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V. S V O B O D A2 and J. A. T A T A R O N I S3

1 Institute of Plasma Physics, Academy of Sciences of the Czech Republic,
182 21 Prague 8, PO Box 17, Czech Republic

2 Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering,
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Abstract. Application of lower-hybrid (LH) power in short, intense pulses in the
5–10 GW range should overcome the limiting effects of Landau damping, and
thereby permit the penetration of LH power into the interior of large-scale plasmas.
We show that, under such very intense LH pulses, wave coupling may deteriorate
because of nonlinear density changes due to the ponderomotive force effects in front
of the grill. Ponderomotive forces are also likely to induce strong plasma bias and
consequent poloidal and toroidal plasma rotation. Although backward electric cur-
rents, created in the plasma by intense LH pulses, dissipate a large portion of the
radio frequency power absorbed, the current drive efficiency is acceptable. We use
a numerical simulation of wave–particle interactions to analyse the applicability of
standard quasilinear theory to the case of large energy flux densities. The initial
results indicate the existence of important restrictions on the use of the quasilin-
ear approximation. The results of the present paper also indicate that some of the
effects considerably alter some ideas of Cohen et al.

1. Introduction
In a thermonuclear tokamak plasma, lower-hybrid (LH) waves are strongly ab-
sorbed at the plasma boundary (see e.g. Devoto and Fenstermacher 1990; Pavlo et
al. 1991), thereby inhibiting their penetration into the plasma core. To overcome
this limitation, Cohen et al. (1990) proposed the use of a train of intense short
pulses instead of a continuous launching of LH waves. A pulse power as high as 10
GW for two pulse durations of 10−4 s and 10−8 s, with an averaged power of 100
MW, was considered by Cohen et al. Aspects of this approach were also discussed
by Bertrand et al. (1994). This proposed method to improve the penetration of LH
waves raises a number of issues that should be studied thoroughly. Moreover, there
are in this problem a variety of novel and important physical issues that, in our
opinion, have a broader significance. The purpose of the present paper is to extend
and improve the analysis of Cohen et al. (1990) with respect to the main physical
phenomena governing the pulsed regime of current drive. In a certain sense, our
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analysis complements the study and results of Cohen et al. (1990). However, we find
results that can considerably modify the intriguing proposal that they reported.

The plan of this paper is as follows. In Sec. 2, we discuss the influence of nonlinear
effects on wave coupling. We find that efficient coupling can be achieved either for
a sufficiently high temperature of the boundary plasma (30 eV) or at lower temper-
atures with ultrashort pulses (τp ≈ 30 ns). In Sec. 3, estimates of the magnitude of
the radial electric field generated by the poloidal ponderomotive forces are given.
Plasma rotation is suggested by the results we report here. Owing to Faraday’s law,
the pulsed regime of current drive is inevitably accompanied by the generation of a
backward current. This effect is analysed in Sec. 4, with particular emphasis being
placed on the resulting current drive efficiency. Section 5 addresses the problem of
applicability of the quasilinear approximation for the case of intense wave fluxes.
The differences that we find between a direct numerical simulation of wave–particle
interactions and the quasilinear approximation calls for a more complete investi-
gation of this problem. In Sec. 6, our results are summarized and discussed.

2. Nonlinear wave coupling
At large LH power levels, toroidal ponderomotive forces in front of an antenna
structure may expel plasma from the space near the grill mouth and thus reduce
the plasma density. This results in nonlinear changes in the wave coupling. Because
of the ponderomotive forces, the boundary plasma density nb in front of the grill
decreases, as suggested by the following expression (Petržı́lka et al. 1991):

nb = n0 exp(−δ), (1)

δ =
W

Tb
, (2)

where W is the ponderomotive potential of the LH wave,

W =
e2E2

0

4meω2 . (3)

In (2) and (3), Tb is the sum of boundary temperatures of electrons and ions, e is
the charge, me is the mass of the electron, ω is the frequency of the LH field, and
E0 is the LH electric field component parallel to the magnetostatic field. The radio
frequency (RF) power density flux from the grill mouth into the plasma can be
expressed in the form

S =
Im
(
E0
∂E∗0
∂x

)
2µ0ω(1−N 2

‖ )
, (4)

where N‖ = k‖c/ω. Under the assumption that the reflection coefficient R at the
plasma boundary is much less than one, we find the following relation between the
maximum value of the ponderomotive potential W and S:

