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Abstract. Let go be a smooth pinched negatively curved Riemannian metric on a complete
surface N, and let Ag be a basic hyperbolic set of the geodesic flow of gy with Hausdorff
dimension strictly smaller than two. Given a small smooth perturbation g of go and a
smooth real-valued function f on the unit tangent bundle to N with respect to g, let Lg A, ¢
(respectively Mg A r) be the Lagrange (respectively Markov) spectrum of asymptotic
highest (respectively highest) values of f along the geodesics in the hyperbolic continuation
A of Ag. We prove that for generic choices of g and f, the Hausdorff dimensions of the sets
Lg A, f N (=00, 1) vary continuously with ¢ € R and, moreover, M, A, ¢ N (—00, t) has the
same Hausdorff dimension as Lg A, N (=00, t) forall t € R.

Key words: flows on 3-manifolds, Hausdorff dimension, horseshoes, Lagrange spectrum,

Markov spectrum
2020 Mathematics Subject Classification: 37D40, 11J06 (Primary); 28 A78 (Secondary)

1. Introduction
The first paper of this series [CMM] discussed the continuity properties of the Hausdorff
dimension across dynamical Lagrange and Markov spectra of surface diffeomorphisms. In
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this article, our goal is to extend the results in [CMM] to the case of geodesic flows of
negatively curved Riemannian surfaces.

1.1. Dynamical Markov and Lagrange spectra. Let M be a smooth manifold, T = Z or
R, and let ¢ = (¢")ser be a discrete-time (T = 7Z) or continuous-time (7 = R) smooth
dynamical system on M, that is, ¢’ : M — M are smooth diffeomorphisms, ¢° = id, and
¢ ogp® =¢' forallt,s eT.

Given a compact invariant subset A C M and a function f : M — R, we define the
dynamical Markov (respectively Lagrange) spectrum Mg Ay (respectively Ly ) as

My p,r={mg r(x):x € A}, respectively Lga r={ly r(x):x € A},
where

mg r(x) :=sup f(¢'(x)), respectively £y r(x):=limsup f(¢'(x)).
teT t——400

Remark 1.1. An elementary compactness argument (cf. Remark in §3 of [MoRo]) shows
that

{€s.r(x) 1 x € A} C{my r(x) :x € A} C f(A)

whenever A C M is a compact ¢-invariant subset.

1.2. Statement of the main result. In this paper, we study the fractal geometry of
Mg py N (—00,t)and Ly a, r N (—00, 1) ast € R varies in the context of geodesic flows
on negatively curved Riemannian surfaces.

More precisely, let N be a complete surface, let go be a smooth (C”, r > 4) pinched
negatively curved Riemannian metric on N, that is, the curvature is bounded above and
below by two negative constants. Let ¢, = (q&(’%),eR be the geodesic flow on the unit
tangent bundle M = Sg N of N with respect to go. Consider a horseshoe Ag of ¢, with
Hausdorff dimension dim(Ag) < 2 (throughout this paper, dim(A) denotes the Hausdorff
dimension of set A). Denote by U a small (C", r > 4) neighborhood of g¢ such that Ag
admits a hyperbolic continuation A for all g € U.

THEOREM 1.2. IfU is sufficiently small, then there exists a Baire residual subset U* C U
with the following property. For every g € U*, there exists a Baire residual subset Hy, A C
C(SgN, R), s > 4, such that the function

!t — dim(L¢g’A,f n (—OO, l))
is continuous and
dim(Lg, A, r N (=00, 1)) = dim(Mg, A,f N (—00,1)) forallt € R
whenever f € Hg, A.
2. Proof of the main result

Morally speaking, our proof of Theorem 1.2 consists of a reduction to the context of the
first paper of this series [CMM].
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2.1. Dimension reduction via Poincaré maps. The notion of good cross sections was
exploited in [MoRo] to describe the dynamics of ¢, on A (for g € Uf) in terms of Poincaré
maps. More precisely, they constructed a finite number of disjoint smooth (C”, r > 3) cross
sections X;, 1 <i <k, of the flow ¢ such that the ¢-orbit of any point of A intersects
O = Ule %;, the subset K := A N O is disjoint from the boundary 9© := Ule 0%,
and K is a horseshoe of the Poincaré (first return) map R : D — © from a neighborhood
Dr C O of K to © sending y € D to the point R(y) = ¢+ (y) where the forward
¢-orbit of y first hits ©.

The relation between the Hausdorff dimensions of K and A is described by the
following lemma (compare with Lemma 14 in [MoRo]).

LEMMA 2.1. In the previous setting, one has dim(A) = dim(K) + 1.

Proof. We cover A with a finite number of tubular neighborhoods U;, 1 <[ < m, of
compact pieces of ¢-orbits issued from points in ®, say U; = {¢'(y) : |t| < y1, ¥y € V}}
where V; C ® — 0@ isopen and y; € R.

Since dim(A) = maxj<j<,{dim(A N U;)} and dim(K) = maxj<;<p,{dim(K N V})},
we can select /o and /; such that dim(A) = dim(A N Uj,) and dim(K) = dim(K N V},).
Because ANV, = K NV, and U is a tubular neighborhood for each 1 <[ < m, we also
have that A N U is diffeomorphic to (K N Vp) X (=1, ¥1).

It follows that

dim(A) = dim(A N U) = dim(K NVy) + 1 < dim(K) + 1
and
dim(K) + 1 =dim(K NV;) + 1 =dim(A N U;) < dim(A).

This proves the lemma. O

The dynamical Lagrange and Markov spectra of A and K are related in the following
way. Given a function f € C*(SgN, R), s > 1, let us denote by FF =maxy f : Dr — R
the function

—— t
F(y) = 05233@) S ().

Remark 2.2. F = maxy f might not be C !in general.

By definition,
lim sup F(R"(x)) = lim sup f (¢} (x))
t—+00

n—-+00

and

sup F(R"(x)) = sup f(¢g(x))
nez teR

for all x € K. In particular,

szg,A,f =Lrkr and qug,A,f =MRrk.F.

This reduces Theorem 1.2 to the following statement.
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THEOREM 2.3. In the setting of Theorem 1.2, if U is sufficiently small, then there exists
a Baire residual subset U* C U such that for each g € U*, one can find a Baire residual
subset 'H%,A C C*(8gN, R), s > 4, so that the function

t— dim(LR,K,max(pg £ N (=00,1))
is continuous and
dim(LR,K,max¢g N (=00, 1) = dim(MR,K,man)g N (=00,1)) for allt e R
whenever f € Hg, A-

The proof of Theorem 2.3 starts as follows. Let {R;},c4 be a Markov partition
consisting of rectangles R, >~ I x I delimited by compact pieces I} (respectively 1})
of stable (respectively unstable) manifolds of a finite collection of R-periodic points of
K C0o.

Recall that the stable and unstable manifolds of K can be extended to locally
R-invariant C!*¢-foliations in Dx for some ¢ > 0. These foliations induce projections
wl R, — I} x {i}} and =) : R, — {i)} x I} of the rectangles into the connected
components I x {i}} and {iJ} x I} of the stable and unstable boundaries of R,, where
i €01 and i) € 0I] are fixed arbitrarily. In this way, we obtain stable and unstable
Cantor sets

K* = U 7“(KNR,) and K"= U 7S (K N Ry)
acA acA
associated with K.
In the sequel, we will analyze the sets

K;:={yekK $ MR maxg F) =1}

K/ = U 7 (K;NR;) and K/ := U 7, (Ky N Ry).
acA acA

2.2. Upper semicontinuity. Denote by Dy(¢) and D, (¢) the upper box dimension of K/
and K/'. As was shown in [CMM, Proposition 2.6], an elementary compactness argument
reveals the following.

PROPOSITION 2.4. For any g €U and f € CO(SgN, R), the functions t — D, (t) and
t — Dy (t) are upper semicontinuous.

Therefore, it remains to study the lower semicontinuity of Dg(¢) and D, (¢) and their
relations with LR,K,max¢g £ N (—o0,1t) and MR,K,max¢g £ N (=00, t). For this purpose,
we introduce the Baire generic sets U* and Hg, 4 in the statement of Theorem 2.3.

2.3. Description of U*. We say that g € U* whenever every subhorseshoe KCK g
satisfies the so-called property (Ha) of Moreira and Yoccoz [MY] and possesses a pair
of periodic points whose logarithms of unstable eigenvalues are incommensurable, where
K denotes the hyperbolic continuation of K.
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The set U* was defined so that Moreira’s dimension formula [Mo, Corollary 3] implies
the following result.

PROPOSITION 2.5. Suppose that g € U*. Then, given any subhorseshoe KcC Ky and
any C' function H : Dr — R whose gradient is transverse to the stable and unstable
directions of R at some point of K, one has

dim(H (K)) = min{dim(K), 1}.
For later use, we observe that U/* is a topologically large subset of /.
LEMMA 2.6. U* is a Baire generic subset of U.

Proof. By the results in §§4.3 and 9 of [MY], every subhorseshoe K C K satisfies the
property (Ho) whenever the so-called Birkhoff invariant (cf. [MY, Appendix A]) of all
periodic points of R in K are non-zero. As it turns out, the non-vanishing of the Birkhoff
invariant is an open, dense and conjugation-invariant condition on the third jet of a germ
of an area-preserving automorphism of (R?, 0) (compare with Lemma 32 in [MoRo]). It
follows from Klingenberg and Takens’ theorem [KT, Theorem 1] that the subset V of g €
U such that every subhorseshoe KcCK ¢ satisfies the property (Ho) is C"-Baire generic
(for all r > 4).

On the other hand, given any pair p and g of distinct periodic orbits in K, if we denote by
vp and y, the corresponding g-geodesics on N, then we can select a piece [ C y), disjoint
from y, (because distinct geodesics intersect transversely), and we can apply Klingenberg
and Takens’ theorem [KT, Theorem 2] to (the first jet of the Poincaré map along) [ to
ensure that the logarithms of the unstable eigenvalues of p and g are incommensurable for
a C"-Baire generic subset W), ;, of U (for all r > 2).

It follows that the subset

p.g€Per(R)NK
P#q
is a countable intersection of C”-Baire generic subsets (for all » > 4) such that U/** C U*.
This proves the lemma. O

2.4. Description of’Hd)g,A. Let ”H%A be the set of functions f € C*(S;N,R), s > 4,
such that there exists a finite collection J of C'-curves in © so that, for each n € N,
the complement V), of the 1/n-neighborhood of J in ® contains a finite collection L,
of C'-curves with the property that F = maxy f is C "on V,\ L, and the gradient
of Fly,L, is transverse to the stable and unstable directions of R at all points of
K 0 (Vo \ L.

We want to show the following.

LEMMA 2.7. Hg, A is Baire residual.

For this, we need two auxiliary sets, M%,A C N¢g,A C C*(5gN,R), s > 4, defined as
follows.
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Once again we cover A with a finite number of open tubular neighborhoods Uy,
1 <1 < m, containing the good cross-sections ® = |_|f-‘=1 Y; mentioned above. For each
[, let us fix coordinates (x{(l), x2(I), x3(I)) on U; such that x3(/) is the flow direction
and U; N O = {x3(/) = 0} U {x3(]) = 1}. We may assume that the boundaries of U; are
{x3(l) = —e} U {x3(l) = 1 + ¢}, for some small ¢ > 0.

Definition 2.8. We say that f € Ny, A, whenever:

@) 0 is a regular value of the restriction of df /dx3(/) to U; N ®;

(i)  0is aregular value of 3 f/9x3(1);

(iii) 0 is a regular value of the functions 8% f/0x3(1)* and 8% f /0x3 (1| (33 £ /a3 (1y3=0}

(iv) 0 is a regular value of the functions df/dx3 (l)|{a2f/a)C3(1)2=0} and
9f /8x3(DN(o53 £ jax3 1) =019 £ /0x3.12=0)

foreach 1 <[ < m.

LEMMA 2.9. N, A is Baire residual.

Proof. Given a function f € C*(S,N,R), s > 4, let us consider the three-parameter
family

Fabe(x1, %2, x3) = f(x1, X2, X3) — €x3/6 — bx3 /2 — ax3

where a, b, c € R.

By Sard’s theorem, we can fix first a very small regular value ¢ ~ 0 of 33 f/ Bxg,
then a very small regular value b~ 0 of both (3°f /8x§) — cx3 and its restriction
to {37 f/0x3(1)> = ¢}, and finally a very small regular value a ~ 0 of ((3f/9x3) —
ex3/2 = b¥3) (52 1 oty -exsmppr (OF 19%3) = €33 /2 = X3 33 1 dmeyri@2 1) —exs=b)
and ((3f /0x3) — cx3/2 — bx3)|(x3=0)Uixs=1)-

For a choice of parameters (a,b,c) as above, we have that f,, . satisfies the
transversality conditions (i), (ii), (iii) and (iv) on all points of Uj; indeed, this
happens because 83 f,50/3x3 = (3% f/0x3) — ¢, 82 fupc/3x3 = (3% f/3x3) — cx3 and
Ofap,e/0x3 = (0f /0x3) — cx32/2 — bx3. Notice that f; 5 . is arbitrarily close to f.

Fapex1, %2, x3) = f(x1, x2, x3) — £ (x1, x2, x3) (x5 /6 — bx3/2 — ax3)

can be naturally extended as f outside U; and coincide with f, p . in Ul(”>. Thus the set of
smooth functions f which satisfy the transversality conditions (i), (ii), (iii) and (iv) on all
points of U, l(") is dense (by the above argument) and open (by compactness of U l(”)). Their
intersection (and, after that, the intersection of these sets for 1 <[ < m) is a Baire residual
set, and any map in their intersection belongs to N¢,g, A- This concludes the proof of the
lemma. O

By Definition 2.8, if f € N¢g7A, then w; ;= {0f/dx3(l) =0} N U; is a curve (owing
to (1)), and J; := {3f /dx3(l) = 0} N {82 f/dx3(1)? = 0} is a curve intersecting the surface
{83f/8x3 ()3 = 0} at a finite set I1; of points (owing to (ii), (iii) and (iv)).

Note that if (xp, x2, 0), (x1, x2, 1) ¢ u; and the piece of orbit (xq, x2,2), 0 <z <1,
does not intersect J;, then there is a neighborhood V of (x1,x2,0) e UyN® and a
finite collection of disjoint graphs {(x, y, ¥;(x, ¥)) : (x, y,0) € V}, 1 < j < n, such that
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if F(x{,x5) =maxy f(x],x5) = f(x], x},t") with (x], x},0) € V, thent’ = v (x{, x})
for some ;.

Definition 2.10. We say that f € Mgy, A if f € J\/¢,g, A and there exists a finite collection
J of C'-curves in © so that, for each n € N, the complement V,, of the 1/n-neighborhood
of J in © contains a finite collection L, of Cl!-curves with the property that for
each y € V, \ L, there is an unique 0 < 7(y) < t4(y) with F(y) = f(¢'®(y)), and,
moreover, the function y > ¢’ (y)is C! on V, \ L,.

LEMMA 2.11. Mg, A is Baire residual.

Proof. Consider f € N(pg’A as above. Our discussion so far says that the curves u; and
the projections of the curves J; in the flow direction (x3-coordinate) are a finite union J of
C! curves contained in © such that, for each y € D \ J, the value F(z) for z near y is
described by the values of f at a finite collection of graphs transverse to the flow direction.

