
Math. Struct. in Comp. Science (2005), vol. 15, pp. 959–968. c© 2005 Cambridge University Press

doi:10.1017/S0960129505004883 Printed in the United Kingdom

Matching with multiplication and exponentiation

(extended abstract)†

BERNARD LANG

IRIA – Laboria, Domaine de Voluceau, Rocquencourt, 78150 LE CHESNAY, France‡

Received 4 April 2003; revised 3 July 2004

We develop a matching algorithm for an equational theory with multiplication,

exponentiation and a unit element. The algorithm is proved consistent, complete and

minimal using techniques based on initial algebras.

1. Introduction

The interest in unification, that is, the resolution of equations in a term language,

has been strongly motivated by automated theorem provers (Robinson 1965). Efficiency

considerations have then led to the incorporation of equational axioms into the unification

algorithms, that is, to unification in equational theories (Plotkin 1972; Slagle 1974).

Given a system {ti = t′i | 1 � i � n} of n equations, the problem is to find some substitu-

tion σ on the variables occuring in the terms ti and t′i such that for all indices i we have

the equality σti = σt′i, or possibly just an equivalence modulo some equational axioms.

In this paper we will consider more particularly the problem of matching, that is,

the resolution of equations in which the right-hand side contains no variables. This

simpler problem has numerous applications in symbolic computation and, in particular,

in program manipulation and transformation (Darlington and Burstall 1973).

So far unification or matching algorithms have been developed only for a small number

of equational theories whose axioms are some combination of associativity, commutativity,

‘idempotence’ and existence of a unit element (Kühner et al. 1977; Plotkin 1972; Siekmann

1975; Stickel 1975). We must also mention a small ‘arithmetic evaluation’ theory by Plotkin

(Plotkin 1972), the work of Huet on unification in typed lambda-calculus (Huet 1975),

and a fast algorithm for unification in a free theory (Paterson and Wegman 1976).

The only general framework for the study of unification has been given by Plotkin

in Plotkin (1972), and has also been used by others (Huet 1975; Kühner et al. 1977).

Given an equational theory, one has to define for every term t an effectively computable

equivalent normal form N(t), which must be unique in every class of terms equivalent

modulo the axioms of the theory. Unification or matching algorithms can then be defined

for normal forms only.

† Written May 1978 – see the historical note at the end of the paper.
‡ The current coordinates of the author are:

INRIA, B.P. 105, 78153 Le Chesnay CEDEX, France – Bernard.Lang@inria.fr

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

B. Lang 960

We believe that this essentially syntactic approach presents some drawbacks: there may

be no natural normal form in the theory considered (for example, commutative functions)

or, when there is one, it is not usually preserved by substitution, and much overhead

computation is caused by renormalisation during unification. Finally, the definition of a

normal form and of the corresponding normalisation preocedure may be a tedious task

with little relevance to the problem at hand (this is the case for the theory studied in this

paper).

The alternative we use is more semantic in nature. We study the matching (or unification)

problem directly in an algebra that is initial in the category of all algebras satisfying the

axioms. This initial algebra is defined as the quotient of the free algebra of terms by a

congruence induced by the axioms.

One advantage of this approach is that many definitions and results can be stated

and/or proved once and for all, independently of the axioms used. A second advantage

is that all reasonning is simpler when conducted directly in the theory concerned, rather

than in some syntactic representation domain. Third, this approach is always possible

since the initial algebra always exists with equational axioms.

However, one must be careful that an algorithm defined in a semantic domain must

actually be carried out on syntactic representations of the domain elements. This is why all

functions on the quotient algebra E that we use are defined by means of morphisms, thus

automatically yielding an identical definition on the free algebra T of terms representing

syntactically the elements of E. For example, the variable set Ve of an element e of E
has a general definition as a possibly infinite intersection, and thus is not computationally

usable. For each specific theory we give an equivalent definition in terms of morphisms.