Wmax ≈
µ0ce

2N‖S
2meωωpe

. (5)

In eV units, this expression becomes

Wmax[eV ] ≈ 8× 1011N‖S
fpf

. (6)
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If we choose the parameters of Cohen et al. (1990), i.e. N‖ = 1.8, S = 0.5 GW
m−2, f = 8 GHz, with fp > f , corresponding to nb > 8 × 1017 m−3, then (6)
yields Wmax 6 10 eV. This moderate value of Wmax, which we have also confirmed
with numerical computations, is a consequence of the relatively high frequency
that we have assumed. As a consequence of this result, the possible deterioration
of wave–plasma coupling in ‘regime B’ of Cohen et al. (1990), with longer pulses
(τp ≈ 80 µs), can be avoided if the boundary plasma temperature Tb exceeds 30 eV.
This elevated temperature could arise, for example, from collisional heating and/or
parametric instabilities.

Let us now analyse ‘regime A’ of Cohen et al., with short pulses. The displacement
of plasma z(t) along the magnetic field lines owing to the ponderomotive force
depends on the ion inertia:

mi
d2z

dt2
= −∂W

∂z
. (7)

The characteristic time τi of the plasma displacement can be approximated as

τi ≈
(
ε0iLiLW
c2Wmax

)1/2

, (8)

where ε0i = mic
2 is the ion rest energy, and Li and LW are respectively the char-

acteristic lengths of the plasma displacement and inhomogeneity of W (z). It is
natural to set

Li ≈ LW ≈ 1
k‖
≡ c

ωN‖
. (9)

Then, for a deuterium plasma with f = 8 GHz, N‖ = 1.8 and Wmax ≈ 10 eV, we
have τi ≈ 10−7s. Consequently, the ponderomotive effect is negligible for ‘regime
A’ of Cohen et al. (1990), with short pulses (τp ≈ 30 ns).

In general, the reduction in wave coupling could be weakened if local plasma
heating occurs. We now explore this possibility in more detail. We assume that the
boundary plasma temperature Tb increases with increasing launched LH power S,
which is consistent with observations on the ASDEX tokamak (Petržı́lka et al.
1991), in the form given by the following expression:

Tb = T0

(
1 +

S

ST

)
. (10)

At large values of Tb, and correspondingly higher plasma pressures, the pondero-
motive forces are not strong enough to expel plasma with elevated pressure from
the space in front of the grill, and therefore to deteriorate the wave coupling.

Consider now a very long grill launching a very narrow spectrum of waves. For
this launching configuration, it is sufficient to treat only waves with one kz, or
equivalently a single value of N‖. Neglecting higher spatial harmonics, we make
the ansatz that the electric field has the form of two oppositely propagating waves:

Ez(x, z) = E
(+)
1 (x) exp(ikzz) + E

(−)
1 (x) exp(−ikzz). (11)

The governing equation for E(±)
1 then becomes (Petržı́lka et al. 1991),

d2E
(±)
1

dx2 + (k2
0 − k2

z)E
(±)
1 =

n0(x)
λnc

(k2
0 − k2

z)
∫ λ

0
exp[±ikzz − δ(x, z)]Ez(x, z) dz, (12)

where λ = 2π/kz and k0 = ω/c. We have solved (12) numerically for E(+)
1 and E(−)

1
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Figure 1. Dependence of the reflection coefficient R on the heating rate ST at which the
boundary temperature Tb doubles. The launched power S = 50 kW cm−2, N‖ = 2, the wave
frequency f = 8 GHz, the initial boundary temperature T0 = 10 eV, the initial boundary
density normalized to the critical density is n0/nc = 2, and nc = 7.93× 1017 m−3. We note
that for low reflection coefficients of about R = 0.2, this launched power of 50 kW cm−2

corresponds to a wave electric field amplitude of 5.5 kV cm−1 in front of the grill for N‖ = 2.

with boundary conditions deep enough inside the plasma where ponderomotive
forces are negligible. The RF electromagnetic fields computed in this way can be
used to compute the wave reflection coefficient Rw(z). The power reflection coeffi-
cient R, averaged over z, is given by (Petržı́lka et al. 1991)

R =
[∫ λ

0

S(z)
1− |R2

w(z)| dz
]−1 ∫ λ

0
S(z)

|R2
w(z)|

1− |R2
w(z)| dz, (13)

where S(z) is the x component of the Poynting vector of the LH wave transmitted
into the plasma.

