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Abstract

This paper presents two modifications of compressive sensing (CS)-based approach applied to
the near-field diagnosis of active phased arrays. CS-based antenna array diagnosis allows a sig-
nificant reduction of measurement time, which is crucial for the characterization of electrically
large active antenna arrays, e.g. used in synthetic aperture radar. However, practical imple-
mentation of this method is limited by two factors: first, it is sensitive to thermal instabilities
of the array under test, and second, excitation reconstruction accuracy strongly depends on the
accuracy of the elements of the measurement matrix. First proposed modification allows tak-
ing into account of thermal instability of the array by using an iterative ℓ1-minimization pro-
cedure. The second modification increases the accuracy of reconstruction using several simple
additional measurements.

Introduction

Development, calibration, and testing of active phased antenna arrays require solving a large num-
ber of problems, including the problem of diagnosis of the array under test (AUT). Many factors
determine the selection of the diagnosis method: structure and operating mode of AUT during
the testing, diagnosis duration (including duration of measurement and computation), and cost
of its implementation. The results of the diagnosis problem solution allow estimating the technical
condition of the active array and determining how its characteristics differ from the required ones.
These differences may be caused by failures of single or groups of transmit-and-receive modules
(TRMs), including failures of phase shifters, switches, and amplifiers [1,2].

Especially strict performance requirements are imposed on space-borne systems, particu-
larly synthetic aperture radars [2,3]. Ground testing of active arrays includes measuring not
only radiation characteristics (far-field pattern, sidelobe level, equivalent isotropic radiated
power, cross-polarization level, mutual coupling between elements) but also impedance
matching, power loss, and power consumption.

Many radiation characteristics of electrically large active arrays can only be measured in an
anechoic chamber using near-field techniques, because the far-field zone distance may be pro-
hibitively large. After the initial calibration of the phase shifters and attenuators of the array, a
testing in normal operating mode, i.e. with all TRMs turned on, is required.

On this step, a testing of the antenna in a wide temperature range (tens and hundreds °C)
should be performed [4,5], since the characteristics of TRMs significantly depend on tempera-
ture. The measurement duration of active arrays compared to passive antennas is limited by
three factors. First, the service life of TRMs is limited. Second, the TRMs warm up during
the operation, and change their characteristics. Third, the duration of the normal operating
mode of the whole system is also limited.

Conventional methods of phased antenna array diagnosis include measurement of the full
set of field data in the near- or far-field zone [6,7]. These methods, including methods based
on the solution of integral equations using the method of moments, do not utilize a priori
information about a reference, non-defect array. It leads to a large dimensionality of the prob-
lem, and the resulting computational problem is ill-posed [8]. For an array of N elements, the
number of measurements M must be equal to or larger than N, and measurement duration
may become prohibitively high, especially for electrically large arrays.

Along with conventional methods, new methods based on a “compressive sensing” (CS)
approach are developed [9,10]. These methods can also be applied to similar related problems,
such as “inverse scattering” [11,12]. Provided that the number of defects is low, these methods
allow a significant reduction of the number of measurements by using a priori information
about the field radiated by the reference (non-defect) array. While the idea behind
CS-based diagnosis is very simple, there are still a number of unanswered questions:
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1. How many measurements should be conducted to locate K
defect elements among N elements with required probability?

2. How measurement points’ locations should be chosen?
3. What can be done if the temperature of the AUT differs from

the temperature of the reference array?
4. Is it possible to reconstruct the excitation if the elements of the

measurement matrix are not known exactly, e.g. when far-field
patterns of radiating elements or measurement probe are not
known, or if the reflections are present?

The first two questions received attention in the literature, e.g.
good estimates of the required minimum number of measure-
ments exist for a case of far-field measurement. In [13], the
second problem was solved but also for the far-field case; for
the near-field case, only a numerical example is shown in [14].

However, the remaining questions were not investigated in
detail. Existing research shows that (a) the change in excitation
due to temperature drift lowers the probability of failure detection
and increases the rate of false positives [5,15]; (b) errors in the
measurement matrix also lead to low accuracy of excitation recon-
struction [16].

This paper presents and discusses in detail two modifications
of CS-based diagnosis method that are focused on improving the
quality (i.e. raising the probability of detection and lowering the
probability of false detection (PFD)) and accuracy of diagnosis.