The bulk of the paper is the application of the above approach to the development of

a matching algorithm in a theory with multiplication, exponentiation and a unit element,

denoted, respectively, by ‘×’, ‘↑’ and ‘1’, and satisfying the following system A of axioms:

A :

A1 : (x× y) × z = x× (y × z) associativity

A2 : (x× y) ↑ z = (x ↑ z) × (y ↑ z) left distributivity

A3 : x ↑ (y × z) = (x ↑ y) ↑ z right currying

A4 : x× 1 = x

A5 : 1 × x = x

A6 : x ↑ 1 = x

A7 : 1 ↑ x = 1.

The matching algorithm is based on the decomposition of expressions into base and

exponent (in the usual sense, that is, a and b, are, respectively, the base and exponent of

a ↑ b). This decomposition is used to reduce our matching problem to that of matching

sequences in a free monoid, which we know how to solve (Plotkin 1972; Siekmann 1975).

We prove this matching algorithm to be consistent, complete and minimal.

A final short section of the paper is devoted to efficiency considerations and suggestions

for the implementation of the algorithm.

There are at least three sorts of interpretations for the above equational theory.

First, there are the usual arithmetic interpretations (with integer, reals, . . .). Next there

are boolean interpretations such as, for example, the interpretation of ‘×’, ‘↑’ and

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

Matching with multiplication and exponentiation 961

‘1’, respectively, by conjunction, (reverse) implication and true. Finally, we have ‘type’

interpretations on sets or domains (in the sense of Scott (Scott 1977)) when arbitrary

currying of functions is allowed: then ‘×’, ‘↑’ and ‘1’ denote, respectively, the cartesian

product, the function space operator and the singleton set or domain (considered unique).

2. Algebraic framework

Given a denumerable set F of function symbols graduated by an arity and an infinitely

denumerable set V of variables, we define F-algebras, the free F-algebra M (F,V) on

V, interpretations of F and valuations of V, morphisms of F-algebras, the variable set

Vt of a term t of M (F,V), the size |t| of the term t, and the quotient of an F-algebra

by a congruence.

The domain of an endomorphism µ on M(F,V) is denoted Dµ and is defined by

Dµ = {x ∈ V | µx �= x}. A substitution on M (F,V) is an endomorphism with finite

domain. We use Σ (F,V) to denote the set of substitutions on M (F,V).

Given a system A of equational axioms on M (F,V), we associate to it a congruence

∼A in any F-algebra. We define F/A-algebras (that is, F-algebras satisfying A) and

the initial F/A-algebra, denoted M (F,V) /A. The elements of M (F,V) /A are called

expressions and are the congruence classes modulo A of the terms in M (F,V). An

element t of an expression e is called a (syntactic) representation of e; we write t ∈ e or

e = [t]A. The variable set of an expression is defined as Ve =
⋂
t∈e Vt. We note that

structural induction is valid in M (F,V) /A.

The domain of an endomorphism µ on M(F,V) /A is denoted Dµ and is defined by

Dµ = {x ∈ V | x /∈ µ [x]A}. A substitution on M (F,V) /A is an endomorphism with

finite domain. The set of substitutions on M (F,V) /A can be identified with the

quotient Σ (F,V) /A of Σ (F,V) by an equivalence suitably defined from A. Thus,

every substitution σ in Σ (F,V) /A has at least one syntactic representation κ in

Σ (F,V); we also write κ ∈ σ or σ = [κ]A. The variable set of a substitution σ is

Vσ =
⋃
x∈Dσ V(σ [x]A). The restriction of a substitution σ to the subset W of V is

denoted σ � W. The identity substitution has an empty domain and is conventionally

denoted by �.

Several lemmas relate expressions and substitutions to their representations. If σ and

σ′ are in Σ (F,V) /A and e is an expression in M (F,V) /A, we have, for example,

t ∈ e and κ ∈ σ =⇒ κt ∈ σe

κ ∈ σ and κ′ ∈ σ′ =⇒ κ ◦ κ′ ∈ σ ◦ σ′

Dσ =
⋂
κ∈σ

Dκ and Vσ =
⋂
κ∈σ

Vκ.

Thus it is often convenient, and harmless, to denote an expression or a substitution by

one of its representations.

We define on M (F,V) /A the approximation preorder, denoted �, by

e � e′ iff ∃σ ∈ Σ (F,V) /A . e′ = σe.

