
Math. Struct. in Comp. Science (1999), vol. 9, pp. 253–286. Printed in the United Kingdom

c© 1999 Cambridge University Press

A specification logic for concurrent object-oriented

programming

G. D E L Z A N N O†, D. G A L M I C H E‡ and M. M A R T E L L I§

† Max Planck Institut für Informatik, Im Stadtwald, Gebaude 46.1

66123 Saarbrücken, Germany.

Email: delzanno@mpi-sb.mpg.de

‡LORIA UMR 7503 - UHP Nancy 1, Campus Scientifique - B.P. 239

54506 Vandœuvre-lès-Nancy Cedex, France.

Email: galmiche@loria.fr

§Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova,

Via Dodecaneso, 35, I-16146 Genova, Italy,

Email: martelli@disi.unige.it

Received 10 December 1997; revised 12 December 1998

This paper focuses on the use of linear logic as a specification language for the operational

semantics of advanced concepts of programming such as concurrency and

object-orientation. Our approach is based on a refinement of linear logic sequent calculi

based on the proof-theoretic characterization of logic programming. A well-founded

combination of higher-order logic programming and linear logic will be used to give an

accurate encoding of the traditional features of concurrent object-oriented programming

languages, whose corner-stone is the notion of encapsulation.

1. Introduction

This paper focuses on the use of linear logic as a language to specify advanced concepts

of programming, and, in particular, to specify the salient aspects of concurrent object-

oriented programming.

Our approach is based on the refinement, which, from the original logic defined by

Girard in Girard (1987), led to executable linear logic specification languages such as LO

(Andreoli and Pareschi 1991) and Lolli (Hodas and Miller 1994). From a general point

of view, such a refinement is based on specific operational interpretations of formulae,

sequents and proofs. From a technical point of view, it consists of a proof theoretical

analysis of the underlying logic aimed at the definition of classes of proofs that correspond

to the operational view taken into consideration. In a sense, these are the ideas behind

the design of traditional logic programming languages (Miller et al. 1991).

† At the time of submission the author was a member of Dipartimento di Informatica e Scienze

dell’Informazione, Università di Genova.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 254

The refinement process will be presented through a classification of the different

approaches in the literature. Such a classification is based on the following points: the

set of connectives used as primitive constructs of the specification language (for example,

the different fragments used in ACL (Kobayashi and Yonezawa 1994a), LO (Andreoli

and Pareschi 1991), Lolli (Hodas 1994), and so on); the level of non-determinism of

the proof-search procedure (for example, canonical proofs (Galmiche and Perrier 1994b),

uniform proofs (Hodas 1994), and so on); the form of sequents (for example, single and

multi-conclusion). In the course of this paper we shall explain which considerations led

to the choice of the fragments that were studied in the literature.

To achieve our main goal, that is, to study concurrent objects in the linear logic

setting, we shall adopt a particular interpretation of sequents and proofs, that is, uniform

proofs as computations, as proposed by Miller in Miller (1996) using the language Forum,

a presentation of full higher-order linear logic. This choice is made on the basis of

previous work on extensions of logic programming in which the logical connectives are

given a precise operational interpretation in terms of search directives, see, for example,

Miller (1989a), Miller (1989b), Andreoli and Pareschi (1991), Hodas and Miller (1994)

and Miller (1996). In a sense, Forum (Miller 1996) can be viewed as an intermediate

refinement step to achieve a readable form of linear logic specification.

Our final refinement step is to consider a specific sublanguage, namely Ehhf(Delzanno

1997; Delzanno and Martelli 1998), by which we emphasize the view of proofs as state-

based computations (essential in the object-oriented paradigm). The restriction on the form

of formulae adopted in Ehhf allows us to define executable linear logic programs with

a semantics dictated by the specialized proof system of Ehhf . This restriction represents

a good compromise between the expressiveness of the logic and the efficiency (and rea-

dability) of the proof-search process. Following the outlines given in our previous works

(Delzanno and Martelli 1995; Boudinet and Galmiche 1996), we shall illustrate all of these

points by presenting an accurate encoding of the most common features of concurrent

object-oriented programming. More specifically, we shall focus on encapsulation, method

invocation, inheritance and overriding at the object-level. Concurrency at the execution

level will be modelled in a natural way by assigning an interleaving semantics to the

execution of methods.

As will become clear from the discussion in the first part of the paper, other fragments

of linear logic can be applied in this context. For instance, thanks to the strong symmetry

of linear logic it is possible to design dual encodings in which sequents and proofs assume

different operational interpretations, see, for example, the approach based on multi-

conclusion intuitionistic linear logic in Boudinet and Galmiche (1996). In our opinion,

such flexibility is one of the main reasons to further inspect the potentiality of linear logic

and, more generally, of proof-theoretic approaches for the specification of the semantics

of programming languages.

1.1. Contents of the paper

In Section 2 we present the basic notions of linear logic. In Section 3 we present various

sequent calculi for linear logic discussing their operational interpretation. In Section 4 we

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 255

briefly introduce the language Ehhf . In Sections 5 and 6 we present a specification of an

object-based concurrent calculus based on Ehhf . In Section 7 we compare our approach

with related works. Finally, in Section 8 we address some conclusions.

2. Linear logic and aspects of programming

Linear logic (LL) is a powerful and expressive logic connected to a variety of topics in

computer science (Alexiev 1994). From a proof-theoretical point of view, LL derives from

Classical Logic (CL) sequent calculus by eliminating the structural rules of weakening and

contraction. The result is a logic in which it is intuitively possible to treat formulae as

resources. Contraction and weakening are re-introduced in a restricted way, i.e., they can

be applied only to the subclass of formulae prefixed by the two modalities ! and ?.

The consequences of eliminating the structural rules are important for the formulation

of the logical rules: the additive and the multiplicative formulations of the system are no

longer equivalent. As a consequence, each CL connective is split into two LL connectives

(an additive and a multiplicative version). For instance,

— ∧ is split into & and ⊗
— ∨ is split into ⊕ and

..
...........
......................................

— ⊃ into ; and −◦
— true into > and 1
— false into 0 and ⊥.

Negation, that is, ⊥, is inductively defined on the structure of the formulae, as illustrated

in Appendix A. Beacause of its symmetry, the inference systems of LL can be given with

two equivalent formulations: one with one-sided sequents ` ∆, the other with two-sided

sequents Γ ` ∆ (see Appendix A). Here, ∆ and Γ are multisets of formulae.

Intuitionistic linear logic (ILL) (Schellinx 1991) is usually defined by restricting the

right-hand side of sequents to an empty or a singleton multiset. However, as in the

classical case, multi-conclusion formulations of ILL with special restrictions on some of

the rules, for example, full intuitionistic linear logic (FILL) (Hyland and de Paiva 1993)

exist.

LL is often referred to as a logic for concurrency (see, for example, Meseguer (1991) and

Abramsky (1993)). The reason for this can be illustrated by considering the process-view of

Kobayashi and Yonezawa (1994a). Their approach is based on an interpretation whereby

formulae are viewed as processes, and connectives as algebraic operations on processes:
..

...........
...................................... represents the parallel composition, whereas ⊥ (in combination with ⊗) implements

message passing. The rules shown in Appendix A assign a natural operational semantics

to this interpretation.

As an example, let us consider the following formula: m
..

...........
...................................... (m⊥ ⊗ P1)

..
...........
...................................... P2. Here,

m is viewed as a process that halts its execution after having sent the message m, and

(m⊥ ⊗ P1) is viewed as a process waiting for the message m and running in parallel with

P2. Using the rules shown in Appendix A, the sequent ` m ..
...........
...................................... (m⊥ ⊗ P1)

..
...........
...................................... P2 can be

simplified via the
..

...........
......................................
R rule into ` m, (m⊥ ⊗ P1), P2 and then via the ⊗R rule into ` P1, P2

(note that ` m,m⊥ is an axiom). Thus, the resulting (partial) proof can be interpreted in

terms of process reduction.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 256

With this in mind, let us now adopt a fragment that does not include the connective ⊗,

but does include the connective −◦. By the duality of the linear connectives, the receiver

can be rewritten as P1 −◦ m. However, we need a two-sided sequent formulation, namely

P1 −◦ m ` m, P2 in order to have the same operational behaviour as before.

Through the example, we can see the importance of the interaction within the logical

fragment, the use of specific formulae and sequents to specify computational aspects, and

the proof-search strategy. Each choice represents a compromise between the expressiveness

of the fragment and the efficiency of the corresponding proof-search strategy. In the

following section we shall give a brief overview of the different components involved in

this process.

3. Proof-theoretic analysis

The formalization of a logic based on sequent calculus provides us with better compre-

hension of the operational aspects of proof construction. In the meantime, sequent calculi

provide a powerful organization of the knowledge specified through the formulae of the

logic language taken into consideration. Some ideas concerning these two aspects when

dealing with LL are given in the rest of this section.

3.1. Sequents and proofs

Though the basic use of sequents is to express theorems of the logic taken into considera-

tion, they can be given other interpretations. For instance, under the previously mentioned

formulae-as-processes view of Kobayashi and Yonezawa (1994a), one-sided sequents can be

used to specify configurations of processes. By contrast, in Lincoln and Saraswat (1993)

and Perrier (1995) a sequent is viewed as a reduction of processes (that is, P ` P ′ is

interpreted as P reduces to P ′). This can be achieved in a single-conclusion setting as in

fragments of ILL (Perrier 1995) or in a multi-conclusion setting as in fragments of FILL

(Boudinet and Galmiche 1996).

In the context of logic programming, one usually considers sequents of the form P ` G,

where the set of formulae P represents the program and the formula G represents the

goal to be satisfied. In the linear logic programming setting, further refining the sequent

syntax in order to take into account the notion of bounded-use formulae comes naturally.

For example, as will be explained later, the Forum sequents (Miller 1994) have the form

Σ : Γ1; Γ2 ` ∆; Υ, where Σ is a signature, and Γ1,Υ and Γ2,∆ are, respectively, the re-

usable and bounded-use context. Such refinements are motivated by the need to provide

simple and readable judgements that take into account the operational interpretation one

keeps in mind.

We shall see that the choice between single-conclusion sequents, for instance in intu-

itionistic linear logic (ILL) (Hodas and Miller 1994), and multiple-conclusion sequents, for

instance in LL (Miller 1994) and in FILL (Hyland and de Paiva 1993), has consequences

both at the specification and at the proof-search levels.

In a sense, the operational interpretation of sequents makes the difference between

theorem proving and logic programming. Both theorem proving and logic programming

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 257

can be viewed as the process of constructing the proof of a sequent from the bottom up

(i.e., from the sequent to be proved). As mentioned in Hodas and Polakow (1996), the

line between theorem provers and logic programming systems is drawn by what sort of

proof procedure is used to prove the goal formulae ∆ from Γ. In theorem proving, any

‘reasonable’ procedure is a good choice. On the other hand, in logic programming the

programmer must be able to clearly understand the behaviour of a program. Thus, the

proof procedure has to be simple, predictable and goal-directed. In other words, it must

reflect the operational interpretation assigned to formulae and sequents.