If we use (10), we find, for example, that the boundary temperature with S̄ = ST

is twice the temperature with zero LH power, S̄ = 0. Here S̄ denotes the energy
flux in front of the grill, S(z), averaged over the toroidal coordinate z. If S̄� ST,
the resulting boundary temperature is much higher than the temperature with no
LH power. On the other hand, for S̄� ST, the boundary temperature practically
does not change as the LH power increases.

For ASDEX, the best fit of the nonlinear reflection curves to experimental data
was obtained with ST = 2 kW cm−2 and launched powers up to 4 kW cm−2. Since
the typical launched LH power of intense LH pulses would be much higher, about
50 kW cm−2, the corresponding values of ST would likely also be higher, as assumed
in Figs 1 and 2. Figure 1 shows the influence of the value of ST on the reflection
coefficient R, while Fig. 2 shows the effects of ST on δ. In Fig. 1, we see that the
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Figure 2. Dependence of the logarithmic boundary density depression δ = −ln(nb/n0) on the
heating rate ST at which the boundary temperature Tb doubles, for the same parameters as
in Fig. 1.

reflection coefficient increases when ST increases. The reason is that for higher ST ,
and therefore for lower boundary temperatures Tb, the quantity δ grows (cf. Fig. 2).
According to (1), the plasma density decrease in front of the grill is then stronger,
which leads to deterioration of the coupling and to an increase of R.

Resonant electron interactions with strong wave electric fields in front of the grill
– either regular (Fuchs et al. 1996) or random (Tataronis et al. 1997) fields – result
in strong electron acceleration. This may lead to very high thermal loads on wall
components. Nevertheless, this additional resonant acceleration may also further
enhance the plasma temperature in front of the grill, and consequently reduce the
ponderomotive deterioration of the wave–plasma coupling.

3. Variations in the plasma bias and rotation
As a consequence of wave momentum dissipation, a strong pulsed wave can also
exert a strong poloidal ponderomotive force (Van Nieuwenhove et al. 1995), in ad-
dition to the gradient ponderomotive forces in the axial and toroidal directions.
Because of the presence of the strong magnetostatic toroidal field in a tokamak,
poloidal forces result in the appearance of strong radial electric fields, which in
turn produce plasma rotation. Poloidal ponderomotive forces in front of LH grills
would likely arise from wave propagation in the poloidal direction with respect to
the toroidal magnetic field. Poloidal wave propagation is a possibility if the mutual
phasing of the horizontal waveguide rows of the grill were of a suitable value.

Expressions for the time-averaged radial electric field can be derived from the
generalized Ohm’s law of the plasma. Assuming a cylindrical plasma model with
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Figure 3. Radial electric field Er induced by poloidal ponderomotive forces in front of the
LH grill as a function of the boundary plasma temperature. The boundary plasma density
nb = 2× 1018 m−3, the wave frequency f = 5 GHz, the toroidal magnetostatic field Bz = 5
T, the poloidal magnetostatic field Bθ = 0.5 T, the wave field profile in front of the grill is
assumed in the form [0.1 + (r/a)s]t, s = 2, t = 5, the plasma minor radius a = 2 m, and
the wave field amplitude in front of the grill is taken as 5.5 kV cm−1, which corresponds to
a coupled wave power of the order of tens of kW cm−2, depending on the wave reflection
coefficient.

coordinates (r, θ, z), we let FPα,θ and FPα,z represent the azimuthal and axial compo-
nents of the LH ponderomotive force FP . For an electron–ion plasma, FP = FPe +FPi ,
where subscripts e and i label electron and ion components respectively. The in-
duced time-averaged radial electric field can be expressed as a sum of two terms
(Klı́ma and Petržı́lka 1980; Petržı́lka et al. 1997):

E0r =
1
en0

∂pi
∂r

+ EP , (14)

where pi designates the scalar partial pressure of the ion fluid, and EP represents
the component of E0r induced directly by the ponderomotive forces,

