4)

—s— (|)cx

Example 5.6:Let X, be a mixed Poisson random variable with random meas
mixing parameter=rom Property 5t and Example 5 (i), we get that(5.3) holds
true A similar s-(increasing convex ordering is valid for the mixed random vari-
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ables built from the parametric distributions discussed in ExampEsi3—(iv),
4.5, 4.7 (i)—(iii), 4.9, 4.10, and 411

Combining Properties.8 and 54 yields the following comparison result for
compound sums

PropPERTY 5.7: Let{Y,,n = 1} be a sequence ofiid. randomvariablesvalued in
S =Nor R, and let N be some nenegatie integervalued randonvariable in-
dependent of the, . Then

Ny N,

N S
Ny sz(i)cx N, = ElYn 5sf(i)cx ElYn'
n= n=

Moreawver, let{Z,,n= 1} be another sequence of.d. randonwariables of the same
type and such that,y<® . 7. foralln=1. Then

—s—(i)cx
Ny N

N S
Nl isf(i)cx N2 ElYn S:sf(i)cx 21 Zn‘
n= n=

Extrema with respect to threeconvex orderings have been derived for discrete
random variablegl] and for continuous random variablgd. Using Property 3,
the latter extrema can allow us to approximate mixed distributions when only the
momentsEAK k= 1,2,...,s — 1, of the mixing parameter are knowBy Property
5.7, the former extrema can provide approximations to compound sums when only
the moment&NX k=1,2,...,s— 1, of the number of terms are fixeBor modelling
problems(as in the two illustrations belowsuch approximations are useful when
only partial information on some components of the model are available

Illustration 5.8(Carrier-borne epidemic modelLet us consider a closed commu-
nity subdivided initially inton susceptibles aneh carriers Each carriej, say is in-
fectious during a random period of time of lengihDuring that periodthe carrier
can contact any given susceptible according to a Poisson process wigh Aditthe
infectious periods and contact processes are indeperdsmsceptibleif ever con-
tactedisimmediately detected and removed from the populatienS(t) denote the
number of susceptibles still present at titne= 0. We easily see that the probability
Q;(t) that any given susceptible escapes contacts with caurgil timetis given by
Q(t) = exp[—B min(t,T;)]. Therefore S(t) has a mixed binomial distribution with
fixed exponenh and with random paramet&™ , Q; (t) as mixing parameter

Now, let us assume that the initial number of susceptifi@sinstanceis not
known with precisiopwhich is rather frequent in practicEhereforewe replace the
constann above by some random variabie say The dependence ddis marked
by writing Sy(t). From Examples # and 56, we then deduce that

Ni <o iex N2 = Sy (1) <o S (D) (5.5)

This result extends a property given in Malice and Lef¢®@. We mention that the
effects of heterogeneity in carrier-borne epidemics have been investigated by Lefévre
and Malice[8] and Tong 16].
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Illustration 5.9 (Collective risk model in actuarial scienged et us consider an
insurer who manages a homogeneous portfolioregks over a given period of time
During that periodeach policyholder, say can have a claim with probability,
which is represented by the indicator variahle). If claim i occurs its amount is
of random levelY, (valued inR*). The indicatord;(p) are independenand the
amountsy; are ii.d. and independent of thig( p)’s. Then the total claim amount
denoted byX,, is given by

Xp = Z\ﬁli(p)- (5.6)

Now, let us assume that the probabilfiys no longer a constant but corresponds
to some random variable, say valued in[0,1]. This can be used to translate a
possible variability effect in the claim occurrences of the porttdliet X,. denote
the associated total claim amou@early X,. can be expressed as

Xy = %Y (5.7)

where the random variabMhas a mixed binomial distribution with fixed exponent
n and with random parameteras mixing parameteFrom Examples 40 and 56
and Property ¥, we then obtain that

[0.1] R*
T1 Zg (hex T2 = Xy = X (5.8)

—s—(i)cx "2

For a treatment of actuarial models and methods with various comparison problems
see De Wldef4] and GoovaertKaas Van Heerwaarderand BauwelinckX5].
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