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Abstract

Two-dimensional particle-in-cell (PIC) simulations have been used to investigate the interac-
tion between a laser pulse and a foil exposed to an external strong longitudinal magnetic field.
Compared with that in the absence of the external magnetic field, the divergence of proton
with the magnetic field in radiation pressure acceleration (RPA) regimes has improved
remarkably due to the restriction of the electron transverse expansion. During the RPA
process, the foil develops into a typical bubble-like shape resulting from the combined action
of transversal ponderomotive force and instabilities. However, the foil prefers to be in a cone-
like shape by using the magnetic field. The dependence of proton divergence on the strength
of magnetic field has been studied, and an optimal magnetic field of nearly 60 kT is achieved
in these simulations.

Introduction

Ion acceleration via laser–plasma interaction has attracted much attention due to its lower cost
and convenience compared with the conventional ion accelerator. The utilization of an ultra-
intense laser provides an extremely strong electromagnetic field and an ultra-high acceleration
rate for ion acceleration. This has generated an alternative of the conventional particle accel-
eration and has been used widely in numerous applications of high-energy ions, such as ion
sources (Daido et al., 2012; Wagner et al., 2016), radiography (Edwards et al., 2002), hadron
therapy of diseases (Bulanov and Khoroshkov 2002), and fast ignition inertial confinement
fusion (Roth et al., 2001). It has also given a strong motivation to research pertinent questions
(Wang et al., 2013; Kim et al., 2016; Honrubia et al., 2017; Yogo et al., 2017).

The basic scheme of ion acceleration via laser–plasma interaction is the relativistic flying
mirror concept in which the ponderomotive force of laser pushes electrons away from rear
surface of target when an ultra- intense laser pulse ejects into a plasma or a foil. The slap
of electrons accelerated by strong electromagnetic waves to nearly light speed forms a strong
charge separation field to pull ions to co-propagate with the laser pulse. Based on this frame,
the mechanisms of ion acceleration via laser–plasma interaction include mainly the following
aspects: Target normal sheath acceleration (Hatchett et al., 2000; Wilks et al., 2001; Mora,
2003), radiation pressure acceleration (RPA) (Esirkepov et al., 2004; Klimo et al., 2008;
Robinson et al., 2008; Yan et al., 2009), Coulomb explosion (Kovalev and Bychenkov 2003;
Bulanov et al., 2008), and so on. In this paper, we will focus on the enhancement of ion accel-
eration via RPA by using an external longitudinal magnetic field. RPA is one of the most effi-
cient mechanisms because nearly all the laser energy is transferred to ions. When the electric
field inspired by a laser is nearly the same as the charge separation field, which is defined as
Em = 2πene l where e, ne, and l are charge of electron, electron density, and the thickness of foil,
ions and electrons will move together with the laser pulse. According to the double Doppler
effect, the laser reflected by the plasma mirror will get a downshift of frequency Δω = (1 − 1/
4γ2)ωL. This means that each photon energy transferred to ions is referred to D1 = h− Dv,
where γ and ωL are the Lorentz factor of plasma mirror and frequency of laser, respectively.
In the relativistic regime, the velocity of electron-ion layer is almost equal to light speed, mak-
ing γ≫ 1. This will lead to an almost complete laser energy transferred to ions, making RPA a
promising approach to obtain high-energy ions. However, some limitations of ion-beam qual-
ity such as (i) transverse target expansion (Dollar et al., 2012), (ii) slightly focused laser group
velocity (Bulanov et al., 2015), and (iii) target transparency (Macchi et al., 2009) greatly harm
the quality of proton via RPA. In this paper, we will focus on the influence of the transverse
target expansion which results in reduction of electron density. This tends to terminate the
process of RPA ahead of time. It may excite some harmful transverse instabilities such as
Rayleigh–Taylor like instability (Pegoraro and Bulanov, 2007; Palmer et al., 2012) and
Weibel-like instability (Yoon and Davidson 1987). Furthermore, deconstruction of foil
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caused by the transverse expansion enlarges the proton divergence
and reduces the quality of proton. Significant work has been
devoted to decreasing the proton divergence and improving the
quality of proton (Weng et al., 2015; Zou et al., 2015; Shen
et al., 2017).

A magnetic field of over several kilotesla has been obtained
with a capacitor-coil target driven by a high-power laser. The
strength of magnetic field has increased from 60 T to 1.5 kT
over the past 30 years (Daido et al., 1986; Fujioka et al., 2013;

Abe et al., 2018; Nakamura et al., 2018). Therefore, it is expectable
to obtain a higher magnetic field with the rapid development of
laser technology and innovative laser–plasma research in the
future. The investigation in combination of plasma and strong
magnetic field has also attracted much attention (Arefiev et al.,
2016; Stark et al., 2016; Gong et al., 2017).

In this paper, 2D particle-in-cell (PIC) simulations have been
carried out to investigate ion acceleration in RPA regime with
an external magnetic field. The divergence of proton has been
improved greatly in the RPA regime by using an external longitu-
dinal magnetic field. In the absence of magnetic field, the foil
develops into a bubble-like shape from the simulations. The foil
prefers to be in a cone-like shape by using the magnetic field.
Furthermore, the dependence of proton divergence on the
strength of magnetic field has been studied, and an optimal mag-
netic field of nearly 60 kT is achieved under the conditions con-
sidered in this paper.

Simulation and results

In order to investigate ion acceleration via RPA with a longitudi-
nal strong magnetic field, some two-dimensional PIC simulations
have been performed using the EPOCH code (Arber et al., 2015).
The simulation scheme is shown in Figure 1.

A circularly polarized laser pulse irradiates the hydrogen foil,
which is transversely Gaussian as EL( y) = E0exp(−y2/r2), with a
full width at half maximum (FWHM) of r = 10λ and a laser

Fig. 1. A laser pulse with the normalized laser amplitude of a0 = 70 ejects into a
hydrogen foil with an external longitudinal magnetic field. The wavelength of laser
is 1 µm and the density of hydrogen foil is 80nc, where nc is the critical density
(1.1 × 1021/cm3).

Fig. 2. The density of electrons (a and c) and protons (b and d) without magnetic field (a and b) and with magnetic field (c and d), Bx = 100 kT. The density of
electrons and protons are normalized to the critical density nc = 1.1 × 10

21/cm3 at 140TL in the simulations.
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duration of 15 TL, where E0 has been regarded as the electric field
amplitude of the laser pulse, and λ is the wavelength of 1 µm, and
TL is the normalized laser amplitude of a0 = (eE0)/(mecω0) = 70,
where me, c, and ω0 are the mass of electron, the speed of light
in vacuum, and the local frequency of light, respectively.

In our two-dimensional PIC simulations, the dimensions of
the simulation box are 80 µm × 140 µm with 3200 × 5600 cells.
There are 50 particles for each cell. The laser pulse ejects into

the simulation box from the left boundary. The hydrogen foil
locates at 2 µm < x < 2.5 µm, with a foil thickness of D = 0.5 µm,
and the density of electron and proton is homogeneously 80nc,
where nc = 1.1 × 1021 /cm3 is the critical density for the laser
pulse. To study the effect of a strong magnetic field on ion accel-
eration via RPA, we compare two cases with or without magnetic
field applied in the longitudinal direction. The comparison of
electron and ion density is shown in Figure 2.

Fig. 3. Spatial evolution of density of electrons (a) and protons (b) along x-axis when y = 0 in the presence of magnetic field (red line) and in the absence of mag-
netic field (blue line) at 40TL and 140TL. The spatial variable is normalized by the wavelength of laser and the density of charged particles is normalized by the
critical density.

Fig. 4. The distribution in the momentum of electrons (a and c) and protons (b and d). (a) and (b) are the cases without magnetic field and (c) and (d) are the one
with magnetic field (Bx = 100 kT). The momentum of particles is normalized by the product of static mass and laser speed (mp(e)c), where mp and me is the mass of
electron and proton, respectively.
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As shown in Figure 2a and 2b, the foil is in bubble-like shape
in the absence of a magnetic field. However, electrons expand
comparatively more slowly with a longitudinal magnetic field of
Bx = 100 kT as shown in Figure 2c. In this case, the foil reveals
a cone-like structure as shown in Figure 2c and 2d. The density
of charged particles plays a key role in RPA. Reduction of electron
areal density greatly harms the quality of proton. As shown in

Figure 3a, the density of electrons decreases from 80nc to nearly
7nc along x-axis when y = 0 area in both cases. In the absence
of a magnetic field, the electron density is nearly 0.2nc at
140TL. And the electron density with a magnetic field is near
1.1nc. It indicates a strong longitudinal field which greatly helps
to restrict the transverse expansion and the structure of foil has
also been changed into a cone-like shape. As shown in
Figure 3b, the proton density with a magnetic field is almost
seven times more than that without a magnetic field.

