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Abstract

We derive some limit theorems associated with the Ewens sampling formula when its
parameter is increasing together with a sample size. Moreover, the limit results are applied
in order to investigate asymptotic properties of the maximum likelihood estimator.
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1. Introduction

Some data may have the form of a partition of a positive integer. For example, in population
genetics, sample alleles are sometimes split in accordance with their sample frequencies of each
allelic type if types of alleles are not connected. For a given positive integer n, which denotes
a sample size, consider a random partition n = Cn1 + 2Cn2 + · · ·+ nCnn , where (Cn1 , . . . , C

n
n) is

an n-dimensional nonnegative integer-valued random variable and its j th element denotes the
number of alleles which appear j times. There is a well-known model of (Cn1 , . . . , C

n
n) whose

law is given by

P[(Cn1 , . . . , Cnn) = (c1, . . . , cn)] = n!
(θ)n

n∏
j=1

(
θ

j

)cj 1

cj ! 1
{ n∑
j=1

jcj = n

}
, (1)

where θ is a positive constant called the mutation parameter and (θ)n = θ×(θ+1)×· · ·×(θ+
n− 1). This law is the celebrated Ewens sampling formula [1]; see also [7]. This distribution
was derived from various probabilistic models and Hoppe’s derivation using the Pólya-like urn;
see, for example, [4] for a biological context. Consider the number Kn = ∑n

j=1C
n
j of alleles

of an allelic partition whose law is given by (1). The probability mass function of Kn is

P[Kn = k] = s̄(n, k)
θk

(θ)n
,

where s̄(n, k) denotes the coefficient of θk in (θ)n. Then, it holds that

E(Kn) = θLn(θ), var(Kn) = θ�n(θ),

where

Ln(θ) =
n∑
j=1

1

θ + j − 1
, �n(θ) =

n∑
j=1

j − 1

(θ + j − 1)2
.

Received 2 July 2015; revision received 12 May 2016.
∗ Current address: Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,
Japan. Email address: k.tsukuda@gmail.com

42

https://doi.org/10.1017/jpr.2016.85 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:k.tsukuda@gmail.com?subject=J. Appl. Prob.%20paper%2015851
https://doi.org/10.1017/jpr.2016.85


Estimating the large parameter of the ESF 43

In this paper we present results which describe the asymptotic behavior ofKn and their statistical
applications when θ tends to ∞ as n increases.

Consider the neutral infinite allele model of evolutions. Let N be the effective population
size and u the mutation rate per individual. Then the mutation parameter θ is given by 4Nu,
so large θ corresponds to large N with fixed u. Since large N is of interest when selection
exists and since asymptotic properties of Kn when θ tends to ∞ are different from asymptotic
properties with fixed θ , various large θ settings have been considered; see Feng [2] and the
references therein. Many works including Griffiths [3], Joyce et al. [5], and Feng [2] assumed
that θ tends to ∞ with fixed n, and Feng [2] also argued the case where θ tends to ∞ as n
increases. In Feng [2], the large deviation principles for the Poisson–Dirichlet distribution
and the Ewens sampling formula were established and, as a corollary of the large deviation
result, the weak law of large numbers for the Ewens sampling formula with the large mutation
parameter were provided [2, Corollary 4.1]. The large deviation result is of interest in itself,
but it is not necessary just for the purpose of proving the weak law of large numbers. In this
paper we provide a direct proof of the weak law of large numbers (Proposition 2). Moreover,
we present an extension of the weak law of large numbers when n/θ → 0 (Theorem 1) and
the central limit theorem when n2/θ → ∞ (Theorem 2). These results will be used to obtain
asymptotic properties of estimators for θ . Furthermore, we derive another limit result when
n2/θ → c (Theorem 3).

It is clear that the random variable Kn is a sufficient statistic for θ . To estimate θ , the
maximum likelihood estimator, which is defined as the root of

Kn =
n∑
j=1

θ̂

θ̂ + j − 1
= θ̂Ln(θ̂), (2)

is frequently used. It coincides with the moment estimator. On the other hand, there is a
simple consistent estimator Kn/ log n which is based on the law of large numbers; see [1]
and [7]. When Kn is by far larger than log n, there is a serious difference between these
two estimators. In such a case, Kn/ log n does not work well because the assumption for
the consistency is considered violated, whereas the maximum likelihood estimator still works
well. The main motivations of this paper are to show this phenomenon and to derive asymptotic
properties of the maximum likelihood estimator by assuming that θ is an increasing function
of n (Propositions 3–6 and Remark 9).

Let us explain some notation used in this paper. Consider functions f (x) and g(x) of x. If
|f (x)| is asymptotically bounded above by |g(x)| up to a constant factor, we denote f (x) =
O(g(x)). Moreover, if |f (x)| is asymptotically bounded both below and above by a function
|g(x)| up to a constant factor, we write f (x) = �(g(x)). If f (x)/g(x) → 1 then we write
f (x) ∼ g(x). We denote by ‘

P−→’ and ‘
d−→’ the convergence in probability and the convergence

in distribution, respectively.
The paper is organized as follows. Section 2 is devoted to preliminaries. Section 3 includes

limit theorems and Section 4 includes their statistical applications.

2. Preliminaries

2.1. Asymptotic settings

We consider the asymptotic situation n → ∞, while θ → c �= 0 or θ → ∞ as n → ∞.
Hereafter, this situation is denoted by n → ∞, θ �→ 0. Moreover, we divide relations
between θand n as follows:

https://doi.org/10.1017/jpr.2016.85 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.85


44 K. TSUKUDA

(A) n/θ → ∞;

(B) n/θ → c > 0;

(C) n/θ → 0;

(C1) n/θ → 0 and n2/θ → ∞;

(C2) n2/θ → c > 0;

(C3) n2/θ → 0.

Remark 1. Cases A, B, and C above correspond to cases D, C, and B of Feng’s division in [2],
respectively.

2.2. On evaluations of Ln(θ) and �n(θ)

To evaluate the mean and the variance ofKn, the next proposition will be used in the following
sections.

Proposition 1. Consider the asymptotic setting n → ∞, θ �→ 0.

(i) It holds that

Ln(θ) = log

(
1 + n

θ

)
+�

(
n

θ(n+ θ)

)
. (3)

(ii) It holds that

0 ≤ Ln(θ)− �n(θ)− n

n+ θ
≤ 1

θ
. (4)

In particular, it holds that

�n(θ) = log

(
1 + n

θ

)
+O

(
n

n+ θ

)
. (5)

(iii) It holds that

�n(θ) = O

(
n2

θ2

)
.

In particular, in case C, it holds that

�n(θ) ∼ n2

2θ2 . (6)

Proof. (i) It holds that

Ln(θ)− log

(
1 + n

θ

)
=

n∑
j=1

(
1

θ + j − 1
−

∫ θ+j

θ+j−1

dx

x

)

and that

1

2

(
1

θ + j − 1
− 1

θ + j

)
<

1

θ + j − 1
−

∫ θ+j

θ+j−1

dx

x
<

1

θ + j − 1
− 1

θ + j

due to the convexity of 1/x. These formulae and
n∑
j=1

(
1

θ + j − 1
− 1

θ + j

)
= n

θ(θ + n)

imply the conclusion.
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(ii) The former part follows from

n

θ(n+ θ)
=

∫ θ+n

θ

dx

x2 ≤
n∑
j=1

1

(θ + j − 1)2
≤ 1

θ2 +
∫ θ+n−1

θ

dx

x2 = 1

θ2 + n− 1

θ(n− 1 + θ)

and

�n(θ) =
n∑
j=1

θ + j − 1

(θ + j − 1)2
−

n∑
j=1

θ

(θ + j − 1)2
= Ln(θ)−

n∑
j=1

θ

(θ + j − 1)2
.

The latter part immediately follows from the former part and the result of (i).

