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ABSTRACT

This paper surveys some statistical models of survival data. A basic model of a random
lifetime is defined, and censoring is introduced. Methods based on observations of small
segments of lifetimes are compared. Markov and semi-Markov (multiple state) models are
recommended as well-understood and flexible models well suited to actuarial data. A Poisson
model is discussed as an approximation to a two state model, while traditional Binomial-type
models are shown to be more restricted and less tractable than multiple state models.
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1. INTRODUCTION

This paper surveys, in three parts, some work on survival models of
current or potential interest to actuaries. It is not a review article in the sense
of covering new research work; it includes work which is far from recent and
there is more explanatory material than would be usual. Its purpose is to
make modern tools in mortality analysis more accessible to actuaries, and to
indicate some recent lines of development. Nothing in the paper is original,
indeed much of it is elementary. It, nevertheless, seems useful to try to show
how several apparently separate aspects of the subject form a coherent
whole.

Part I deals with the type of data most familiar to actuaries, namely
observations of small segments of lifetimes, typically single years of age. It
includes the statistical treatment of multiple state models, of which multiple
decrement models are a special case. Part II describes competing risks
models and compares them with multiple state models, and describes the
non-parametric and semi-parametric approaches to analysing observations of
complete lifetimes, with emphasis on the Kaplan-Meier estimate and the Cox
model. In Part III we describe some modern counting process models which
provide a unifying framework for almost all of the preceding material.

The list of references for all three parts is given at the end of Part I.
Part II appears in British Actuarial Journal, Volume 2, Part II and Part

III in B.A.J. 2, III.
Much of the long history of mortality analysis can be traced to the

actuarial applications of life tables. Like most of science and mathematics,
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130 Statistical Models for Decrement and Transition Data I

however, by far the larger part of the corpus is of recent origin. Haycocks &
Perks (1955) introduced their textbook in the following terms:

"This book is about the principles and methods of actuarial statistics. By 'actuarial
statistics' we mean the statistics that actuaries compile for the purposes of their
professional work. Our subject is thus a severely practical one, and the methods used are
such as are sufficient for the practical purposes to be served. Elaborate theoretical
development would be inappropriate for our purpose; utilitarianism is the keynote and
approximation pervades the whole subject. The modern developments of mathematical
statistics have made hardly any impact in this field ..."

Since then, mathematical statistics has made an enormous impact in this
field, and survival analysis has developed rapidly into a major branch of
statistics, but it has received little attention from actuaries. It is worth
considering why, and whether or not, it matters.

The analysis of mortality in generally healthy populations is rather
insensitive to the methods employed. Any of the models discussed here,
applied to typical actuarial mortality data, will usually give numerical results
so similar as to be the same for all practical purposes, particularly if the
results are to be graduated. It could, therefore, be argued that actuaries have
no practical need of the more considered analyses made by statisticians.
However, to regard only the computational aspects of mortality analysis
would be to miss the point. Hoem & Funck-Jensen (1982) emphasised the
following distinct aspects of a statistical model:
(a) A probabilistic model. By this is meant the collection of assumptions

underlying the model, such as the statistical independence of events
befalling different lives.

(b) The numerical methods used to compute some model quantities from others
(for instance the transition probabilities from the transition intensities).
Data analysis yields estimates of some model quantities. For example,
the Continuous Mortality Investigation Bureau (CMIB), in their most
recent investigations, used a model in which nx was estimated; numerical
methods were then used to compute qx (CMIR 9, 1988).

(c) Problems and methods of statistical inference applied when the model is
used to analyse real data. Statistical methods are appropriate when the
model includes stochastic elements or errors of measurement. The
relationships between model quantities, described in (b), are often useful
in devising statistical methods.

Consider a practical problem — for example, to calculate an annuity rate.
To solve it a computational tool is needed, such as a life table, but the life
table must be chosen by reference to suitable data. The statistical model
provides the link between the data ((c) above) and the computational tool
((b) above); both are aspects of the modelling process.

The life table lx is often cited as a deterministic model, in Gerber's (1990)
terms, the "somewhat embarrassing deterministic model". This viewpoint
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leads to confusion when data are considered; it obscures the need for a
statistical model to link data and applications, and it deflects attention from
the nature of the process being modelled onto computational issues. Exposed
to risk, for example, is an arithmetical problem arising in estimation. In a
traditional actuarial approach, exposed to risk, practically, is the estimation
procedure. This is putting the cart before the horse.

There are good reasons why the insensitivity of estimated rates qx to the
particular model assumptions should not lead actuaries to dismiss the
framework of statistical models:
(a) Actuarial work is moving in new directions (for example, PHI and health

care insurance), for which new models are needed in order to fashion the
appropriate computational tools.

(b) Different models suit different data. An actuary who is given no choice of
data must be able to select an appropriate model; a more fortunate
actuary will sensibly specify the data in the context of a model.

(c) Statistical models of failure times are common currency outside the
United Kingdom actuarial profession. They appear in medical statistics
('survival analysis'), engineering ('reliability theory'), demography ('event
history analysis') and econometrics (see, for example, Lancaster, 1990).
Actuaries should be aware of these links with other fields.

In Section 2 a stochastic model of mortality is described, and some
questions of statistical inference are raised. In Section 3 we introduce the
very general and flexible class of models known as multiple state models,
which seem to be naturally adapted to actuarial use. Actuaries, in the past,
have been more familiar with models based on the Binomial distribution,
motivated as it is by the life table. Section 4 discusses the Binomial and
Poisson models as alternatives to the multiple state model.

The surveys by Andersen & Borgan (1985) and Clayton (1988) go into
more detail on some of these topics, and are useful sources of further work
and examples. Jewell (1980) gives a wide-ranging survey of the uses of
mathematical models in actuarial science.

2. MODELLING THE TIME TO DEATH

2.1 A Simple Model
This section describes a simple model of the mortality of a single life. We

begin with this model because:
(a) it is identical to the models of failure times which are in common use

elsewhere; and
(b) it leads to the treatment of life contingencies found in modern textbooks

such as Bowers et al. (1986) or Gerber (1990).

The model assumption is that the time from birth to death can be
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132 Statistical Models for Decrement and Transition Data I

represented as a continuous random variable T, having a value in the
interval (0, <x>), where co is some limiting age. Let:

F(t) = P[T<f] (1)

be the distribution function of T, and define:

S(f) = l - F ( t ) = P [ T > t ] (2)

to be the survivor function of T. Then define the force of mortality to be:

,= lim l-P[t<T<t + dt\T>t] (3)
dt

assuming the limit exists. The following synonyms for 'force of mortality' are
often found: 'hazard rate'; 'force of transition'; 'transition intensity'. To deal
with ages x>0 , we define a family of random variables {TX}^IQ- T X is
defined as the future lifetime after age x, conditional on having survived to
age x; obviously T0 = T. The distribution and survivor functions of Tx are
denoted Fx{t) and Sx(t) respectively, and satisfy:

and Sx(f) = P [ T > x + t | T > x ] (4)

and all the usual relationships of the life table can be shown to hold, see for
example Bowers et al. (1986). It is easily shown that the force of mortality
based on Tx, namely:

lim ^-P[t<Tx<t + dt\Tx>q (5)
dt

is equal to nx+t. In actuarial notation, Fx(t) is ,qx, and Sx(t) is tpx, but the
statistical notation helps us to keep in mind the nature of the model. The
force of mortality can be interpreted through the approximate relationship,
valid for small dt:

it<lx~V-xdt. (6)

It will be helpful later on if we make equation (6) precise. A function g(t) is
said to be 'o(t)' ('little-oh-of-t') if:
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lim^U

in other words, if g(t) tends to zero sufficiently faster than t itself. It is easy to
see that the sum of a finite number of o(t) functions is again o(t), as is the
product of any o(t) function and a bounded function. Then we can show
from the definition of nx+l that:

(7)

where g(t) is some function which is o(t). We usually just write:

(8)

since the precise form of g(t) is of no concern.
The integrated hazard (to give it its usual name) often arises in survival

analysis because it turns out to be a natural function to estimate. It is
defined by:

(9)

The probability density function of Tx, denoted fx(t), is defined in terms of
the force of mortality:

fxd(t)=ftFxd(t)

x(t + dt)-Fx(t)
dt

F(x + t + dt)-F(x
S(x) „"„• S(x + t)dt

= lPxVx + f (10)

Since Fx(t)=\—,px, this can be rewritten in the familiar form:

fr,Px=-,PxHx + , (11)

which, when integrated with the boundary condition 0Px=l> gives the
important formula:
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(12)

At this point it is worth recalling Hoem & Funck-Jensens' analysis
(Section 1). Equation (11) allows us to calculate fix, given the probabilities
,px; equation (12) allows us to do the reverse. These are examples of
"numerical methods used to compute some model quantities from others". In
practical terms, we can estimate either probabilities ,px or forces \ix from the
data, and then compute any other quantities which we need. The question of
what to estimate from the data can, therefore, be decided on statistical
grounds.

2.2 Questions of Inference
We now turn to statistical inference. Given some mild conditions on the

distribution of T, we can obtain all information by estimating F(t), S(t), f(t)
or fi, for all t>0.

The simplest experiment would be to observe a large number of new-born
lives; the proportion alive at age t>0 would furnish an estimate of S(t). The
estimate would be a step function, and the larger the sample the closer to a
smooth function we would expect it to be. For use in applications it could be
smoothed further. We need not assume that T is a member of any parametric
family; this is a non-parametric approach to estimation. Clearly, there are
some practical problems:
(a) Even if a satisfactory group of lives could be found, the experiment

would take about 100 years to complete.
(b) The observational plan requires us to observe the deaths of all the lives

in the sample. In practice many would be lost to the investigation, for
one reason or another, and to exclude these from the analysis might bias
the result. The statistical term for this problem is censoring. All we know
in respect of some lives is that they died after a certain age.

In medical statistics, where the lifetimes are often shorter, non-parametric
estimation is very important. In Part II, Section 6 we show how the
experiment above can be amended to allow for censoring. Otherwise, we
must use a different observational plan, and base inference on data gathered
over a shorter time; for example, 3 years (the ELT tables) or 4 years (the
CMIB tables). A consequence is that we no longer observe the same cohort
throughout their joint lifetimes, so we might not be sampling from the same
distribution. It might be sensible to widen the model assumption, so that the
mortality of lives born in year y is modelled by a random variable T*, for
example. In practice we usually divide the investigation up into single years
of age.

Observing lives between (say) integer ages x and x + 1 , and limiting the
period of investigation, are also forms of censoring. Censoring might still
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occur at unpredictable times — by lapsing a life policy for example — but
survivors will certainly be lost to observation at a known time, either on
attaining age x +1 or when the investigation ends.

2.3 Censoring Mechanisms
Censoring is the key feature of survival data (indeed survival analysis

might be defined as the analysis of censored data) and the mechanisms which
give rise to censoring play an important part in statistical inference. Some of
the commonest censoring assumptions are these (they are not all mutually
exclusive):
(a) Right-censoring. Data are right-censored if the censoring mechanism cuts

short observations in progress. An example is the ending of an
investigation on a fixed date.

(b) Left-censoring. Data are left-censored if the censoring mechanism
prevents us from knowing when entry into the state which we wish to
observe took place. An example arises in medical studies in which
patients are subject to regular examinations. Discovery of a condition
tells us only that the onset fell in the period since the previous
examination; the time elapsed since onset has been left-censored.

(c) Interval-censoring. Data are interval-censored if the observational plan
only allows us to say that an event of interest fell within some interval of
time. An example arises in actuarial investigations, where we might know
only the calendar year of death.

(d) Random censoring. If censoring is random, then the time C( (say) at
which observation of the i'h lifetime is censored is a random variable.
The observation will be censored if C,<T,, where T, is the (random)
lifetime of the i'h life. The case in which the censoring mechanism is a
second decrement of interest gives rise to multiple decrement models; see
Section 3 and Part II, Section 5.

(e) Non-informative censoring. Censoring is non-informative if it gives no
information about the lifetimes {T,}. In the case of random censoring,
the independence of each pair T,-, C ; is sufficient to ensure that the
censoring is non-informative. Informative censoring is more difficult to
analyse, essentially because the resulting likelihoods cannot usually be
factorised.

(f) Type I censoring. If the censoring times {C,} are known in advance (a
degenerate case of random censoring), then the mechanism is called
'Type I censoring'.

(g) Type II censoring. If observation is continued until a predetermined
number of deaths has occurred, then 'Type II censoring' is said to be
present. This can simplify the analysis, because then the number of
events of interest is non-random.

It is obvious that the observational plan is likely to introduce censoring of
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136 Statistical Models for Decrement and Transition Data I

some kind, and consideration should be given to the effect on the analysis in
specifying the observational plan. Censoring might also depend on the results
of the observations to date; for example if strong enough evidence
accumulates during the course of a medical experiment, the investigation
might be ended prematurely, so that the better treatment can be extended to
all the subjects under study, or the inferior treatment withdrawn. Andersen et
al. (1993) gave a comprehensive account of censoring schemes.

3. MULTIPLE STATE MODELS

Multiple state models have been described by Sverdrup (1965) and Waters
(1984), among others. In this section we describe multiple state models
briefly, using the simplest example of a two state model to illustrate general
points. Our main purpose is to emphasise:
(a) some advantages of multiple state models over some others often used in

actuarial work, which are described in Section 4; and
(b) connections with other parts of survival analysis.

a = able d = dead

Figure 1. A two state model of mortality

3.1 The Two State Model (I) — Assumptions
The two state model is illustrated in Figure 1. There is an alive state and a

dead state, with transitions in one direction only. The probability that a life
alive at a given age should be dead at any subsequent age is governed by the
age-dependent transition intensity nx+,(t>0), in a way made precise by
Assumption 2 below.

Assumption 1. The probabilities that a life at any given age will be found in
either state at any subsequent age depend only on the ages involved and on
the state currently occupied. This is the Markov assumption.

Assumption 2. dtqx+t = ixx+ldt + o(dt) (f>0).

Assumption 2 simply takes equation (8) as a starting point, because it is
mathematically convenient to do so. Assumption 1 is more subtle. The past
history of an individual — for example, current state of health, spells of
sickness, occupation — is excluded from the model. If we knew these factors,
we could:
(a) treat each combination of factors as a separate model; in other words,

stratify the problem; or
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(b) specify a model which took them into account; in other words, treat the
problem as one of regression.

This would take us into the area treated in Part II, Section 7. Here, only the
currently occupied state is relevant.

For the purposes of inference, we restrict our attention to ages between x
and x + 1 , and introduce a further assumption:

Assumption 3. nx+, is a constant \i for 0 < f < l .

It is important to emphasise that this two state model is not the same as
the model of Section 2; we start with different assumptions. One model is
formulated in terms of a random variable T representing the lifetime, the
other in terms of a transition intensity between states. It is easy to impose
some mild conditions under which the models are equivalent, but when we
consider more than one decrement these two formulations lead in different
directions (see Part II, Section 5).