3.2. Proof-search in linear logic

There are many works devoted to proof-search in linear logic and some of its sub-

fragments. All of these proposals are based on the non-permutability results of the LL

inference rules in the corresponding sequent calculus. Examples are given by the proof-

search strategies defined in Galmiche and Perrier (1994a), Lincoln and Shankar (1994)

and Tammet (1994), and by the classes of proofs defined in Andreoli (1992), Galmiche

and Perrier (1994b), Hodas (1994) and Pym and Harland (1994), that are complete with

respect to the provability.

Let us analyze how we can naturally design and justify such strategies and proofs

for a given logical fragment. For this purpose, we recall a general, two-step, method

applied to LL and to other fragments in Galmiche and Perrier (1994a) and Galmiche

and Perrier (1994b). The first step consists in studying the permutability of the inference

rules and in analyzing the possibilities of inference movements (by permutability) in a

proof. This can be done systematically by an exhaustive case analysis. After establishing a

given strategy (for example, bottom-up or top-down), the second step consists in defining

a notion of (cut-free) normal proof, which reflects the strategy we are considering, i.e., in

which we impose some order in the application of the rules. The degree of non-determinism

left in this phase depends on the operational interpretation assigned to the proofs (i.e.,

it can reflect the non-determinism of the object-level). Further constraints on the proof-

search (for example, goal-directed proofs) can lead to different classes of normal proofs.

Normal proofs are significant only if they can be proved complete with respect to the full

class of proofs of the fragment taken into consideration. As an example, let us consider the

design of canonical proofs in LL as defined in Galmiche and Perrier (1994b). Starting from

the one-sided sequent calculus (see Appendix A), we study the inference permutability and

the possible movements of inferences in a proof. If we select a bottom up search strategy,

the set of inferences that can be moved up in a proof is I↑ = {⊗,⊕1,⊕2, c?, w?, ?, ∃},
whereas the set of inferences that can be moved down is I↓ = {..

...........
...................................... ,&, ∀,⊥}.

Canonical proofs result from imposing an order in the application of the rules according

to the two previously defined sets.

Definition 3.1. A canonical proof in (full) LL for bottom-up proof-search is a proof without

cuts, with weakening and contraction reduction, where, for any intermediate conclusion,

we first apply the c? rule, then the ! rule, then a rule of I↓ and, finally, a rule of I↑
(Galmiche and Perrier 1994b).

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 258

This proof normalization includes a reduction of the possible interactions between

weakening and contraction rules. Canonical proofs are complete with respect to provability

in linear logic, that is, if a sequent s is provable, then it has a canonical proof. This definition

illustrates the generality of the above methodology for a given logic quite well. To move

to a more concrete framework, we need to select a particular interpretation of sequents

and a special proof-search strategy. Therefore, in the following section we shall adopt the

so-called proofs as computations interpretation in the context of linear logic programming.

3.3. Proof-search as computation

As already mentioned in the previous section, after a preliminary proof-theoretic anal-

ysis, it is important to establish a strategy that is in agreement with the operational

interpretation assigned to sequents and proofs. An important example is goal-directed

proof-search, which is at the basis of logic programming. This strategy is reflected in the

notion of uniform provability, originally introduced in the case of intuitionistic (classical)

logic in Miller et al. (1991). Uniform proofs are suitable for assigning a clear operational

meaning to logical connectives in terms of search control directives. Goal-directed proof

construction strongly depends on the form of sequents considered in the calculus, i.e.,

single or multi-conclusion calculi.

3.3.1. Single-conclusion sequents. As customary in proof-theoretic characterizations of

logic programming, a sequent P ` G is viewed as the instantaneous configuration of

an ideal interpreter, where the formulae of P represent the current program and the for-

mula G represents the current goal to be satisfied. Goal-directed provability is formalized

by the class of uniform proofs defined as follows:

Definition 3.2. A uniform proof is a cut-free proof in which every occurrence of a sequent

whose right-hand side is non-atomic is the conclusion of a right-introduction rule (Miller

et al. 1991).

Thus, in this setting, left-rules can be applied only after the right-hand side of a sequent

has been reduced to a singleton consisting of an atomic formula. This definition has been

extended to the case of linear logic for particular subclasses of formulae (Hodas and

Miller 1994; Pym and Harland 1994). The resulting languages, for example, Lolli (Hodas

and Miller 1994) and Lygon (Harland et al. 1996), provide new programming constructs

with respect to traditional extensions of logic programming based on intuitionistic logic

such as λProlog (Nadathur and Miller 1988).

To complete the overview of the methodology used to define special purpose sublogics,

we will briefly analyze the logic introduced in Hodas and Miller (1994).

Example 3.1. (Analysis of a fragment of ILL) As pointed out in Hodas and Miller (1994),
the design of Lolli was guided by operational considerations: to extend hereditary Harrop
formulae with resource management by introducing new connectives, namely −◦ and ⊗,
and preserving uniform provability. The fragment proposed in Hodas and Miller (1994)
is defined by the following grammar:

D ::= > | A | D&D | G −◦ A | ∀x.D.
G ::= > | A | G&G | G ⊗ G | G ⊕ G | D −◦ G | !D−◦ G | !G | ∃x.G | ∀x.G.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 259

A, !Γ ` A id′
Γ1, !Γ ` G1 Γ2, !Γ ` Γ2

Γ1,Γ2, !Γ ` G1 ⊗ G2

⊗′R
Γ ` G

G−◦ A,Γ ` A −◦′L
R,Γ ` G

Γ ` R −◦ G
−◦R

A,Γ ` G
A&B,Γ ` G &L

B,Γ ` G
A&B,Γ ` G &L

Γ ` G1 Γ ` G2

Γ ` G1&G2

&R

Γ ` G1

Γ ` G1 ⊕ G2

⊕R
Γ ` G2

Γ ` G1 ⊕ G2

⊕R

Γ−◦ A,Γ1,Γ2 ` > >′R
A, !A,Γ ` G
!A,Γ ` G !′L

!Γ ` A
!Γ `!A

!R

A[t/x],Γ ` G
∀xA,Γ ` G ∀L

Γ ` G
Γ ` ∀xG

∀R
Γ ` A[t/x]

Γ ` ∃xA
∃R

Fig. 1. The uniform proof system for Lolli (Hodas and Miller 1994).

The sequents have the specific form !Γ,∆ ` G, where Γ is a set of D-formulae, ∆ is a

multiset of D-formulae and G is a goal, that is, a G-formula.

By the subformula property, we can limit our analysis to the following logical rules:

R = {−◦L, id,&L, !L, c!L, w!L, ∀L,>R,⊗R,−◦R,&R,⊕R, ∀R, !R, ∃R}
We now study the permutability properties of the R rules (see Appendix B). Analysis

of the possible movements of inference rules leads to the following considerations. First

of all, being in a single-conclusion setting, two right rules are never in permutation

position. Moreover, since a resource cannot have the form !D, the inference of type !R
is always permutable with inference of type —◦L,&L and ∀L. As a consequence, the set

of inferences I↓ of the considered fragment that can be permuted downward consists of

{−◦R,&R, ∀R, ∃R,⊕R, c!L}, whereas the set I↑ of inferences that can be permuted upward

consists of {⊗R,⊕R, ∃R,−◦L,&L, !L, w!L, ∀L}. The inferences of !R type can be moved down

by jumps but not because of permutability results. Note that, if we want to establish a

particular order in the application of the rules, we still have various choices (for example,

for ⊕R). However, except for the c!L and ⊗R inferences, it appears that the right (left)

rules can easily be moved down (up). Having established such specific movements it is

now possible to move the ⊗R inferences down easily, due to the permutability with the left

rules. This order corresponds to the idea of uniform provability defined at the beginning

of this section.

In Hodas and Miller (1994), a proof that uniform provability (in the fragment taken

into consideration) is complete with respect to provability in ILL is given. Let us mention

that the permutability results are also used to define a variant of the initial system, in

which all proofs are necessarily uniform (see Figure 1). Thus, the new sequent calculus

incorporates the operational interpretation underlying uniform provability. The reader

may refer to Pym and Harland (1994) for an accurate analysis of the maximal fragments

of LL that are complete with respect to goal-directed provability.

As mentioned in Section 2, multi-conclusion calculi provide a natural view of con-

currency at the logical level. Thus, the logical framework we are looking for should

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 260

incorporate features from the extensions described in this section and features from

multi-conclusion logics. We will discuss this point in the following section.

3.3.2. Multi-conclusion sequents. According to the logic programming interpretation of

sequents and proofs, being in a multi-conclusion setting provides a new dimension that

increases the expressiveness of traditional logic programming languages. Let us consider a

two-sided sequent Γ ` ∆. In this setting the formulae of Γ represent the current program,

whereas the formulae of ∆ represent a multiset of goals to be proved. Thus, in the

extended setting we can encode the process-view of Section 2, as suggested in Andreoli

and Pareschi (1991) and Miller (1993).

Being in a multi-conclusion setting leads to an extended notion of goal-directed prov-

ability (Andreoli 1992; Miller 1994). The problem encountered by such an extension is well

explained in Miller (1994), where the higher order specification logic Forum is presented.

Forum (Miller 1994; Miller 1996) is based on a simply typed lambda calculus pre-

sentation of LL. The connectives are constants with functional type, for example,

& : o → o → o, with o representing the type of formulae. Higher-order quantifica-

tion is defined through a family of constants ∀τ having the type (τ → o) → o for each

type τ. A quantified formula is then expressed by the expression ∀τ(λx.F). These aspects

can be hidden when considering a proof-theoretic presentation of the logic. However, it

is important to remember that λ-terms in normal form can occur inside Forum sequents

as well as substitution terms in the ∀r rule. The language is based on a fragment of LL

with the following set of connectives: −◦, ⇒, &,
..

...........
...................................... , ⊥, >, ? and universal quantification.

For the sake of simplicity, we shall omit the type in the quantification when it is clear

from the context. The intuitionistic implication A ⇒ B is defined here as (!A −◦ B). In

the rest of the paper we shall also use A ◦− B and A ⇐ B as an alternative notation for

B −◦ A and B ⇒ A, respectively. Using the logical equivalences in Appendix A, it is easy

to see that by proper combinations of Forum connectives it is possible to express all the

remaining ones.

Forum sequents are the multi-conclusion version of the Lolli-ones. They have the

following form: Σ : Γ; ∆ ` A, F,Ω; Υ, where, Σ is a signature containing all the constants

appearing in the sequent (Miller 1994). The two sides are divided by ‘;’ in two parts in

order to distinguish between the re-usable formulae and bounded-use formulae. In fact,

the formulae in the multiset Γ are implicitly prefixed by ‘!’, whereas the formulae in the

multiset Υ are implicitly prefixed by ‘?’. Finally, the bounded context on the right consists

of a list of atomic formulae A, a compound formula F and a multiset of formulae Ω.

Intuitively, A is the result of the simplification of the connectives on the right-hand side

of sequents. We can also give an equivalent formulation in which the right-hand side is

simply a multi-set of formulae. The LL interpretation of such sequents is the following:

!(&iCi) ⊗ (⊗iDi) → (
..

...........
......................................
iAi)

..
...........
...................................... F

..
...........
...................................... (

..
...........
......................................
iGi)

..
...........
...................................... (⊕iHi), where Ci ∈ Γ, Di ∈ ∆, Ai ∈ A, Gi ∈ Ω,

Hi ∈ Υ. Using the permutability properties of Forum rules, it is possible to define a

specialized proof system based on the following extended notion of uniformity (Miller

1996).

