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Abstract

Background. Decline in cognitive functioning precedes the first psychotic episode in the
course of schizophrenia and is considered a hallmark symptom of the disorder. Given the
low incidence of schizophrenia, it remains a challenge to investigate whether cognitive decline
coincides with disease-related changes in brain structure, such as white matter abnormalities.
The 22q11.2 deletion syndrome (22q11DS) is an appealing model in this context, as 25% of
patients develop psychosis. Furthermore, we recently showed that cognitive decline also pre-
cedes the onset of psychosis in individuals with 22q11DS. Here, we investigate whether the
early cognitive decline in patients with 22q11DS is associated with alterations in white matter
microstructure.
Methods. We compared the fractional anisotropy (FA) of white matter in 22q11DS patients
with cognitive decline [n = 16; −18.34 (15.8) VIQ percentile points over 6.80 (2.39) years] to
22q11DS patients without cognitive decline [n = 18; 17.71 (20.17) VIQ percentile points over
5.27 (2.03) years] by applying an atlas-based approach to diffusion-weighted imaging data.
Results. FA was significantly increased ( p < 0.05, FDR) in 22q11DS patients with a cognitive
decline in the bilateral superior longitudinal fasciculus, the bilateral cingulum bundle, all sub-
components of the left internal capsule and the left superior frontal-occipital fasciculus as
compared with 22q11DS patients without cognitive decline.
Conclusions. Within 22q11DS, the early cognitive decline is associated with microstructural
differences in white matter. At the mean age of 17.8 years, these changes are reflected in
increased FA in several tracts. We hypothesize that similar brain alterations associated with
cognitive decline take place early in the trajectory of schizophrenia.

Introduction

Schizophrenia can be considered a developmental disorder (Insel, 2010). While the clinical
identification of most patients with schizophrenia starts with the manifestation of the first
psychotic episode in late adolescence, deviations from the normal developmental trajectory
are demonstrated to occur much earlier (Insel, 2010; Kahn & Keefe, 2013; Sommer et al.
2016). In recent years, the importance of cognitive impairment as a core feature of schizophre-
nia has gained considerable attention (Kahn & Keefe, 2013). Not only do schizophrenia
patients show decreased intellectual and cognitive performance compared with healthy con-
trols (O’Carroll, 2000), a decline in cognitive abilities precedes the onset of the first psychotic
episode by several years (Reichenberg et al. 2010).

Advanced stage schizophrenia is marked by alterations in white matter microstructural
properties (for an extensive review see Fitzsimmons et al. 2013), in particular by decreases
in fractional anisotropy (FA). In comparison, relatively few studies have investigated white
matter microstructural properties in the early preclinical stage (ultra-high risk, UHR)
(Hoptman et al. 2008; Peters et al. 2008; 2009; 2010; Karlsgodt et al. 2009; Bloemen et al.
2010; Carletti et al. 2012; Clemm Von Hohenberg et al. 2014; O’Hanlon et al. 2015; Bakker
et al. 2016). Assessments prior to the UHR stage are scarce and current literature shows incon-
sistent results of both increased and decreased FA (Gilmore et al. 2010; Francis et al. 2013;
Samartzis et al. 2014; Satterthwaite et al. 2016).

Indeed, the cognitive deficit in schizophrenia has been associated with alterations in white
matter microstructure (Nazeri et al. 2013; Roalf et al. 2015). Also, it has been shown that
decreases in cognitive performance and in white matter microstructure constitute a genetic
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risk factor for schizophrenia (Bohlken et al. 2015). Currently, little
is known about the interplay between cognitive ability and white
matter integrity preceding psychosis. In order to better under-
stand these neurodevelopmental risk factors of schizophrenia, it
is important to examine the stages preceding psychosis.
However, studying the early stages of schizophrenia, i.e. before
the onset of the first psychotic symptoms, is challenging because
of the low occurrence of the disorder with prevalence and
incidence rates of respectively 1 in 100 and 1 in 5000 persons
in the general population (Regier et al. 1993; van der Werf
et al. 2014).