3.2 The Two State Model (II) — Probabilities
Since we have specified the model in terms of a transition intensity, we

consider briefly how to compute probabilities. Consider the survival
probability t+d,px, and condition on the state occupied at age x + t. By the
Markov assumption, nothing else affects the probabilities of death or survival
after age x + t:

— tPxx P[Alive at x + t + dt\ Alive at x + t]

+ (<5fxxP[Alive at x + t + dt\Dead at

= ,pxx(l-/ix+

Therefore:

al

,. o(dt)

dt->0+ al

which is the same as equation (11), so ,px can be computed from equation
(12). The important point is that it has been derived here strictly from the
assumptions of the two state model, and that the method is easily extended

https://doi.org/10.1017/S1357321700003366 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003366


138 Statistical Models for Decrement and Transition Data I

to models with more states. In the Markov framework, equation (13) is an
example of the Kolmogorov forward equations. It is interesting to note that
the Markov assumption is implicit in the traditional development of life table
probabilities; it is introduced in the definitions (4).

3.3 The Two State Model (III) — Statistics
Next we define our observations. We will describe two slightly different

approaches. Both suppose that we observe a total of N lives during some
finite period of observation, between the ages of x and x + 1. We could
suppose that lives were observed, or not, as a result of some random
mechanism (not depending on any parameter of interest), but, in this paper,
we suppose that data are analysed retrospectively, so we regard N as a non-
random quantity. We do not assume that we observe the N lives
simultaneously, nor do we assume that we observe each life for the complete
year of age. We do assume that all N lives are identical and statistically
independent.

For simplicity we consider Type I censoring, and we use the notation of
Broffit (1984). For i=l,...,N define x + a( to be the age at which observation
of the i'h life starts, and let x + bt be the age at which observation of the ith

life must cease if the life survives to that age. x + b( will be either x + 1 , or the
age of the i'h life when the investigation ends, whichever is smaller. The
important point is that at and bt are known in advance.

Under Type I censoring, statistics in respect of different lives are not
identically distributed, which is sometimes inconvenient. An alternative,
essentially due to Sverdrup (1965) is to let the entry age x + E, and the age at
censoring x + C, be (dependent) random variables with densities /£(e,) and
fc\dici\ed respectively, the same for all i. Mixed distributions, giving
probability masses at the points E,=0 and C ; = l are easily accommodated.

The constants a, and bh or the random variables E, and C;, define a
mechanism for starting and ending observation of the ith life, distinct from
the decrement(s) which we are observing. Multiple decrements can be
regarded as a set of mutually censoring processes, but the observational plan
might still allow for censoring by some mechanism other than the
decrements; that is the purpose of the definitions above. To avoid repetition,
the following is given in terms of Type I censoring; it will be clear how to
modify it for the random censoring.

Define a random variable D ; as follows:

n _ f 1 if the i'h life is observed to die
1 ~ JO if the i'h life is not observed to die.

D, is an example of an indicator random variable; it indicates the occurrence
of death. Define a random variable T, as follows:
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x + T,; = the age at which observation of the i'h life ends.

Notice that D, and T, are not independent, since:

139

D ; = 0 D, = (14)

It will often be useful to work with the time spent under observation, so
define V, = T, — at. V, is called the waiting time and it is seen to be related to
the 'central exposed to risk', but with an important difference: V, is a random
variable. It has a mixed distribution, with a probability mass at the point
bi-at.

The pair (D;,V,) comprise a statistic, meaning that the outcome of our
observation is a sample (dh Vj) drawn from the distribution of (D;, V,). Let
f£dt,vt) be the joint distribution of (Dh V,). It is easily written down by
considering the two cases Df = 0 and D ; = l :

air-x

(4 = 0)
(4=1)

exp( - 1 nx+ai+tdt
o

(4=0)

exP( -

-IHx + at+tdtWi'+c + v,
0 /

(15)

where the last step follows from equation (14). Now assume that fix+t is a
constant \i for 0 < t < 1 (this is the first time we have needed this assumption)
and fldt, i>,) takes on the simple form:

(16)

The joint probability function of all the (D,,V,), by independence, is:

i N
T~T g-)ivi di _g-Mvi + ...+VN) di + ... + dN

(17)
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where d = Y£LItdl and r = X)=?#,•• In other words, define random variables D
and V to be the total number of deaths and the total waiting time,
respectively, and the joint probability function of all the (D,, V,) can be
simply expressed in terms of D and V.

3.4 The Two State Model (IV) — the Maximum Likelihood Estimator
The probability function immediately furnishes the likelihood for yc.

) = «"" V (18)

which yields the maximum likelihood estimate (MLE) for p.

fi = d/v. (19)

This is intuitively satisfying and even obvious. Seal (1977) pointed out that
Sprague suggested ji as an estimate of (i as early as 1879. Notice that the
estimate fi, being a function of the sample values d and v, can itself be
regarded as a sample drawn from the distribution of the corresponding
estimator.

£ = D/V. (20)

The distinction between the estimator and the estimate is often ignored, as
doing so causes little confusion. It is useful to maintain the distinction here,
though, because it will help to make clear the nature of the so-called Poisson
model of mortality in Section 4. We will use boldface capitals for random
variables, and lower case letters for samples.