EP = − B0z

mir2n0Uir

∫ r

0
dr̄ r̄2FPθ +

B0θ

mirn0Uir

∫ r

0
dr̄ r̄FPz . (15)

Here n0 is the time-averaged plasma density and Uir is the radial component of the
mean ion fluid velocity. According to (12), the value that EP has at a radial position
r depends on the values of two definite integrals from the plasma centre (r̄ = 0),
to r̄ = r. However, because of the nature of the dissipation processes in the plasma
and the geometry of the LH cones, the LH-wave electric field and the associated
ponderomotive force attain their largest values near the grill region. Figures 3–5
show the results of a numerical evaluation of (14). They show that, for intense LH-
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Figure 4. The toroidal velocity Uz of plasma rotation induced by poloidal ponderomotive
forces in front of the LH grill as a function of the boundary plasma temperature for the
same parameters as in Fig. 3.

wave pulses, the poloidal ponderomotive forces may induce large stationary radial
electric fields, up to about 10 kV cm−1.

An electric field of this magnitude has obvious implications regarding plasma
biasing and confinement. This effect can be used for changing the plasma poten-
tial, and in this way for inducing higher confinement modes (H modes). A great
advantage of this method is that there is no need for electrodes in the plasma en-
vironment, which are currently used for changing the plasma bias and inducing
H modes in tokamaks. Further, it is possible to easily change also the sign of the
plasma bias, since the sign of the induced radial electric field depends on the sign of
the poloidal wavenumber, which is determined by the value of the mutual poloidal
phasing of the horizontal waveguide rows. Of course, the problem of the pulsed
character of the biasing electric field remains open.

The associated induced radial plasma flow is rather small, and therefore has little
impact on the plasma density in front of the LH grill and on the wave coupling.
However, the plasma bias may influence the fluctuations, and thus indirectly affect
the radial transport and the plasma density in front of the LH grill, and therefore
also the scattering of LH wave on the density fluctuations at the plasma boundary
(Andrews et al. 1985; Petržı́lka 1988).

A more detailed study of these mutually coupled nonlinear effects is beyond the
scope of the present paper.

In this connection, we only note that the relative amount of wave energy scat-
tered by density fluctuations just at the plasma boundary is acceptably low, in
accordance with the results of Cohen et al. (1990). However, the poloidal wave vec-
tor is changed by the scattering process, and this significantly influences the wave
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Figure 5. The poloidal velocity Uθ of plasma rotation induced by poloidal ponderomotive
forces in front of the LH grill as a function of the boundary plasma temperature for the
same parameters as in Fig. 3.

propagation characteristics in the subsequent wave propagation in the sheared
magnetostatic field (Krlı́n et al. 1998).

4. Backward current
When the RF pulse is switched on, fast resonant electrons are accelerated and an
RF-driven current of density jd arises. Simultaneously, owing to Faraday’s law,
an electric field drives a backward Ohmic current of density je. The total current
density jd + je parallel to the magnetic field satisfies the skin-effect equation

µ0
∂(jd + je)

∂t
=

1
r

∂

∂r

[
r
∂

∂r
(ηje)

]
, (16)

where η is the plasma resistivity. The characteristic time of the resulting current
density diffusion is the skin time τsk, which can be expressed as

τsk ≈ µ0a
2/η, (17)

a being the plasma minor radius. For present-day large tokamaks, τsk > 10 s, while
for a reactor plasma, τsk ≈ 103 s. Assume a steady periodic regime of current
generation by a train of RF pulses of length τp and repetition period τr. For the
case in question (Cohen et al. 1990), τp and τr are several orders of magnitude less
than τsk. Consequently, with great accuracy, the total current density is constant
and equals the current density j0 in the time between the RF pulses:

jd + je = j0. (18)
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Considering the motion of bulk electrons under the influence of the induction electric
field E, we find

− E =
1

ε0ω2
pe

∂jd
∂t

+ ηp (jd − j0), (19)

where ηp is the plasma resistivity with respect to the backward current during the
time interval τp. In the theory of ‘ramp-up’ of the poloidal magnetic field, severe
restrictions arise owing to the runaway electrons accelerated by the electric field
E (Fisch 1987; Kolesnichenko et al. 1989). Numerical estimates imply that in our
case, τp, which is less than 10−4 s, is far too short for the electrons to be accelerated
significantly.