Approximately one in four patients with the 22q11.2 deletion
syndrome (22q11DS) develop schizophrenia or other psychotic
disorders (Schneider et al. 2014). Consistent with findings in
schizophrenia, it was recently shown that cognitive decline,
most pronounced in verbal IQ, precedes the onset of psychosis
by several years in patients with 22q11DS (Vorstman et al.
2015). Specifically, patients who showed a decline in verbal IQ
had a threefold increased risk of developing a psychotic disorder
(Vorstman et al. 2015). 22q11DS is an appealing model to inves-
tigate the early trajectory of schizophrenia (Bassett & Chow, 1999;
Insel, 2010), as patients with 22q11DS are often identified very
early in life due to the presence of somatic symptoms, including
cardiac, pharyngeal or facial abnormalities (see McDonald-
McGinn et al. 2015 for a detailed overview). Herein lies an
important research opportunity; by virtue of their identification
early in life, the trajectory of schizophrenia can be followed pro-
spectively in this group of individuals, starting from birth (or even
in utero) (Insel, 2010). Another important advantage over other
UHR studies is that these individuals are not selected based on
subjectively assessed symptoms, required to define an at-risk
mental state, but based on the 1.5- to 3-Mb hemizygous deletion
at the long (q) arm of chromosome 22 (Edelmann, 1999) that
causes 22q11.2 deletion syndrome. At present, 22q11DS is the
strongest known single genetic risk factor for schizophrenia
(Karayiorgou et al. 2010; Marshall et al. 2016). Vice versa, the
22q11DS can be identified in approximately 1–2% of the general
population of schizophrenia patients (Bassett & Chow, 2008), as
compared to 0.05% in the general population (Regier et al.
1993; van der Werf et al. 2014).

Several studies have investigated white matter structure in
22q11DS. Alterations in FA have been reported in 22q11DS
patients, compared to healthy controls. Reduced FA is found in
the superior longitudinal fasciculus (Sundram et al. 2010;
Kikinis et al. 2012), cingulum bundle (Jalbrzikowski et al. 2014;
Kates et al. 2015; Roalf et al. 2017), and uncinate fasciculus
(Kikinis et al. 2012; Radoeva et al. 2012). However, increased
FA is found in regions of the corpus callosum (Barnea-Goraly
et al. 2003; Bakker et al. 2016), the anterior limb of the internal
capsule (Perlstein et al. 2014), the corona radiata (Sundram
et al. 2010), the anterior thalamic radiation and the inferior
fronto-occitpital fasciculus (Bakker et al. 2016), and the superior
longitudinal fasciculus (Simon et al. 2005). These findings in
22q11DS show some overlap with findings in UHR within the
general population and suggest that altered white matter micro-
structural properties may constitute a risk factor for schizophre-
nia. However, it has not yet been investigated whether such
alterations are related to other known risk factors such as cogni-
tive decline.

As 22q11DS is the strongest known genetic risk factor for
developing schizophrenia, and it was observed that cognitive
decline in 22q11DS additionally increases this risk we hypothesize

that cognitive decline in 22q11DS is accompanied by alterations
in white matter microstructural properties. Such evidence would
inform the hypothesis that neurodevelopmental risk for schizo-
phrenia may be expressed in prodromal white matter microstruc-
tural alterations accompanied by loss of cognitive abilities.
Specifically, we examined whether early cognitive decline
observed in individuals with 22q11DS is associated with altera-
tions of white matter microstructural directionality. To test this,
IQ-trajectories of 22q11DS patients with and without cognitive
decline prior to MRI acquisition were compared on whole-brain
and atlas-based measures of white matter FA.