In other terms, using the notation in the paragraph before Definition 2.10, our task is
reduced to perturbing f in such a way that F (x}, x5, t') are given by the values of f on an
unique graph (x{, x5, ¥ (x{, x5)).

In this direction, we employ the argument from Lemma 19 in [MoRo]. More pre-
cisely, given N € N, the value of F at any point (x, y) € Vx is described by finitely
many disjoint graphs ¥;, 1 < j <n (where n depends on N). As is explained in
Lemma 19 in [MoRo], we can perform small perturbations of f on Vy in such a
way that O is a simultaneous regular value of the functions (x1, x2) = gj; (x1, x2) :=
f 1, x2, ¥ (x1, x2)) — f(x1, X2, ¥i(x1, x2)) for all choices of 1 < j <i <n. In this
situation, L, = U<, gﬁl(O) is a finite collection of C'-curves such that, for each
y € Vy\ L,, the values of F near y are described by the values of f on an unique
graph. Hence, for each y € V,, \ L,, one has that F(y) = f(¢'?)(y)) for an unique
0 < 1(y) < t.(y) depending in a C' way on y.

This shows the lemma. O

At this point, we are ready to establish that Hg, A is Baire residual.

Proof of Lemma 2.7. Given a function f € C*(S;N, R), we apply Lemma 2.11 in order to
perform a preliminary perturbation so that f € Mg, . In this context, our task is simply
to prove that some appropriate perturbations of f render the gradient of F = maxy f
transverse to the stable and unstable directions at all points of K \ ({U,cy Ln U J).

For this purpose, we fix n € N and consider a point x € K N (V, \ L,). Recall that
in a small neighborhood of x, the values of F = maxy f are given by the values of f
on a graph (x1, x2, ¥ (x1, x2)). Since the Hausdorff dimension of K is strictly smaller
than one (cf. Lemma 2.1), we can employ the argument in Proposition 2.7 in [CMM] to
find arbitrarily small vectors v = (v1, 12) € R2 such that the functions folx1, x2, 1) 1=
f(x1,x2,1) —v1x1 — v2x2 near the graph (x1, x2, ¥ (x1, x2)) (and coinciding with f
elsewhere) have the property that the gradient of F, :=maxg f, is transverse to the
stable and unstable directions of any point of K close to (xi, x2). Because n € N and
x € K N(V,\ L,) were arbitrary, the proof of the lemma is complete. O
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2.5. Lower semicontinuity. The first step towards the lower semicontinuity D, () and
Dy (¢) is the following analog of Proposition 2.10 in [CMM].

PROPOSITION 2.12. Suppose that g €U and f € Hgp, . Given t € R such that
Dy (t) > 0, respectively Dg(t) > 0, and 0 < n < 1, there exist 5 > 0 and a (complete)
subhorseshoe K' C K,_s such that

dim((K")") > (1 =)Dy (t) and dim((K")") > (1 —n) Dy (1),
respectively
dim((K")") > (1 =) Ds(r) and dim((K')*) > (1 — ) Ds(t).
In particular, D, (t) = Ds(t) = d,(t) = ds(¢) forallt € R.

Proof. By symmetry (that is, replacing the flow by its inverse), it suffices to prove the
statement when D, (1) > 0.

We consider the construction of K in terms of its Markov partition R,, a € A,
introduced above. Given an admissiblet word « = (ag, ..., ax) on the alphabet A,
denote by I*(x) = rrgo({x € Ry, : Ri(x) e Ry, foralli =1, ..., k}). In this setting, the
unstable scale r* (o) is |log(1/(length of I*(a)))].

For each r € N, define

P! :={a = (ao, . . ., ax) admissible word : r"(a) > r and " (ao, . . ., ax—1) <r},

C'(t,r):={ae P! : I"(0) N K, # 0}

and N, (t,r) := #C"(¢, r).

Of course, we have similar notions for 7°(8), etc.

Denote 7 = 1/100. By the definition of limit capacity, we can fix rg sufficiently large
such that

LeMD) _ b)) < ZDu0)
r 6
for all r > ry.