(iii) The former part follows from

�n(θ) <
1

θ2

n∑
j=1

(j − 1) = n(n− 1)

2θ2 .

Moreover, the latter part follows from

�n(θ) >
1

(θ + n)2

n∑
j=1

(j − 1) = n(n− 1)

2θ2

1

(1 + n/θ)2
∼ n(n− 1)

2θ2 when n/θ → 0.

This completes the proof. �
Remark 2. From (3), in case C, the Taylor expansion yields

Ln(θ) = n

θ
− n2

2θ2 +�

(
n3

θ3 ∨ n

θ2

)
,

where the notation ∨ in �(·) is based on the magnitude relationship with large enough n.
In case A, a similar argument yields

Ln(θ) = log

(
n

θ

)
+�

(
θ

n
∨ 1

θ

)
.

3. Limit theorems

3.1. The weak law of large numbers and its extension

First, we provide a direct proof of the weak law of large numbers for the Ewens sampling
formula when θ → ∞ as n → ∞.

Proposition 2. (The weak law of large numbers.) Consider the asymptotic setting n → ∞,
θ �→ 0. Then, it holds that

E

[(
Kn − θLn(θ)

θLn(θ)

)2]
→ 0. (7)

Proof. The left-hand side of (7) is equal to

θ�n(θ)

(θLn(θ))2
= 1

θLn(θ)

�n(θ)

Ln(θ)
.

In cases A or B, (3) and (5) yield �n(θ)/Ln(θ) = O(1). So (7) follows from θLn(θ) → ∞.
In case C, (3) and (6) yield Ln(θ) ∼ n/θ and �n(θ) = �(n2/θ2). So �n(θ)/Ln(θ) → 0 holds.
Since (3) yields θLn(θ) ∼ n, (7) holds. �
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Remark 3. If the largest term of Ln(θ) is considered, this result corresponds to Corollary 4.1,
cases B, C, and D of Feng [2]. The slight difference between the above result and Corollary 4.1
of [2] is that the convergence in (7) is in mean square.

Remark 4. In case C, the largest term of θLn(θ) is n, which does not depend on θ . As a result,
Proposition 2 is not sufficient in order to construct an estimator of θ .

In case C, consider an approximation Arn(θ)/θ (r = 0, 1, 2, . . .) of log(1 + n/θ) by
polynomials of n/θ up to the order r , that is, Arn(θ) = 0 for r = 0 and

Arn(θ) =
r∑
k=1

(−1)k−1θ

k

(
n

θ

)k
for r ≥ 1.

It implies that

θLn(θ) = θ log

(
1 + n

θ

)
+ θ

(
Ln(θ)− log

(
1 + n

θ

))

= n− n2

2θ
+ n3

3θ2 − · · · + θ

(
Ln(θ)− log

(
1 + n

θ

))

= Arn(θ)+ R1,r
n (θ)+ θ

(
Ln(θ)− log

(
1 + n

θ

))
,

where R1,r
n (θ)/θ is the corresponding remainder term. Then, Proposition 1 yields

R1,r
n (θ)+ θ

(
Ln(θ)− log

(
1 + n

θ

))
= �

(
nr+1

θr
∨ n

θ

)
. (8)

For example, it holds that

θLn(θ)
(r=0)= �(n),

(r=1)= n+�

(
n2

θ

)
,

(r=2)= n− n2

2θ
+�

(
n3

θ2 ∨ n

θ

)
,

(r=3)= n− n2

2θ
+ n3

3θ2 +�

(
n4

θ3 ∨ n

θ

)
,

= · · · .
Hereafter, we denote the left-hand side of (8) by Rrn(θ). With this approximation, we extend
the previous law of large numbers in case C.