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

B. Lang 962

This preorder is extended to Σ (F,V) /A by defining

σ � σ′ iff ∃ρ ∈ Σ (F,V) /A . σ′ = ρ ◦ σ.

Of course, for any expression e we have σ � σ′ =⇒ σe � σ′e.

Several useful results can be established independently of the system of axioms

considered. Let e be an expression in M (F,V) /A, let σ, σ′ and ρ be substitutions

in Σ (F,V) /A and let W be a subset of V. Then we have:

(a) D(σ ◦ σ′) ⊆ Dσ ∪ Dσ′.

(b) Ve ⊆ W =⇒ (σ�W)e = σe.

(c) (V(σ�W) ∩ Dρ) ⊆ W =⇒ (ρ ◦ σ)�W = (ρ�W) ◦ (σ�W).

(d) σ � σ′ =⇒ σ ◦ ρ � σ′ ◦ ρ.
(e) V(σ�W) = � and σ � σ′ =⇒ σ�W � σ′ �W.

(f) σ < σ′ and Vσ = � =⇒ σ = σ′ �Dσ and Dσ ⊂ Dσ′.

(g) σ � σ′ �W and Vσ = � =⇒ σ � σ′.

A matching pair on M (F,V) /A is a pair 〈e, e′〉 of expressions in M (F,V) /A such

that Ve′ = �.

If P is a set of matching pairs on M (F,V) /A, a substitution σ is a match of P, or is

consistent with P, iff we have e′ = σe for every pair 〈e, e′〉 in P. We use MP to denote

the set of all matches of P.

A set S of substitutions in Σ (F,V) /A is said to be:

— consistent with P iff every substitution in σ in S is consistent with P;

— complete with respect to P iff every match σ′ of P is approximated by a substitution

in S;

— minimal iff no substitution in S is approximated by a different one.

A matching algorithm for M (F,V) /A is an algorithm that, given a set P of matching

pairs on M (F,V) /A, computes from P a set S of matches of P.

The algorithm is said to be complete (respectively, minimal) iff the computed set S is

always complete with respect to P(respectively, minimal).

For convenience, we add to the set of sets of matching pairs the special symbol ©f ,

which we consider as a set of matching pairs without matches, that is, M©f = �.

If P is a set of matching pairs, we define the variable set of P to be

VP =

∣∣∣∣∣∣∣
⋃

〈e,e′〉∈P

Ve if P �= ©f

� if P = ©f

and the application of a substitution σ to P by

σP =

∣∣∣∣∣ {〈σe, e′〉 | 〈e, e′〉 ∈ P} if P �= ©f
©f if P = ©f .

If S is a subset of Σ (F,V) /A, σ a substitution and W a subset of V, we define

S ◦ σ = {ρ ◦ σ | ρ ∈ S} and S �W = {ρ�W | ρ ∈ S}.

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

Matching with multiplication and exponentiation 963

Finally, let us recall some definitions and results about monoids that will be needed.

Let V be a set of variables, C be a set of constants (that is, nullary function symbols),

� and ∧ two extra function symbols with respective arities 2 and 0. The free monoid over

V ∪ C is denoted (V ∪ C)� and is the initial algebra M
(
C ∪ {�,∧} ,V

)
/A� where A� is

the following set of axioms:

A� :

A�1 : (x � y) � z = x � (y � z) associativity

A�2 : x � ∧ = x right identity

A�3 : ∧ � x = x left identity.

The elements of (V ∪ C)� are called words or sequences. The variable set of a word is

that of any of its representations. The size of a word u is an integer, denoted |u|, and

defined by:

|u| =

∣∣∣∣∣∣
0 if u = ∧
1 if u = @ and @ ∈ V ∪ C
|u′| + |u′′| if u = u′ � u′′.

There is a procedure, called here MATCHWORD, which takes as argument a single

matching pair 〈u, u′〉 on (V ∪ C)� and returns a set of matches for that pair (Plotkin

1972; Siekmann 1975). The procedure MATCHWORD always terminates; it is consistent,

complete and minimal, and for every match ω produced by MATCHWORD
(
〈u, u′〉

)
, we

have Vω = � and Dω ⊆ Vu.