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 261

Definition 3.3. A cut-free proof δ is uniform if for every subproof γ of δ and for every

non-atomic occurrence B in the right-hand side of the end-sequent of δ, there is a proof π

that is equal to γ up to a permutation of inference rules and is such that the last inference

rule in π introduces the top-level logical connective of B (Miller 1994).

Γ; ∆
B−→A; Υ

Γ; ∆, B −→A; Υ
(decide∆)

Γ, B; ∆
B−→A; Υ

Γ, B; ∆ −→A; Υ
(decideΓ)

Γ; ∆ −→A, B;B,Υ

Γ; ∆ −→A;B,Υ
(decide?)

Γ;6
A−→ A; Υ

(initial1)

Γ; ∆ −→A,>,Ω; Υ
(>r)

Γ;6
A−→6;A,Υ

(initial2)

Γ;6
⊥−→6; Υ

(⊥l) Γ; ∆ −→A,Ω; Υ

Γ; ∆ −→A,⊥,Ω; Υ
(⊥r)

Γ;B −→6; Υ

Γ;6
?B−→6; Υ

(?l)
Γ; ∆ −→A,Ω;B,Υ

Γ; ∆ −→A, ?B,Ω; Υ
(?r)

Γ; ∆
Bi−→ Ω; Υ i ∈ {1, 2}

Γ; ∆
B1&B2−→ A; Υ

(&l)
Γ; ∆ −→A, B,Ω; Υ Γ; ∆ −→A, C,Ω; Υ

Γ; ∆ −→A, B&C,Ω; Υ
(&r)

Γ; ∆1
B−→A1; Υ Γ; ∆2

C−→A2; Υ

Γ; ∆1,∆2
B

..
...........
...................................... C−→ A1+A2; Υ

(
..

...........
......................................
l)

Γ; ∆ −→A, B, C,Ω; Υ

Γ; ∆ −→A, B ..
...........
...................................... C,Ω; Υ

(
..

...........
......................................
r)

Γ; ∆1
B−→A1; Υ Γ; ∆2

C−→A2; Υ

Γ; ∆1,∆2
B−◦C−→A1+A2; Υ

(−◦l) Γ; ∆, B −→A, C,Ω; Υ

Γ; ∆ −→A, B −◦ C,Ω; Υ
(−◦)

Γ;6 −→ B Γ; ∆
C−→A; Υ

Γ; ∆
B⇒C−→ A; Υ

(⇒l)
Γ, B; ∆ −→A, C,Ω; Υ

Γ; ∆ −→A, B ⇒ C,Ω; Υ
(⇒)

t:τ is a Σ-term Γ; ∆
B[t/x]−→ A; Υ

Γ; ∆
∀τx:τ.B−→ A; Υ

(∀l)
Γ; ∆ −→y:τ,Σ A, B[y/x],Ω; Υ

Γ; ∆ −→A, ∀xτ.B,Ω; Υ
(∀r)

Fig. 2. The Forum proof system: Υ denotes a multiset of atomic formulae.

The resulting proof system is shown in Figure 2. In Miller (1996), Forum has been

proved to be equivalent to the system of Andreoli (1992), and thus to full linear logic.

According to the previous definition of uniformity, Forum can be considered an Abstract

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 262

Logic Programming Language (Miller et al. 1991). Some examples of applications of

Forum as a high-level specification language for different programming paradigms can

be found in Chirimar (1995), Delzanno and Martelli (1995), Guglielmi (1995) and Hodas

and Polakow (1996). As mentioned in Hodas and Polakow (1996), further refinement

seems necessary before considering Forum as a logic programming language. The main

problem with this approach is that the extended notion of uniformity seems too loose to

obtain readable and predictable proofs. Thus, the question of how to program with such

a specification logic naturally arises. To answer it, in the following section we restrict

ourselves to a special fragment of Forum.

4. Towards executable specifications

In this section we describe the main features of the logic of extended hereditary Harrop

formulae (Delzanno 1997; Delzanno and Martelli 1998), a fragment of Forum that can

be used as an executable specification language.

4.1. Syntax of the language Ehhf
The logic of Ehhf is based on the fragment of linear logic connectives −◦, ⇒, &,

..
...........
...................................... , ⊥, >,

and universal quantification. Forum formulae are further restricted by the production D
(clauses) and G (goals) of the following grammar:

D ::= D&D | ∀x.D | H ◦− G | G ⇒ D | H.

G ::= G&G | G ..
...........
...................................... G | ∀x.G | D ⇒ G | D −◦ G | Ar | ⊥ | >.

H ::= H ..
...........
...................................... H | Ar.

Here, Ar is any rigid atomic formula with type o (that is, Ar = (f t1 . . . tn) with f ∈ Σ a

constant symbol). Ehhf-sequents have the following form: Γ; ∆ −→Σ Ω or Γ; ∆
D−→Σ A,

where Γ is a set of D-formulae, ∆ is a multiset of D-formulae, Ω is a multiset of G-

formulae, D is a D-formula and A a multiset of atomic formulae. All the formulae are

defined over the signature Σ. Intuitively, a sequent denotes an instantaneous configuration

of the computation denoted by its proof. The left-hand side is the current program (with

unbounded and bounded-use clauses) and the right-hand side is the current multiset of

goals to be executed.

The set of Forum rules can be specialized to the type of sequents taken into consid-

eration, as shown in Figure 3. All the rules are modulo λ-conversion. Note that the left

rules collapse into one single backchaining rule, namely bc. In such a rule 〈D〉 represents

the set of instances of a multiset ∆ of D-clauses over a signature Σ. More precisely,

〈∆〉 is the smallest set of D-clauses such that: 〈∆〉 =
⋃
D∈∆〈D〉; 〈D1&D2〉 = 〈D1〉 ∪ 〈D2〉;

〈∀τx.D〉 = 〈{D[t/x] | t : τ is a Σ-term}〉; and 〈A〉 = {A} in all the other cases.

4.2. Expressiveness of the language

Horn clauses and hereditary Harrop formulae are a particular case of Ehhf , that is, they

can be embedded into Ehhf while preserving provability. Horn clauses can be expressed by

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 263

Γ;6
D−→Σ A

initial

(A1
..

...........
...................................... . . .

..
...........
...................................... An) ∈ 〈D〉, {A1, . . . , An} ≡ A.

Γ, D; ∆
D−→Σ A

Γ, D; ∆ −→Σ A
decide1

Γ; ∆
D−→Σ A

Γ; ∆, D −→Σ A
decide2

Γ; ∆ −→Σ >,Ω
>r

Γ; ∆ −→Σ Ω

Γ; ∆ −→Σ ⊥,Ω
⊥r

Γ; ∆ −→Σ′ A[y/x],Ω

Γ; ∆ −→Σ ∀τx.A,Ω
∀r

Γ; ∆ −→Σ A1, A2,Ω

Γ; ∆ −→Σ A1
..

...........
...................................... A2,Ω

..
...........
......................................
r

B,Γ; ∆ −→Σ A,Ω

Γ; ∆ −→Σ B ⇒ A,Ω
⇒r

Γ;B,∆ −→Σ A,Ω

Γ; ∆ −→Σ B −◦ A,Ω
−◦r

Γ; ∆ −→Σ A1,Ω Γ; ∆ −→Σ A2,Ω

Γ; ∆ −→Σ A1 & A2,Ω
&r

Γ; −→Σ G Γ; ∆ −→Σ B,A′

Γ; ∆
D−→Σ A,A′

bc

G⇒ (A1
..

...........
...................................... . . .

..
...........
...................................... An ◦− B) ∈ 〈D〉, {A1, . . . , An} =A.

Fig. 3. Ehhf-derived rules. In (∀r), y : τ 6∈ Σ and Σ′ = y : τ,Σ.

D-clauses of the form G⇒ A, where A is a rigid atomic formula and G is a goal formula

in one of the following forms: >, B1 & . . .& Bn, where the Bi’s are atomic formulae.

Hereditary Harrop formulae are obtained from the grammar in Section 4.1 by removing

the productions for the connectives
..

...........
...................................... ,−◦, and ⊥.

4.3. Computational view of proofs

Clauses can be rewritten as conjunctions D1& . . .&Dk of formulae in the following form:

∀ G1 & . . .& Gn ⇒ (A1
..

...........
...................................... . . .

..
...........
...................................... Am ◦− G), n, m > 1

where G and G1, . . . , Gn are goal formulae. Such clauses have the following intuitive oper-

ational meaning: if the goals G1, . . . , Gn can be proved, then the multiset A1, . . . , Am in the

right-hand side of the current sequent can be rewritten into G. This idea is formalized by

the backchaining rule (bc) in Figure 3. Note that, given a sequent s, there are several ways

of applying a rule D in a bc step to s. In practice, the non-determinism induced by the

bc rule is managed by the use of backtracking (that is, the possibility to roll back to a

choice-point).

As specified by the rule initial, a backchaining step over a clause D of the form

A1
..

...........
...................................... . . .

..
...........
...................................... An (that is, without body with respect to the nested implication ◦−) corresponds

to the conclusion of the computation with respect to a given property of the current state,

we want to observe. In fact, at this stage we observe the final state of the computation by

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 264

matching D with the right-hand side of the current sequent. The rule decide1 allows one

to use the clauses in a program Γ an unlimited number of times, whereas the rule decide2

removes the selected clause from the current context.

4.4. New types of goals

Goal formulae have a richer structure than goals in classical logic programming. For

instance, goals of the form G1
..

...........
...................................... G2 express the concurrency in the execution of the

subgoals G1 and G2 in a natural way. The two subgoals are, in fact, simultaneously

rewritten in the current multiset of goals to be proved. Linear implications of the form

D −◦ G allow one to enrich the current multiset of bounded-use clauses with a new one

(see rule −◦r). The newly introduced resource must be consumed during the rest of the

proof, i.e., it will be applied in a subsequent backchaining step. Here, we require D to

be a clause when such a goal is executed. In Delzanno and Martelli (1998), the authors

study a variation on the language in which variables of type o can occur in D-position

within the scope of a goal, and they prove that the resulting language is closed under

instantiation. We shall use this feature in the rest of the paper. The logical constant ⊥
can be used to remove resources from the right-hand side of sequents, for example, by

using a clause of the form A ◦− ⊥. Finally, a sequent containing > in the right-hand side

succeeds whatever formulae occur in the current bounded contexts. The other connectives

have the operational interpretation inherited by the logic of hereditary Harrop formulae

(Nadathur and Miller 1988). For instance, Miller (1989b) shows how to employ the side

condition of the rule ∀r to introduce a notion of data abstraction over components of the

current configuration.

4.5. Refinement of the syntax

In order to emphasize the computational view of proofs, we introduce a refined syntax

for sequents and clauses.

Sequents assume the following form: Γ; ∆ −→Σ Ω || Θ, where the right-hand side is

partitioned into two multisets: the operations, Ω, and the state atoms, Θ. State atoms are

nothing but atoms built upon a signature ΣR of state constructors established a priori. By

default, ΣR is contained in any signature Σ mentioned in the rest of this paper. We assume

that each atomic formula occurring on the right-hand side of a sequent is implicitly moved

into the current Θ. In the rest of this paper, we shall adopt a slightly different syntax for

clauses, namely

C1 & . . . & Cn︸ ︷︷ ︸
Cond

>> A1 | . . . | Am︸ ︷︷ ︸
Ops

|| S1 | . . . | Sk︸ ︷︷ ︸
State

--> Body || Z1 | . . . | Zp︸ ︷︷ ︸
New State

Such an expression will denote the corresponding Ehhf-clause:

C1 & . . . & Cn ⇒ (A1
..