Theorem 1. (An extension of the weak law of large numbers.) Consider the asymptotic setting
n → ∞, θ �→ 0. Fix a nonnegative integer r = 0, 1, 2, . . . . In case C,

θ2r−1

n2r → 0 (9)

is equivalent to

E

[(
Kn − θLn(θ)

Rrn(θ)

)2]
→ 0. (10)
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Proof. It holds that

E

[(
Kn − θLn(θ)

Rrn(θ)

)2]
= θ�n(θ)

(Rrn(θ))
2 .

The numerator is �(n2/θ) by (6). Firstly, we see that (9) 
⇒ (10). Since

nr+1

θr
>
n

θ

is equivalent to
θ2r−1

n2r

1

θ
< 1,

(8) and (9) imply that Rrn(θ) = �(nr+1/θr). Hence, the direct half follows. Next, we see
that (9) ⇐
 (10). If Rrn(θ) = �(n/θ) holds then (10) should not hold, so (10) implies that
Rrn(θ) = �(nr+1/θr) by contradiction. This yields

n2/θ

n2(r+1)/θ2r
= θ2r−1

n2r → 0,

which is (9). Hence, the converse half follows. �
Remark 5. Consider the case where θ is represented as θ = nf (n). If f (n) is a slowly varying
function of n then n/θ → 0 and (9) is satisfied for any r . If f (n) is a power function of n then
we have to consider the relationship of the power and r: setting f (n) = nβ with β > 0, (9) is
equivalent to (2r − 1)β < 1. If θ is increasing faster than the power functions then (9) is not
satisfied for any positive r .

In case C, Proposition 2 corresponds to the case of r = 0. Moreover, the following corollary
follows from Theorem 1 with r = 1.

Corollary 1. Consider the asymptotic setting n → ∞, θ �→ 0. In case C1, it holds that

E

[(
Kn − n

n2/(2θ)
+ 1

)2]
→ 0.

Proof. The conclusion follows from

E

[(
Kn − θLn(θ)

R1
n(θ)

)2]
= E

[(
Kn − n

R1
n(θ)

− 1

)2]
→ 0

by Theorem 1 and R1
n(θ) ∼ −n2/(2θ). �

3.2. Limit distributions

For fixed θ , Watterson [7, Corollary 1 to Theorem 5] proved the central limit theorem for
the Ewens sampling formula

Kn − θ log n√
θ log n

d−→ N(0, 1), (11)

whereN(0, 1) denotes a standard normal random variable. As an extension of this central limit
theorem, we present the asymptotic normality ofKn when n, θ → ∞, n2/θ → ∞. As we will
see later, when n2/θ → c, the following central limit theorem does not hold.
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Theorem 2. (The central limit theorem.) Consider the asymptotic setting n → ∞, θ �→ 0. If
n2/θ → ∞ then it holds that

Zn = Kn − μ

σ

d−→ N(0, 1), (12)

where

μ = μn = θ log

(
1 + n

θ

)
, σ = σn =

√
θ

(
log

(
1 + n

θ

)
+ θ

n+ θ
− 1

)
.

Proof. When θ → c �= 0, it is essentially the same as (11). Therefore, we will prove only
the θ → ∞ case.

The moment generating function of Zn is given by

E(eZnt ) = e−(μ/σ)t
E(eKnt/σ ) = e−(μ/σ)t (θet/σ )n

(θ)n
= e−(μ/σ)t �(θet/σ + n)

�(θ + n)

�(θ)

�(θet/σ )

due to Watterson [7, Equation (2.12)]. Using Stirling’s formula, this is asymptotically equal to

e−(μ/σ)t
(
θet/σ + n− 1

θ + n− 1

)1/2(
θet/σ + n− 1

e

)θet/σ+n−1( e

θ + n− 1

)θ+n−1

×
(

θ − 1

θet/σ − 1

)1/2(
θ − 1

e

)θ−1( e

θet/σ − 1

)θet/σ−1

∼ e−(μ/σ)t (θet/σ + n)θet/σ+n−1(θ + n)−(θ+n−1)θθ−1(θet/σ )−(θet/σ−1)

= e−(μ/σ)t
(
n

θ

)θ(et/σ−1)
(1 + θet/σ /n)θet/σ+n−1

(1 + θ/n)θ+n−1 e−tθet/σ /σ+t/σ

= e−(μ/σ)t
(
n

θ

)θ(et/σ−1)(
1 + θ

n

)θ(et/σ−1)(1 + θet/σ /n

1 + θ/n

)θet/σ+n−1

e−tθet/σ /σ+t/σ .