The first approach is aimed at a compensation of possible tem-
perature drift of the array’s characteristics assuming that the
amplitudes and phases of all elements changed by the same
amount. An iterative procedure is carried out to determine the
desired change in excitation and solve the diagnosis problem.
The second modification consists of two steps focused on the
improvement of reconstruction accuracy. On the first step,
CS-based diagnosis is used to locate potentially defect elements.
On the second step, a series of additional measurements is carried
out when only the phase of a potentially defect element changes,
but the position of the probe remains fixed. This approach
increases the accuracy of reconstruction without increasing the
measurement duration, since most of the time required for the
measurement is taken by the probe moving, and not by the regis-
tration of measured field.

Compressive sensing approach to array diagnosis

Formulation of problem

Active phased antenna array diagnosis problem is carried out on
the basis of the inverse problem solution and can be reduced to
the finding of array elements’ amplitudes and phases. The geom-
etry of the problem is shown in Fig. 1. Radius vector rn specifies
the position of n-th (n = 1,2, …, N) radiating element located in
the aperture plane SA, rm is the position of m-th (m = 1,2,…, M)
measurement point in the measurement surface SM. The field of
each element is modeled by a set of elementary electric and mag-
netic dipoles, which are located at rekn and rmkn, k = 1,2, …, K.
Current distribution of the dipoles is given as:

j eT (r,v) =peknd(r− rekn)pe0k
jmT (r,v) =pmknd(r− rmkn)pm0k,

(1)

where peknp
e
0k and pmknp

m
0k are the vector dipole moments, and pe0k

and pm0k are the unit vectors that define the orientation of k-th
dipole.

The field of the n-th element at the m-th measurement point
can be found as shown in [17]:

EDn(rmn,v) = Ee
Dn(rmn,v) + Em

Dn(rmn,v), (2)

where

Ee
Dn(rmn) = ik0Z0 exp(−ik0rmn)

4prmn

×
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pekn exp i k0 r
e
knrn0

( )
pe0krn0
( )

rn0 − pe0k
[ ][ ]

=Ẽ
e
Dn(rmn) exp(−ik0rmn)

rmn

(3)

and

Em
Dn(rmn)=−ik0exp(−ik0 rmn)

4prmn
×

∑K
k=1

pmk exp ik0 r
m
k rn0

( )
pm0k×rn0
[ ][ ]

=Ẽ
m
Dn(rmn)exp(−ik0rmn)

rmn
,

(4)

where k0 is the wave number, rmn = |rm − rn| ‒ distance from the
element to the measurement point,rn0 = rmn/rmn, and it is taken
into account that rmn≫ |rekn| and rmn≫ |rmkn| (see Fig. 1).
Assuming that the dipole moments in (3) and (4) are normalized,
the radiated field (2) of the n-th element excited by the current
with complex amplitude xn can be found as

EDn(rmn) =xn
(
Ẽ
e
Dn(rmn) + Ẽ

m
Dn(rmn)

) exp(−ik0rmn)
rmn

=xnEn(u, w) exp(−ik0rmn)
rmn

,

(5)

where En(u,w) is the n-th element field (or far-field pattern) when
the excitation current amplitude is unity. If the receiving far-field
pattern of the probe h(u,f) is known, the antenna array diagnosis
problem can be written in matrix form

U = Ax (6)

Fig. 1. Geometry of the problem.
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where x = (x1, x2, . . . , xN )T [ CN is an excitation vector,
U = (U1,U2, . . . ,UM)T [ CM is the measurement vector, i.e.
complex amplitudes of voltage registered by the probe, and ele-
ments of the measurement matrix A [ CM×N can be found as

amn = Um

xn
= En(umn, wmn) · h(u′mn, w

′
mn) exp(−ik0rmn)/rmn (7)

The definition of angles θ, w, θ ′, and w′ is shown in Fig. 2.
This formulation is correct for any array geometry andmeasure-

ment surface SM. It is also applicable to similar problems that can be
reduced to the reconstruction of electric and/or magnetic currents,
in the frequency domain or time domain [18]. Conventional meth-
ods require M≥N to solve (6), i.e. a full set of measurements is
required. Due to several reasons, the measurement matrix A is ill-
conditioned, so the convergence and accuracy of the solution
degrade when the dimensionality of the problem grows [6].