...........
...................................... . . .

..
...........
...................................... Am

..
...........
...................................... S1

..
...........
...................................... . . .

..
...........
...................................... Sk) ◦− (Body

..
...........
...................................... Z1

..
...........
...................................... . . .

..
...........
...................................... Zp).

The symbol || is used in sequents and clauses to distinguish state-atoms from operations.

The free variables of this expression (denoted by identifiers beginning with a capital letter)

are implicitly universally quantified. When necessary, universally quantified formulae ∀x.F

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 265

will be explicitly represented as pi X \ F (according to the λProlog notation (Nadathur

and Miller 1988)). If a clause has no conditional part, that is, Cond in the previous figure,

then we use the notation ops || state --> body || new state.

Facts without body are written [cond >>] ops || state. The constant ⊥, written anti,

is used to denote an empty body, state or new state component. The constant > will

be written as all. The previous notation emphasizes the similarities between Ehhf-clauses

and rewriting rules, between Ehhf-sequents and instantaneous configurations, and between

Ehhf-proofs and state-based computations.

4.6. Final state of a computation

The final state of a computation corresponds to a sequent of the form: Γ;6 −→Σ 6 || Θ,

where Θ is a multiset of ΠΣR atoms. Such a sequent is not an axiom unless a formula Φ

in Γ that matches the facts in Θ exists. The formula Φ can be easily re-constructed after

building a partial proof tree with leaves of the form Γ;6 −→Σ 6 || Θ. We therefore

single out Φ from the unbounded context and adopt the following extended syntax for

the sequents: Γ[Φ];6 `Σ Ω || Θ. We omit Φ when we are not interested in the final state

of a proof (for example, when the proof is terminated by >).

Given an Ehhf-theory (program) Γ and a collection of goals Ω, a query (initial state) will

assume the form Γ[Φ];6 `Σ Ω || 6, where Φ can be considered as a variable instantiated

with the possible final states of the execution of Ω.

4.7. An example

Let us specify a system of counters endowed with a (nondeterministic) increment opera-

tion. Let Σ be a signature with the symbols new, inc, counter, add with adequate types and

such that (counter t) ∈ ΠΣR , for each t. The following clauses, which form Γ, implement

the specification:

new --> counter 0. (new)

add X Z Y >> inc Z || counter X --> counter Y. (inc)

The former simply rewrites the atomic goal new into a new counter initialized to 0

(there is no guard in this clause), whereas the latter synchronizes an inc-message and

a counter-formula, consuming and rewriting them into the updated counter (the guard

simply executes the increment). The add predicate is defined by the following Horn-clauses:

all >> add X 0 X.

add X Y Z >> add (s X) Y (s Z).

In Figure 4 we show a computation (proof) derived using the previous program and

the rules of Figure 3. Note that the two inc operations can be executed in any order, since

the Ω component of a sequent is a multiset: in this case their execution always yields the

same final state counter 4. Let us point out some observations about the structure of the

proof. The main thread of the computation corresponds to the right branch, which models

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 266

.

.

.

.
bc

Γ;6 −→Σ (add 0 1 1)

.

.

.

.
bc

Γ −→Σ (add 1 3 4)

Γ[Φ];6
Φ−→Σ 6 || (counter 4)

initial

Γ[Φ];6 −→Σ 6 || (counter 4)
decide1

Γ[Φ];6
(inc)−→Σ inc 3 || (counter 1)

bc

Γ[Φ];6 −→Σ inc 3 || (counter 1)
decide1

Γ[Φ];6
(inc)−→Σ inc 1, inc 3 || (counter 0)

bc

Γ[Φ];6 −→Σ inc 1, inc 3 || (counter 0)
decide1

Γ[Φ];6
(new)−→Σ new, inc 1, inc 3 || 6

bc

Γ[Φ];6 −→Σ new, inc 1, inc 3 || 6
decide1

Fig. 4. Here, 0, 1, etc denote 0, (s 0), etc.

the evolution of the state of the counter, whereas here, the left branches are used to test

the conditional parts of the rules. Furthermore, the left branches are terminated by initial

axioms matching facts in Γ with atomic goals in Ω; the right branch is terminated by an

instance of the initial axiom, which matches a particular formula consisting only of ΠΣR
predicates with the final state of the computation. According to our previous notation,

the formula Φ in Figure 4 corresponds to counter 4.

In the above outlined scheme the non-determinism is due to the choice of the clause

to be applied (which induces a choice on the multiset of atoms on the right-hand side

that must be rewritten), and, in the actual implementation, to higher-order unification. In

this sense the chosen class of formulae can be considered as an extension of hereditary

Harrop formulae (λ-Prolog (Nadathur and Miller 1988)) with the possibility of handling

resources and concurrent actions.

Following on the introduction to the use of linear logic as a specification language

given earlier, the rest of this paper will be focused on the specification of the operational

semantics of an object-based model. Before going into detail, we will briefly recall the

main characteristics of concurrent objects.

5. Concurrent object-oriented programming

Programs provide automated management of data. From the users’ perspective it is

important to know what the effects of executing a program are, i.e., its functionalities, but

not how they are actually performed, or in which form the data are stored internally. On

the other hand, a programmer needs to adapt the software to a given specification, which

in turn, depends on the requirements of the real problem, which may change over time.

Thus, it is important to be able to modularly modify programs. Object-orientation provides

an interpretation of programs that can ease the tasks of both users and developers.

In this setting, new concepts like class and object (Wegner 1987), are added to the

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 267

traditional programming ones. A class corresponds to a data type describing what the

functionalities of a given part of a program are (data and operations). The users can only

access the external interface of operations and data. An object corresponds to a given

instance of a class; it encapsulates (Snyder 1986) data and the operations (called methods)

that handle them, and it has an internal state whose components can be changed by

executing the methods. Objects can receive messages, accepting only the ones declared

in their classes. A message (method invocation) corresponds to the activation of one

method in the object. Methods can refer to the current object by using a self pointer (for

example, in their definition they can invoke other methods belonging to the same object

by referring to the self pointer). Classes can be composed by defining hierarchies that

allow them to share code among different classes. The inheritance relations can be defined

in different ways, see Snyder (1986) and Wegner (1987) again (for example, single- and

multiple-inheritance, overriding, and so on). As mentioned earlier, objects are created by

instantiating classes. Objects usually have unique identifiers and store a private copy of

data and operations, with special links to shared ones. Object-based languages are directly

based on the notion of object, and they provide operations to create them and to define

clones. In this setting, delegation is used to share code and data among objects (i.e., an

object delegates another object to perform a given operation).

Object-Orientation can fit in both a sequential and a concurrent setting. In a sequential

model objects are passive except when they must react to a given message, i.e., the current

operation in the execution thread of the program. On the other hand, in a concurrent

model – where the unit of parallelism can be a process (as in CSP (Hoare 1978)), a task

(as in Ada), a statement (as in Occam), or a goal (as in Concurrent Prolog (Shapiro

1989)) – objects can play different roles. For instance, objects can be considered as active

entities having their own execution threads activated at the time of creation. An active

object can be considered as an advanced form of process. Otherwise, it is possible to

employ asynchronous communication, for example, the Actor model (Agha 1986), or to

add processes as an orthogonal concept to the object-oriented dimension. Active objects

are suitable for sharing the information of a distributed system in a secure way.

In the next section we shall move on to a logical characterization of the previously

described features.

6. Specification of concurrent objects

In this section we introduce a linear logic formalization of several different features of

object-oriented programming. This specification is based on the view of objects as atomic

formulae. In a higher-order setting this view allows us to capture the key point of the

object-orientation, that is, encapsulation. Before going into the detailed encoding of our

object-based model, we shall briefly discuss the problems related to class-based models.

6.1. Class-based representation

In classical logic programming a direct way to design logical specification with object-

oriented features is the following: we interpret a set of clauses defining a predicate p as

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 268

. . .

Γ;6 −→Σ P
′ is 5 ∗ 4

Γ[Φ];6
Φ−→Σ 6 || (rpoly 5 4 P ′)

initial

Γ[Φ];6 −→Σ 6 || (rpoly 5 4 P ′)
decide1

Γ[Φ];6
(b)−→Σ (get F R P) || (rpoly 5 4 P ′)

bc

Γ[Φ];6 −→Σ (get F R P) || (rpoly 5 4 P ′)
decide1

Γ[Φ];6
(a)−→Σ (set 5 4), (get F R P) || (rpoly v w z)

bc

Γ[Φ];6 −→Σ (set 5 4), (get F R P) || (rpoly v w z)
decide1

Fig. 5. A sample proof: P = P ′ = 20, F = 5, R = 4.

the class representing the set of objects of the form p(t) (McCabe 1992). By exploiting

the additional features of linear logic, we can refine this idea as follows: each class can

be represented as a program defining a given predicate classname such that each single

method synchronizes an object of the form classname State and a message message:

cond >> message || classname State --> msg1 |... | msgn || classname State’.

Let us give an example.

Example 6.1. We want to specify the class rpoly of regular polygons. To represent a regular

polygon we simply need the number of faces (the rank) and the length of one of the

faces. Here, we assume that they are natural numbers. An object of type rpoly is defined

as an atom (rpoly face rank perimeter). Furthermore, we define two methods: set,

to correctly initialize the data fields, and get, to retrieve the data values. Formally, we

introduce the following signature:

rpoly: int → int → int → o.

set: int → int → o.

perimeter: int → o.

The methods are defined as follows:

Perim is Face*Rank >>

set Face Rank || rpoly F R P --> anti || rpoly Face Rank Perim. (a)

get F R P || rpoly F R P --> anti || rpoly F R P. (b)

A possible proof for the query Γ[Φ];6 `Σ (set 5 4), (get F R P) || (rpoly v w z) is shown in

Figure 5. To complete the proof, Φ can be set to (rpoly 5 4 20), that is, to the final state of

the computation. Another possible proof-tree can be obtained in backtracking by selecting

the method get first.

Note that the conditions of a D-clause, for example, Perim is Face*Rank, are tested

on an auxiliary branch for which we do not need to know the final state. In fact, in this

paper the predicates invoked in the conditions are defined only by Horn logic programs.

For example, the predicate that defines ‘is’. The result of such a program is communicated

to the main thread of the computation via shared variables.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 269

% Objects and Messages

object: identifier → o → o → o.

frozen: identifier → o → o → o.

send: identifier → message → o.

call: identifier → message → o.

Fig. 6. The signature ΣR consists of object and frozen.

Inheritance can be achieved by using the approach proposed in LO (Andreoli and

Pareschi 1991), i.e., employing disjunctions (
..

...........
......................................) to represent composite objects. For

instance, the subclass of coloured polygons can be defined by adding a further component

(atom) with the colour data field to the class of polygons. More precisely, given the

signature

crpoly: int → int → string → o.

colour: string → o,

we add the clauses:

anti || crpoly Face Rank colour --> anti || rpoly Face Rank 0 | colour colour.

setcolour colour || colour C --> anti || colour colour.