(13)

So, it holds that

log E(eZnt ) ∼ −μ
σ
t + θ(et/σ − 1) log

(
n

θ

)
+ θ(et/σ − 1) log

(
1 + θ

n

)

+ (θet/σ + n− 1) log

(
1 + θ/n(et/σ − 1)

1 + θ/n

)
− t

σ
θet/σ + t

σ

= −μ
σ
t + θ(et/σ − 1) log

(
n

θ
+ 1

)

+ (θet/σ + n) log

(
1 + θ(et/σ − 1)

n+ θ

)
− t

σ
θet/σ + o(1)

= −
(
σ − θ

σ

(
θ

n+ θ
− 1

))
t + (et/σ − 1)

(
σ 2 − θ

(
θ

n+ θ
− 1

))

+ (θet/σ + n) log

(
1 + θ(et/σ − 1)

n+ θ

)
− t

σ
θet/σ + o(1)
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= −σ t + (et/σ − 1)σ 2 + θ

(
θ

n+ θ
− 1

)(
t

σ
− (et/σ − 1)

)

+ (θet/σ + n) log

(
1 + θ(et/σ − 1)

n+ θ

)
− t

σ
θet/σ + o(1). (14)

The Taylor expansion yields

(θet/σ + n) log

(
1 + θ(et/σ − 1)

n+ θ

)

= (θet/σ + n)
θ

n+ θ
(et/σ − 1)− (θet/σ + n)

2

(
θ

n+ θ

)2

(et/σ − 1)2 + o(1)

= θ(et/σ − 1)+ θ2

n+ θ
(et/σ − 1)2 − 1

2

θ2

n+ θ

(
1 + θ(et/σ − 1)

n+ θ

)
(et/σ − 1)2 + o(1)

= θ(et/σ − 1)+ 1

2

θ2

n+ θ
(et/σ − 1)2 + o(1) (15)

since et/σ − 1 → 0 and θ/σ 3 → 0 as n → ∞ holds. Therefore, if

θ

(
θ

n+ θ
− 1

)(
t

σ
− (et/σ − 1)

)
+ θ(et/σ − 1)+ θ2

2(n+ θ)
(et/σ − 1)2 − t

σ
θet/σ (16)

converges to 0, then it holds that

log E(eZnt ) ∼ −σ t + (et/σ − 1)σ 2 = 1
2 t

2 + o(1). (17)

The first term of (16) is

−θ
2

(
θ

n+ θ
− 1

)
t2

σ 2 + o(1)

and the second, third, and fourth terms of (16) are

θ

(
et/σ − 1 − t

σ

)
+ θ2

2(n+ θ)
(et/σ − 1)2 − t

σ
θ(et/σ − 1) = 1

2

(
θ

n+ θ
− 1

)
θt2

σ 2 + o(1).

This completes the proof. �

Remark 6. It holds that

Kn − θLn(θ)√
θ�n(θ)

− Zn =
(
Zn + μ− θLn(θ)

σ

)(
σ√

θ�n(θ)
− 1

)
+ μ− θLn(θ)

σ
.

Consider the case when n2/θ → ∞ holds. Proposition 1 yields (μ − θLn)/σ → 0, and the
proof of Proposition 1(i) and (4) yield (θ�n(θ) − n/(n + θ))1/2 < σ < (θ(�n(θ) + 1/θ))1/2.
Moreover, Zn = Op(1) follows from Theorem 2. Hence, it holds that∣∣∣∣Zn − Kn − θLn(θ)√

θ�n(θ)

∣∣∣∣ P−→ 0.
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Corollary 2. Consider the asymptotic setting n → ∞, θ �→ 0. In case A, it holds that

Kn − μ√
μ

d−→ N(0, 1).

Proof. Since it holds that
Kn − μ√

μ
= σ√

μ
Zn,

it is enough to show that σ 2/μ → 1, which follows from n/θ → ∞. �
Remark 7. In particular, when considering the power-form θ = αnβ , if 0 ≤ β ≤ 2

3 then it
holds that

Kn − θ log(n/θ)√
θ log(n/θ)

d−→ N(0, 1), (18)

since it holds that log (1 + n/θ) = log (n/θ) + log (1 + θ/n) and that θ1/2 log (1 + θ/n) =
O(1) by using the Taylor expansion. Letψ(·) be the digamma function and γ the Euler constant.
Since

ψ(x) = −γ − 1

x
+

∞∑
j=1

x

j (j + x)

holds, if θ is a large positive integer then log θ is approximately equal to ψ(θ). In this case, the
left-hand side of (18) is approximately equal to (Kn− θ(log n−ψ(θ)))/(θ(log n−ψ(θ)))1/2.
Yamato [8] showed that the approximation accuracy of this statistic is better than (11) when θ
is a constant, which corresponds to β = 0.

In the proof of Theorem 2, the condition n2/θ → ∞ yields σ → ∞ which was used in
(14), (15), and (17). When this condition is violated (cases C and C3), Zn has a different limit.
In case C2, Zn converges in distribution to a standardized Poisson distribution and in case C3,
Zn converges in probability to 0.

Theorem 3. Consider the asymptotic setting n → ∞, θ �→ 0. Let Zn be the left-hand side
of (12). In case C2,

Zn
d−→ −

√
2

c

(
P − c

2

)
(19)

holds, where P follows a Poisson distribution with E[P] = c/2 and c = limn→∞ n2/θ . In
case C3, Zn

P−→0 holds.

Proof. In case C2, from (13), it follows that

E(eZnt ) ∼ e−(μ/σ)t
(
θet/σ + n

θ + n

)n(
θ

θ + n

)θ−1(
θet/σ + n

θet/σ

)θet/σ−1

= e((n−μ)/σ)t
(

1 + n(e−t/σ − 1)

θ + n

)n(
1 + n

θ

)−(θ−1)(
1 + n

θet/σ

)θet/σ−1

∼ e(n
2/(2θ))1/2t exp

(
n2

θ + n
(e−t/σ − 1)

)(
e

(
1 − n

2θ

))−n(
e

(
1 − n

2θet/σ

))n
,

where we use (1 + 1/x)x = e(1 − 1/(2x)+�(1/x2)) as x → ∞ for the last approximation.
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The right-hand side converges to

e(c/2)
1/2t exp(c(e−(2/c)1/2t − 1)) exp

( 1
2c(1 − e−(2/c)1/2t )

)= e(c/2)
1/2t exp

( 1
2c(e

−(2/c)1/2t − 1)
)
.

The right-hand side of the above formula is the moment generating function of the right-hand
side of (19). In case C3, it similarly holds that E(eZnt ) ∼ e(n

2/(2θ))1/2t · 1 · e−n · en → 1. �

Remark 8. In case C3, Zn converges in probability, but does not converge in mean square.
Actually, var(Zn) → 1 holds. That is, it holds that

var(Zn) = var(Kn)

σ 2 = �n(θ)

log(1 + n/θ)+ θ/(n+ θ)− 1
∼ 1,

since both of the numerator and the denominator are asymptotically equal to n2/(2θ).

4. Asymptotic properties of the maximum likelihood estimator

4.1. Consistency

In this section we argue asymptotic properties of the maximum likelihood estimator θ̂ , which
is the root of (2). First we see the consistency.

The (weak) consistency is a basic property which estimators should satisfy. However, we
discuss the situation that the true value θ0 of θ depends on n and becomes ∞ as n → ∞, so
the consistency is not defined in the usual sense. Thus, we will see that θ̂/θ0

P−→1. Henceforth,
when θ̂/θ0

P−→1 holds, we consider that the consistency holds.
We can construct an intuitive consistent estimator based on Proposition 2 and Corollary 1

when n2/θ → ∞. However, showing the consistency of Z-estimators such as the maximum
likelihood estimators takes a little ingenuity, where Z-estimators are estimators which are
defined as roots of some estimating equations. When a one-dimensional parameter does not
depend on a sample size, we can directly use the following lemma by Van der Vaart [6] in order
to show the consistency of Z-estimators.

Lemma 1. (Van der Vaart [6, Lemma 5.10].) Let � be a subset of the real line and let �n be
a random functions and � a fixed function of θ such that �n(θ)

P−→�(θ) for every θ . Assume
that each map θ �→ �n(θ) is continuous and has exactly one zero θ̂n, or is nondecreasing with
�n(θ̂n) = oP(1). Let θ0 be a point such that �(θ0 − ε) < 0 < �(θ0 + ε) for every ε > 0.
Then θ̂n

P−→θ0.

This lemma combined with the results in Section 3 implies the consistency of the maximum
likelihood estimator.

Proposition 3. Consider the asymptotic setting n → ∞, θ0 �→ 0, and n/θ0 → ∞. Then, it

holds that θ̂/θ0
P−→ 1.

Proof. For a variable x > 0, define the random function �n(x; θ0) by

�n(x; θ0) = xLn(θ0x)

Ln(θ0)
− Kn

θ0Ln(θ0)

= x

(
1 + 1 − x

Ln(θ0)

n∑
j=1

θ0

(θ0x + j − 1)(θ0 + j − 1)

)
− Kn

θ0Ln(θ0)
. (20)
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As for the first term of the right-hand side of (20), it holds that

n∑
j=1

θ0

(θ0x + j − 1)(θ0 + j − 1)
=

n∑
j=1

θ0

(θ0 + j − 1)2

(
1 + θ0(1 − x)

xθ0 + j − 1

)

≤
n∑
j=1

θ0

(θ0 + j − 1)2

(
1 + |1 − x|

x

)

= O

(
n

n+ θ0

)
.

Moreover, the second term converges to 1 in probability due to (7). Hence, it holds that

�n(x; θ0)
P−→ �(x; θ0) = x − 1 for every x > 0.

The function x �→ �n(x; θ0) is continuous, so it follows from the definition of the maximum
likelihood estimator that�n(x; θ0) becomes (unique) 0 at x = x̂n = θ̂/θ0. Moreover, for every
ε > 0,�(1 − ε; θ0) < 0 < �(1 + ε; θ0) holds. Hence, Lemma 1 yields the conclusion x̂n

P−→1.
This completes the proof. �
Proposition 4. Consider the asymptotic setting n → ∞, θ0 �→ 0, and n/θ0 → 1/c > 0.

Then, it holds that θ̂/θ0
P−→ 1.

Proof. As in the proof of Proposition 3, for a variable x > 0, define the random function
�n(x; θ0) by

�n(x; θ0) = xLn(θ0x)

Ln(θ0)
− Kn

θ0Ln(θ0)
,

which converges to

�(x; θ0) = cx log(1 + 1/(cx))

c log(1 + 1/c)
− 1

in probability for every x > 0. For every ε > 0, �(1 − ε; θ0) < 0 < �(1 + ε; θ0) holds.
This is because the function f (x) = x log(1 + 1/x) of x > 0 is increasing since its derivative
log(1 + 1/x)− 1/(1 + x) is positive and because f (c) = c log(1 + 1/c) holds. The remainder
of the proof follows that of Proposition 3. �
Proposition 5. Consider the asymptotic setting n → ∞, n/θ0 → 0, and n2/θ0 → ∞. Then,

it holds that θ̂/θ0
P−→ 1.

