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One-dimensional turbulence:
model formulation and application to
homogeneous turbulence, shear flows,

and buoyant stratified flows
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(Received 18 February 1997 and in revised form 1 March 1999)

A stochastic model, implemented as a Monte Carlo simulation, is used to compute
statistical properties of velocity and scalar fields in stationary and decaying ho-
mogeneous turbulence, shear flow, and various buoyant stratified flows. Turbulent
advection is represented by a random sequence of maps applied to a one-dimensional
computational domain. Profiles of advected scalars and of one velocity component
evolve on this domain. The rate expression governing the mapping sequence reflects
turbulence production mechanisms. Viscous effects are implemented concurrently.

Various flows of interest are simulated by applying appropriate initial and bound-
ary conditions to the velocity profile. Simulated flow microstructure reproduces the
− 5

3
power-law scaling of the inertial-range energy spectrum and the dissipation-

range spectral collapse based on the Kolmogorov microscale. Diverse behaviours of
constant-density shear flows and buoyant stratified flows are reproduced, in some
instances suggesting new interpretations of observed phenomena. Collectively, the
results demonstrate that a variety of turbulent flow phenomena can be captured in a
concise representation of the interplay of advection, molecular transport, and buoyant
forcing.
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1. Introduction
One-dimensional models of turbulent flows have been introduced in various con-

texts. Eddy-diffusivity formulations are often used to model ensemble-averaged flow
structure in one direction, typically the vertical direction in buoyant stratified flows.
One-dimensional representations of the evolution of individual flow realizations have
also been formulated, such as the randomly forced Burgers equation (Chekhlov &
Yakhot 1995), a one-dimensional Biot-Savart formulation (Constantin, Lax & Majda
1985; De Gregorio 1990), and one-dimensional binary-tree formulations (Aurell,
Dormy & Frick 1997; Benzi et al. 1997).

Here, a one-dimensional simulation of individual flow realizations, denoted ‘one-
dimensional turbulence’ (ODT), is formulated whose distinctive feature is the repre-
sentation of turbulent advection by a postulated stochastic process rather than an
evolution equation. Viscosity is incorporated as a concurrent deterministic process,
governed by an evolution equation of conventional form.

In ODT, turbulent advection is represented by a random sequence of eddy motions.
Each eddy motion is an instantaneous mapping of a segment of the one-dimensional
domain onto itself. The eddy size (i.e. the size of the affected segment) and the time
and location of its occurrence are chosen according to a random process reflecting
kinetic-energy production mechanisms.

The one-dimensional domain represents a transverse direction in planar coordinates.
(Implementation in cylindrical coordinates is feasible, but is not considered here.)
For turbulent flows that develop temporally, flow evolution is represented by the
time evolution of a streamwise velocity profile on the one-dimensional domain. For
spatially developing flows, simulated flow evolution represents streamwise spatial
development.

The streamwise velocity profile has two roles: it represents the strain field that
generates eddy motions, and it is the observable whose statistics are compared
to experimental results. Kinematical aspects of advection are represented in two
dimensions, though the computational domain is one-dimensional. The eddies induce
motion along the one-dimensional coordinate, while the observable corresponds to
streamwise flow, perpendicular to the one-dimensional coordinate. Thus, the Reynolds
stress profile 〈u′v′〉 can be obtained, despite the lack of an explicit v profile, by
monitoring the transverse flux of u induced by eddy motions.

The model incorporates viscosity as well as advection. Viscous evolution is im-
plemented by solving the appropriate transport equation for the velocity field on
the one-dimensional domain. This evolution is nominally a continuous-time process,
though time discretization is required for numerical implementation. This continuous
evolution is punctuated by the instantaneous mapping events representing eddies.
The concurrent viscous and advective processes are interactive because each process
modifies the velocity field that governs both processes. Computationally affordable
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One-dimensional turbulence 279

resolution of viscous scales in fully developed turbulence is a key attribute of the
one-dimensional formulation.

Resolution of molecular transport scales allows inclusion of diffusive scalars with
no additional approximations, facilitating application of the model to turbulent
dispersion, heat transfer, chemically reacting flows, etc. Scalar mixing processes that
are sensitive to fine-scale turbulent motions motivated the author’s earlier development
(Kerstein 1991) of the linear-eddy model (LEM). That model likewise involves fully
resolved molecular transport of scalars on a one-dimensional domain, concurrent
with a random sequence of events representing turbulent eddies. In the LEM, flow
properties are specified empirically by assigning parameters governing the random
event sequence. There is no provision for feedback of local flow properties to the
random process governing subsequent events.

In contrast, ODT is formulated so as to capture this feedback with minimal em-
piricism. In this regard, ODT is both a turbulence model and a methodology for fully
resolved simulation of mixing, chemical reaction, and related scalar processes in tur-
bulence. The latter capability is a key feature distinguishing ODT from conventional
turbulence models that require the incorporation of mixing submodels in order to
treat scalar processes.

Because ODT subsumes many of the previously demonstrated capabilities of the
LEM with regard to mixing, the emphasis here is on flow properties. It is noted that
comparable or superior predictions of particular flow properties may be obtained
using conventional models. The distinguishing features of ODT are its scope, simplic-
ity, minimal empiricism, and capability to incorporate complex molecular processes
(variable transport properties, chemical reactions, dynamically active scalars, etc.)
without introducing additional approximations.

Because ODT is a fully resolved simulation, various statistical quantities can be
extracted that are not provided by conventional closure methods, such as single-point
and multipoint moments of any order, multivariate probability density functions,
conditional statistics, power spectra, level-crossing statistics, Lagrangian statistics, and
fractal dimensions. Only a limited exploration of these possibilities is attempted here.

A one-dimensional formulation is applicable only to flows that are homogeneous
in at least one spatial coordinate. Many flows of fundamental interest and practical
importance are of this type. For more complex flows, a one-dimensional unsteady
simulation may prove advantageous as a subgrid model within a large-eddy simulation
or a multidimensional steady-state model. Implementation of the LEM in this manner
has been demonstrated (Menon & Calhoon 1996).

The model is formulated in § 2. Additional details, including numerical implemen-
tation issues, are discussed in Appendix A. Relationships between model quantities
and three-dimensional flow properties are examined in Appendices B and C.

The remainder of the paper addresses various applications, which indicate the diver-
sity of flow configurations and phenomena that can be treated. Many of the computed
behaviours are direct consequences of the formulation, but in several instances new
insights are gained concerning phenomena that are not yet well understood.

2. Model formulation
2.1. Overview

Operationally, ODT is a numerical method for generating realizations of a class
of stochastic initial-boundary-value problems on a one-dimensional domain. For

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

53
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099005376


280 A. R. Kerstein

temporal flows (T-flows), each ODT realization represents a time history, u(y, t), of
the transverse profile of streamwise velocity, and/or time histories of one or more
scalar profiles, generically denoted θ(y, t). For spatially developing flows (S-flows),
ODT generates realizations parameterized by (y, x) instead of (y, t), where x is the
streamwise coordinate. (Here, the y-coordinate is normal to the streamwise and
spanwise directions.)

It is convenient to describe ODT with reference to T-flow, later explaining distinct
features of the S-flow formulation. Eddy motions are governed by the strain field
as characterized by variations of the instantaneous streamwise velocity u(y, t) along
the y-coordinate, and by analogous variations of the instantaneous buoyancy profile.
For three-dimensional continuum flow, the link between these turbulence production
mechanisms and the induced motions is the Navier–Stokes equation, which governs
viscous as well as advective flow evolution. In ODT, the production mechanisms, the
induced motions, and viscous transport are distinct entities. The time evolution of
u(y, t) is governed by viscous transport, whose continuum evolution is analogous to
Navier–Stokes viscous transport, and a concurrent advection process consisting of a
stochastic sequence of mappings applied to the one-dimensional domain. Likewise,
each scalar profile is subject to molecular-diffusive transport based on the appropriate
diffusion coefficient, and the same mapping sequence that is applied to u(y, t). The
mapping rule and the rate expression that govern the stochastic event sequence are
discussed in § 2.2, and viscous evolution is discussed in § 2.3.

2.2. Advection

2.2.1. The one-dimensional eddy

In ODT, each eddy is an instantaneous event. Having no time duration, it has no
opportunity to interact directly with other eddies. Rather, the interaction is indirect,
mediated by the velocity profile u(y, t) and/or profiles of dynamically active scalars
such as the density ρ(y, t) in buoyant stratified flow. For clarity, consideration of
variable-density flow is deferred until § 2.4.

An individual event is a mapping that determines a new streamwise velocity profile
û(y) as a function of a given profile u(y). (Here and subsequently, the argument t is
suppressed where the meaning is clear.) The velocity profile is deemed to be unaffected
outside a selected interval y0 6 y 6 y0 + l, where l represents the eddy size. Thus,
û(y) = u(y) for y outside [y0, y0 + l].

To specify the functional dependence in [y0, y0+l], it is useful to adopt a Lagrangian
viewpoint with respect to the y-coordinate. In this context, the effect of an eddy on u(y)
involves two mechanisms: transverse displacement of fluid elements and modification
of the streamwise velocity within fluid elements.

Taking the one-dimensional domain to be a closed system, incompressibility con-
strains the transverse displacements associated with the eddy to be a measure-
preserving map of the domain onto itself. Namely, the displacements can be repre-
sented by a mapping ŷ(y) such that

∫
Ŝ

dŷ =
∫
S

dy, where S is any subset of the y

domain and Ