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Hydrodynamic interactions for the measurement
of thin film elastic properties
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We study the elasto-hydrodynamic (EHD) interaction of a sphere with a flat elastic
surface in the prospect of measuring the elastic moduli of soft supported thin films,
with non-contact dynamic surface forces or atomic force microscopy measurements.
When the sphere is oscillated at a very small amplitude close to the surface, the linear
force response undergoes a dynamic transition from a viscous-dominated behaviour
at large distance to an elastic-dominated behaviour at short distance. In the limit of
very thin or very thick supported layers, we show that the force response obeys simple
scaling laws which allow to unambiguously determine the absolute elastic modulus of
the layer. In the general case, we establish the very rich phase diagram of the EHD
interaction and discuss its application for optimizing experimental parameters.
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1. Introduction
Soft elastic films such as supported layers of polymers, elastomers, soft biologic

tissues or even living cells are ubiquitous in nature and used increasingly in
technological applications as diffusion or anti-corrosion barriers, dielectric coatings,
electronic packaging, biocompatible layers, etc. The mechanical properties of these
submicrometre thin films are of utmost importance for their stability and effective
utilization; however, they can differ significantly from the bulk material due to the
proximity of a supporting substrate. Owing to the large structural sizes involved in
soft or biological matter, proximal effects induced by the interaction and organization
of macro-molecules or self-assembled structures close to the wall can extend on scales
comparable to the thickness of thin layers. In polymer melts for instance, variations
up to four orders of magnitude of the mechanical properties in the close vicinity of a
solid wall have been reported (Long & Lequeux 2001).

Conventional mechanical testing is not adapted for thin film investigation. As both
the size and the stiffness are reduced, elastic forces become weaker than surface forces,
adhesion and friction (Shull 2002). Besides, contact with a solid probe creates a new
probe/layer interface, with new adhesion forces and possible modification of the
material mechanics at its vicinity. Contact mechanics methods based on the Johnson–
Kendal–Roberts (JKR) theory of elastic contact (Johnson, Kendall & Roberts 1971)
simultaneaously measure the force, indentation and contact area of a spherical probe
with the sample from which the Young’s modulus and the work of adhesion can be
independently determined. This approach used in surface force apparatus (SFA) and
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similar devices is however limited to film thicknesses larger than the radius of the
contact area, generally several tens of micrometres (Tardivat, Hervet & Leger 2001;
McGuiggan et al. 2007). The JKR theory was extended to the case of thin layers
by finite element (Johnson et al. 1971; Sridhar & Johnson 2004) or semi-analytical
methods (Perriot & Barthel 2004; Barthel & Perriot 2007). However, mechanically
confined layers exhibit a stiff response and their indentation is blurred by the one
of the substrates (Gacoin et al. 2006; Mary, Chateauminois & Fretigny 2006). This
elastic pile-up was shown especially severe for incompressible or quasi-incompressible
materials such as polymers (Barthel et al. 2006), precluding accurate measurements
on films thinner than some micrometres (Barthel 2007). The small probes used in
scanning microscopies reduce the confinement, but do not allow to unambiguously
account for the adhesion forces (Shull 2002), and are challenged to give more than
relative values (Aime et al. 2001; Johannsmann 2002).

Non-conventional mechanical testing such as the inflation of nanobubbles
(O’Connell & McKenna 2005), atomic force microscopy (AFM) in friction mode
or in oscillatory mode (Basire & Fretigny 1999; Dubourg et al. 2003; McGuiggan
2004), dewetting or holes growth on a liquid substrate (Bodiguel & Fretigny 2006),
quartz micro-balance (Leopoldes & Jia 2009) and lateral loading of contacts (Gacoin
et al. 2006) provides valuable information on the mechanics of thin films, although
absolute determination of elastic moduli relies on parameters which are difficult to
measure accurately such as interfacial tension, wetting parameter or contact areas.
The wrinkling instabilities method of Stafford et al. (2004) provides absolute values
of the Young’s modulus of thin films, but requires supporting substrates orders of
magnitude softer, which limits its use for soft materials.

We propose here a new method to investigate the elastic properties of supported
thin films, without contact, using the elasto-hydrodynamic (EHD) force induced by
a moving sphere separated from the sample by a thin liquid layer. The advantage
of this method is that the thin film is stressed not through the direct contact with
a solid probe but through the drainage of a viscous Newtonian fluid, so that the
resulting force does not include any adhesive contribution. EHD flows between a
sphere and a plane have been studied theoretically and experimentally in the context
of sphere collision and rebound in viscous liquids (Davis, Serayssol & Hinch 1986;
Barnocky & Davis 1988, 1989; Vinogradova & Feuillebois 2000). The hydrodynamic
force has been shown to depend strongly on the elastic modulus of the bodies when
they are separated by a thin liquid layer. Here, we consider an harmonic EHD flow
induced by a rigid sphere oscillating with a very small amplitude, and we study the
resulting hydrodynamic force acting on a nearby elastic plane in the linear response
limit. This type of mechanical testing can be implemented easily in SFA devices
(Restagno et al. 2002) or AFMs. In this context, the oscillatory flow between a sphere
and a plane covered with an array of bubbles has been studied theoretically by
Lauga & Brenner (2004). They have discussed the reduction of the hydrodynamic
force due to the surface compliance in terms of an apparent liquid slippage onto
the solid. In this work, we establish the in-phase and out-of-phase components of
the EHD force response in the general case of an elastic stratified surface. We
show that these components undergo a transition from a viscous regime at large
distance, towards an elastic regime at short distance. In the limit of very thin or very
thick supported layers, the force response obeys simple scaling laws which allow to
easily and unambiguously determine the absolute elastic modulus of the layer. In the
general case, we establish the rich phase diagram of the EHD interaction and discuss
its application for optimizing experimental parameters.
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Figure 1. Principle of the method: a supported elastic layer is stressed through the drainage
of a viscous liquid forced by the oscillatory motion of a spherical probe.

2. A linear response theory of EHD between a sphere and a plane
We consider the axisymmetric configuration sketched in figure 1 of an elastic film

supported by a flat rigid substrate and immersed in a viscous liquid. A spherical
probe at a nominal distance D of the plane oscillates in the normal direction with a
nanometric amplitude ho � D. The dynamic motion of the sphere creates an oscillating
drainage flow and induces a pressure on the elastic surface. The quantity of interest
is the hydrodynamic force response, i.e. the ratio of the complex amplitude Fω of the
dynamic force F (t) =Re[Fω eiωt ] acting on the plane at the excitation frequency to
the amplitude h0 of the sphere oscillations h0 cos(ωt)

Gω(D) =
Fω

h0

. (2.1)

Here, we focus on applications such as the SFA or the colloidal probe AFM, in
which the distance D(t) = D + h0 cos(ωt) between the sphere apex and the plane is
much lower than the probe radius R. The experimental frequency is at most in the
range of kilohertz, the Reynolds number is very small (less than 10−2) and the viscous
penetration depth δ =

√
η/ρf ω � D (with η as the liquid viscosity and ρf its density).

In these limits, the drainage flow between the sphere and the plane is stable and
laminar, and obeys the well-known lubrication equation (see Hocking 1973)

∂

∂t
(h(r, t)) =

1

12ηr

∂

∂r

(
rh(r, t)3

∂P (r, t)

∂r

)
, (2.2)

with P as the liquid pressure. For this, the liquid chosen as a probe should retain its
continuum character for all thicknesses h(r, t) investigated. This is the case with simple
liquids such as water, water solutions (sucrose, glycerol), alkanes and some other low
molecular mass organic liquids down to thicknesses of 10 molecular size and less
(Chan & Horn 1985; Georges et al. 1993; Raviv et al. 2004; Honig & Ducker 2007;
Cottin-Bizonne et al. 2008). As we are interested only in the hydrodynamic interaction,
the eventual effect of equilibrium long-range interaction forces such as van der Waals
or electrostatic forces should be accounted for by subtracting their contribution to the
measured force response, i.e. the derivative dFeq(D)/dD with Feq(D), the equilibrium
force measured in a quasi-static experiment. Finally, we assume in (2.2) a no-slip
boundary condition at the liquid–elastic layer interface. For this, the choice of a
strongly non-wetting liquid should be avoided (Cottin-Bizonne et al. 2008; Huang
et al. 2008). The absence of wall slippage can be checked self-consistently by looking at
the viscous damping obtained at large distance, which does not depend on the elastic
properties of the surface as shown later. However, the nanobubbles susceptible to
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precipitate spontaneously at water/hydrophobic interfaces from dissolved gas (Yang
et al. 2007; Ducker 2009) would provide an additional effective surface elasticity (see
Lauga & Brenner 2004) not easily distinguishable from the intrinsic elastic response.

Equation (2.2) applied on a rigid plane gives a lubrication flow whose radial
extension is of the order

√
2RD � R, called hereafter as the hydrodynamic probe

radius. In the case of an elastically deformable plane, one has to take into account
the displacement u(r, t) of the surface at distance r of the axis (see figure 1). We
restrict here to the quasi-static limit and do not consider the elastic wave generated
by the oscillating stress: this is adequate for layers of shear moduli G in the order of
kilopascals or more, for which the relevant frequency

√
G/2RDρs is much higher than

the excitation frequency. We study the linear response obtained at a small forcing
amplitude ho � D, so that the film deflection u(r, t) is also small compared to D. The
liquid film thickness in the zone of interest is given by the parabolic approximation

h(r, t) = D + h0cosωt +
r2

2R
+ u(r, t). (2.3)

In the linear response regime, the time-dependent quantities are harmonic
functions of time at the driving frequency. We write u(r, t) =Re[u(r) eiωt ] and
P (r, t) = P0 + Re[δP (r) eiωt ], where P0 is the ambient pressure, u(r) and δP (r) are
complex amplitudes and we linearize (2.2) to the first order in h0, u and δP

iωr(h0 + u(r)) =
∂

∂r

[
r

12η

(
D +

r2

2R

)3
∂δP (r)

∂r

]
. (2.4)

The small displacement approximation requires h0 + u(r, t) � D. This is justified if
h0 � D as the elastic deflection u(r, t) can be at most equal to the sphere displacement.
If one wishes to perform the experiment down to the lowest limit D � 5 nm, where a
simple liquid can safely be considered as a continuum, the amplitude of the sphere
displacement h0 has to be at most 1 Å, which is feasible in SFA devices.

The tangential stress σT at the surface is negligible compared to the normal stress:
estimated in the case of a rigid surface, the ratio scales as σT /P (r) ∼

√
D/R � 1. Thus,

one needs to only consider the coating response to the axisymmetric pressure acting
on its surface. This response has been calculated independently by Li & Chou (1997)
and by Nogi & Kato (1997), with a sticky boundary condition of the coating on the
underlying substrate. The response relates the zeroth-order Hankel transforms of the
normal displacement u(r) to the one of the pressure δP (r) (see Gacoin et al. 2006)

ũ(ξ ) =
2

E∗
X(ξτ )

ξ
δP̃ (ξ ), (2.5)

where τ is the coating thickness, E∗ =E/(1 − ν2) its reduced Young’s modulus, ν its
Poisson ratio and X(ξτ ) the response function

X(ξτ ) =
γ (1 − e−4ξτ ) − 4ξτ e−2ξτ

γ (1 + e−4ξτ ) + (γ 2 + 1 + 4(ξτ )2) e−2ξτ
, γ = 3 − 4ν. (2.6)

The zeroth-order Hankel transform and its inverse are obtained from the zeroth-order
Bessel function of the first type Jo by

ũ(ξ ) =

∫ ∞

0

r drJ0(ξr)u(r), u(r) =

∫ ∞

0

ξ dξJ0(ξr)ũ(ξ ), (2.7)
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Figure 2. The variation of the film response (2.6) as a function of y = ζ τ/
√

2RD .

with a similar expression for δP̃ (ξ ) (Abramowitz & Stegun 1964). A plot of X(ξτ ) as
a function of y = ξτ for various values of ν is shown in figure 2.

By integrating (2.4) between 0 and r , replacing u(r) by its Hankel transform and
using the relation

∫ r

0
r ′ dr ′J0(ξr ′) = J1(ξr)r/ξ , one gets the integro-differential equation

∂δP (r)

∂r
=

6iωηh0r(
D + r2/2R

)3
+

24iDe(
D + r2/2R

)3

∫ ∞

0

X(ξτ )

ξ
δP̃ (ξ )J1(ξr) dξ, (2.8)

where we have defined the Deborah number as De = ηω/E∗. We introduce

x =
r√

2RD
, ζ = ξ

√
2RD, τ ′ =

τ√
2RD

, δP (r) =
ηωh0R

D2
p(x),

Dc = 8R
(ηω

E∗

)2/3

, (2.9)

so that δP̃ (ξ ) = p̃(ζ )(2ηωh0R
2/D). Equation (2.8) takes the non-dimensional form

∂p(x)

∂x
= 12i

x

(1 + x2)3
+

3i

(1 + x2)3

(
Dc

D

)3/2 ∫ ∞

0

X(ζ τ ′)

ζ
p̃(ζ )J1(ζx) dζ. (2.10)

Finally, a linear integral equation is obtained in the Hankel’s space by performing
the first-order transform of (2.10)

p̃(ζ ) = −3i

2
ζK1(ζ ) − 3i

(
Dc

D

)3/2 ∫ ∞

0

dζ ′p̃(ζ ′)X(ζ ′τ ′)M(ζ, ζ ′),

M(ζ, ζ ′) =

∫ ∞

0

x dx
J1(ζx)J1(ζ

′x)

ζ ′ζ (1 + x2)3
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

with K1 being the first-order modified Bessel function. The complex force response
expressed as a function of p̃(0) is

Gω(D) = − 1

h0

∫ ∞

0

2πr drδP (r) = −4πηωR2

D
p̃(ζ = 0). (2.12)

Equations (2.11) and (2.12) together with the film response (2.6) determine
completely the force response Gω(D). In the case of a perfectly rigid film, the second
term of the right member of (2.11) vanishes. As K1(ζ ) ∼ 1/ζ when ζ → 0, one recovers
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Figure 3. (Colour online) The components of the non-dimensional response function
gk(D/Dk) defined in (3.3) as a function of D/Dk: (a) logarithmic scale, (b) linear scale.

The inset represents a flat punch of radius
√

2RD indenting a semi-infinite medium.

the expression of the hydrodynamic damping between a sphere and a rigid plane

Gω(D) = G′′ = i
6πηωR2

D
. (2.13)

3. The elastic and viscous regimes
A generic property of (2.11) and (2.12) is to yield two different rheological regimes

for the variation of Gω(D) as a function of D. These regimes are conveniently
illustrated in the case of a semi-infinite elastic sample for which X(y) = 1. In this case,
(2.11) reduces to

p̃(ζ ) = −3i

2
ζK1(ζ ) − 3i

(
Dk

D

)3/2 ∫ ∞

0

dζ ′p̃(ζ ′)

∫ ∞

0

x dx
J1(ζx)J1(ζ

′x)

ζ ′ζ (1 + x2)3
, (3.1)

Dk = Dc = 8R
(ηω

E∗

)2/3

. (3.2)

From (2.12), the force response function is given by the scaling law

Gω(D) =
6πηR2ω

Dk

gk

(
D

Dk

)
, where gk

(
D

Dk

)
= −4Dk

6D
p̃(ζ = 0). (3.3)

The function gk(D/Dk) is a non-dimensional complex function which is calculated
numerically (see numerical procedure in Appendix A.2). The log–log scale plot of
its real and imaginary part in figure 3 exhibits the two regimes, with a transition at
D =Dk .

In the large distance regime D 
 Dk , the response is dominated by its imaginary
part, the viscous damping, which is asymptotically equal to the Reynolds damping
for rigid surfaces (2.13). In this viscous regime, the flow pressure is too low to
significantly deform the surface. A rough estimate of the surface elastic indentation δ

is obtained by taking the response of a semi-infinite elastic medium to a flat punch
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of radius
√

2RD , applying uniformly the Reynolds force R = 6πηωh0R
2/D. One gets

δ ∼ R/E∗π
√

2RD = h0(Dk/D)3/2. This estimate is similar to the result of Davis et al.
(1986) in their study of the collision of two elastic spheres in a viscous fluid. They
introduce the dimensionless elasticity parameter ε = ηvoR

3/2/E∗D5/2 and show that
δ ∼ Dε when ε � 1, which returns to our expression vo =h0ω. Thus, the indentation
remains small with respect to the amplitude of the sphere oscillations h0 as long as
D > Dk , which is precisely the limit of the viscous regime.

Pushing this estimation further, one can model the force response Gω(D) by a
spring-and-dashpot in series, by introducing the effective stiffness of the elastic layer
k(D) = R/δ ∼ πE∗

√
2RD , as well as the fluid friction coefficient associated to the

Reynolds force λ(D) = R/h0ω. This yields

Gω(D) ∼
(

1

k
+

1

iωλ

)−1

=
ikωλ

k + iωλ
. (3.4)

In the viscous regime, ωλ/k = δ/h0 = (Dk/D)3/2 � 1, so that

Gω(D) ∼ iωλ

(
1 − i

δ

h0

)
=

6ωηR2

D
(i + (Dk/D)3/2). (3.5)

One retrieves, up to a numerical prefactor, the D−5/2 power law of the elastic
component displayed in figure 3 (see also Appendix A.1 for an analytical
derivation).

When D becomes smaller than Dk , the components of the force response
saturate to a constant value and have a similar magnitude. This is due to the
fact that the indentation of the elastic surface cannot exceed the amplitude of
the sphere oscillations. Therefore, the pressure in the liquid film saturates to the
value Po ∼ E∗h0/

√
2RDk for which this level of indentation is reached. The drainage

flow between the sphere and the surface is now separated into two regions. At
a distance lower than

√
2R(Dk − D) of the sphere–plane axis, the indentation of

the elastic surface compensates almost completely the sphere motion, and the
liquid film clamped by its viscosity merely transmits the motion of the sphere.
This provides the elastic component of the response G′ ∼ Po2πRDk/h0 ∼ E∗√

2RDk .
Outside this region, the pressure and the indentation decrease, and the features of the
Reynolds flow are recovered. This provides the imaginary component of the response
G′′ ∼ 6πηωR2/Dk ∼ G′.

Finally, the full force response of the semi-infinite elastic plane can be written as

Gω(D) =
6πηR2ω

Dk

gk

(
D

Dk

)
, Dk = 8R

(ηω

E∗

)2/3

,

limx→0 gk(x) = 2.015 + 1.163i = 1.163(
√

3 + i),

limx→∞ gk(x) =
3a2

16x5/2
+

i

x
, a2 =

∫ ∞

0

ζ 2K2
1 (ζ ) dζ =

3π2

32
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.6)

(see Appendix A.1 for the prefactors). Thus, the oscillatory EHD force response
allows in principle to measure the elastic modulus E∗ of a surface at a distance
and without any contact through the value of Dk =8R(ηω/E∗)2/3, from which E∗ is
derived. This is of interest for fragile surfaces which could be damaged or altered by
a direct contact with a solid probe. We investigate in the next paragraph the case of
thin films which is of wider interest for applications.
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4. The case of a thin elastic coating
We now come back to (2.11) to discuss the behaviour of thin films. As the kernel

M(ζ, ζ ′) decays quickly when ζ ′ → ∞, as well as the pressure p̃(ζ ′), the significant
domain of variation of the elastic response X(ζ ′τ ′) for a thickness τ �

√
2RD

corresponds to ζ ′τ ′ � 1. In this domain, X(y) is essentially proportional to y (see
figure 2) except close to the singular value ν = 1/2 of the Poisson ratio which
corresponds to an incompressible material. Thus, we first investigate the two limit
cases:

(i) compressible thin film ν < 0.5, X(y) = y(1 − 2ν)/(2(1 − ν)2),
(ii) incompressible thin film ν = 1/2, X(y) = (2/3)y3.

4.1. The compressible thin film

By injecting the simplified film response X(y) = y(1 − 2ν)/2(1 − ν)2 in (2.11), one gets
the pressure equation for a compressible thin film

p̃(ζ ) = −3i

2
ζK1(ζ ) − 3i

(
Dn

D

)2 ∫ ∞

0

ζ ′ dζ ′p̃(ζ ′)M(ζ, ζ ′), (4.1)

Dn =

√
8ηωRτ

E′ , E′ =
E(1 − ν)

(1 − 2ν)(1 + ν)
, (4.2)

with the force response

Gω(D) =
6πηR2ω

Dn

gn(D/Dn), gn(D/Dn) = −4Dn

6D
p̃(0),

limx→0 gn(x) = 1.633(1 + i) =

√
8

3
(1 + i),

limx→∞ gn(x) =
3a3

16

1

x3
+

i

x
, a3 =

∫ ∞

0

ζ 3K2
1 (ζ ) dζ =

2

3
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

The force response (see figure 4) displays the viscous and the elastic regimes
discussed in the previous section with a cross-over at D = Dn. But the cross-over
distance now involves the square root of the film thickness and the elastic coefficient
for uniaxial strain E′ =E(1 − ν)/(1 − 2ν)(1 + ν). Another qualitative change is the
D−3 decay of the real component in the viscous regime instead of D−5/2 in the thick
film case. These features are explained by considering the indentation δ of the film in
the viscous regime. As the width

√
2RD of the hydrodynamic probe is much larger

than the film thickness, the response of the film is essentially local. It can be modelled
as a uniform uniaxial strain in the z direction, as the portions of the film far from the
sphere–plane axis are clamped by the sticking boundary condition on the substrate
and prevent a significant expansion in the xy directions. Therefore, the indentation
scales as δ/τ ∼ (R/2πRD)/E′ with R = 6πηωhoR

2/D being the Reynolds force. This
gives δ/h0 ∼ 3ηωRτ/E′D2 = (Dn/D)2. The indentation equals the sphere oscillations’
amplitude at D = Dn. Furthermore, the effective stiffness of the elastic film is now
k(D) = R/δ = 2πRDE′/τ . Therefore, the spring-and-dashpot model of the previous
section (3.4) leads to the force response Gω(D) ∼ (6πηωR2/D)(i + (Dn/D)2) in the
viscous regime.

A few remarks are in order. Firstly, the response of a very thin film is essentially
local, i.e. the amplitude of the film surface displacement is proportional to the
amplitude of the local pressure: u(r) = τP (r)/E′. Thus, the EHD dynamic response
can be calculated in the real space using (2.4) (see Appendix A.3). This approach has
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Figure 4. (Colour online) The components of the non-dimensional response function
gn(D/Dn) defined in (4.3) as a function of D/Dn: (a) logarithmic scale, (b) linear scale.