Methods

Participants

Analyses were performed on a subsample of the 22q11DS cohort
studied at the University Medical Center Utrecht, the
Netherlands. Recruitment and assessment of this cohort have
been reported previously (Vorstman et al. 2015; Fiksinski et al.
2017). We acquired MRI data in a total of 35 patients for this
study. One patient was excluded because of significant scan arte-
facts. Descriptive statistics of the remaining 34 participants are
displayed in Table 1. Thirteen patients were experiencing psych-
otic symptoms at the time of the scanning (T0). Of this group,
six were already diagnosed with a psychotic disorder (four with
cognitive decline preceding the scan, two without cognitive
decline preceding the scan). Assessment of diagnosis of a psych-
otic disorder (according to the Diagnostic and Statistical Manual
of Mental Disorders, DSM-IV) and/or psychotic symptomatology
was performed by trained clinicians in a multidisciplinary setup,
using the Schedule for Affective Disorders and Schizophrenia for
School Age Children [K-SADS (Kaufman et al. 1997)]. Prior to
the scan, two patients received antipsychotic medication.

The chromosomal deletion at the 22q11.2 region was con-
firmed in every patient by fluorescent in situ hybridization
(FISH) or Multiplex Ligation-dependent Probe Amplification
[MLPA (Vorstman et al. 2006)]. Participants were scanned
between May 2010 and October 2015. This study has been
approved by the local research ethics board (Dutch Central
Committee on Research Involving Human Subjects; C.C.M.O)
and all participants (and/or their legal guardians) provided writ-
ten informed consent.

Assessment of intellectual features and percentile conversion

Certified assessors obtained all IQ scores using age-appropriate
versions of the Wechsler intelligence scale (e.g. Wechsler
Intelligence Scale for Children or the Wechsler Adult
Intelligence Scale). Table 1 shows IQ scores at the time of the
scan. We analysed IQ trajectories by comparing IQ at the time
of the scan (T0, see Table 1) to IQ score as assessed by the pre-
ceding IQ measurement (T− 1). To establish cognitive decline,
individual IQ trajectories were plotted against the previously con-
structed IQ normative chart specific for the 22q11DS population
(Vorstman et al. 2015). In short, the IQ scores of 34 22q11DS
patients were converted into percentiles, which were calculated
using a 4-year sliding bin of mean IQ scores of 22q11DS patients
at different ages. In essence, this strategy allows identifying sub-
jects who show a decline in IQ beyond what would be expected
in this specific population. Subjects with IQ decline in our cohort
were those displaying at least one percentile point negative
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deviation from T− 1 to T0. We examined three comparison con-
trasts: decline v. no-decline in verbal IQ trajectory (ΔVIQ),
Full-Scale IQ trajectory (ΔFSIQ), and performance IQ trajectory
(ΔPIQ).

Neuroimaging and image processing

All brain scans were acquired on a 3T Philips Achieva magnetic
resonance imaging (MRI) scanner using an eight-channel
SENSE head-coil. For each participant two diffusion-weighted
imaging (DWI) scans were acquired using the following para-
meters: single-shot EPI-DTI with 30 diffusion-weighted volumes
(b = 1000 s/mm2) with non-collinear gradient directions and five
diffusion unweighted volumes (b = 0 s/mm2), TR/TE = 7035/
68 ms, field of view = 240 mm, EPI factor 35, SENSE factor 3,
no cardiac gating, no gap, 128 × 128 matrix, and 75 slices of
2 mm thickness. To correct for susceptibility effects of the scanner
one diffusion weighted scan was acquired in the anterior–poster-
ior direction, and the other one in the opposite plane
(posterior-anterior).

All (pre)processing of the MRI scans was done with different
FSL tools (FSL, version 5.0.6, Oxford (Smith et al. 2004)). See
online Supplementary Materials (S1) for an overview of the ana-
lysis pipeline.