It is important, in applications, to be able to estimate the moments of the
estimator p., for example, in order to compare the experience with that of a
standard table. At least, we need to estimate EfJI] and Var[/i]. It is a
standard result of maximum likelihood theory that the asymptotic
distribution of p. is Normal, with mean fi and variance /i/E[V], but it is
useful to describe the approach of Sverdrup (1965), partly because it is based
on the following elegant results which will be of further interest in Part III,
Section 8:

(21)

(22)

Note that equation (21) can also be written as E[D,] = /iE[V,]. In the case
that the {a,} and {fcj are known constants, this follows from integrating/
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summing the probability function of (D;, V;) over all possible events to
obtain:

' j " V *">*»,+ <?-"(fc'-a')=l (23)

and then differentiating with respect to fi, once to obtain equation (21) and
twice to obtain equation (22). Under the random censoring defined above, we
replace equation (23) with:

| | ) (24)
O\et )

and proceed as before. To find the asymptotic distribution of //, consider:

N v n ' N ^

It is reasonable to assume that, as N-*ao, the empirical frequencies of the
{a,} and the {bt} converge to some distribution, so that, asymptotically, we
can disregard the difference between the fixed and random censoring. Then
note that:

hm(M-n)=lim- U - ^ - L (25)

By the law of large numbers, V/N-»E[V;] in probability, and by the Central
Limit Theorem:

^ (D-/iV)~ Normal 0 , ^ J (26)
N \ N J

so, asymptotically:

jx ~ Normal I fi, Brvn )' ( ^

The derivation given above is somewhat heuristic. Conditions under which
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Ox

Figure 2. An illness-death model

the result is valid were discussed by Sverdrup (1965) and Borgan (1984).
Simulation studies suggest that the asymptotic distribution gives good results
if E[D]>10 (Schou & Vseth, 1980).

3.5 The General Markov Model
The two state model above can be extended to any number of states, with

arbitrary transitions between them, including increments and repeated
transitions. An example having these features which has been applied in
actuarial work is the three state illness-death model, shown in Figure 2.

Following Waters (1984), we use the following notation. Let g and h
denote any two states. If states g and h are distinct, let //**+, be the transition
intensity from state g to state h at age x + t. Define:

= P[In state h at age x +11 In state g at age x] (28)

where now g and h need not be distinct. The event whose probability is
defined by equation (28) does not specify what must happen between age x
and age x + t; in particular, if g = h, it does not require that the life remains in
state g between these ages. So for any state g, define:

,px
g = P[In state g from age x to x +11 In state g at age x]. (29)

If return to state g is impossible, then ,p^9 = , ^ , but this is not true (for
example) in the case of states a and i in the illness-death model above. We
enlarge Assumption 2 of the two state model as follows:

Assumption 2*. For any two distinct states g and h, itpx
h

+t = n9
x\td

(t>0), and the probability that a life makes any two or more transitions in
time dt is o{dt).
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Then, by the same method as before, we can derive the Kolmogorov
forward equations:

(30)

(31)
i±<s

The calculation of probabilities from the estimated intensities requires the
solution of these equations, which is a straightforward numerical exercise; see
for example Jones (1994) and Kulkarni (1995). If the intensities are piecewise
constant, then probabilities can be computed analytically (Ramsay, 1989),
and this is also possible in certain other cases (CMIR 13, 1993). Markov
models also lead directly and naturally to life insurance mathematics (Hoem,
1969, 1988), which lies outside the scope of this review. For inference, we do
need the solution of equation (31), but since this is of the same form as
equation (11), and satisfies a similar boundary condition, its solution is just:

(32)

We now return to inference, for the age interval x to x + 1 , taking the
illness-death model as an example. The observations in respect of a single life
are now:
(a) the times between successive transitions; and
(b) the numbers of transitions of each type.

If the transition intensities are constant, equation (32) shows that each spell
of length t in the able or ill states contributes a factor of the form e~

{"+'')' or
e~{v+p)t, respectively, to the likelihood, so it suffices to record the total
waiting time spent in each state. Then defining:

V, = Waiting time of the i'h life in the able state
W, = Waiting time of the i'h life in the ill state
S; = Number of transitions able -> ill by the i'h life
R, = Number of transitions ill -» able by the ith life
D, = Number of transitions able -> dead by the i'h life
U, = Number of transitions ill -> dead by the i'h life

and defining totals V = £^rV i (and so on), and using lower case symbols for
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the observed samples as usual, it is easily shown that the likelihood for the
four parameters n, v, a, p, given the data, is:

U.H, v, a, p) = e "*+a)ve ~(v + p) V v Vspr. (33)

This factorises into functions of each parameter of the form e'^fi*, s o the
maximum likelihood estimators are:

. D . U . S . R , . . .

"=v' V = W ff=v' P=W (34)

The asymptotic properties of these estimators follow from results similar to
equations (21) and (22), and the fact that the random variables (D; —^Vf),
(Uf-vWj), (Sf-ffVj), (Rf-pW,) are uncorrelated, that is:

E[(D1.-/iVi)(U1-vW1.)] = 0 etc. (35)

The estimators are not independent: D, and U; are both 0 or 1, but D,U;#1,
while (assuming that the i'h life starts in the able state) S, = R; or R, + 1. They
are, however, asymptotically independent: the same argument as in the two
state model shows that the vector (/I, v, 5, p) has an asymptotic multivariate
Normal distribution; that each component has a marginal asymptotic
distribution of the same form as in equation (27); and that, asymptotically,
the components are uncorrelated because of equation (35) and so
independent (being Normal).

Equations (21), (22) and (35) are particularly noteworthy; only slightly
generalised, they are the key to the application, described in Part III, Section
8, of powerful martingale methods to many areas of survival analysis.

The calculation of the estimates fi, etc. requires the central exposed-to-risk
to be computed. This can be done exactly in some circumstances, but if the
exposure data are in census form (as in the CMIB investigations), the usual
census formulae provide estimates. Multiple state models are, therefore,
especially well suited to the data available in many actuarial investigations.

3.6 The CMIB Illness-Death Model
A large scale application of a multiple state model is the illness-death

model developed by the CMIB (Waters, 1991a). This differs from the model
shown in Figure 2 in that the transition intensities out of the ill state depend
on the duration of sickness z as well as age x. The Markov property no
longer holds if the state occupied by the individual is just able, ill or dead as
before, but, if the idea of 'state' is extended to include the time spent in the
current state, a Markov model can be assumed.
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In principle, estimation of the intensities proceeds just as above, over
rectangles representing pairs of age and duration intervals, chosen so that
vx z and px z can reasonably be assumed to be constant. However, the data
related to policies with deferred periods; that is, no benefit is paid until the
duration of sickness exceeds the deferred period. The only available data in
respect of sickness and recovery were the starting and ending times of claims;
transitions to and from the ill state were not observed if no claim was made.
Moreover, for deferred periods longer than 1 week, px z displayed a 'run-in'
period of roughly 4 weeks from the end of the deferred period, during which
it was lower than might have been expected on the basis of the intensities for
deferred period 1 week. The CMIB suggested that this might be caused by
policyholders sometimes not claiming after the deferred period when recovery
was imminent. As a result, certain adjustments were necessary in the
calculation of the sickness inception rates (Waters, 1991b):
(a) The exposed-to-risk in the able state was reduced to allow for a

proportion of lives who were sick, but not claiming. The latter
proportion was estimated numerically, by an integration involving both
<r* and pXi2.

(b) For deferred periods longer than 1 week, the rates of recovery pxz in the
4 weeks after the deferred period were adjusted to remove the effect of
the run-in period.

(c) An iterative approach to estimating ox was used, because the graduated
values of ax were needed in adjustment (a) above, and because the
estimates ax also figured in the estimated variance of ax.

Unobserved transitions are not unusual in applications of multiple state
models, usually because the analyst has no control over the data. Lindsey &
Ryan (1993) discussed a model for cancer in rodents in which the existence of
a tumour can only be established after death, which is analagous to the time
between onset of sickness and claiming under a PHI policy being unknown.
They used a standard iterative method (the EM algorithm) to overcome the
problem.

The CMIB also dealt at length with computational procedures for deriving
probabilities and financial functions from the intensities; in particular, it was
shown that well-known tools such as the Manchester Unity functions, claim
inception rates and claim annuities could all be computed. Here again, we
should be reminded of Hoem & Funck-Jensens' description of the modelling
process. The procedures relied on numerical (recursive) integration of the
integro-differential equations corresponding to the Kolmogorov forward
equations of a Markov model (Waters & Wilkie, 1987). In principle this was
identical to the approach used by Forfar, McCutcheon & Wilkie (1988) for
the production of life tables, but the intensities were much less well-behaved
over very short time periods than is the force of mortality typical of life
tables.
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3.7 Further Topics
Here we make some further remarks about multiple state models:

(a) Semi-Markov models. A model in which transition probabilities depend
on the past history in the current state, but not on anything occurring
prior to entering the current state, is a semi-Markov model. The CMIB
illness-death model is an example. Wilkie (1988b) suggested a marriage
and mortality model along similar lines, in which the ages of both
spouses and the duration of marriage were included.
In principle, estimation is no more difficult than in a Markov model,
provided that the quantities upon which intensities depend can be
partitioned finely enough for constant intensities to be assumed, but the
calculation of probabilities and other functions of the estimated
intensities is more laborious. As long as numerical answers are sufficient,
however, any equations which arise should be soluble by standard
methods.

(b) Non-constant intensities. In Part II, Section 6 we will consider non-
parametric estimation of the lifetime distribution or integrated hazard.
These methods can be applied to the transitions of a multiple state
model. Note, however, that methods used to estimate lifetime
distributions in a decrement model do not have the same interpretation
in a model with repeated transitions, essentially because the probability
of being in the initial state after some time is not the same as the
probability of having remained in the initial state. Non-parametric
methods give an estimate of the former probabilities. Since both can be
computed from the intensities, the latter might be a better target for
estimation.
The assumption of constant intensities is mainly useful at the estimation
stage. It does not materially aid the calculation of probabilities and
related functions, especially where numerical methods are used. Where
some of the transitions are modelled by known or assumed intensities,
these can take on any form. For example, Wilkie (1988a) proposed a
model for AIDS in which several intensities were given by parametric
functions.

(c) Regression models. In Part II, Section 7 we look at regression problems,
in which the hazard rate depends on covariates whose values describe
each life. The same methods can be applied to multiple state models. For
applications, however, the transition intensities are needed, so, in the
terminology of Part II, Section 7, all the baseline intensities have to be
estimated. This can be a useful way to study a heterogeneous population,
for which we cannot simply aggregate the observations on different lives.
A simple demographic example was given by Wood et al. (1994).