The inset represents a flat punch of radius
√

2RD indenting a compressible layer of
thickness τ .

been followed by Steinberger et al. (2008) to model dynamic surface force experiments
on a superhydrophobic surface in the so-called Cassie wetting, i.e. with a network of
micro-bubbles embedded at the solid–liquid interface. Indeed, a bubble mattress can
be considered as a model case of an infinitely thin elastic film: the bubbles trapped
at the interface are affected independently of each other by the flow, and their
deformation depends only on the local pressure. Steinberger et al. (2008) introduce a
local stiffness to account for the elastic linear response of the bubble mattress. Our
force response Gω(D) is exactly equivalent to theirs, taking the value E′/τ as the local
stiffness in their theory. The excellent agreement of their experimental results with
the EHD theory illustrates the power of the method to investigate soft and fragile
surfaces which do not allow direct mechanical contact.

Secondly, as noted in the previous section, the force response of the compressible
thin film depends only on the parameter Dn once other experimental values are
determined; so it gives access only to the uniaxial modulus E′ of the film. However,
the notion of a very thin film is relative to the size of the hydrodynamic probe which
depends on D. A way to determine the two moduli E and ν of a given film is then
to investigate both thick and thin film limits by an adequate choice of probe radius
and range of distance D. This point is further discussed in § 5.

4.2. The incompressible thin film

Injecting the film response X(y) = 2y3/3 into the master equation (2.11) yields the
pressure equation for the incompressible thin film

p̃(ζ ) = −3i

2
ζK1(ζ ) − 3i

(
D1/2

D

)3 ∫ ∞

0

ζ ′3 dζ ′p̃(ζ ′)M(ζ, ζ ′), (4.4)

D1/2 = τ

(
16ηω

3E∗

)1/3

= τ

(
4ηω

3G

)1/3

, (4.5)
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Figure 5. (Colour online) The components of the non-dimensional response function
g1/2(D/D1/2) defined in (4.6) as a function of D/D1/2: (a) logarithmic scale, (b) linear scale. The

inset represents a flat punch of radius
√

2RD indenting an incompressible layer of thickness τ .

which gives the force response and its asymptotic limits

Gω(D) =
6πηR2ω

D1/2

g1/2

(
D

D1/2

)
, g1/2

(
D

D1/2

)
= −4D1/2

6D
p̃(ζ = 0), (4.6)

lim
x→0

g1/2(x) = 0.838(1 + i
√

3), (4.7)

lim
x→∞

g1/2(x) =
3a5

16x4
+

i

x
, a5 =

∫ ∞

0

ζ 5K2
1 (ζ ) dζ = 8/5. (4.8)

The cross-over distance D1/2 between the viscous and the elastic regimes now no
longer depends on the sphere radius R but only on the length scale τ . This is a
much smaller distance, as we are in the thin film limit τ � R. Also, in the viscous
regime, the real part of the force response decays as D−4 instead of D−3 in the
compressible case (figure 5). Finally, the real component is always lower than the
imaginary component, even in the elastic regime. These features underline a much
stiffer behaviour of the incompressible thin film as compared to the compressible one,
at an equivalent Young’s modulus E∗.

This stiffer behaviour is due to the fact that as the volume of the thin layer is
conserved, its indentation has to be compensated by a lateral displacement, which
is no longer negligible although it is strongly hampered by the sticking boundary
condition on the underlying substrate. Let x be the lateral displacement of the film
surface at a distance x from the sphere–plane axis (see figure 5). Due to the volume
conservation, 2πxτx = πx2δ; thus, the shear strain of the film is x/τ = xδ/2τ 2. In
the viscous regime, the maximum shear deformation at the border of the stressed
area x =

√
2RD reaches εmax =

√
2RDδ/2τ 2. One can then estimate the indentation

δ by equating the elastic energy stored in the sheared film, Eel ∼ (1/2)Gε2
max2πRDτ

to the work provided by the Reynolds force Rδ. This gives δ/h0 = 12(ηω/G)τ 3/D3,
which retrieves the value of the cross-over distance D1/2 up to a numerical prefactor.
The effective stiffness k(D) = πR2D2G/2τ 3 of the incompressible thin film grows
more quickly with the distance D than the other limit cases. The spring-and-dashpot
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model (3.4) Gω(D) = (6πηωR2/D)(i + δ/h0) retrieves also the D−4 decay of the elastic
part of the force response in the viscous regime.

The severely stiff response of incompressible thin layers in the mechanics of solid
contacts has been discussed in the context of the so-called ‘JKR tests’ for measuring
the elastic properties of thin films (Barthel et al. 2006; Gacoin et al. 2006). In
particular, Barthel (2007) has discussed in detail the interpretation of JKR tests
performed by Tardivat et al. (2001), and shown that due to elastic pile-up, it is
not possible in a JKR test to extract with a good accuracy the Young’s modulus
of a coating of thickness less than some micrometres if its Poisson ratio is 1/2.
The difficulty in the JKR test stems from the fact that as hard contact is involved,
the indentation on the sphere–plane axis is forced, and the stressed area depends
on its amplitude. In the nanorheology method, the fluid probe spreads the stress
over a wide area whereas the indentation is limited to the amplitude of the sphere
oscillation.