Region of interest

Using 40 binary WM masks based on the Johns Hopkins
University International Consortium of Brain Mapping 81
[JHU-ICBM 81 (Mori et al. 2008)] atlas (see online
Supplementary S2 for an overview of regions included) we
extracted mean FA, MD, AD and RD per tract per individual.

Statistical analyses

Statistical analyses are performed in R (version 3.1.1) and SPSS
(IBM, version 22). FA, MD, AD and RD were imported in
SPSS. Using a t test, differences between patients who declined
in verbal IQ (ΔVIQ), performance IQ (ΔPIQ) and full-scale IQ
(ΔFSIQ) and patients who showed no decline, within WM regions
of interest (ROIs) after correcting for age and gender were tested.
Post hoc analyses were performed in order to study the contribu-
tions of different diffusivity measures to the effect found in FA,
these included axial diffusivity (AD), mean diffusivity (MD)
and radial diffusivity (RD) (see online Supplementary S3).
Whole brain white matter diffusivity was investigated by aver-
aging the FA values extracted from the ROIs of the JHU-ICBM
81 atlas.

To correct for multiple comparisons, false discovery rates
(FDR) were computed using the Benjamini and Hochberg (BH)
procedure (Benjamini & Hochberg, 1995) (as implemented in
R, version 3.1.1) where a p value is considered significant as
FDR value ( p.adjusti) ⩽0.05, where p.adjusti is determined by
the rank (Ri) of the p value ( pi) and the number of tests (n):
p.adjusti = pi*(n/Ri).

Results

Sample

At time of the scan (T0) mean age of participants (n = 34, f/m =
25/9) was 17.79 (years; S.D. = 3.17 years; 12.3–24.9), at the time
point preceding the scan (T− 1, read as T minus 1) the mean
age was 11.79 (years; S.D. = 2.93 years; 7.0–17.0). The mean inter-
val between the time points was 5.99 (years; S.D. = 2.30 years),
there was a trend towards a significant difference for those with

Table 1. General descriptives of the total sample, IQ scores, scaled IQ scores & IQ contrasts

Variable (n = 34) Mean Std dev

Age 17.79 3.17

FSIQ 71.56 8.99

PIQ 73.79 8.68

VIQ 73.12 11.57

Scaled IQ (n = 34) Mean (std dev) Scaled IQ Mean (std dev) Diff. t (df) Sig

FSIQ (T0) 49.03 (21.44) FSIQ (T− 1) 47.41 (22.29) 1.62 0.291(33) 0.773

PIQ (T0) 53.53 (21.06) PIQ (T− 1) 48.97 (23.49) 4.65 0.719(33) 0.441

VIQ (T0) 49.41 (26.53) VIQ (T− 1) 48.88 (26.87) 0.441 0.078(33) 0.938

Contrast (n = 34) Decline/incline N (f/m) Age Age diff. t (df) Sig.

ΔFSIQ Incline 17 (13/4) 17.63

Decline 17 (12/5) 17.94 0.31 −0.280(33) 0.781

ΔPIQ Incline 22 (17/5) 18.63 2.39 2.23(33) 0.033

Decline 12 (8/4) 16.24

ΔVIQ Incline 18 (13/5) 17.72 0.14 −0.133(33) 0.895

Decline 16 (12/4) 17.86

Std dev, standard deviation; FSIQ, full-scale intelligence quotient; PIQ, Performance IQ; VIQ, Verbal IQ; T0, time point zero, time of the scan; T− 1, T minus one, time point preceding the scan;
Diff, difference in IQ scores between T0 and T− 1; t(df), t-statistic (degrees of freedom); Sig., p value; Δ, contrast incline/decline; Age diff, difference in age between decline/no decline; f/m,
number of females/number of males.
The first part of the table displays information about the total sample’s age, IQ scores. The second part shows the gender distribution within the sample. The third part displays the
descriptives of the scaled IQ scores at T0 and T− 1, including information about the difference between T0 and T1. The fourth part shows the different contrasts used in the sample and
information about these groups.
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and those without cognitive decline ( p = 0.052). The distribution
of age within the three different contrasts is presented in Table 1.
We observed no statistically significant differences in distribution
of age (Table 1) or gender for the IQ trajectories [ΔFSIQ [χ2(1) =
0.151, p = 0.697], ΔPIQ [χ2(1) = 0.449, p = 0.503] and ΔVIQ
[χ2(1) = 0.034, p = 0.855]. Within the three different contrasts,
the distribution of psychotic symptoms, and diagnosis is not sig-
nificantly different (see online Supplementary S4).

IQ trajectories

To ensure that possible differences found in FA were not due to
overall group differences in IQ, we assessed potential group differ-
ences at baseline (T− 1), at the time of the scan (T0) and between
these time points. Table 1 represents the scaled IQ scores of the
sample at T0 and T− 1 and the difference between T0 and T − 1.
The difference in scaled IQ scores between T0 and T− 1 is not
statistically significant (Table 1; see online Supplementary S5 for
comparisons between time points T0 and T− 1 between decline
and non-decline). We found no statistically significant differences
in FSIQ, VIQ and PIQ at T− 1 and T0 between the decline and
the non-decline group (see online Supplementary S6).

Region of interest

Subjects that declined in VIQ showed higher FA values in the
bilateral superior longitudinal fasciculus, the anterior limb of
the left internal capsule, the rentrolenticular part of the left
internal capsule, the posterior limb of the left internal capsule,
the bilateral cingulum bundle and the left superior
fronto-occipital fasciculus. All of these regions withstood correc-
tion for multiple comparisons (see Table 2 for corrected and
uncorrected p values, see Fig. 1 for illustration of WM ROIs).
Cognitive decline was not associated with decreased FA. For
VIQ, 16 patients showed a decline of -18.34 (S.D. = 15.83) percent-
ile points over 6.80 (S.D. = 2.39) years, and 18 patients showed
an incline of 17.71 (S.D. = 20.17) VIQ percentile points over 5.27
(S.D. = 2.03) years. Furthermore, patients with VIQ decline showed
higher whole brain FA values compared with patients without
decline (t(32) = −2.511, p = 0.017). We did not find statistically
significant differences that survived multiple comparisons correc-
tion in any of the WM ROIs nor in whole brain FA on the con-
trasts ΔTIQ and ΔPIQ. In addition, we did not find any significant
correlations that survived corrections for multiple comparisons
between FA values in each ROI and scaled IQ scores at T0 (see
online Supplementary S7).

Post hoc analysis

We explored whether the magnitude of IQ change per year was
associated with FA values in the significant WM ROIs. We
found a significant correlation between change in VIQ per
year and FA in the anterior limb of the left internal capsule
(r =−0.395 p = 0.021, uncorrected, see Fig. 2). The other WM
tracts follow the same trend, albeit not in a statistically significant
manner (see online Supplementary S8 for correlation coefficients
and p values).

Furthermore, we performed several post-hoc analyses to check
for possible confounding effects of: (1) Whole-brain FA, (2) diag-
nosis of a psychotic disorder (3) switch in IQ test (4) head move-
ment in the scanner. All effects remained significant after
correcting for any of these variables (see online Supplementary

S9 and S10). Furthermore, we checked which of the other diffu-
sivity measures (MD/RD/AD) differed between the groups, the
results of which are shown in the online Supplementary S3.
Finally, to ensure that the results found were not influenced by
baseline IQ and the amount of time between the first measure-
ment and the second, baseline IQ and measurement interval (in
years) were included as covariates in the model. Including these
variables did not alter the results.

Discussion

We investigated microstructural properties of white matter in
relation to cognitive decline in 22q11DS patients. Our main find-
ing is that FA is increased in several major white matter regions in
those individuals with 22q11DS who displayed a cognitive decline
in the years preceding MRI acquisition, as compared to those
without cognitive decline. This finding confirms our hypothesis
that cognitive decline in 22q11DS is accompanied by alterations
in white matter microstructural properties.