Solution of CS problem

It is assumed that the excitation vector is sparse, i.e. the number of
non-zero components K is significantly lower than total number
of its elements N. For an array that has low number of defect ele-
ments, a vector that is a difference between defect array (AUT)
and reference array (non-defect) can be found x = xr− xd. Then
(6) can be rewritten as

Ud − Ur = A(xd − xr) (8)

U = Ud − Ur, x = xd − xr (9)

Excitation vector x in (9) (see Fig. 3) corresponds to a “sparse”
array that consists of a small number of radiating elements.

Note that the reference array excitation vector can be found by
using the conventional diagnosis methods or by means of numer-
ical modeling. If the number of measurements M is smaller than
the number of elements N (the goal of using CS-based methods),
the problem (8) is ill-posed and a regularization procedure is
required. Usually some kind of a priori information about the
solution is used, e.g. the sparseness of x for the CS-based meth-
ods. There are different ways to exploit the sparseness of x [9],
for example, using the ℓ0 norm:

min x‖ ‖0: Ax − U‖ ‖2, 1, (10)

or using a more convenient ℓ1norm, which leads to a convex
minimization problem:

min x‖ ‖1: Ax − U‖ ‖2, 1, (11)

where . . .‖ ‖2 is Euclidean norm, x‖ ‖1=
∑N
n=1

|xn| is ℓ1norm, ε is

related to the noise affecting the data. The constrained minimiza-
tion problem (11) can be rewritten as a ℓ1/ℓ2 minimization
problem

min
x

Ax − y
∥∥ ∥∥2

2+m x‖ ‖1, (12)

which can be efficiently solved using different iterative algorithms,
e.g. YALL 1 [19] or NESTA [20,21].

The reliability and precision of solution depend not only on
the signal-to-noise ratio (SNR), but also on the measurement
matrix, i.e. the positions of measurement points. If a measure-
ment matrix satisfies the so-called restricted isometry property
(RIP) [9,10], then the excitation vector can be reliably recon-
structed with high precision. Calculation of RIP requires proof
for all K-sparse x vectors, which is usually impractical. For far-
field array diagnosis, an approach to the deterministic selection
of measurement points is presented in [13]. In a near-field diag-
nosis case discussed in [14], a 368-element circular array is effect-
ively diagnosed using 24 measurement points, whose positions
were determined by numerical trials.

Even if the optimal positions of the probe are found, there
still are other issues that need to be solved before CS-based
methods could be used in practice. They are described in the
next section.

Known issues of the method and proposed solutions

The CS-based diagnosis has a high probability of detection of
defect elements and allows reconstructing amplitude and phase
of the elements with high precision when the two conditions
are met. First, the measurement matrix A must be known with
high precision; second, it is assumed that the excitations of non-
defect elements in reference and defect arrays are exactly the
same. Both assumptions are rarely true. Far-field patterns of the
probe and array elements in equation (7) are not always known
exactly, and equation (7) is true only for anechoic conditions.
The difference in the excitation of non-defect elements is caused
by the mutual coupling of the radiators and by the thermal
instability of active elements.

While the performance of CS-based diagnosis method deterio-
rates in the presence of errors mentioned above, this method can
still locate defective elements, albeit with lower precision and reli-
ability [5]. To improve precision and probability of detection, we
propose two modifications of this method, which can be used
independently or jointly.

Low reconstruction accuracy

First modification of the method addresses an issue with
exact values of measurement matrix A. The only practically
feasible way of obtaining A with high precision implies direct
measurements of the field of every single element at every

Fig. 2. Geometry of coordinate systems used for n-th radiating element and m-th
position of the probe located at the point P.
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measurement point (7). This process is very time-consuming and
requires AUT to be placed exactly in the same position as a ref-
erence array. This leads us to the two-step algorithm. In the
first step, the radiating elements are separated into two
groups: normally operating elements and potentially defect
elements using CS-based diagnosis. The second step is
required to separate the defect elements and operating elements
from the set of potentially defect elements. To do so, the
additional measurement set is conducted at a selected measure-
ment point m (or a set of selected additional measurement points,
see Fig. 4), for which amn, n = 1,…, N, is known with required
high accuracy.