The spring-and-dashpot model can also be used to estimate the impact of
the substrate by comparing its effective stiffness ks(D) = E∗

s π
√

2RD (with E∗
s as

the reduced modulus of the substrate) to the stiffness k(D) = πR2D2G/2τ 3 of the
incompressible layer. If necessary, the substrate can be included quantitatively in the
EHD model via the full response of the layered system, calculated by Li & Chou
(1997) (see Appendix A.4). The effect of substrate stiffness is less than 1 % if

τ > 2.1

(
E∗

E∗
s

)1/3 √
RD . (4.9)

Thus, with an SFA of sphere radius R = 3 nm used at a distance D = 20 nm, it is
possible to investigate films of 200 nm with a Young’s modulus in the range of
10 MPa deposited on a glass substrate. With an AFM of colloidal probe radius
10 µm, the same range of modulus would be accessible down to a thickness of some
nanometres, without the need of measuring a contact area.

5. The general case: a dynamic phase diagram
The limit cases studied in the previous sections involve only one elastic parameter,

combination of E and ν, and the force response in these cases is given by a master
function depending only on a reduced variable D/Dc. This is convenient to fit
experimental data and extract the corresponding elastic parameter of the layer.
However in the general case, such a scaling is not possible anymore and the general
solution of (2.11) has to be used. We establish here the phase diagram of this general
solution in the (D/R, τ/R) plane, discuss the use of this phase diagram for optimizing
experimental parameters and present the variation of the components of the force
response in optimized experimental runs.

The general equation (2.11) shows three different transitions. Firstly, the transition
between a thin and a thick layer is governed by the ratio of the thickness τ to the
hydrodynamic radius

√
2RD . The transition is obtained for τ/R =

√
2D/R which is a

line of slope 1/2 in the (log D/R, log τ/R) plane (see figure 6). The thick film region
lies above this line and the thin film lies under.

The second transition is between the compressible and the incompressible thin film.
The value ν = 1/2 of the Poisson ratio is indeed singular and associated to a critical
behaviour. When ν is close to 1/2, the film’s response X(y) in the range y < 1 (thin
film) is dominated by the non-critical behaviour y(1 − 2ν)/2(1 − ν)2 at small y and
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Figure 6. Dynamic phase diagram for the value (a) ν = 0, (b) ν =0.5, and
(c) ν = 0.499. The continuous red line is the thick/thin transition, and the parallel black
line in (a) and (c) is the compressible–incompressible transition. The incompressible thin film
domain lies between those lines. The purple lines are the elastic/viscous cross-over distances
Dk , Dn and D1/2 in each domain (see their expression in table 1). In (c), the horizontal blue
line is an example of experimental run which crosses several transitions.

reaches the critical behaviour 2y3/3 at yc(ν) =
√

3(1 − 2ν)/4(1 − ν)2 (see figure 2).

Therefore, the compressible/incompressible transition at τ ′ = τ/
√

2RD = yc can be
written as

( τ

R

)
cp

=

√
3(1 − 2ν)

2(1 − ν)2
D

R
<

√
2D

R
. (5.1)

This transition is parallel to the thick/thin transition line. The incompressible region
lies between the two lines. However, when ν � 0.45, both transitions are very close to
each other and the incompressible thin film behaviour is too shallow to be observed.
When ν → 1/2, the incompressible transition line (5.1) shifts downwards to infinity
and the incompressible behaviour progressively fills the whole thin film region.

Finally, the elastic and viscous regimes have to be located in each region. This is
done by considering the cross-over distances Dk , Dn and D1/2 which give the three
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Gω(D)

6πηωR2
Elastic regime Viscous regime Cross-over distance

Thick film
1.163

Dk

(
√

3 + i)
9π2

512

D
3/2
k

D5/2
+

i

D
Dk = 8R

(
ηω(1 − ν2)

E

)2/3

Compressible thin film
1.633

Dn

(1 + i)
1

8

D2
n

D3
+

i

D
Dn =

√
8ηωRτ (1 − 2ν)(1+ ν)

E(1 − ν)

Incompressible thin film
0.838

D1/2

(1 + i
√

3)
3

10

D3
1/2

D4
+

i

D
D1/2 = τ

(
16ηω(1 − ν2)

3E

)1/3

Table 1. Summary of the limit behaviour of the force response in each region of the
phase diagram.

equations

Dk

R
= 8

(ηω

E∗

)2/3

,
( τ

R

)
1/2

=

(
3G

4ηω

)1/3
D1/2

R
,

( τ

R

)
n

=
E′

8ηω

(
Dn

R

)2

, (5.2)

each valid in their domain. The elastic/viscous cross-over for the thick film does
not depend on its thickness and is a vertical line in the (D/R, τ/R) plane. The
incompressible elastic/viscous cross-over (τ/R)1/2 is a straight line of slope 1. Note
that when ν → 1/2, this cross-over line does not change much as it depends on the
shear modulus of the layer. But the two other lines, the elastic/viscous cross-over
(τ/R)n in the compressible thin film domain and the incompressible transition (τ/R)cp
are shifted downwards to infinity when ν → 1/2. The intercept of these two lines is
located on the cross-over line (τ/R)1/2.

The phase diagrams for three different values of ν (0, 0.499 and 1/2) are plotted in
figure 6, and the limit behaviour of the force response in each region is summarized in
table 1. It must be emphasized that the transitions and the cross-overs are not sharp,
so that the limit behaviours are fully obtained only in the heart of the corresponding
regions, at half a decade or so from their limits.