Proof. For a variable x > 0, define the random function �n(x; θ0) by

�n(x; θ0) = θ0xLn(θ0x)− n

n2/2θ0
− Kn − n

n2/(2θ0)
. (21)

The first term of (21) converges to −1/x since it holds that

θ0xLn(θ0x)− n = − n2

2θ0x
+O

(
n(n2 + θ0)

θ2
0

)
,

and the second term converges to −1 in probability due to Corollary 1. Hence, it holds that

�n(x; θ0)
P−→ �(x; θ0) = − 1

x
+ 1 for every x > 0.

The remainder of the proof follows that of Proposition 3. �
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Remark 9. From Proposition 2, when n → ∞, θ0 �→ 0, and Kn/ log n is consistent if and
only if θ0 satisfies log θ0/ log n → 0. That is, when n/θ0 → ∞,

Kn/ log n

θ0
= Kn

θ0 log(1 + n/θ0)

log(1 + n/θ0)

log n

= Kn

θ0 log(1 + n/θ0)

(
1 − log θ0

log n
+ log (1 + θ0/n)

log n

)

holds and otherwise (Kn/ log n)/θ0 ≤ n/(θ0 log n) → 0 almost surely holds. On the other
hand, Propositions 3, 4, and 5 yield that the maximum likelihood estimator is consistent if
n2/θ0 → ∞.

4.2. Asymptotic normality

We now show the asymptotic normality of the maximum likelihood estimator θ̂ .

Proposition 6. Consider the asymptotic setting n → ∞, θ0 �→ 0, and n2/θ0 → ∞. Then, it
holds that (

�n(θ0)

θ0

)1/2

(θ̂ − θ0)
d−→ N(0, 1).

Proof. The Taylor expansion yields that (2) is equal to

Kn =
n∑
j=1

(
θ0

θ0 + j − 1
+ j − 1

(θ̃ + j − 1)2
(θ̂ − θ0)

)

if and only if(
�n(θ0)

θ0

)1/2

(θ̂ − θ0) = Kn − θ0Ln(θ0)√
θ0�n(θ0)

�n(θ0)∑n
j=1(j − 1)/(θ̃ + j − 1)2

, (22)

where θ̃ is a value between θ0 and θ̂ . As for the denominator of the second factor in the
right-hand side of (22), it holds that

n∑
j=1

j − 1

(θ̃ + j − 1)2
= �n(θ0)+

n∑
j=1

(
j − 1

(θ̃ + j − 1)2
− j − 1

(θ0 + j − 1)2

)

and the absolute value of this second term is bounded above by∣∣∣∣
n∑
j=1

j − 1

(θ̃ + j − 1)(θ0 + j − 1)

(
1

θ̃ + j − 1
+ 1

θ0 + j − 1

)
(θ̃ − θ0)

∣∣∣∣. (23)

When n/θ0 → ∞ or n/θ0 → c �= 0, (23) is bounded above by

n∑
j=1

2

(θ + j − 1)2
|θ̂ − θ0| ≤ 2

(
θ0

θ2 + θ0(n− 1)

θ(n− 1 + θ)

)∣∣∣∣ θ̂θ0
− 1

∣∣∣∣, (24)

where θ denotes min(θ̂ , θ0). When n/θ0 → 0, (23) is bounded above by

n∑
j=1

2(j − 1)

θ3 |θ̂ − θ0| ≤ n2θ0

θ3

∣∣∣∣ θ̂θ0
− 1

∣∣∣∣. (25)
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Owing to θ̂/θ0
P−→1 (Propositions 3, 4, and 5), the right-hand sides of (24) and (25) converge

to 0 in probability under each setting. Consequently, (12) and Slutsky’s lemma [6, Lemma 2.8]
yield the conclusion. �
Remark 10. The second-order derivative of the logarithm of the likelihood function is

l̈(θ) := −Kn
θ2 +

n∑
j=1

1

(θ + j − 1)2
,

so −E[l̈(θ0)] = �n(θ0)/θ0 holds. It coincides with the inverse of the asymptotic variance of
the maximum likelihood estimator.
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