For each potentially defect element, the excitation phase is
increased (using phase shifters of AUT) by the specified value
Δw, e.g. 180°, leaving the excitations of other elements unchanged.
For k-th defect element, the complex amplitudes of the measured
field at the measurement point can be found as

U̇
k
S1 = U̇

k
S0 + U̇

k =
∑N

n=1, n=k

(
U̇

d
n − U̇

r
n

)+ U̇
d
k − U̇

r
k

U̇
k
S2 = U̇

k
S0 + U̇

′k =
∑N

n=1, n=k

(
U̇

d
n − U̇

r
n

)+ U̇
d
k × exp(iDw) − U̇

r
k,

(13)

where U̇
k
S1, U̇

k
S0, and U̇

k
are the complex amplitudes (before

changing the phase of k-th element) of the measured field, field
of all elements except k-th element and field of k-th element
only, respectively. U̇

k
S2 and U̇

′k
are the complex amplitudes

(after changing the phase) of the measured field and of k-th

element field, respectively. Transforming (13), the field produced
by k-th defect element can be found as

U̇
d
k =

U̇
k
S1 − U̇

k
S2

1− exp(iDw) (14)

Note that U̇
k
S1 − U̇

k
S2 may be zero in case the amplitude of

k-th element is zero, or in case of phase shifter failure when
Δw = 0. The element will be classified as a defect in both cases.

The complex amplitude of k-th element excitation can be
found from (6) as

ẋdk =
U̇

d
k

ȧmk
(15)

or, if using expression (7):

ẋdk =
U̇

d
krmk exp(ik0rmk)

h(u′mk,w′
mk)E(umk,wmk)

(16)

Thermal instability of the array

Second modification of the method addresses the issue of thermal
instability of the array. Changes in excitation are usually modeled
in the same way as thermal noise (e.g. [14]), but thermal instabil-
ity error has a non-zero mean value because changes in tempera-
ture lead to approximately the same change of amplitude and
phase of all elements. It means that vector x = xd − xr is no
longer sparse and non-defect elements could be categorized as a
defect.

Fig. 3. An illustration of 10 × 10 “sparse” array construction.

Fig. 4. Geometry of acquisition for additional measurements.
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To solve this problem we assume that all elements change their
amplitudes and phases equally. This assumption is true when tem-
perature changes only slightly (several °C) and there is no signifi-
cant variation in temperature across the array. In practice, it
means that the reference and defect arrays are the same, e.g.
when the reference array is measured, then tested (mechanically/
thermally) and then is measured again at the same thermal condi-
tions as before to check whether any active elements have failed.

In this case, the measured field of AUT Um
d can be found as

Um
d = pcUd, pc = ac exp(iwc), (17)

where pc is a correction coefficient and Ud is the field that would
be measured in the absence of thermal instability. Then equation
(9) takes the form

U = Ud

pc
− Ur, x = xd

pc
− xr (18)

To determine the correction coefficient pc the minimization
problem (12) should be solved for different values of pc.

min
pc

Axf − (Um
d p

−1
c − Ur)

∥∥ ∥∥2
2+m xf

∥∥ ∥∥
1, (19)

where xf is a solution of (12) for a given value of pc. Function
minimized in (19) is convex, in the absence of noise its minimum
corresponds exactly to correction coefficient pc.

It should be noted that all CS methods are based on a priori
information about the solution (the assumption that the solution
is sparse). Hence the proposed procedure is only useful when (17)
is at least approximately true. If thermal changes also affect the
phase-distribution network, or if AUT is so large that the tem-
perature is different across the array, then the algorithm cannot
improve the solution. In this case, more precise a priori informa-
tion or more measurements are required to reconstruct the exci-
tation successfully.

Results and discussion

To determine the validity of our approach, we conducted a
numerical experiment. We want to find answers to the following
questions:

• How important is the accuracy of the measurement matrix and
how does it affect the solution?

• How can we improve the accuracy using the approach proposed
in section “Low reconstruction accuracy”? How does the ther-
mal instability affect the reconstruction results and how can
we improve it using the procedure described in section
“Thermal instability of the array”?

The parameters of the experiment are provided in the next
subsection.

Model of the array and experiment parameters

A planar rectangular 10 × 10 array of open waveguide elements is
considered, the field of the array was simulated with FDTD.
While CS-based diagnosis methods do not strictly require the
measurement surface to be planar, it is common to measure the
field of a planar array on a plane parallel to the aperture [7].
To ensure that the measurement points are in the far-field region
of any radiating element (but not in the far-field of the array
itself), we have chosen the distance between the measurement
plane and the aperture of the array to be equal 3λ, where λ is
the operating wavelength. To show the ability of CS-based meth-
ods to solve the underdetermined problem (9), we have chosen
the number of measurements lower than the number of elements,
in our case M = 35. It is possible that this number could be
improved if another measurement geometry was used, but, as
noted in the Introduction, the problem of optimal measurement
point selection in the near-field case has not been solved yet.

The effectiveness of a diagnosis method may be characterized in
many different ways, but in our case, two values are of particular
interest: failure identification success rate (FISR) and PFD. FISR is
the probability of locating all defect elements, and PFD is the average
number of false detections per a non-defect element of the array:

PFD = Average N of false detections in solution
N of non-defect elements

(20)

The accuracy and precision of the method were also investi-
gated. Since l1-based reconstruction methods are known to under-
estimate high-amplitude components [22,23], we have computed
both the mean value of the error and its standard deviation (SD).

Table 1. Excitations of defect elements

1 2 3 4 5 6 7 8 9 10

Amplitude 0.707 1.0 0.9 0.5 0.9 0.707 1.0 0.3 0.8 1.2

Phase 90° −45° 90° 0 −30° 0° 30° −20° 60° −25°

Fig. 5. Positions of radiating elements and measurement points.
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The excitation of the reference array was uniform. In a defect
array, 3–10 (to keep the number of defects K much lower than the
number of elements N) defect elements with excitations specified
in Table 1 were present. All non-defect elements have an ampli-
tude of 1 and phase 0°.

The radiation pattern En of n-th radiating element in equa-
tion (7) is not always known exactly, and elements of a calcu-
lated measurement matrix may differ from the measured ones.
In order to determine how errors in the measurement matrix
influence the solution, diagnosis problem (12) was solved
using three different measurement matrices. The “exact” (or
“reference”) measurement matrix AR is acquired by simulating
sequential excitation of every single element. For the “simpli-
fied” measurement matrix A0 all elements were assumed iso-
tropic (En = 1 for all n). The “approximate” measurement
matrix A1 was calculated using a quasi-analytical far-field pat-
tern of an open waveguide En.

Positions of the elements and measurement points are shown
in Fig. 5.

The n-th element was considered a defect when the absolute
value of xn (n-th component of the vector x = xd − xr) was lar-
ger than a certain threshold. In this paper, this threshold was
set to 0,1, which corresponds roughly to ±1 dB amplitude
error (to detect defects of discrete attenuators with a least sig-
nificant bit of 0.5…1 dB) or ±6° phase error (to detect defects
of 6-bit discrete phase shifters with a least significant bit of
5625°).

Finally, we assume that the accuracy of amplitude and phase
measurement is about ±5% and ±2°, respectively. This accuracy
roughly corresponds to an SNR of 40 dB stated in [24].

All parameters of the model are combined in Table 2.

Results of diagnosis without correction

For a given number of defects, FISR and PFD were estimated by
repeating the identification procedure 2000 times (100 different
distributions of defect elements, 20 different realizations of

white Gaussian noise for each distribution). Results of diagnosis
(FISR and PFD) in thermally stable conditions are shown in
Figs 6(a) and 6(b).

As it could be expected from the results presented in [14],
FISR decreases with the number of defect elements. For a small
number of defects, FISR is high no matter what measurement
matrix was used; the only real difference is PFD. For 10 defects,
PFD obtained using AR and A0 differ more than 10 times.

The accuracy of amplitude and phase reconstruction is shown
in Fig. 7. It was expected that the results obtained using the sim-
plest measurement matrix A0 will have the lowest precision (high
SD), and the better we know the measurement matrix, the more
accurate and precise results we get. It can also be seen that matri-
ces AR and A1 produce an accurate and precise value of the
elements’ phase.

However, if the matrices AR and A1 cannot be obtained, we
need a way to increase the accuracy and precision of excitation
reconstruction. Our first modification of CS method addresses
this issue, and the simulated results of its implementation are
presented in the next subsection.

Accuracy improvement using additional measurements

After potentially defect elements were identified using the
CS-based diagnosis method, we may need to improve the accuracy
and precision of excitation reconstruction. To do so, we conduct
additional measurements at a single point in the center of the
measurement plane. The additional phase shift was equal to 180°.