Thus, crpoly-objects have the form (rpoly F R P)
..

...........
...................................... (colour C). Note that the methods

of the superclass (for example, set and get) still apply to them. Objects in LO have the

previous form. They are spread over different branches of a proof, and communication

is achieved by means of a common blackboard. However, this model does not provide

overriding of methods. For instance, let us now define the class circle as the limit subclass

of rpoly. We then add the following clauses:

anti || circle Ray Perim --> anti || rpoly Ray infinity Perim.

Perim is 2*Ray*pi_greek >>

set Ray || rpoly R infinity P --> anti || rpoly Ray infinity Perim.

In such a hierarchy, however, nothing prevents the method set of the superclass rpoly

from being selected after opening a circle-object. This might lead to run-time errors, for

example, multiplication of Ray by infinity, which, however, is just a dummy constant.

As outlined in Abadi and Cardelli (1996) and Fisher et al. (1994), a better understanding

of the basic concepts of object-orientation can be achieved by focusing on object-based

languages. In this setting, classes can be viewed as particular meta-objects. We shall

introduce this model in the next section.

6.2. An object-based representation

Encapsulation is a central point in the object metaphor: objects are black boxes, with unique

identities, containing data and operations and exchanging messages in order to interact with

the external world. In our setting, an object will be defined by an atom of the following

form:

object id state methods,

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 270

where state is the set of attributes, and methods are clauses defining the behaviour of

the object (see the signature in Figure 6). A message (method invocation) is defined as an

atom call id msg (see Figure 6 again).

Using the previous assumptions, we shall consider a sequent Γ; ∆ −→Σ Ω || Θ as

a configuration of an object-based system, where Γ (the program) specifies the external

behaviour of objects, Θ (the global state) the set of active objects, and Ω the set of

active messages. We will clarify the role of ∆ in such a representation, later. Below we

shall consider a model of computation in which the messages are delivered without any

order (for example, in the style of actors (Agha 1986)) and executed in interleaving. The

methods of a given object (object id state methods) have the form m1 & . . . & mn,

where each conjunct is a clause of the form

cond >> call id Mgs || object id St Ms --> msg1 |...| msgn || object id St’ Ms’.

Such a clause rewrites the object id and a message into a (possibly modified) copy of the

object and a multiset of new messages. The newly produced messages correspond to the

body of the invoked method. To handle such a recursive definition (an object contains

its methods defined in terms of the object itself) we have to abstract from some of the

components of the object-representation. To clarify, let us consider the following simple

method:

call id (get V) || object id V M --> anti || object id V M.

We will assume that it retrieves the value stored in the object. On the other hand, the

methods M must be unfolded only at the time of execution. To achieve this, we rewrite the

method as follows:

pi V \ pi M \ (call id (get V) || object id V M --> anti || object id V M),

using quantification over variables of type o to leave the methods in the nested object-

atoms unspecified. Therefore, we construct the object as follows:

object id s

(pi V \ pi M \

(call id (get V) || object id V M --> anti || object id V M)

).

Note that the third parameter of the object predicate is a (universally quantified) D-

clause. For simplicity we assume that the state denotation, s in the example, is a term of

type o. For instance, the internal state s can simply be a tuple (st A B ...), where st

is any constructor with target type o.

6.3. Method invocation

In order to execute a method it is necessary to:

i) synchronize the object and the message;

ii) fire the methods, i.e., move them to the top level on the left-hand side of sequents

(methods are indeed clauses);

iii) execute a backchaining step over the D-clauses defining the methods.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 271

To prevent anomalies we need to enrich the syntax of our representation (see Figure 6).

The new predicate send is used to represent messages before step i, that is, messages that

require the corresponding definition to be fired. The predicate call will be used instead to

represent messages during steps ii and iii, that is, messages whose definitions have already

been fired. Finally, to prevent the execution of a call from being delayed after step ii, we

inhibit other receptions by freezing the considered object after step i. Methods then take

on the following form:

call id Msg || frozen id V Ms --> msg1 |...| msgn || object id V’ Ms’.

Note that, if we do not freeze objects before steps ii and iii, an interleaved execution of

another message could change the structure of the original object while a copy of its old

methods exists. In synthesis, send will be used as an external primitive to invoke methods,

whereas call will serve to internally dispatch the message. Formally, such semantics is

formalized through a single Ehhf-rule.

Definition 6.1. (Self-application) The semantics of method-application (steps i, ii and iii

of Section 6.3) is defined by the following clause:

send Id Msg || object Id St Ms --> (Ms -o call Id Msg) || frozen Id St Ms.

Step i is expressed by the head of the previous clause. Note that such a rule can be

applied in any context, that is, with any number of messages and objects in the global

state, provided the object Id exists. Step ii is achieved by the goal (Ms -o call Id Msg):

the methods are fired and they are consumed right after their execution. Finally, after

adding call Id Msg to the current operations and freezing the object, we start up the

execution of the method. In fact, by hypothesis, the methods in Ms define the predicate

call for the object Id. Note that Ms is an &-conjunction of methods. The nondeterminism

in the choice of one of its conjuncts (see rule bc) guarantees the selection of the right

clause.

Example 6.2. Let us reformulate the polygon objects of example 6.1 in the new setting.

object id (s face rank perim) Ms

where Ms =

pi Face \ pi Rank \ pi Perim \ pi F \ pi R \ pi P \

(Perim is Face*Rank >>

(call id (set Face Rank) || object id (s F R P) --> (a)

anti || object id (s Face Rank Perim)))

&

(call id (get Face Rank Perim)) || object id (s Face Rank Perim) --> (b)

anti || object id (s Face Rank Perim)

Note that the methods incorporate the identifier of the object to which they belong.

Below we shall denote such an object by of,r,p and the corresponding frozen object by

ff,r,p, where f, r, p are the values of the attributes Face, Rank, Perimeter. Then, the

query Γ[Φ];6 `Σ (send id (set 2 3)) || o5,4,w has the (partial) Ehhf-proof tree of Figure 7. Note

that the method (b) (contained in Ms) is first fired by the send rule and then removed by

the decide2 rule. Since the right instance of b is in 〈Ms〉, the bc step over Ms succeeds and

it achieves the desired effect.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 272

. . .

Γ;6 −→Σ X is 2 ∗ 3

.

.

.

Γ[Φ];6 −→Σ Ω || o2,3,X ,Θ

Γ[Φ];6
Ms−→Σ (call id (set 2 3)),Ω || f5,4,w ,Θ

bc over (b)

Γ[Φ];Ms −→Σ (call id (set 2 3)),Ω || f5,4,w ,Θ
decide2

Γ[Φ];6 −→Σ Ms−◦ (call id (set 2 3))
..

...........
...................................... f5,4,w ,Ω || Θ

...
..
r +−◦r

Γ[Φ];6
(send)−→Σ (send id (set 2 3)),Ω || o5,4,w ,Θ

bc

Γ[Φ];6 −→Σ (send id (set 2 3)),Ω || o5,4,w ,Θ
decide1

Fig. 7. A sample (piece of) proof: X = 6.

In the next section we shall study the proof-theoretic properties of the object-calculus

resulting from the above described encoding.

6.4. Aspects of concurrency

In this section, we shall focus on the relation between provability and concurrency aspects

of the proposed model. Specifically, our aim is to define an interleaving operational

semantics for the object calculus introduced in the previous section, by means of a further

refinement of our sequent-calculus presentation of Ehhf .
Throughout the rest of the section, we shall consider Γ as the singleton consisting of the

clause of Definition 6.1, Θ as a multiset of object and frozen atoms, and Ω as a multiset

of send and call atoms. Furthermore, we say that a global state Θ is consistent if the

identifiers of the object occurring in Θ are different from each other. We then introduce

the following derived rule.

Definition 6.2. (The send rule) The send rule consists of the following sequence of rules:

Γ[Φ];Meths,∆ `Σ call id m,Ω || frozen id st Meths,Θ

Γ[Φ];Meths,∆ `Σ frozen id st Meths ...
.. call id m,Ω || Θ

..
...........
......................................
r

Γ[Φ]; ∆ `Σ Meths−◦ (frozen id st Meths ...
.. call id m),Ω || Θ

−◦r

Γ[Φ]; ∆
(send)−→Σ send id m ,Ω || object id st Meths,Θ

bc

Γ[Φ]; ∆ `Σ send id m ,Ω || object id st Meths,Θ
decide1

We observe that the right rules occurring immediately above the bc rule can always be

permuted so as to obtain the previous configuration. Thus, without loss of generality,

given a sequent Γ[Φ]; ∆ `Σ Ω || Θ we can restrict our attention to proofs in which each

application of a backchaining step (over the clause of Definition 6.1) matches the previous

derived rule. We denote such a derived rule as send rule.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 273

Lemma 6.3. (Permutability of the send rule) Let Γ consist of the single Ehhf-clause of

Definition 6.1, and Θo and Ω be multisets of objects and messages. Let δ be an Ehhf-proof

for s = Γ[Φ]; ∆ `Σ Ω || Θ, such that the last rule of δ is a send rule, applied to an object

named id and introducing Methsid on the left-hand side of its premise. Finally, let us

assume that ∆ does not contain any other methods labelled by id and that each state

Θi occurring in δ is consistent. Then, a proof γ for s exists, where, Methsid is consumed

immediately after the application of the send rule that introduces it.

Proof. Let sendid be the last occurrence of send applied to the object denoted by id. The

proof is by induction on the number of rule applications between the sendid rule and the

corresponding consumption of the methods Methsid. The proof of the base is trivial. If the

distance is greater than zero, the proof is by cases on the rule R that occurs immediately

above the instance of the sendid rule taken into consideration. There are two cases.

— R is an instance sendid′ of the send rule and id′ 6= id, since id is frozen by sendid.

It is easy to see that two instances of the send rule (over different objects) permute.

Therefore, after permuting sendid′ and sendid, we conclude by applying the induction

hypothesis.

— R is an instance of the bc rule over the methods Methsid′ of the object frozen id′
(where, by hypothesis, id′ 6= id) followed by deterministic application of the

..
...........
......................................
r rule, as

shown in the following picture:

η

Γ[Φ];Methsid,∆ `Σ call id, m1 . . . mn,Ω || frozen id, object id′,Θ
.... R

Γ[Φ];Methsid,Methsid′ ,∆ `Σ call id, call id′,Ω || frozen id, frozen id′,Θ

Γ[Φ];Methsid′ ,∆ `Σ send id, call id′,Ω || object id, frozen id′,Θ
send

where, frozen id′ ..
...........
...................................... call id′ ◦− object id′ ..

...........
...................................... m1 . . . mn ∈ 〈Methsid′ 〉. In this case, we

can re-arrange the proof as follows:

η

Γ[Φ];Methsid,∆ `Σ call id, m1, . . . , mn,Ω || frozen id, object id′,Θ

Γ[Φ]; ∆ `Σ send id, m1 . . . mn,Ω || object id, object id′,Θ
send

.... R

Γ[Φ];Methsid′ ,∆ `Σ send id, call id′,Ω || object id, frozen id′,Θ.

By applying the induction hypothesis on the subproof η, we conclude that γ satisfying

the thesis exists.

Note that in each case the length of the resulting proof γ is equal to the length of δ.