3. An equational theory with multiplication and exponentiation

Let C be a denumerable set of constants and V a denumerably infinite set of variables.

Let ×, ↑ and 1 be three function symbols with respective arities 2, 2 and 0. We consider

the set F = C ∪ {×, ↑, 1} of function symbols.

We use T to denote the free algebra M (F,V).

Let A be the following system of axioms:

A :

A1 : (x× y) × z = x× (y × z) associativity

A2 : (x× y) ↑ z = (x ↑ z) × (y ↑ z) left distributivity

A3 : x ↑ (y × z) = (x ↑ y) ↑ z right currying

A4 : x× 1 = x

A5 : 1 × x = x

A6 : x ↑ 1 = x

A7 : 1 ↑ x = 1.

We are interested in the equational theory E = M(F,V) /A.

We use S to denote the set Σ (F,V) /A of substitutions on E.

The general definition of the variable set of an expression e ∈ E as Ve =
⋂
t∈e Vt is

not computationally usable. Thus we give an equivalent definition of Ve by means of a

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

B. Lang 964

morphism ψ from E to 2V∪C defined roughly as follows:

ψe =

∣∣∣∣∣∣∣∣∣∣

{@} if e = @ and @ ∈ V ∪ C
� if e = 1

ψe′ ∪ ψe′′ if e = e′ × e′′

� if e = e′ ↑ e′′ and ψe′ = �
ψe′ ∪ ψe′′ if e = e′ ↑ e′′ and ψe′ �= �.

We prove that ψ is a well-defined morphism of F/A-algebras, and that for every

expression e in E we have Ve = ψe ∩ V.

As a corollary, we get

∀x ∈ V. V [x]A = {x}
∀a ∈ C ∪ {1} . V [a]A = �
∀e, e′ ∈ E. V(e× e′) = Ve ∪ Ve′ and Ve ⊆ V(e ↑ e′).

The usual concepts of base and exponent are generalised to all expressions in E.

We define the base mapping B as a morphism of F/A-algebras from E to (V ∪ C)�

as follows:

Be =

∣∣∣∣∣∣∣∣
@ if e = @ and @ ∈ V ∪ C
∧ if e = 1

Be′ � Be′′ if e = e′ × e′′

Be′ if e = e′ ↑ e′′.

We remark that the monoid (V ∪ C)� may be considered an F/A-algebra by choosing

the left projection λXY .X for exponentiation.

The exponent mapping E is defined by means of a morphism φ from E to the cartesian

product E� × E structured as an F/A-algebra.

The morphism φ is defined as follows:

φe =

∣∣∣∣∣∣∣∣
〈1,@〉 if e = @ and @ ∈ V ∪ C
〈∧, 1〉 if e = 1

〈φ1e
′ � φ1e

′′, φ2e
′ × φ2e

′′〉 if e = e′ × e′′〈
φ1e

′	×φ2e
′′, φ2e

′ ↑ φ2e
′′〉 if e = e′ ↑ e′′

where φie is the i-th component of φe, and 	× is the extension to E� component-wise on

the left of the multiplication × in E.

The exponent mapping E is then defined as the first component of φ : ∀e ∈ E. Ee = φ1e.

The base Be and exponent Ee of an expression e are sequences in (V ∪ C)� and E�,

respectively. We use Bie and Eie to denote their i-th components.

We easily show that for any expression e in E, the base and exponents of e have

the same length, that is, |Be| = |Ee|. We then show that e can be decomposed into a

multiplication as follows:

∀e ∈ E. e =

|Be|∏
i=1

([Bie]A ↑ Eie).

Thus any expression e is uniquely characterised by its base and exponent.

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

Matching with multiplication and exponentiation 965

The concept of a base is extended to substitutions in S = Σ (F,V) /A. The base Bσ

of a substitution σ in S is an endomorphism of the free moinoid (V ∪ C)�. It is defined

by

∀σ ∈ S. ∀x ∈ V. (Bσ)x = B(σx).

We prove that for any substitution σ in S we have D(Bσ) ⊆ Dσ, and thus Bσ is a

substitution on (V ∪ C)�.

Other useful properties of base and exponent are

∀σ ∈ S. ∀e ∈ E.

∣∣∣∣∣∣∣∣
(a) B ◦ σ = (Bσ) ◦ B
(b) V(Be) = � =⇒ B(σe) = Be and E(σe) = σ(Ee)

(c)
⋃

x∈V(Be)

V(σx) ⊆ V(σe).

The notation σ(Ee) in (b) implies that the substitution σ on E has been extended

(component-wise) to sequences in E�.

The size of expressions in E is defined as a partial function from E to � that is the

least fix-point of the recursive equation

‖e‖ ⇒ |Be| +

|Be|∑
i=1

‖Eie‖

where ‖e‖ denotes the size of the expression e.

We prove that size is in fact a total function and satisfies the following conditions for

every expression e:

‖e‖ =

∣∣∣∣∣∣∣∣
0 if e = 1

1 if e = @ and @ ∈ V ∪ C
‖e′‖ + ‖e′′‖ if e = e′ × e′′

(|Be′| × ‖e′′‖) + ‖e′‖ if e = e′ ↑ e′′.

If P is a finite set of matching pairs on E, the size of P is denoted ‖P‖ and defined by

‖P‖ =

∣∣∣∣∣∣
|P| +

∑
〈e,e′〉∈P

‖e′‖ if P �= ©f

0 if P = ©f

where |P| is the cardinality of the set |P|.
The size of sets of matching pairs is used to prove termination of the matching

algorithm.

Finally, given a word substitution ω on (V ∪ C)� such that Vω = � and a finite subset

W of V, we define the most general substitution with base ω and variables not in W,

denoted σω,W, by

σω,W =

〈
xi,

|ui|∏
j=1

(ui,j ↑ xi,j)
〉 ∣∣∣∣ xi ∈ Dω and ui = ωxi and

the xi,j ’s are distinct variables in V − W

where ui,j denotes the j-th component of the word ui of C�, while xi,j is just a variable in

V − W.

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

B. Lang 966

This does not define σω,W uniquely, but we only need to assume that we have some

unique way of choosing the variables xi,j so that σω,W is uniquely determined.

Naturally, we have Bσω,W = ω, Dσω,W = Dω and Vσω,W ∩ W = �, but the main

property of σω,W is that for any substitution σ in S we have

ω � Bσ =⇒ ∃σ′ ∈ S. σ�W = (σ′ ◦ σω,W)�W.

4. The matching algorithm

The matching algorithm is composed of a main procedure MATCH and a subprocedure

SIMPL. The procedure MATCH uses the word matching procedure MATCHWORD

to match the bases of matching pairs; it calls itself recursively in order to also match

the exponents. The procedure SIMPL just reduces the matching of a pair 〈e, e′〉 to

the matching of its exponents whenever the bases are equal and without vari-

ables.

procedure SIMPL (P);
%The parameter P is a set of matching pairs on E. %

%The result of SIMPL is a new set, say P”, of matching pairs such that: %

% M(P) = M(P′′) and ∀ 〈e, e′〉 ∈ P′′. V(Be) �= � %
begin

Choose a pair 〈e, e′〉 in P such that V(Be) = � ;

if there is no such pair then SIMPL := P
% this is in particular the case when P = ©f %

else if Be �= Be′ = then SIMPL := ©f
else begin

P’ := (P − 〈e, e′〉) ∪ {〈Eie, Eie′〉 | 1 � i � |Be|} ;

SIMPL := SIMPL
(
P′) ;

end ;

end ;

procedure MATCH (P) ;
%The parameter P is a set of matching pairs on E. %

%The result of MATCH is a set of matches of P. %
begin

P’ := SIMPL (P) ;

W := VP’ ;

if P′ = � then MATCH := {�} % return identity match only %

else if P′ = ©f then MATCH := � % return no match %

else begin

Choose a pair 〈e, e′〉 in P’ ;

Ω := MATCHWORD
(
〈Be, Be′〉

)
;

MATCH :=
⋃
ω∈Ω

(
MATCH

(
σω,WP′) ◦ σω,W

)
�W ;

end ;

end ;

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

Matching with multiplication and exponentiation 967

We prove the following results:

— The procedures SIMPL and MATCH always terminate with finite input P.