The net energy density Wpol pumped during τp to the poloidal magnetic field is,
according to (18) and (19),

Wpol = −
∫ τp

0
j0E dt = j0

∫ τp

0
ηp (jd − j0) dt. (20)

The energy density Wpol is equal to the energy density dissipated during the time
without RF. If the integrand in (20) does not change significantly, we have

j0ηpτp(jd − j0) = η0j
2
0 (τr − τp), (21)

where η0 is the Spitzer resistivity parallel to B. Consequently, for τr� τp,

jd = j0

(
1 +

η0τr
ηpτp

)
. (22)

Equation (22) implies that enhanced resistivity ηp improves the current drive ef-
ficiency (cf. Fisch 1987). The new point here is that, for the short powerful RF
pulses considered by Cohen et al. (1990), the value of je/ene can approach vTe, the
electron thermal velocity. Consequently, the backward current may be unstable,
leading to an anomalous resistivity ηp. Owing to the slow but non-zero current
density diffusion, the actual profile j0(r) can differ somewhat from that given by
the present theory.

The energy densityWe dissipated by the backward current is calculated similarly
to the calculation with (20) and (21). Thus, with (22), we find

We =
(j0η0τr)2

ηpτp
, (23)

which is a relation that we shall need below.
Let us consider the group of fast electrons that absorb the RF energy. Suppose

that the interval of their velocity components va parallel to the magnetic field is
very narrow, va ≈ const. The absorbed RF power density Pa can then be expressed
as

Pa = nava(Fcoll − eE), (24)

where na is the density of the absorbing electrons in question and Fcoll is the corre-
sponding friction force due to collisions with other particles. We neglect the tran-
sient dissipation needed for establishing the nonlinear and collisional deformation of
the electron distribution function (Cohen et al. 1990). The power density (−eEnava)
obviously equals (We+Wpol)/τp. Introducing ϕEC = −eE/Fcoll, and using (20), (23)
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and (24), we find

PaϕEC
1 + ϕEC

= j2
0η0

τr
τp

(
1 +

η0τr
ηpτp

)
. (25)

Note that ϕEC is essentially the ratio of the energies lost by the resonant electrons
due to the induction electric field and due to the collisional drag respectively (cf.
Pel/(Pin−Pel) in Fisch 1987). Therefore the term proportional to the time derivative
of jd in (19) can be omitted. This simplification yields

ϕEC =
e(jd − j0)ηp

Fcoll
. (26)

The collision time τe(va) in the relation Fcoll = −mva/τe(va) is, with the conditions
considered by Cohen et al. (1990), not much less than τr, i.e. τp� τe(va) < τr.

It is unknown how the electron distribution function will be affected by a train
of powerful RF pulses and what the actual value of τe(va) will be. Therefore the
following analysis should be viewed as an approximation. We substitute (22) into
(26) and express the longitudinal resistivity η0 in terms of the collision time τe/is

used in kinetic theory (see e.g. Trubnikov 1965). In the steady state, the plasma
2D model (Karney and Fisch 1979) reveals that τe(va) is about a factor 2.5 larger
than in the 1D model (τe ∝ 1/(2 + Zi), see e.g. Klı́ma and Longinov 1979). It is
not clear to what degree the 2D effects, depending on effective ion charge Zi, will
develop under the conditions considered. We now introduce a factor aϕ(Zi) ≈ 2,
with 1 6 Zi 6 1.5. This yields

ϕEC = bϕj0, (27a)

bϕ ' 0.4Zi
aϕ(Zi)

τr
τp

1
enevTe

(
va
vTe

)2

, (27b)

where ne is the density of electrons. According to (22) and (27a,b), the explicit
dependence of ϕEC on ηp is

ϕEC ≈
(

1 +
η0τr
ηpτp

)−1 0.4Zi
aϕ(Zi)

τr
τp

v2
a

v2
Te

jd
enevTe

. (28)

Assume for the moment that ϕEC � 1 and ηp = η0. Equations (25) and (28) then
lead to known results (cf. Fisch 1987, equation (3.7) or (2.31) and the text below
them).