In order to emphasize the operational aspects of the Ehhf-theory previously introduced,

we define the following operational semantics.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 274

Definition 6.4. (Interleaving semantics) Let Ω,Ω′,Θ,Θ′ be multisets as specified above.

The relation ;o is defined as follows.

〈Ω | Θ〉 ;o 〈Ω′ | Θ′〉
iff (send id n)∈ Ω and (object id st ms)∈ Θ,

(call id m || object id st mts --> msgs|| object id st’ mts’)∈ 〈mts〉Σ,

msgs = m1 | .. | mn,

Ω′ = (Ω\{(send id n)}) ∪{m1, . . . , mn},
Θ′ = (Θ\{(object id st ms)})∪{(object id st’ ms’)}.

With ;?
o the transitive closure of ;o, the following result holds.

Proposition 6.5. (Provability and operational semantics) Let Γ consist of the single Ehhf-
clause of Definition 6.1, Θo be a multiset of object-atoms, and Ω be a multiset of

send-atoms. Then, Γ[Φ];6 `Σ Ω || Θo has an Ehhf-proof iff 〈Ω | Θo〉 ;?
o 〈6 | Θf〉 and

Φ−◦Θf is provable in Ehhf .
Proof. The proof is by induction on the length of a proof and by case analysis based

on Lemma 6.3

We shall use this semantics (and its extensions) to simplify the description of the object

behaviour. In the rest of this section we will enrich the basic model with new features.

6.4.1. Classes. Classes can be viewed as templates for the creation of clones of a given

object. We can enrich the Ehhf-theory Γ with a very simple type of class declaration. We

first introduce the predicate new with type Class -> o -> identifier -> o. A class

declaration then assumes the following form:

new classname InitState Id || anti --> anti || object Id InitState Mts.

Here InitState represents the initial values of the attributes of the object being created.

An invocation of the primitive, that is, visible to any object, new c s id generates a new

instance of the class named c, with an initial state s, and an identifier id. Below we enrich

the possible types of messages with a new-atom.

Example 6.3. The rpoly class can be defined as:

new rpoly (st F R P) Id || anti --> anti || object Id (st F R P) Ms.

where Ms is defined as in the Example 6.2.

This model captures many other features that are typical of object-oriented program-

ming. We shall discuss them next.

6.5. Hiding

As shown in Hodas and Miller (1989) and Miller (1989b), universal quantification can be

used to create local data structures. In our setting there are three possible ways of using

universal quantifications:

— before an object declaration to hide data fields;

— before an object declaration to provide private methods;

— before the body of a method to provide creation of private objects.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 275

The first two points require the following modification of the previously introduced new

definition:

new classname InitState Id || anti -->

pi X \(anti || object Id InitState’ Mts).

The following examples will illustrate how to exploit such features.

6.5.1. Hiding of data fields. In the model presented above, any object may freely access

the attributes of the other objects. Let us consider the following rule:

break State || object Id State Mts --> all || anti.

Through unification, the predicate break State may break the encapsulation of any of

the objects in the current state. In order to prevent such a violation, we shall employ the

universal quantifier as in the example below.

Example 6.4. The rpoly class of Example 6.3 can be re-defined as:

new rpoly (st F R P) Id || anti -->

pi st \ (anti || object Id (st F R P) Ms).

where Ms is defined as in example 6.2. Note that the quantification is defined over a

predicate name, namely st. This is allowed by the syntax of Ehhf . Such a higher-order

quantification hides the occurrences of a constructor in the definition of the object.

For instance, the break predicate cannot be applied these objects since constants

introduced with ∀r (for example, the one associated with st when the body of new

is executed) cannot be bound to free variables outside the scope of the quantifier, see

Miller (1989b) and Hodas and Miller (1989).

6.5.2. Hiding of methods. The same idea can be applied in order to define private methods.

A method is private in o if it can be invoked only by other methods of o. To accomplish

this it suffices to quantify over the names of the private methods. For instance, in the

following declaration the method pub (with type o) is public while m (with type o) can be

invoked only by other methods of the same object.

(new private St Id || anti -->

(pi m \ (anti || object Id St (Ms m))))

where (Ms m) =

pi S \ pi M \

(call Id m || frozen Id S M --> ... || ...)

&

(call Id pub || frozen Id S M --> send Id m || object Id S M).

The third use of universal quantification will be illustrated in the following section.

6.5.3. Creation of local objects Universal quantification in the body of a method can be
used to create data structures that are local to that method. In particular, we can employ
this feature to create local objects. Consider the following general pattern:

cond >> call id msg || frozen id st ms --> pi x \ Body.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 276

Now, if x is associated to the identifier of a newly created object, the object will

automatically become local to the method. The meta-rule for the self-application is not

affected by this modification. However, the send rule of Definition 6.2 must be enriched

so as to account for possible applications of the ∀r rule. We redefine the relation ;o

according to this idea. The new relation is denoted by
∀
;o. By a case analysis similar to

the one in Proposition 6.5, it is easy to state the correspondance between
∀*
;o-transitions

and Ehhf-proofs. We shall consider this feature in the example given in the next section.

6.6. Expressiveness of the calculus

To illustrate the power of the resulting object calculus, we note that a method can modify

the object to which it belongs. For instance, the method

call kill Id || frozen Id St Ms --> anti || anti.

deletes the object that receives it. Similarly, we can think of methods that dynamically

modify the attributes or even the methods of the object.

We shall clarify this point with some examples.

Example 6.5. (Factorial objects) Let factclass be a class of objects that, upon reception

of the message (fact N Obj) (N is an integer and Obj is an object identifier), send the

factorial of N, that is, N!=N*N-1*..., to Obj. Below we present an implementation in

which the same object can manage many requests at the same time. To implement this

type of objects, it is necessary to define slave-objects that perform the actual computation

of the factorial, allowing their masters to process the other possible incoming requests.

Let us consider the following signature:

factclass,slave, receiver: o.

fact,st: int → identifier → o.

eval: int → o.

The definition of factclass-objects is given as follows:

% Class of "factorial objects"

new factclass St Id || anti --> anti || object Id St Ms.

where Ms =

(pi S \ pi M \ pi N\ pi N1 \ pi O\

(((N =< 2) >>

call Id (fact N O) || frozen Id S M -->

send O (eval N) || object Id S M)

&

((N > 2, N1 is N - 1) >>

call Id (fact N O) || frozen Id S M -->

(pi x \(new slave (st N O) x | send Id (fact N1 x)))

|| object Id S M

))).

These objects have only one method (fact N O) defined by two clauses: if N is less or

equal to 2, then (eval N), the result of the computation is immediately sent to the object

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 277

O; in the other cases a new slave object x is created and the message fact N-1 x is sent

to x. Slave and receiver objects are defined as follows:

% Class of "slave objects"

new slave St Id || anti --> anti || object Id St Ms

where Ms =

(pi N \ pi N1 \ pi N2 \ pi Ms \ pi O \

((N2 is N1 * N) >>

call Id (eval N1) || frozen Id (st N O) Ms -->

send O (eval N2) || anti)).

% Class "receiver"

new receiver St Id || anti --> anti || object Id St Ms

where Ms =

(pi N \ pi S \ pi M \

call Id (eval N) || frozen Id S M --> anti || frozen Id (eval N) M).

They both expect (eval N) messages: a slave object executes a part of the computation

of N!, it sends the result to another slave object and then it disappears, whereas a receiver

simply stores the result.

Some abbreviations are needed in order to describe possible derivations based on

the previous definitions. Let oid[v, id
′] be a slave-object with identifier id and state

(v, id′). Now, let Θ = {ridr , fidf}, where ridr is a receiver and fidf is a factclass object.

The following picture describes a
∀
;o-derivation that starts from the state 〈Ω | Θ〉, where

Ω = {send idf (fact 4 idr)}, that is, we ask the object idf to compute 4! and to send

the result to idr:

〈Ω | Θ〉 ∀;o 〈new slave (st 4 idr) x, send idf (fact 3 x) | Θ〉 ∀;o

∀
;o 〈send idf (fact 3 x) | ox[4, idr],Θ〉 ∀;o

∀
;o 〈new slave (st 3 x) y), send idf (fact 2 y) | ox[4, idr],Θ〉 ∀;o

∀
;o 〈send y (eval 2) | oy[3, x], ox[4, idr],Θ〉 ∀;o 〈send x (eval 6) | ox[4, idr],Θ〉 ∀;o

∀
;o 〈send idr (eval 24) | Θ〉 ∀;o 〈6 | Θ′〉.

The final state Θ′ is obtained by storing 24 in the receiver-object. x and y are newly

introduced names for the local slave-objects. A factclass-object can process many fact-

messages at the same time since it delegates the computation to its slave. For instance,

let Θ be as before and add a new message (fact 3 idr) to Ω. We obtain a computation

like the following one:

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 278

〈send idf (fact 4 idr), send idf (fact 3 idr) | Θ〉 ∀;o

〈new slave (st 4 idr) x, send idf (fact 3 x), send idf (fact 3 idr) | Θ〉 ∀*;o

∀
;o 〈send idf (fact 3 x), new slave (st 3 idr) x′ , send idf (fact 2 x′) | ox[4, idr],Θ〉 ∀;o

∀
;o 〈new slave (st 3 x) y), send idf (fact 2 y), send idf (fact 2 x′) | ox[4, idr], ox′ [3, idr],Θ〉 ∀;o

∀
;o 〈send x′ (eval 2), send y (eval 2) | oy[3, x], ox[4, idr], ox′ [3, idr],Θ〉 ∀;o

〈send idr (eval 6), send x (eval 6) | ox[4, idr],Θ〉 ∀;o

∀
;o 〈send idr (eval 24), send idr (eval 6) | Θ〉.

Here the identifiers x, y, x′, y′ are new names for the local objects of the two concurrent

computations. Note that two messages are executed in interleaving. To conclude, we would

like to go back to the problem of inheritance outlined at the beginning of this section.

6.7. Inheritance at the object level

Being in an object-based setting allows us to capture a very basic notion of inheritance. Let

us extend the formalism above with two new primitive operations extend and override

defined as follows:

extend Id NMs || object Id St Ms --> anti || object Id St (Ms & NMs).

override Id OMs NMs || object Id St OMs --> anti || object Id St NMs.

The meaning of the first clause should be clear: it extends the current set of methods

with new ones. On the other hand, the second clause overrides the methods specified

through the parameter Ms with the new definitions given in OMs.

Using such definitions, it is now possible to define hierarchies of classes on a delegation-

based mechanism. Below we assume that methods are paired with their name and kept

on a list (name1, Def1) :: . . . :: (namen, Defn) :: nil. It is not difficult to modify the clause

of Definition 6.1 in order to handle the new representation. We can rewrite the rpoly

and circle classes of the example at the end of Section 6.1 as follows:

new rpoly (st Face Rank Perim) Id || anti -->

anti || object Id (st Face Rank Perim) Ms.

where Ms is the list (set,M_set)::(get,M_get)::nil

new circle (st Ray Perim) Id || anti -->

new rpoly (st Ray infinity Perim) Id | override Id OMs RMs || anti

OMS=(set,M1)::(get,M2)::nil

RMs=(set,M_set_circle)::(get,M2)::nil

where for the sake of brevity, we omit the definitions of M set, M get and M set circle,

they can easily be written by following the examples shown in the previous sections. Note

that in the definition of circle we do not have to specify the code of the old and the new

methods. In fact, we can distinguish them by the name. Therefore, M1 and M2 are simply

two free variables that will be instantiated with the code of the corresponding methods.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 279

To summarize, in this section we have shown how to define a rich object-based

concurrent calculus in higher order linear logic by means of numerous examples. Without

going into a detailed description, we simply mention that other features such as classes

as special meta-objects can also be derived. Finally, note that the presented encoding

integrates logical features peculiar to linear logic (for example, state-based computations)

with features introduced in previous works in higher order logic programming (for

example, the use of universal quantification) in a natural way.