The phase diagram can be used to optimize the experimental parameters. In SFA
or AFM experiments, an experimental run is characterized by a horizontal line (see
figure 6) whose lateral extension is the range of available distances allowed by the
experimental set-up. Changing the probe radius translates this ‘run-line’ along the
first diagonal of the diagram. If the Poisson ratio of the layer is known or expected
to change very weakly with the thickness, the best choice of probe radius is when the
run-line investigates the heart of a region at least a decade far from its border, so that
a master function can be used for adjusting the data by a simple translation in the
log–log scale. However, if one wishes to determine both the Young’s modulus and
the Poisson ratio of the film in one run, the run-line should cross different regions to
take benefit of the different combinations of the elastic moduli governing each limit
case. Then, the entire equation (2.11) has to be used to extract the moduli. The other
experimental parameter, the liquid viscosity, defines the horizontal position of the
cross-over lines Dk , D1/2 and Dn in the phase diagram. The force response is most
sensitive to the elastic behaviour of the layer in the elastic regime; however, if the
probe radius is not accurately known , locating the elastic/viscous cross-over in the
middle of the run-line allows the experimental determination of the product ηR2 from
the 1/D decay of the damping in the viscous regime.
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Figure 7. Illustration of the determination of the Young’s modulus and the Poisson ratio of
a 1 µm thick polymer film (ν > 0.4) probed with a colloidal probe AFM of radius R = 10 µm
at a frequency f = 1 kHz and with a fluid of viscosity η = 100 mPa s. A first estimation of the
Young’s modulus using the function gn (4.3) gives the magnitude E = 1 MPa and ν = 0.45. The
solutions of the full equation (2.11), (2.12) are plotted for E = 0.8, 0.9, 1, 1.1 and 1.2 MPa and
ν = 0.44, 0.45 and 0.46. With an experimental data of precision 2 %, it is possible to determine
E within 0.1 MPa and ν within 0.1, using both G′

ω and G′′
ω .

We illustrate in figure 7 the solution of the entire equation (2.11) in order to
determine both the Young’s modulus and the Poisson ratio of a layer in one run.
We take the example of a 1 µm thick layer of Young’s modulus 1 MPa and Poisson
ratio 0.45 investigated with a probe of radius R =10 µm at a frequency 1 kHz with
a viscosity η =100 mPa s. As seen from the diagram in figure 6, this corresponds to
an appropriate choice of experimental parameters for which the run-line falls on the
transition between several regions. Firstly, by adjusting the force response at large
distance with the master function gn for a compressible thin film, one gets a first
estimate of E′. It is then possible to plot the responses expected for a range of possible
E and ν. Figure 7 shows these responses for a Young’s modulus ranging from 0.8 to
1.2 MPa and a Poisson ratio from 0.44 to 0.46. As both the real and imaginary parts
have to be adjusted, one sees that it is possible to determine the adequate couple
(E, ν) with a precision of 10% in E and 20% in ν.

Finally, another use of the phase diagram and of the spring-and-dashpot model
developed above is to estimate the amplitude of effects not included in (2.11).
For instance, the effect of the substrate compliance as quantified in the previous
section (4.9), defines a new line on the phase diagram parallel to the thick/thin film
transition, whose position depends only on the ratio of the reduced Young’s moduli
of the substrate and of the layer. Below this line, one has to quantitatively take into
account the substrate compliance as described in Appendix A.4. In the same light,
the effect of the liquid compressibility χ can be estimated from the stiffness of a film
of thickness D, kliq(D) = 2πR/χ , in series with the layer stiffness. Taking also the case
of an incompressible thin film, the effect of the liquid compressibility is less than 1 %
in the force response if

τ

R
> 1.8(E∗χ)1/3

(
D

R

)2/3

. (5.3)

If the probe radius cannot be chosen to stay above this limit, the liquid compressibility
has to be taken into account as described in Appendix A.4.
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6. Conclusion
In conclusion, we have shown here that forcing oscillatory flows of confined liquids

provides a unique method to determine directly, quantitatively and without contact
the elastic properties of supported soft layers. This method can be easily implemented
on dynamic SFA or AFM in non-contact mode. It gives access to the absolute
values of the Young’s modulus and Poisson ratio of the surface layer, without prior
knowledge of the probe/layer adhesion work, and in thin film conditions for which
direct contact measurements are not quantitative.

This nanorheology method opens new perspectives for investigating the mechanical
properties of thin polymer coatings and their modification under the effect of
confinement and of surface interactions. More generally, it is of interest to investigate
quantitatively the mechanics of fragile layers which could be altered by way of contact
with a solid probe such as gas-enriched hydrophobic interfaces (Dammer & Lohse
2006; Rossky 2010), supported bubbles or soft biological layers.

This work has been partially funded by the Agence Nationale pour la Recherche
program Blanc Merig.

Supplementary Material is available at journals.cambridge.org/flm.

Appendix
A.1. Asymptotic behaviour of the force response at large distance

At large distance, the solution of (3.1) (resp. of (4.1) and (4.4)) can be expanded in
increasing powers of Dc/D as p̃(ζ ) = p̃(0)(ζ ) + p̃(1)(ζ ) + . . . . with Dc equal to Dk (resp.
Dn, D1/2). The zero and first orders are

p̃(0)(ζ ) = −3i

2
ζK1(ζ ), (A 1)

p̃(1)(ζ ) = −3i

(
Dc

D

)l ∫ ∞

0

ζ ′mp̃(0)(ζ ′) dζ ′
∫ ∞

0

x dx
J1(ζx)J1(ζ

′x)

ζ ζ ′(1 + x2)3
, (A 2)

with l equal to 3/2 (resp. 2, 3) and m to 0 (resp. 1, 3) in the thick film case (resp.
compressible, incompressible thin film case). This yields

p̃(1)(0) = −9

2

(
Dc

D

)l ∫ ∞

0

dζ ′K1(ζ
′)ζ ′m

∫ ∞

0

x2 dx
J1(ζ

′x)

2(1 + x2)3
= −9am+2

32

(
Dc

D

)l

, (A 3)

am+2 =

∫ ∞

0

ζ ′m+2K2
1 (ζ

′) dζ ′. (A 4)

With p̃(0)(0) = −3i/2 and g(D/Dc) = −(4Dc/6D) p̃(0), one gets the general expansion:

lim
D→∞

g

(
D

Dc

)
=

3am+2

16

(
Dc

D

)l+1

+ i
Dc

D
. (A 5)