In general, (25) and (27) imply the following relation between j0 and the averaged
RF power density absorbed, 〈Pa〉r = Paτp/τr,

j0 ≈ − 1
2bϕ

+
[

1
4b2
ϕ

+
〈Pa〉r
η0

(
1 +

η0τr
ηpτp

)−1]1/2

. (29)

Considering the case of ITER-like parameters studied by Cohen et al. (1990), we
assume that ne = 7 × 1019 m−3, Te = 30 keV, N‖ = 1.8, Zi = 1.5, ηp = η0 =
2.74 × 10−10 Ω m, R = 8 m, and a cross-section S0 = 10 m2 of the toroidal
current J0 = j0S0. The corresponding volume V0 = 2πRS0 ≈ 500 m3. Following
Cohen et al. (1990), we suppose that V0Pa = 9 GW and V0〈Pa〉r = 100 MW.
Consequently, we have τr/τp = 90, vTe = 7.26 × 107 m s−1, va/vTe = 2.3, and,
from (27) with a(Zi) = 2, bϕ ≈ 1.7× 10−7 (in m2 A−1 units). Using (29), we obtain
j0 ≈ 1.1 × 106 A m−2, J0 ≈ 11 MA and ϕEC = bϕj0 ≈ 0.2. The conventional
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efficiency is

ηCD =
ne(1020 m−3)RJ0

V0〈Pa〉r ≈ 0.6. (30)

Both the inhomogeneity of the RF power absorption found in Cohen et al. (1990)
and our results in Sec. 5 show that the absorbed RF power density in some re-
gion of the plasma torus can be considerably higher than its average over the
plasma cross-section. Therefore we assume here that it is three times larger: 〈Pa〉r =
6× 105 W m−3. Retaining all the above parameters, we find j0 ≈ 2.8× 106 A m−2

and ϕEC ≈ 0.5. Note that the mean drift velocity of bulk electrons creating the
backward current je is about 1

3vTe, approaching the threshold of Buneman insta-
bility. Assume for a moment that in the case considered, the resistivity for the
backward current is anomalous, namely ηp ≈ 10 η0. Using (29) again, we have

j0 ≈ 1.2× 107 A m−2, ϕEC ≈ 2. (31)

The unnecessarily high j0 can be reduced, for example, by diminishing the RF pulse
length τp. Note that for ϕEC� 1, (25) implies

j0 ≈
[ 〈Pa〉r

η0

(
1 +

η0τr
ηpτp

)−1]1/2

. (32)

In this case, almost all the RF power is dissipated by the backward current, Pa ≈
j2
eηp. Nevertheless, the corresponding value of ne(1020)j0/(2π〈Pa〉r) can be quite

high, because the Ohmic current drive acting in the time intervals between the RF
pulses is very efficient. The question is whether such a high value of ϕEC can be
reached in a fusion-relevant experiment.

According to the inequality specified by (18) in Klı́ma and Longinov (1979), the
distribution function of the resonant electrons is stable with respect to the Parail–
Pogutse instability for the specific parameters considered here.

5. Applicability of the quasilinear approximation for the case of
intense wave pulses
The quasilinear approach is considered to be an excellent tool for the description
of LH-wave–plasma interaction. Nevertheless, the quasilinear approximation itself
has been developed on the basis of a perturbation analysis, i.e. on the assump-
tion that the changes in particle velocities during the wave–particle interaction are
small.

In case of large wave power fluxes, a possible change of the energy of particles
during their single transit through the LH wave cone can easily constitute a signif-
icant fraction of their original energy. This makes the reliability of the quasilinear
approach questionable. Since the model of Cohen et al. (1990) of the interaction
of intensive pulses with the thermonuclear plasma depends in some degree on the
quasilinear description (QLD), it is advisable to test the validity of the QLD by
means of direct numerical simulation of this interaction.