7. Related work

The central point in the approach integrating OO and LP is the definition of a logical

counterpart of objects, and, in particular, of objects with an internal state. The various

approaches and the different ways of representing objects are presented in Brogi et

al. (1991). Here we shall recall some of them.

In Login (Aı̈t-Kaci and Nasr 1986), an extension of Prolog with order-sorted type

structures, objects are viewed as records, represented by typed variables, containing their

attributes. This is only a partial view of encapsulation (i.e., methods are not part of

the object). In McCabe (1992), objects are viewed as logical theories, and methods

as clauses. In this approach the attributes of the objects cannot be updated. Using

the same idea, Miller (1989a) uses an extension of logic programming with embedded

implication to define modules with hidden structures. Hodas and Miller (1989) uses

embedded implications to model objects that can be modified monotonically (i.e., by

adding attributes and definitions). Universal quantification is used to hide data structures.

Chen and Warren (1988) views objects as non-logical variables whose value can be

modified by means of an assignment construct. On the other hand, Conery (1988) views

objects as atomic formulae. In this approach Horn Clauses are extended to multiple-

headed clauses. The evolution of an object (an atomic formula) is determined by executing

a clause, i.e., rewriting the object and the message into a new object. The semantics of

this approach finds a natural counterpart in the linear logic setting, as has been discussed

in the course of the paper. In Concurrent Prolog (Shapiro 1989), goals are considered as

a collection of concurrent processes, each of which is represented by an atomic formula,

and shared variables are used as communication channels. In Vulcan (Kahn et al. 1987),

a concurrent object-oriented language based on Concurrent Prolog program clauses are

seen as rewriting rules. State updates are modelled by rewriting the atoms representing

state components. This is the same idea as is used in Polka, an OO presentation of Parlog

(Clark and Gregory 1986).

A similar approach has been taken in the specification of OO paradigms in the setting

of term rewriting systems, such as, for instance, in the Conditional Rewriting Logic

(Meseguer 1990).

Natural extensions to the previously mentioned ideas have been developed in the setting

of linear logic programming. As we discussed in the paper, LO, the linear logic language

proposed in Andreoli and Pareschi (1991), is one of the most significant approaches in

the field. LO extends previous work relating traditional logic programming and object-

orientation (for example, Conery (1988) and McCabe (1992)) in different ways. Specifically,

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 280

an object in LO is an an aggregation of data fields (represented by disjunctions of atomic

formulae), and a class is defined by collections of multiple-conclusion clauses synchronizing

objects and messages. Here a sequent represents a single object and a proof represents

the evolution of a collection of objects (spread over different branches of a proof-tree). In

our setting, objects are higher-order atomic formulae embedding their methods, defined,

in turn, as multi-headed clauses. In addition, sequents represent collections of objects.

Our view captures the essence of object-based languages, i.e., encapsulation and privacy

of data (private methods and data fields), as well as dynamic overriding of methods. Not

all these features were captured by the LO object-model.

From a general point of view, our approach is strictly related to the work in Kobayashi

and Yonezawa (1994a) and Kobayashi and Yonezawa (1994b), where the authors present

a higher-order process calculus (i.e., where a process can be sent as a value to another

process) modelled in higher-order classical linear logic. They have extended this idea in

Kobayashi and Yonezawa (1994b) to model a concurrent object-based calculus and its type

inference system. In contrast with our approach, they modelled the basic computational

mechanism of the calculus (i.e., method invocation) through the addition of a fixpoint

operator to represent recursive object expressions. Object expressions are unfolded at the

time of the method execution. In our approach, method invocations are modelled by

exploiting the combined power of the linear implication (to fire methods) as well as of

higher-order quantification used in encoding objects (i.e., methods are viewed as terms or

formulae depending on the context in which they occur). It is our opinion that our work

gives a more complete view of the expressiveness of linear logic programming languages

and, in particular, of the uniform-proof based approach.

Bugliesi et al. (1996) proposes an extension of logic programming with objects. In this

setting objects are nothing but (higher-order) record terms that can be handled by pure

programs with some special primitive whose semantics finds a counterpart in a fragment

of Forum (namely Horn-clauses enriched by −◦ goals). In this approach there is no notion

of global state of the computation and, in addition, concurrent executions are not taken

into consideration.

To conclude, we would like to point out that the present paper extends the preliminary

works Delzanno and Martelli (1995) and Delzanno and Martelli (1996), where the rule for

method invocation based on backchaining was introduced, but inheritance and overriding

were not discussed, and Boudinet and Galmiche (1996), where alternative models to

uniform-proofs based on FILL were proposed as foundations of linear logic specification

languages.

8. Conclusions

The proof-theoretic analysis of linear logic has led to interesting specification languages

based on the proofs-as-computations metaphor. In this paper, we have illustrated the key

points of this refinement process through an overview of the various fragments, proof

systems, and proof-search strategies proposed in the literature. In order to introduce

a concrete language to be used to specify advanced aspects of programming, we have

adopted the notion of goal-directed provability, which is at the root of logic programming.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 281

Specifically, we have used the fragment of Forum (Miller 1996) called Ehhf(Delzanno

1997; Delzanno and Martelli 1998) as a basis to provide a simple and readable form of

linear logic executable specifications. This language is the platform for the specification

of the basic features of concurrent objects presented in the final section of the paper.

Concerning this point, we have tried to fill the gaps of previous approaches relating logic

programming, linear logic and object-orientation, as we discussed in the previous section.

Proof theory is the essential tool needed to study all these aspects. First of all, it gives a

theoretical justification for the development of refined proof-systems such as Forum and

Ehhf . Furthermore, when restricted to a particular logic model, for example, the encoding

of the object-based model in Section 6, it provides the means for proving important

computational properties, such as the equivalence of a proof in the logical model and of

an execution in the computational model. As remarked in McDowell and Miller (1997),

further research in this direction might yield interesting results in the automated analysis

of complex programming systems.

Appendix A. Proof systems for linear logic

The language of LL consists of a set of terms defined over a denumerable set of variables,

a countable set of atoms and the following set of formulae built over the logical operators

{0, 1,⊥,>,()⊥, !, ?,⊗, ..
...........
...................................... ,&,⊕, ∀, ∃}:

F ::= 0|1| ⊥ |>|a|a⊥|?F |!F |F ⊗ F |F ..
...........
...................................... F |F&F |F ⊕ F |∀xF |∃xF .

The negation of the formulas is defined by the following equalities:

A⊥⊥ = A

1⊥ = ⊥
⊥⊥ = 1

>⊥ = 0

0⊥ = >
(A⊗ B)⊥ = A⊥ ..

...........
...................................... B⊥

(A
..

...........
...................................... B)⊥ = A⊥ ⊗ B⊥

(A&B)⊥ = A⊥ ⊕ B⊥
(A⊕ B)⊥ = A⊥&B⊥

(∀xA)⊥ = ∃xA⊥
(∃xA)⊥ = ∀xA⊥

(!A)⊥ = ?A⊥

(?A)⊥ = !A⊥.

In this section we present two formulations of linear logic: a one-sided sequent calculus

and a two-sided sequent calculus. The laws of negation can be used to go from one to

the other.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 282

A.1. One-sided sequent calculus

` A,A⊥
Id

` A,Γ ` A⊥,∆
` Γ,∆

Cut

` ∆

`?A,∆
w?

`?A, ?A,∆

`?A,∆
c?

` A,Γ1 ` B,Γ2

` A⊗ B,Γ1,Γ2

⊗
` A,B,Γ
` A ..

...........
...................................... B,Γ

..
...........
......................................

` 1
1

` Γ

` ⊥,Γ ⊥

` A,Γ ` B,Γ
` A&B,Γ

&
` A,Γ
` A⊕ B,Γ

⊕1

` B,Γ
` A⊕ B,Γ

⊕2 ` >,∆ >

` A, ?Γ

`!A, ?Γ
!

` A,Γ
`?A,Γ

?
` A[y/x],Γ

` ∀xA,Γ ∀
` A[t/x],Γ

` ∃xA,Γ ∃

In ∀ rule, y is not free in Γ and in A if y is different from x.

A.2. Two-sided sequent calculus

Two-sided sequents have the form Γ ` ∆ where Γ and ∆ are multisets of linear formulae,

that is, formulae built on the linear primitives 0, 1,⊥,>, ()⊥,⊗, ..
...........
...................................... ,&,⊕, ∀, ∃, ?, !.

For a complete presentation of this system, refer to Girard (1987).

A ` A id
Γ ` A,∆ A,Λ ` Θ

Γ,Λ ` ∆,Θ
cut

Γ ` ∆

!A,Γ ` ∆
!wL

Γ ` ∆

Γ ` ∆, ?A
?wR

!A, !A,Γ ` ∆

!A,Γ ` ∆
!cL

Γ ` ∆, ?A, ?A

Γ ` ∆, ?A
?cR

A, B,Γ ` ∆

A⊗ B,Γ ` ∆
⊗L

Γ ` ∆, A Λ ` Θ, B

Γ,Λ ` ∆,Θ, A⊗ B
⊗R ` 1

1R
Γ ` ∆

1,Γ ` ∆
1L

A,Γ ` ∆ B,Λ ` Θ

A
..

...........
...................................... B,Γ,Λ ` ∆,Θ

..
...........
......................................
L

Γ ` ∆, A, B

Γ ` ∆, A
..