Some instructive applications of multiple state models to AIDS can be
found in Daykin et al. (1988), Wilkie (1988a) and Ramsay (1989).
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4. BINOMIAL AND POISSON MODELS

4.1 Binomial-Type Models
Much of the motivation for the analysis of mortality data is provided by

the following thought-experiment: observe N identical, independent lives
aged x exactly for one year, and record the number d who die. Then d is a
sample value of a random variable D. If we suppose that each life dies with
probability qx and survives with probability 1 — qx, then D has a Binomial
distribution with parameters N and qx. The intuitive estimate of qx is
qx = d/N, and this is also the maximum likelihood estimate. The
corresponding estimator qx has mean qx and variance qx(\—qx)/N. This is
the Binomial model of mortality.

The direct connection with the life table quantities lx and dx is obvious,
and the Binomial model is often cited in textbooks when the stochastic
aspects of data analysis are introduced; see for example Benjamin & Pollard
(1980). It was discussed by Forfar, McCutcheon & Wilkie (1988), who
compared it with a Poisson model, of which more later. The main point to
be made here is that the Binomial model leads to problems if the
observations are more realistic:
(a) we might not observe all lives over the same interval of age; and
(b) there will usually be decrements other than death, and sometimes

increments as well.

In terms of the data defined in Section 3, the {at} and the {£>,} are, in general,
not all the same. Considering the i'h life, we have:

P[Pi = di-]=bi-aiqx+ai
d'(\-bi-aiqx+a)

1-"' (4 = 0,1). (36)

In respect of this individual, equation (36) makes a contribution to the total
likelihood, in which bi-ajqx+m appears as a parameter and dt as the observed
statistic. Defining the vector quantities:

we can write the total likelihood as:

Uq;d)=Y\ bl-aiqx+ai'il-hl-aflx+ai)
1-''. (37)

We have to find the value of the vector q — in general N numbers — which
maximises the likelihood. The dimension of the problem might be reduced if
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some of the {a,} and the {&,} are equal, but the usual approach is to make
an assumption about the distribution of Tx in the age range [x,x + 1] which
allows us to express any bi-atqx+ai in terms of qx, making the likelihood a
function of one parameter again. Possible assumptions are:
(a) uniform distribution of deaths: ,qx = tqx (0< t < 1)
(b) the Balducci assumption: i_,qx + t = (l—t)qx ( 0 < t < 1)
(c) constant force of mortality: ,qx = l—e~l" (0 < t < 1).

(Note that the Balducci assumption implies a decreasing force of mortality
between integer ages.) The resulting maximum likelihood estimators were
treated in detail by Broffit (1984). None of them is particularly attractive.
The question of how Binomial-type models might be generalised to multiple
decrements is considered in Part II, Section 5.

4.2 The Actuarial Estimate
The Balducci assumption has been used in an attempt to provide a

theoretical justification of the initial exposed to risk in the traditional
actuarial estimate of qx; see, for example, Batten (1978). Under the Balducci
assumption:

= 2 J l-ai
a.x + ai~ 2-, bi-aiPx + m l-bSx + bt

i = 1 1 = 1

I i (38)

For simplicity we are assuming that the {a,} and {b,} are known, and that
death is the only decrement. Substituting the observed number of deaths d
on the left side of equation (38) would usually give the moment estimate of
qx. However, the right side of equation (38) also involves expected deaths,
and, as Dorrington & Slawski (1993) pointed out, in such a way that it is
impossible to extract all the terms in E[D] and the {E[D,]} on one side and
all the terms in qx on the other. Summing the last term of equation (38) over
the observed rather than the expected survivors, we obtain:

Z b d q x (39)
i = 1

leading to the estimate:
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fc=nnr — (40)
E ( i - a , ) - X (i-bt)

i = 1 i:D, = 0

in which the denominator is the traditional initial exposed to risk, counting
the deaths as exposed to risk until the end of the year of age. Under the
crude assumption that deaths occur, on average, at age x + 1/2, and ignoring
the awkward possibility that af>l/2, we obtain the well-known formula:

This is known to statisticians as the actuarial estimate. Note that equation
(40) is not the moment estimate of qx; Broffit (1984) called it a modified
method of moments estimator. Hoem (1984) pointed out that equation (39)
rests on an incorrect treatment of exits, in which the probability that a life
aged x + af dies between ages x + tt and x+l is not conditioned upon
survival to age x + t,. The correct moment estimate under the Balducci
assumption (Hoem, 1984) is the solution of:

On the basis of equation (39), Dorrington & Slawski (1993) mounted a
defence of the actuarial estimate against the criticisms of Hoem (1984). In
one sense it needs no defence, since it is plainly true that the actuarial
estimate is an estimate of qx; but so, for example, is the proportion of
inhabitants of London who work in Paris. The actuarial estimate appears, of
course, more sensible, but both estimates are obtained by stepping outside
the model framework. Given the insensitivity of results to methods, in the
case of small rates of decrement and no increments, the actuarial estimate
has worked well enough for simple problems. Elandt-Johnson & Johnson
(1980) compared five methods of estimating qx, and said (we have changed
their notation to agree with ours):

"In conclusion, we may say that for sufficiently large sample sizes and small qx (<0.3),
one can use any of the estimators qx

l> through qx
5). Of course, the simplest is the actuarial

estimator... and we would recommend it for use. It is a good and robust estimator of qx."