The simulation that we carried out is based on the equations of motion of particles
in the tokamak geometry for a prescribed form of the launched LH wave spectrum.
Our earlier numerical code, successfully used already for other plasma waves (Krlı́n
et al. 1997), has been employed. This code is based on the Hamiltonian formalism,
which enables us to take into account all features of the particle dynamics.
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The Hamiltonian describing the motion of a particle in the tokamak magnetic
field (with circular cross-sections of magnetic surfaces) and in the fields of an LH
wave, under the electrostatic approximation, is

H = ωc0P1

[
1− r(P2)

R0
cos β̃

]
+
P 2

3

2m

[
1− 2

r(P2)
R0

cos β̃
]

+eΨ0 cos

kr
(

2P2

eB0

)1/2

+mp

(
Q2 +

Q3

qR0

)
+

k‖Q3(
1−2

r

R0
cos β̃

)1/2
−ωt

. (33)

The definitions of the canonical coordinates and of the other symbols in (33) are as
follows:

P1 = 1
2eB0ρ

2
c, P2 = 1

2eB0r
2,

P 2
3

(
1− 2

r

R0
cos β̃

)
= m2

ev
2
‖,

Q1 = ωc0t, β̃ = θ = Q2 +
Q3

qR0
,

Q3 = R0φ, r =
(

2P2

eB0

)1/2

.

R0 and a are respectively the major and minor radii of the tokamak, ρc and r
are respectively the Larmor and guiding-centre radii, θ and φ are respectively the
poloidal and toroidal angles, e is the particle charge, and me is the particle mass.
Ψ0, kr, mp and nt are the wave amplitude, the radial wave vector component, and
the poloidal and toroidal wavenumbers respectively, and ω is the angular frequency
of the wave.

For simplicity, we have assumed a rectangular LH wave spectrum centred around
k‖, with full width ∆k‖. The continuous spectrum is replaced by an equidistant dis-
crete spectrum with M modes of equal potentials Ψm = Ψ0M

−1/2. The amplitudes
of the spectrum were determined by the total wave power flux S, which, for a
narrow wave spectrum, can be expressed as

|E‖| =
(

M∑
i=1

E2
i

)1/2

=
(

2µ0cN‖
ω

ωpe
S

)1/2

. (34)

For example, in the case of a single wave, with the parameters that have been
assumed by Cohen et al. (1990), i.e. with frequency f = 8 GHz, N‖,0 = 1.8, energy
flux density 0.5 GW m−2 and density ne = 1020 m−3, (34) yieldsE‖ ≈ 3×105 V m−1,
which corresponds to Ψ0 = 103 V. For M waves, Ei ≈ 3× 105M−1/2 V m−1.

The spatial distribution of LH waves can be obtained by ray tracing. However,
at the present stage, our primary interest is more a qualitative than an accurate
quantitative analysis of the LH-wave–plasma interaction. Therefore, instead of LH
cones, we simply assume that some portions of the plasma volume are filled with
the RF field. These are defined as N toroidal segments of length l = R0∆φ and
height h = a∆θ. Here Nlh corresponds to the considered grill area, which in our
case is 18 m2.
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Figure 6. The full lines show the results of direct numerical simulation of the diffusion
coefficient for various values of the potential Ψ0: 1 V, 10 V, 100 V and 1000 V(Ψ0 = 1000 V
corresponds to an energy flux 0.5 GW m−2). ∆N‖/N‖,0 = 0.06, 500 random-phase samples,
and the number of modesM = 10. The dot-dashed lines show the values from the quasilinear
approximation.

In view of the complicated trajectories of the particles in a tokamak geometry,
we can assume that any correlation between subsequent transits through the same
RF field segment will be lost. In fact, we have verified this assumption on a model
case with just one segment, a single wave and a circular toroidal orbit (with no
rotational transform). This model is analytically tractable. Thus the role of nu-
merical errors has been excluded. If the field is homogeneous along the trajectory,
the motion is completely regular. However, if there exists a field-free region of just
a few wavelengths and if, as an approximation, the spatial envelope of the RF field
has a rectangular form, a rapid loss of correlation occurs for the potential Ψ0 > 1 V.
More details will be presented elsewhere. Therefore, to obtain a statistically correct
picture, it is sufficient to follow a large enough number of particles for one transit
through the RF segment and randomly chosen phases of the waves. This should
be done for any magnetic field line passing through the segment, a representative
number of perpendicular velocities, and any parallel velocity.

To obtain an estimate of the effect of the strong LH wave field on the particle
velocity distribution, we have discretized the velocity space, and for each v‖, we
have calculated a collection of trajectories for randomly generated phases of waves.
The results presented here are for ITER-like parameters (B0 = 5.7 T, R0 = 8.1 m,
a = 2.8 m), for a magnetic field line with q = 2 at r0 = 2.4 m (following the chosen
form of q(r)) and for v⊥ = 0. Figure 6 gives the diffusion coefficient Dw in v‖ space
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(full lines). The parameters of Cohen et al. (1990) are assumed here (cf. the text
following (34)), but with four values of wave potential amplitudes as indicated. The
quasilinear spectral width was chosen as ∆N‖/N‖,0 = 0.06. The largest value of
the amplitude corresponds to an energy flux of 0.5 GW m−2. The values shown
are weighted by the ratio of the RF segment of the magnetic surface to the whole
magnetic surface. They can be compared directly with the quasilinear values (dot-
dashed lines). For each v‖, an ensemble of 500 random-phase samples was used. The
number of modes M = 10. Increasing further the number of samples and modes
has only a negligible influence on the overall results.

The most striking difference with the quasilinear approximation consists in a
dramatic broadening of the diffusion coefficient, combined with a decrease in its
magnitude. We remark that, in a cylindrical geometry, this effect has been stud-
ied in more detail by Pavlo et al. (1998). This broadening of the diffusion coeffi-
cient occurs for the potential Ψ0 greater than about 100 V, in comparison with the
quasilinear values where DQL ∝ Ψ2

0. The broadening of the diffusion coefficient
given by the curve Ψ0 = 1000 V in Fig. 6 can be compared with the estimate of
Cohen et al. (1990), namely their equation (2). For the same set of parameters,
this estimate is about one-half of the velocity interval (1.38 6 v‖ 6 1.94) im-
plied by Fig. 6. Obviously, non-resonant electrons become accelerated. From this
point of view, there exists some similarity with the paper of Fuchs et al. (1996).
Both the broadening of the diffusion coefficient and the decrease in its magnitude
will result in a stronger damping of LH waves during their penetration into the
plasma core, and might therefore represent a serious obstacle for the proposal of
Cohen et al.

A limitation of our model is that it is not self-consistent. Moreover, the effects of
collisions must be included in order that the model be a complete analogy to the
original quasilinear theory and to the original proposal of Cohen et al. (1990).

6. Conclusions
A thorough analysis of the interesting proposal of Cohen et al. (1990) brings out
several new phenomena that accompany the interaction of powerful wave fluxes
with plasma. Among them, the following have been discussed and evaluated in this
paper.

We have explored ponderomotive force effects at antennas. We have found that
all our results concerning the nonlinear reflection coefficient of the LH wave, the
plasma bias and plasma rotation induced by the LH wave are critically dependent
on the value of the boundary plasma temperature in front of the grill. For plasma
temperatures of about 10 eV in front of the grill, the reflection coefficient of the
LH wave would be unacceptably high. On the other hand, for a boundary plasma
temperature of about 30 eV or higher, the value of the nonlinear reflection coefficient
will approach the values according to the linear theory. Similarly, the plasma bias
and the corresponding plasma rotation decrease with growing plasma temperature.
The possibility of growth of the plasma temperature in front of the grill is supported
by experiments (see e.g. Petržı́lka et al. 1991).

We have explored the induced backward current and its effect on current drive
efficiency. Although a large portion of the RF power is lost via backward current
Joule heating, the current drive efficiency is still acceptable. The reason is that, with
powerful RF pulses, the energy pumped into the poloidal magnetic field increases.
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This energy is spent on the extremely efficient Ohmic current drive during the time
between the RF pulses. If the high-density backward current leads to anomalous
resistivity, the current drive efficiency increases considerably. For a small toka-
mak with high anomalous resistance, τsk may be less than τp. If the well-known
L/R time of the tokamak is much larger than τr, the above considerations can be
repeated mutatis mutandis for the plasma torus as a whole.

We have analysed the applicability of quasilinear theory. The diffusion coefficient
appears to significantly differ from that predicted by the quasilinear theory.

Some of the effects mentioned here may represent serious obstacles for the pro-
posal of Cohen et al. (1990). Nevertheless, we consider our study preliminary rather
than a definitive answer. Significantly more work is necessary. Moreover, some phe-
nomena that have been inspired by the work of Cohen et al. appear to be very
interesting in themselves.

Note added in proof
The problem of the quasilinear approximation in the regime of strong fields has
also been discussed by Fuchs et al. (1985).
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