— The procedure SIMPL is correct: MP = M(SIMPL (P)).

— The procedure MATCH is consistent, complete and minimal.

We also establish that, for any substitution σ in MATCH (P) we have Vσ = � and

also ∀x ∈ Dσ. σ� (V − {x}) /∈ MP.

In the final section we use the minimality of MATCHWORD (which is not necessary

for the above results) to prove that no substitution is computed twice by the procedure

MATCH. We then consider variants of the algorithm with respect to efficiency of

implementation.

Acknowledgements

I wish to thank Mikael Rittri for making this work better known, and Roberto Di Cosmo

for this opportunity to have it published.

References

Darlington, J. and Burstall, R. (1973) A system which automatically improves programs. Proc. 3rd

IJCAI, Stanford, California, USA, 479–485. (Also: Acta Informatica (1976) 6 41–60.)

Huet, G. (1975) A unification algorithm for typed λ-calculus. Theoretical Computer Science 1 (1)

27–58.

Kühner, S., Mathis, C., Raulefs, P. and Siekmann, J.H. (1977) Unification of idempotent functions.

Proc. 5th IJCAI, Cambridge, Massachusetts, USA 1 528.

Paterson, M. S. and Wegman, M.N. (1976) Linear unification. Proc. 8th ACM Symp. on Theory of

Computing 181–186.

Plotkin, G.D. (1972) Building-in equational theories. In: Meltzer, B. and Michie, D. (eds.) Machine

Intelligence 7 73–90.

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle. J. ACM 12 (1)

23–41.

Siekmann, J.H. (1975) String unification. Essex University Memo CSM-7.

Slagle, J. R. (1974) Automated theorem-proving for theories with simplifiers, commutativity, and

associativity. Journal of the ACM 21 (4) 622–642.

Stickel, M. (1975) A complete unification algorithm for associative-commutative functions. Proc.

4th IJCAI, Tbilisi, Georgia, USSR 1 71–76.

Scott, D. (1977) Lecture Notes from the École Avancée de Sémantique, Sophia-Antipolis, France.

Historical Note

This paper reproduces an extended abstract that was submitted to conferences in 1978,

without success. At the time, the author was busy with other projects and could not afford

the time to get a full version typed (on a typewriter), given the apparent lack of interest.

Complete proofs exist in handwritten notes that were never circulated, and this extended

abstract is the only document that has been made available to interested people. The rule

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

B. Lang 968

followed for publication here was that the document should remain exactly as originally

circulated. The author is aware that, given this constraint and the original intent of the

document, the style does not meet the expected standards of journal publication, and he

wishes to apologise for this to the reader. The only changes have been the typographic

adaptation to MSCS style, the correction of minor typos and slightly more precision in

the references, with no change to the list of referenced documents.

Though criticised for it, this paper made the deliberate choice of not using normal forms.

It was felt that the use of normal forms presupposes that term structures (that is, trees) are

the most appropriate representations for equivalence classes of terms. However, there is no

reason to believe that this is always true. Defining mappings by means of morphisms did

suggest carrying computations on term structures, but was actually intended as a simple

mean of ensuring that they are well defined and effectively computable by structural

recursion.

The motivation of the author was to extend the work in Huet and Lang (1978)†. This

work proposes the use of second-order matching of λ-terms to identify applicable program

transformation schemes. The author realised that being able to apply the transformations

up to type isomorphism would significantly extend their useful range while allowing a

reduction in the size of the transformation library. Matching their types was perceived

by the author as a first step towards matching the λ-expressions. The intent was later to

extend the λ-expression matching algorithm by mixing it with type matching (followed

by the corresponding conversions of the pattern) to guide λ-expression matching modulo

type isomorphism.

† Huet, G. and Lang, B. (1978) Proving and applying program transformations expressed with second order

patterns. Acta Informatica 11 31–55.

https://doi.org/10.1017/S0960129505004883 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004883