Usually the duration of the near-field measurement is deter-
mined by the scanner movement, and not by the measurement
of the field samples. Since the probe is fixed now, we can increase
the duration of each measurement and thus increase the accuracy
of amplitude and phase measurement without increasing overall
measurement time too much. It may be required when we try
to separate the signal of a single element from signals of all
other elements. For our simulations, we assumed amplitude and
phase accuracy of ±3% and ±1°, respectively.

Table 2. Parameters of the model

Number of
elements

Number of
defects

Distance to measurement
plane

Number of
measurements

Amplitude
accuracy

Phase
accuracy

100 3…10 3λ 35 ±5% ±2°

Fig. 6. Characteristics of the diagnosis method for a 10 × 10 array of open waveguide elements with 3λ distance to measurement plane: (a) failure identification
success rate (FISR) and (b) probability of false detections (PFD). AR – results acquired using the reference measurement matrix, A0 – “simplified” measurement
matrix, A1 – “approximate” measurement matrix.
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The analysis of results shown in Fig. 8 confirms that the accur-
acy of the proposed has increased significantly. Mean value of
error is zero; amplitude and phase are reconstructed with a preci-
sion of 0.1 and 6°, respectively. It should be noted again that a row
of the measurement matrix amn, n = 1…N for a given m should be
known, i.e. measured. Mean value of phase error (see Fig. 8(c)) is
close to the measurement accuracy (approximately 1°).

Correction of solution in the presence of thermal instability
effects

Now we try to determine how thermal instability affects the solution.
In our case, a change in temperature of the array leads to the change
in the excitation of all array elements. We assume that the change in
temperature is equal for all elements, and that their amplitudes and
phases change by the same amount. In this simulation, a 0.42 dB

Fig. 7. Accuracy and precision of excitation reconstruction: (a) mean of amplitude error; (b) standard deviation (SD) of amplitude error, (c) mean of phase error; (d)
SD of phase error.

Fig. 8. Accuracy and precision of excitation reconstruction: (a) mean of amplitude error; (b) SD of amplitude error; (c) mean of phase error, (d) SD of phase error. AR

– reconstructed using reference measurement matrix, A1 – using approximate measurement matrix, ARC – corrected results.
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change in amplitude and 1° change in the phase were assumed. The
FISR and PFD obtained under these conditions are shown in Fig. 9.

It can be seen from the results presented in Fig. 9 that the ther-
mal instability of the array significantly reduces the effectiveness
of the CS-based diagnosis. As expected, the number of false detec-
tion increases (2–20 times compared to initial PFD). It should be
noted that for a small number of elements (<5% of all elements)
the probability of detection remains sufficiently high (90% and
higher) for results acquired with measurement matrices AR and
A1. Unfortunately, FISR rapidly decreases with a larger number
of defects.

The results (FISR and PFD) of correction procedure (19)
applied to the same 10 × 10 array are presented in Fig. 10.

As can be seen from Fig. 10, the correction procedure can sig-
nificantly increase the identification success rate and reduce PFD.
For example, for 6–8 defects, FISR improved from approximately
50 to 85% using a reference measurement matrix AR. However,
when the measurement matrix is not known exactly, the perform-
ance of this diagnosis method degrades again. While five defect
elements or less can be recovered with high probability (>90%
for any measurement matrix), increasing number of defects to
six or more leads to a much lower detection probability.

Conclusion

In this paper, we have investigated a CS-based antenna array diag-
nosis method and presented two modifications. These modifica-
tions deal with the two disadvantages of the method: sensitivity
to thermal instability of active elements of the array (or to any

other source of error with non-zero mean value) and low accuracy
of excitation reconstruction.

Our research has shown that the thermal instability greatly
reduces the usefulness of the CS-based diagnosis method, increas-
ing the number of false detections up to 20 times. It also lowers
the number of defect elements that can be reconstructed with a
required probability of success.

The first proposed modification is based on a modified
l1-minimization procedure and allows correcting the measured
field in case of thermal instability of the array. For example,
FISR was reduced from 95 to 40% (six defects in a 100-element
array), but the correction procedure increased it to 85%.

The second proposed modification increases the accuracy of
excitation reconstruction by using several additional measurements.
It requires the data about the exact (directly measured) row of a
measurement matrix and the ability to change the phase of a single
radiating element. Contrary to the CS-based only reconstruction,
the resulting accuracy of reconstruction depends only on field
measurement accuracy at the measurement point.
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