Figure 4 presents the comparison of proton momentum distri-
bution to study the effect of magnetic field on the divergence of
proton. θ is the emission angle. As shown in Figure 4a and 4c,
the configuration of electrons demonstrates that transverse expan-
sion of electrons has been indeed suppressed by introducing of a
longitudinal magnetic field. We define px(e) and py(e) as the
longitudinal momentum and the transverse momentum of elec-
trons, and px( p) and py( p) as the longitudinal momentum and
the transverse momentum of proton. Although the maximum
py(e) in Figure 4a and 4c are almost the same, the maximum
px(e) in Figure 4c with a magnetic field has been promoted.
And maxima px( p) in Figure 4b and 4d are almost the same in
both cases, but the maximum py( p) in Figure 4d with magnetic
field is 0.1mpc less than that in Figure 4b. This may contribute
to the inhibition of the electron transverse motion. When
electrons are driven by the longitudinal magnetic field, the
transverse motion of electrons will be suppressed. And this
restrains electrons to pull protons in the transverse direction and
finally reduces the transverse momentum of protons. Meanwhile,

Fig. 5. The distribution of angle and density of protons whose energy is larger than
300 MeV with magnetic field (red line, Bx = 100 kT) and without magnetic field (blue
line). Here θ is the angle between the momentum of protons and the x-axis.

Fig. 6. The proton distribution as a function of energy and emission angle with different magnetic fields at 140TL. The magnetic field used is (a) 0 kT, (b) 25 kT,
(c) 40 kT, and 100 kT. θ is the angle between the momentum of protons and the x-axis.
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the magnetic field has little impact on the longitudinal accelera-
tion. However, py( p) in Figure 4d is roughly 0.3mpc and 0.4mpc
in Figure 4b. The maximum proton energy is 660 MeV with a
magnetic field, and it is 700 MeV in the absence of a magnetic
field. The notable improvement to divergence of proton beam
and enhancement of the areal density are achieved, even if the
maximum energy decreases slightly in the presence of magnetic
field. As shown in Figure 4b and 4d, the proton distributions in
the momentum are quite different in both cases. Therefore, the
divergence of ion beams improved remarkably with an external
magnetic field.

Now we focus on the proton divergence. The angular distribu-
tion of protons with energy larger than 300 MeV is shown in
Figure 5. The FWHM of the proton angular distribution with a
magnetic field is about 4° and it is 20° without a magnetic field.
The distribution peaks at 0°. Restriction of electrons offered by
the magnetic field impacts on directly the motion of protons
and improves remarkably the proton divergence. Then we will
study the dependence of proton divergence on strength of mag-
netic field. In the following simulations, the magnitudes of mag-
netic field are assumed to be 25, 40, and 100 kT. The proton
distribution as a function of energy and emission angle at
140TL is given in Figure 6. As shown in Figure 6b–6d, the max-
imum energy of protons is almost 660 MeV and is slightly less
than that in Figure 6a. It can be seen that the maximum proton
energy is almost the same in different strengths of magnetic field.

As shown in Figure 6, the emission angle of proton depends on
the strength of magnetic field. The full width of the distribution
envelop of Figure 6 at 300 MeV has been used to investigate the
dependence of proton divergence on the strength of magnetic
field. As shown in Figure 7, the range of proton emission angle
whose energy is 300 MeV reduces to the minimum of 15° at
60 kT from 70° without magnetic field, then increases to 42° at
100 kT. From Figure 7, there exists an optimal magnetic field of
60 kT to achieve the minimum proton divergence. The intense mag-
netic field is required to overcome the transverse expansion. In fact,
the foil is developing into a cone-like shape once the magnetic field
exceeds the optimal magnetic field as shown in Figure 2c and 2d.

In this case, the majority of protons move along the cone-like
shape, which leads to increasing emission angle of proton.

Conclusion

We have implied several two-dimensional PIC simulations to
investigate the effect of an external longitudinal magnetic field
on RPA. Under the conditions of these simulations, with a
strong magnetic field, the foil of n0 = 80nc pushed by a laser of
a0 = 70 will become a cone-like shape instead of a bubble-like
shape in the absence of a magnetic field. The density of the
charged particle is almost seven times more than that without
a magnetic field. It reveals that the transverse expansion of elec-
trons has been suppressed by a strong longitudinal magnetic
field. This greatly helps to improve the proton divergence. The
dependence of proton divergence on the strength of a magnetic
field has been studied, and an optimal magnetic field of nearly
60 kT is achieved in these simulations. It is expectable to obtain
such a magnetic field in the future with the rapid development of
new technology, although the required magnetic field of dozens
of kilotesla is currently unachievable. Therefore, applying an
external magnetic field via RPA is potentially promising to
improve the quality of protons.
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