Interestingly, our findings show overlap with previous studies
investigating white matter alterations related to 22q11DS.
However, the literature is not always consistent with the direction
of the effect, as both increased and decreased FA was reported in
22q11DS patients compared to healthy controls (for review see
Squarcione et al. 2013; Scariati et al. 2016). These studies show
decreased FA in 22q11DS in the superior longitudinal fasciculus
(Sundram et al. 2010), uncinate fasciculus (Kikinis et al. 2012;
Radoeva et al. 2012), and the cingulum bundle (Jalbrzikowski
et al. 2014; Kates et al. 2015). Increased FA is found in the corpus
callosum (Bakker et al. 2016), the anterior limb of the internal
capsule (ALIC)/anterior thalamic radiation (Perlstein et al.
2014; Bakker et al. 2016), the superior longitudinal fasciculus
(Simon et al. 2005), the bilateral inferior fronto-occipital fascic-
ulus and the right cingulum bundle (Bakker et al. 2016;
Olszewski et al. 2017) and the inferior longitudinal fasciculus
(Tylee et al. 2017). Interestingly, we show that the ALIC, cingu-
lum bundle and the superior longitudinal fasciculus have
increased FA in 22q11DS with cognitive decline. Our observation
suggests that cognitive decline may exacerbate white matter
abnormalities in 22q11DS.

Table 2. Corrected and uncorrected p values on the contrast ΔVIQ

WM Region t Sig. FDR corrected

ALIC L −3.187 (32) 0.003 p < 0.05

PLIC L −3.561 (32) 0.001 p < 0.025

RLIC L −3.433 (32) 0.002 p < 0.025

CGC R −2.766 (32) 0.009 p < 0.05

CGC L −3.091 (32) 0.004 p < 0.05

SLF R −2.800 (32) 0.009 p < 0.05

SLF L −3.544 (32) 0.001 p < 0.025

SFO L −2.862 (32) 0.007 p < 0.05

Sig, significant value, 2-tailed; ALIC L, anterior limb of the internal capsule, left; PLIC L,
posterior limb of the internal capsule, left; RLIC L, rentrolenticular part of the internal
capsule, left; CGC R; cingulum bundle, around cingulate gyrus, right; CGC L, cingulum
bundle, around cingulate gyrus, left; SLF R, superior longitudinal fasciculus, right; SLF L,
superior longitudinal fasciculus, left; SFO L, superior fronto-occipital gyrus, left; df, degrees
of freedom; FDR, false discovery rate.
This table displays the corrected and uncorrected p values of the comparison of FA in the
corresponding regions between 22q11DS patients showing a verbal cognitive decline to
22q11DS patients without verbal cognitive decline.
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Recently, a study comparing 22q11DS patients to subjects at
UHR for developing psychosis reported higher FA in the corpus
callosum and the anterior thalamic radiation in 22q11DS patients
(Bakker et al. 2016). However, decreased FA in the cingulum bun-
dle and left inferior longitudinal fasciculus was reported in
22q11DS patients with psychotic symptoms compared to
22q11DS patients without psychotic symptoms (Padula et al.
2017; Roalf et al. 2017). This suggests that psychosis onset in
22q11DS may be associated with a complex pattern of alterations
in the white matter microstructure. Our findings may add to the
existing literature that cognitive decline in 22q11DS is an import-
ant preclinical risk factor implicated in white matter alterations,
which are at least partly also observed after psychosis onset.