Recall the fact that f € Hg, A is associated with a finite collection J of C I_curves in ®
so that, for each n € N, the complement V,, of the 1/n-neighborhood of J in ® contains
a finite collection L, of C'-curves with the property that F = maxg f is CclonV,\L,
and the gradient of Fl|y,\, is transverse to the stable and unstable directions of R at all
points of K N (V, \ L,).

As is explained in Lemma 18 in [MoRo], it is possible to select a subset B"(ry) C
C"(t, ro) such that

log #B“(ro) - log N, (t,r9) t D, (1)
jel - Uy

ro ro 6
and the subhorseshoe K ) C K associated with the admissible words in B“ is disjoint
from J.
T That is, there is a point x € K such that Ri(x) e Ry foralli =0,..., k.
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By selecting ng € N large so that K0 c Vi, and by applying again the arguments in
Lemma 18 in [MoRo], we can find a subset B* C B“(rg) such that
log #B" - log B*(rg) t

— =D, (t
ro 70 6 ®)

and the subhorseshoe K" C K associated with the admissible words in B is contained in
Va \ Ly.
In summary, we have obtained a subset B* C C“(t, rg) with

log #B,,
r

D) < LD
— Dy <§ (1)

such that the subhorseshoe K” C K associated with B* is contained in V,, \ Ly, and, a
fortiori, the gradient of F = max, f is transverse to the stable and unstable directions at
all points of K”.

In this scenario, we can use the arguments from Proposition 2.10 in [CMM] in order to
locate a subhorseshoe K’ C K” with the desired features. O

At this stage, we are ready to show the lower semicontinuity of D, () and D ().

PROPOSITION 2.13. For g € U* and f € Hgy, A, the functions t + D, (t) and t +— D(t)
are lower semicontinuous, and

Dy (1) + Dy (1) =2D,, (1) = dim(L R, k maxy, f N (=00, 1)) =diM(MR & maxy, f N (=00, 1)).

Proof. Consider ¢t € R with D, () > 0 and fix n > 0. By Proposition 2.12, we can find
§ > 0 and a subhorseshoe K’ C K;_g such that

(1 = m(Du(t) + Dy (1)) = 2(1 — n) Dy (1) < dim(K").

Since the gradient of F' = maxy f is transverse to the stable and unstable directions
of K’ (cf. the proof of Proposition 2.12 above), we can use Proposition 2.16 in [CMM]
to show that for each ¢ > 0, there exists a subhorseshoe K é C K’ with dim(K é) >
dim(K’) — ¢, and a C! height function H, whose gradient is transverse to the stable and
unstable directions of K/ such that

Ha (Ké) C KR,max(;, f (K/)
By Proposition 2.5, it follows that
dim(K') — & < dim(K}) = dim(H,(K})) < dim(¢R max, (K"

for all ¢ > 0. In particular, dim(K") < dim(¢R max, 7 (K")).
Because K’ C K;—5, one has £R max, f(K') C Lg, a,f N (=00, —§). Thus, our dis-
cussion so far can be summarized by the following estimates:

2(1 = ) Dy (1) < dim(K') < dim(€R max, £(K"))
=< dim(LR,K,max¢g N (=00,t—9)) < dim(MR,K,max¢g N (=00, 1 —9))
< dim(maxg, £ (K;-5)) < 2Dy (t - 6).

This proves the proposition. O
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2.6. End of proof of Theorem 2.3.  Let g € U* and f € Hgy, A. Note that U* is a Baire
residual subset of &/ owing to Lemma 2.6, and ’H¢g,A is Baire residual in C*(SgN, R) for
s > 4 owing to Lemma 2.7.

By Propositions 2.4 and 2.13, the function

t— Ds(t)=D, ()= %dim(L’R,K,maxq;g N (=00, 1) = ldinl(]WR,K,maqug N (=00, 1))

is continuous.
This completes the proof of Theorem 2.3 (and, a fortiori, Theorem 1.2).
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