A.2. Numerical calculation of the functions gn, gk , g1/2

We solve the integral equations (3.1), (4.1) and (4.4) by using the Numerical Recipes
(Press et al. 1986) routines fredin and fredsolve for the Fredholm equations of type
2 together with a Gauss–Legendre quadrature (routines gauleg and gaulegsub) for
calculating the integrals. The parameters used are the following: the integral on the
variable ζ ′ is calculated on the interval (0,20) with N =150 points; the kernel M(ζ, ζ ′)
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is calculated once and for all on the N × N points previously defined, and is used for
solving (3.1), (4.1) and (4.4). The integral on the variable x for calculating the kernel
is performed over the interval (0, 500) with a Gaussian quadrature of 25 points. A
table in the Supplementary Material available at journals.cambridge.org/flm, reports
the numerical values of gn, gk , g1/2 in the cross-over region. The relative precision
is estimated better than 10−3, as increasing the integration intervals and the number
of points of the quadratures by 50 % does not change the result by more than this
value.

A.3. Another approach for the compressible thin film limit

In the compressible thin film limit that we have seen in § 4.1, the elastic response of
the film can be approximated as X(y) = y(1 − 2ν)/2(1 − ν)2. Equation (2.5) then gives
the film indentation as a function of the applied pressure

ũ(q) =
τ

E′ δP̃ (q), E′ =
E(1 − ν)

(1 − 2ν)(1 + ν)
. (A 6)

This corresponds to a local response u(r) = P (r)τ/E′ which can be directly injected
in the direct space equation (2.4) to recover the same equation as Steinberger et al.
(2008)

∂

∂r

[
r

12η

(
D +

r2

2R

)3
∂δP (r)

∂r

]
= iωr

(
h0 + P (r)

τ

E′

)
. (A 7)

A.4. Effect of the substrate compliance and of the liquid compressibility

The total response of the stratified system including the elastic semi-infinite substrate
has been calculated by Li & Chou (1997) (see also Gacoin et al. 2006):

X(qτ ) =
1 + 4bqτ e−2qτ − abe−4qτ

1 − (a + b + 4b(qτ )2) e−2qτ + ab e−4qτ
, (A 8)

a =
αγs − γl

1 + αγs

, b =
α − 1

α + γl

, α =
Gl

Gs

, γs = 3 − 4νs, γl = 3 − 4νl. (A 9)

Here Gi =Ei/2(1 + νi) is a shear modulus, i = s refers to the substrate and i = l to
the layer.

When the liquid compressibility is no longer negligible, (2.11) has to be modified.
One has to consider the mass conservation of the liquid in an axisymmetric geometry:

∂

∂r
[2πrh(r, t)v(r, t)ρ(P (r, t))] = − ∂

∂t
[2πrh(r, t)ρ(P (r, t))], (A 10)

taking into account the variation of the liquid density ρ(P ) = ρ0(1 + χδP ), with χ the
liquid compressibility. The linear response for the flow is then

∂

∂r

[
r

12η

(
D +

r2

2R

)3
∂δP (r)

∂r

]
= iωr

[
ho + u(r) − χδP (r)

(
D +

r2

2R

)]
. (A 11)

Integrating this equation between 0 and r , and coupling it with the elastic response
of the film (2.5) in the Hankel’s space yields the integro-differential equation

∂δP (r)

∂r
=

6iωηr

z3
+

24iDe

z3

∫ ∞

0

dqδP̃ (q)

[
J1(qr)

X(q)

q
+

E∗χz

2
J1(qr) − E∗χ

2

r

Rq
J2(qr)

]
,

(A 12)
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Figure 8. (Colour online) Illustration of the substrate compliance and of the liquid
compressibility on the hydrodynamic response obtained on an incompressible 500 nm thick
film of 10 MPa Young’s modulus. The experiment frequency is 19 Hz, the sphere radius
R = 3 mm, the sphere and plane Young’s moduli 60 GPa and their Poisson ratio 0.2, the
liquid viscosity η = 0.2 Pa.s and its compressibility χ =5.10−10 Pa−1. Long dashed line: the
components of Gω(D) calculated for the film with a rigid sphere and substrate. Short dashed
line: components of Gω(D) that would be obtained with the compliant sphere and substrate
without film. Continuous line: the substrate and sphere compliance is taken into account using
the film response given in (A 8) of Appendix A.4. Dotted line: both the sphere and substrate
compliance and the liquid compressibility are taken into account using the kernel derived in
(A 13) of Appendix A.4.

with z =D + r2/2R. We use for this the relations:
∫ r

0
s dsJo(qs) = rJ1(qr)/q and∫ r

0
s3 dsJo(qs) = r3J1(qr)/q − 2(r2/q2)J2(qr) derived from Abramowitz & Stegun

(1964). Taking the same non-dimensional variables as in § 2 and following the same
steps, one gets the new kernel to be used in (2.11)

M(ζ, ζ ′) = X(ζ ′t ′)

∫ ∞

0

x dx
J1(ζx)J1(ζ

′x)

ζ ζ ′(1 + x2)3

+

√
D

2R

E∗χ

2

∫ ∞

0

dx

(
xJ1(ζx)J1(ζ

′x)

ζ (1 + x2)2
− 2x2J2(ζ

′x)J1(ζx)

ζ ζ ′(1 + x2)3

)
. (A 13)

Figure 8 illustrates the effect of the substrates’ bulk compliance and of the liquid
compressibility for a 500 nm thick incompressible film of 10 MPa modulus investigated
with a sphere of radius R = 3 mm. For this thin film and large sphere, the substrate
correction is major, and the effect of the liquid compressibility is visible only on the
viscous damping at short distance.
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