...........
...................................... B

..
...........
......................................
R ⊥ `

⊥L
Γ ` ∆

Γ ` ∆,⊥
⊥R

Γ ` ∆, A B,Λ ` Θ

A−◦ B,Γ,Λ ` ∆,Θ
−◦L

A,Γ ` ∆, B

Γ ` ∆, A−◦ B
−◦R

Γ ` ∆, A

A⊥,Γ ` ∆
⊥L

A,Γ ` ∆

Γ ` ∆, A⊥
⊥R

Γ ` ∆,>
>R

0,Γ ` ∆
0L

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 283

A,Γ ` ∆

A&B,Γ ` ∆
&L

B,Γ ` ∆

A&B,Γ ` ∆
&L

Γ ` ∆, A Γ ` ∆B

Γ ` ∆, A&B
&R

A,Γ ` ∆ B,Γ ` ∆

A⊕ B,Γ ` ∆
⊕L

Γ ` ∆, A

Γ ` ∆, A⊕ B
⊕R

Γ ` ∆, B

Γ ` ∆, A⊕ B
⊕R

A,Γ ` ∆

!A,Γ ` ∆
!L

!Γ ` A, ?∆

!Γ `!A, ?∆
!R

!Γ, A `?∆

!Γ, ?A `?∆
?L

Γ ` ∆, A

Γ ` ∆, ?A
?R

A[t/x],Γ ` ∆

∀xA,Γ ` ∆
∀L

Γ ` ∆, A

Γ ` ∆, ∀xA
∀R

A,Γ ` ∆

∃xA,Γ ` ∆
∃L

Γ ` ∆, A[t/x]

Γ ` ∆, ∃xA
∃R

Appendix B. Permutability for the linear connectives

The following table illustrates the possible permutations of the rule in the fragment

considered in Hodas and Miller (1994).

t2\t1 −◦L ⊗R −◦R !R &R &L ⊕R !L w!L c!L ∀R ∀L ∃R
−◦L p p p p p p p p p p p p p

⊗R p np np np np p np p p p np p np

−◦R np np np np np p np p p p np p np

!R np np np np np np np np p p np np np

&R np np np np np np np np np np np np np

&L p p p p p p p p p p p p p

⊕R p np np np np p np p p p np p np

!L p p p p p p p p p p p p p

w!L p p p p p p p p p p p p p

c!L np np p p p p p p p p p p p

∀R p np np np np p np p p p np np np

∀L p p p p p p p p p p p p p

∃R p np np np np p np p p p np p np

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 284

Acknowledgments

The authors would like to thank the anonymous referees for their fruitful comments and

recommendations.

References

Abadi, M. and Cardelli, L. (1996) A Theory of Objects, Monographs in Computer Science, Springer-

Verlag.

Abramsky, S. (1993) Computational Interpretations of Linear Logic. Theoretical Computer Science

111 3–57.

Agha, G. (1986) Actor: A Model of Concurrent Computation in Distributed Systems, The MIT

Press.

Aı̈t-Kaci, H. and Nasr, R. (1986) LOGIN: A Logic Programming Language with Built-in Inheri-

tance. Journal of Logic Programming 3 (3) 185–215.

Alexiev, V. (1994) Applications of Linear Logic to Computation: An Overview. Bulletin of the

IGLP 2 (1) 77–107.

Andreoli, J. M. (1992) Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic

and Computation 2 (3) 297–347.

Andreoli, J. M. and Pareschi, R. (1991) Linear Objects: Logical Processes with Built-In Inheritance.

New Generation Computing 9 445–473.

Boudinet, E. and Galmiche, D. (1996) Proofs, Concurrent Objects and Computations in a FILL

Framework. Proceedings of the Workshop on Object-based Parallel and Distributed Computation,

OBPDC’95. Springer-Verlag Lecture Notes in Computer Science 1107 148–167.

Brogi, A., Lamma, E. and Mello, P. (1991) Objects in a Logic Programming Framework. In:

Voronkov, A. (ed.) Proceedings of the 1st Russian Conference on Logic Programming. Springer-

Verlag Lecture Notes in Computer Science 592 102–113.

Bugliesi, M., Delzanno, G., Liquori, L. and Martelli, M. (1996) A Linear Logic Calculus of Objects.

In: Proceedings of the Joint International Conference and Symposium on Logic Programming, Bonn,

The MIT Press 67–81.

Chen, W. and Warren, D. H. (1988) Objects as Intensions. In: Kowalski, R. A. and Bowen, K. A.

(eds.) Proceedings of 5th International Conference on Logic Programming, The MIT Press 404–419.

Chirimar, J. (1995) Proof Theoretic Approach to Specification Languages, Ph. D. thesis, Department

of Computer and Information Science, University of Pennsylvania.

Clark, K. L. and Gregory, S. (1986) PARLOG: Parallel Programming in Logic. ACM TOPLAS 8

(1) 1–49.

Conery, J. S. (1988) Logical Objects. In: Kowalski, R. A. and Bowen, K. A. (eds.) Proceedings of 5th

International Conference on Logic Programming, The MIT Press 420–434.

Delzanno, G. (1997) Logic & Object-Oriented Programming in Linear Logic, Ph. D. thesis, Università

of Pisa, Dipartimento di Informatica.

Delzanno, G. and Martelli, M. (1995) Objects in Forum. In: Proceedings of the International Logic

Programming Symposium, The MIT Press 115–129.

Delzanno, G. and Martelli, M. (1996) Objects in a Higher Order Linear Logic Setting. In: Proceedings

of the Proof Theory and Concurrent Object-Oriented Programming pre-ECOOP 96 Workshop, Linz,

Austria, July 1996. (Also in Special-Issue in Object-Oriented Programming, Workshop Reader of

the 10th European Conference on Object-Oriented Programming, ECOOP 96, D-Punkt.)

Delzanno, G. and Martelli, M. (1998) Proofs as Computations in Linear Logic. Technical Report

DISI-TR-98-12, DISI, Dipartimento di Informatica, Università di Genova.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

Logic for concurrent object-oriented programming 285

Fisher, K., Honsell, F. and Mitchell, J. (1994) A Lambda Calculus of Objects and Method

Specialization. Nordic Journal of Computing 1 (1) 3–37.

Galmiche, D. (1994) Canonical Proofs for Linear Logic Programming Frameworks. In: Workshop

on Proof-theoretical Extensions of Logic Programming, Santa Margherita Ligure, Italy.

Galmiche, D. and Perrier, G. (1994a) Foundations of Proof Search Strategies Design in Linear

Logic. In: Logic at St Petersburg ’94, Symposium on Logical Foundations of Computer Science.

Springer-Verlag Lecture Notes in Computer Science 813 101–113.

Galmiche, D. and Perrier, G. (1994b) On Proof Normalization in Linear Logic. Theoretical Computer

Science 135 (1) 67–110.

Girard, J. Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Guglielmi, A. (1995) Abstract Logic Programming in Linear Logic - Independence and Causality in

a First Order Calculus, Ph. D. thesis, Department of Computer Science, University of Pisa.

Harland, J. A., Pym, D. and Winikoff, M. (1996) Programming in Lygon: An Overview. In: Wirsing,

M. and Nivat, M. (eds.) Algebraic Methodology and Software Technology. Springer-Verlag

Lecture Notes in Computer Science 1101 391–405.

Hoare, C. A. R. (1978) Communicating Sequential Processes. CACM 21 (8) 666–677.

Hodas, J. (1994) Logic Programming in Intuitionistic Linear Logic, Ph. D. thesis, University of

Pennsylvania, Department of Computer and Informaton Science.

Hodas, J. and Miller, D. (1989) Representing Objects in a Logic Programming Language with

Scoping Constructs. In: Warren, D. H. and Szeredi, P. (eds.) Proceedings of 7th International

Conference on Logic Programming, The MIT Press 511–526.

Hodas, J. and Miller, D. (1994) Logic Programming in a Fragment of Intuitionistic Linear Logic.

Information and Computation 110 (2) 327–365.

Hodas, J. and Polakow, J. (1996) Forum as a Logic Programming Language (Preliminary Report).

Electronic Notes in Theoretical Computer Science 3.

Hyland, M. and de Paiva, V. (1993) Full Intuitionistic Linear Logic (extended abstract). Annals of

Pure and Applied Logic 64 273–291.

Kahn, K., Tribble, E., Miller, M. and Bobrow, D. (1987) Vulcan: Logical concurrent objects. In:

Wegner, P. and Shriver, B. (eds.) Research Directions in Object-Oriented Programming, The MIT

Press.

Kobayashi, N. and Yonezawa, A. (1994a) Asynchronous Communication Model based on Linear

Logic. Formal Aspects of Computing 3 279–294.

Kobayashi, N. and Yonezawa, A. (1994b) Higher-order Concurrent Linear Logic Programming. In:

Proceedings of Theory and Practice of Parallel Programming (TPPP’94). Springer-Verlag Lecture

Notes in Computer Science.

Kobayashi, N. and Yonezawa, A. (1994b) Type-theoretic Foundations for Concurrent Object-

Oriented Programming. In: Proceedings of ACM SIGPLAN Conference on Object Oriented Pro-

gramming Systems, Languages and Applications (OOPSLA ’94) 31–45.

Lincoln, P. and Saraswat, V. (1993) Higher-order, Linear, Concurrent Constraint Programming

(Unpublished manuscript, available at parcftp.xerox.com/pub/ccp/lcc/hlcc.dvi Xerox Co.)

Lincoln, P. and Shankar, N. (1994) Proof Search in First-order Linear Logic and Other Cut-free

Sequent Calculi. In: 9th IEEE Symposium on Logic in Computer Science, Paris, France 282–291.

McCabe, F. G. (1992) Logic and Objects, International Series in Computer Science, Prentice Hall.

McDowell, R. and Miller, D. (1997) A Logic for Reasoning with Higher-order Abstract Syntax.

In: Proceedings of LICS’97, Warsaw 434–445.

Meseguer, J. (1990) A Logical Theory of Concurrent Objects. In: OOPSLA-ECOOP ’90, Ottawa.

Sigplan Notices 25 (10) 101–115.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

G. Delzanno, D. Galmiche and M. Martelli 286

Meseguer, J. and Marti-Oliet, N. (1991) From Petri nets to Linear Logic. Math. Struct. in Comp.

Science 1 69–101.

Miller, D. (1989a) A Logical Analysis of Modules in Logic Programming. Journal of Logic

Programming 6 79–108.

Miller, D. (1989b) Lexical Scoping as Universal Quantification. In: Proceedings of 6th International

Conference on Logic Programming, The MIT Press 268–283.

Miller, D. (1993) The π-calculus as a Theory in Linear Logic: Preliminary Results. In: Lamma,

E. and Mello, P. (eds.) Proceedings of the 1992 Workshop on Extension to Logic Programming.

Springer-Verlag Lecture Notes in Computer Science 660 242–265.

Miller, D. (1994) A Multiple-conclusion Meta-logic. In: 9th IEEE Symposium on Logic in Computer

Science, Paris, France 272–281.

Miller, D. (1996) Forum: A Multiple-conclusion Specification Logic. Theoretical Computer Science

165 (1) 201–232.

Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. (1991) Uniform Proofs as a Foundation for

Logic Programming. Annals of Pure and Applied Logic 51 125–157.

Nadathur, G. and Miller, D. (1988) An Overview of λ-Prolog. Fifth International Symposium on

Logic Programming.

Perrier, G. (1995) A Model of Concurrency Based on Linear Logic. In: Proceedings of the Conference

on Computer Science Logic 95, Paderborn, Germany.

Pym, D. and Harland, J. (1994) A Uniform Proof-theoretic Investigation of Linear Logic Program-

ming. Journal of Logic and Computation 4 (2) 175–207.

Schellinx, H. (1991) Some Syntactical Observations on Linear Logic. Journal of Logic and Compu-

tation 1 (4) 537–559.

Shapiro, E. Y. (1989) The Family of Concurrent Logic Programming Languages. Computing Surveys

21 (3) 413–510.

Snyder, A. (1986) Encapsulation and Inheritance in Object-oriented Programming languages. In:

Proceedings of OOPSLA ’86 38–44.

Tammet, T. (1994) Proof Strategies in Linear Logic. Journal of Automated Reasoning 12 273–304.

Wallen, L. A. (1990) Automated Proof Search in Non-Classical Logics, The MIT Press.

Wegner, P. (1987) Dimension of Object-based Language Design. In: Proceedings of OOPSLA ’87

168–182.

https://doi.org/10.1017/S0960129599002789 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002789