Furthermore, our findings are consistent with several studies in
UHR samples reporting increased FA compared to healthy con-
trols (Hoptman et al. 2008; Bloemen et al. 2010; O’Hanlon
et al. 2015; de Leeuw et al. 2017). Specifically, we found that
FA was both globally and locally increased and that local WM
regions overlap with WM tracts found to be affected in schizo-
phrenia and individuals with 22q11DS and psychosis. These
regions include the cingulum bundle the superior longitudinal
fasciculus, the left internal capsule and fronto-occipital fasciculus
(Fitzsimmons et al. 2013). However, decreased FA, or absence of
case-control differences are also reported (Hoptman et al. 2008;
Peters et al. 2008; 2010; Karlsgodt et al. 2009; Clemm Von
Hohenberg et al. 2014; Samartzis et al. 2014). Interestingly, the
mean age of the high-risk samples reporting decreased FA in
UHR (or no difference) is 20.79 years of age (weighted for sample

size) (Hoptman et al. 2008; Peters et al. 2008, 2009, 2010;
Bloemen et al. 2010; Carletti et al. 2012; Clemm Von
Hohenberg et al. 2014), whereas the mean age of the samples
reporting increased FA in UHR is 17.34 (17.4 including the cur-
rent study) years of age (Hoptman et al. 2008; Bloemen et al.
2010; O’Hanlon et al. 2015). In addition, one study reporting
decreased FA in UHR (mean age = 17.41) described a
group-by-age interaction, demonstrating increased FA values in
patients below the age of twenty (Karlsgodt et al. 2009). Of
note, the current sample falls in the same age-range (M = 17.8
S.D. = 3.2).

Studies of typical white matter development indicate that FA
increases from childhood to puberty, plateaus at early adulthood
and decreases in later adulthood (Schmithorst & Yuan, 2010;
Lebel et al. 2012; Krogsrud et al. 2016). Evidence for this pattern
was recently presented in a review looking into typical and atyp-
ical brain development (Dennis & Thompson, 2013).
Interestingly, in three studies this downwards slope in adulthood
was more pronounced in schizophrenia patients (Mori et al. 2007;
Kochunov et al. 2013; Cropley et al. 2017). The regression lines of
the association between FA and age, corresponding to schizophre-
nia patients and healthy controls, intersected between the ages of
20–30 (Mori et al. 2007; Kochunov et al. 2013; Cropley et al.
2017), suggesting that before the age of 20, not lower, but higher
FA may be expected in patients developing schizophrenia. This
finding suggests that during adolescence, increased FA may reflect
a vulnerability to develop psychosis (as was suggested by
O’Hanlon et al. 2015) and subsequently, decreased FA at a higher

Fig. 1. Transverse sections of the brain showing WM regions where FA is higher in decline v. no decline.

Fig. 2. Association between FA in ALIC and ΔVIQ. ALIC, anterior limb of the internal capsule, left; FA, fractional anisotropy; Horizontal axis, ΔVIQ mean change per
individual per year, negative values indicate decline; Vertical axis, unstandardized residuals of FA values where effects of age and gender are regressed out.
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age may be the result of accelerated white matter ageing in schizo-
phrenia patients. Tentative evidence suggests that this model may
also apply for the trajectory of schizophrenia in individuals with
22q11DS (Jalbrzikowski et al. 2014). In this study, we showed
an interaction between FA and cognitive decline, but not a three-
way interaction with psychosis. This may be due to our limited
sample size, as the current study is a subset of a larger sample
in which cognitive decline was found to predict psychosis onset
(Vorstman et al. 2015). Furthermore, the interaction between
FA and cognitive decline was observed in white matter tracts
often found to be implicated in schizophrenia. Therefore,
although our finding of increased FA in 22q11DS patients with
cognitive decline does not provide direct evidence, it is consistent
with the accelerated ageing/early maturation theory. Based on our
observations we speculate that cognitive decline in combination
with increased FA reflects a vulnerability marker of schizophrenia
(see Fig. 3; Kirkpatrick et al. 2008). Studies with a larger sample
size would be needed to find further supporting evidence for
this interpretation of our findings.

Our study has several limitations. Some of the subjects in our
study were already diagnosed with a psychotic disorder (four with
cognitive decline, and two without cognitive decline). Removing
these subjects from the sample did not alter the results. In fact,
some ROIs showed a stronger effect, suggesting that our findings
may pertain in particular to the prodromal phase of psychosis
(online Supplementary S9).

Several neurobiological processes may explain changes in FA.
For example, crossing fibre architecture may increase FA values
due to degeneration of WM bundles in one of the crossing fibres
(De Santis et al. 2014). To further investigate the neurobiological
process underlying alterations in FA, complementary white mat-
ter measures such as magnetization transfer imaging are needed
(Mandl et al. 2015).

The cross-sectional nature of our MRI data precluded the
investigation of individual FA trajectories in relation to individual
IQ trajectories, nor could we investigate whether the group show-
ing cognitive decline shows a higher transition rate to psychosis
later in life. Longitudinal assessment of the interactions between
white matter microstructure, IQ and psychosis onset (in
22q11DS as well as in the general population) may allow to
more comprehensively investigate how cognitive decline and
white matter alterations are implicated in psychosis onset.

Furthermore, movement in the scanner could influence the
diffusion tensor model resulting in attenuated or exaggerated
FA values depending on the tissue measured (Ling et al. 2012).
However, including translation and rotation movement para-
meters in the regression model did not alter the findings (see
online Supplementary 10).

Due to the longitudinal IQ assessment, within-subject differ-
ences existed in the IQ tests used pertaining to the children’s or
adult version of the Wechsler Intelligence Scales. It has been
reported that the transition between the two scales may be accom-
panied by a slight increase/decrease in several scores (Usner &
Fitzgerald, 1999). However, our groups did not significantly differ
in the distribution of those who were tested twice with the same
test and those who switched between different tests. Moreover,
including a dichotomous variable (dividing the sample in a
group with a switch in IQ test and in a group without a switch)
in the regression model did not alter the results.

Lastly, one could argue that cognitive decline is not clinically rele-
vant when there is only a small negative difference between T− 1 en
T0.However,whendividing the samplewith amore clinically relevant
cut-off score of 5 percentile points decline, all regions of the left
internal capsule and the left superior longitudinal fasciculus showed
significantly higher FA values in the decline group compared to
the non-decline group at uncorrected p < 0.05 (see online
Supplementary S11). In addition,weobserved a significant correlation
between the degree of decline per year and FA. This suggests that the
effect is not solelya group-effect,which could arguably be confounded
by the choice of assuming one percentile point as true decline.

In this study, we show that alternate IQ trajectories are asso-
ciated with differences in white matter microstructure in patients
with 22q11DS. This finding withstood correction for multiple
comparisons and could not be attributed to variation in gender,
age, baseline intellectual ability, the interval between IQ measure-
ments, psychiatric status, head motion or type of IQ test. The
overlap between the current results of white matter regions impli-
cated in cognitive decline in 22q11DS and previously reported
white matter regions involved in psychosis onset in 22q11DS, sug-
gests that cognitive decline may be crucially implicated in medi-
ating psychosis risk in 22q11DS.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291717003142

Fig. 3. Hypothetical, simplified, model of accelerated
ageing. The curve with its peak on the right side of
the vertical line in the figure indicates white matter
development in the healthy population. The curve
with its peak on the left side indicates white matter
development in schizophrenia patients. This curve is
shifted to the left assuming that white matter develop-
ment in schizophrenia peaks earlier and decreases earl-
ier. Diagnosis of schizophrenia is indicated by the
horizontal line in the bottom of the figure. For obvious
reasons, the majority of studies on schizophrenia report
on data collected after diagnosis (i.e. right area) finding
decreased FA. The current study investigated white mat-
ter alterations before diagnosis (i.e. the left area) which
may explain the observed increased FA in those with
cognitive decline compared to those without.
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