The Binomial model, and the actuarial estimate, are not without strengths.
The actuarial estimate avoids numerical solution of equations such as
equation (42), and it might be used if there is a compelling reason to estimate
qx instead of something else; and, as we shall see in Part II, Section 6, the
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Binomial model can be generalised simply to give a non-parametric estimate
— the Kaplan-Meier estimate — which is widely used in survival analysis.
In the case of grouped data, the actuarial estimate can be similarly extended,
and is similarly useful.

However, it cannot be said that the actuarial estimate is any simpler than
the estimates based on multiple state models in Section 3; indeed, if the
exposure data are of the census type the need to compute an initial exposed
to risk is a pointless complication. Nor are estimates always so insensitive as
those of qx seem to be. Hoem & Funck-Jensen (1982) gave examples in
which a Binomial-type model leads to absurd conclusions, such as negative
transition intensities. Crucially, the Binomial model is not so easily
generalised to settings with more than one decrement. Even the simplest case
of two decrements gives rise to difficult problems (see Part II, Section 5); the
introduction of repeated transitions such as sickness and recovery is more
difficult still. Extension of models in these directions is much simpler within
the multiple state framework.

4.3 Poisson Models
The Poisson distribution is used to model the number of 'rare' events

occurring during some period of time, for example the number of particles
emitted by a radioactive source in a minute. Such analogies suggest the
Poisson distribution as a model for the number of deaths among a group of
lives, given the time spent exposed to risk.

In this section we will let Ec
x denote the total central exposed to risk; in

terms of our previous notation Ec
x = v, the realised value of the total random

waiting time V. If we assume that we observe N individuals as before, and
that the force of mortality is a constant n, then a Poisson model is given by
the assumption that D has a Poisson distribution with parameter ixEc

x. That
is:

(43)

This model was described by Forfar, McCutcheon & Wilkie (1988), and it is
of direct interest, as it was adopted by the CMIB for the graduation of the
extensive standard tables based on the 1979-82 experiences (CMIR 9, 1988).

Under the observational plan described above, the Poisson model is not
an exact model, since it allows a non-zero probability of more than JV
deaths, but it is often a good approximation. Alternatively, we might adjust
the observational plan so that the Poisson model is exact. Examples of
suitable observational plans are:
(a) to continue observation until the waiting time reaches a pre-determined

value; or
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(b) to replace each life who dies with an identical and independent life at the
moment of death (Scott, 1982).

Clearly plan (b) is impractical. Plan (a) is practical, but most actuarial
investigations are not of this type. Sverdrup (1965) pointed out that under
plan (a) above, D has a Poisson {fiEc

x) distribution (in our notation), and that
the model extends to multiple decrements, but that:

"... in most practical cases neither the period of experimentation, nor the number of
persons involved or the waiting time would be fixed in advance."

Scott (1982) noted that under plan (b) the assumption of a constant force of
mortality can be dropped, and that the estimator jlx below then estimates the
integrated hazard \l

ofix+tdt (which, somewhat confusingly, he called mx).
Estimation of the integrated hazard is of great interest in survival analysis
(see Part II, Section 6), but usually with even stronger assumptions of
piecewise constancy than we have used here.

The Poisson likelihood leads to the following estimator of (constant) \i\

& = % (44)
X

with the following properties:

4 (45)

and, in practice, we will substitute ft for n to estimate these from the data.
Under the two state model, E[/T| = /z and VarrjI]=ju/E[V], but the true
values of n and E[V] are unknown and must be estimated from the data as
\i and E% respectively. So, although the estimators are different, we obtain the
same numerical estimates of the parameter and of the moments of the
estimator, in either case. Furthermore, there is a Poisson central limit
theorem (Hoem, 1987) which shows that the asymptotic distribution of D is
Poisson. These considerations might tempt the pragmatic actuary to turn
aside from the deeper mathematics of the two state approach, which would
be a mistake, for the two state model is easily extended to arbitrary
transitions while the Poisson model is not.

A short and clear summary of estimation in decrement models can be
found in Gerber (1990, Chapter 11).

4.4 Estimation of Central Rates of Decrement
Traditionally, d/Ec

x would be taken to estimate mx, the central rate of
mortality. In a statistical framework, we ask what is the underlying model, in
which central rates arise as the quantities which are estimated by the statistic
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D/V or perhaps D/£^? And if such a model can be found, what are the
statistical properties of these estimators? We emphasise that we have no
argument with the statement that d/Ec

x can be assumed to estimate mx;
anything at all can be assumed to estimate mx; we are concerned to provide
a statistical rationale.

In a probabilistic model, both forces of decrement and probabilities of
decrement can be interpreted sensibly, even if we consider a single life. From
such a starting point, we have been able to derive estimators for \ix or qx

based on a finite sample of lives; but the very concept of a central rate of
decrement is based on a highly idealised population of lives, so that mx is
unlikely to emerge as an observable quantity in a realistic setting. Further,
the population in question is the stationary distribution of lives whose
mortality is governed by the force of decrement, and it is unlikely that the
observed lives will be so distributed. It is simplest to regard the forces as the
fundamental model quantities, and to obtain mx as a derived quantity.

Forfar, McCutcheon & Wilkie (1988) did offer mx as an alternative to jux

for the construction of graduated estimates, but, unlike their discussion of qx

and nx, the treatment of mx was not carried out within the framework of a
model.
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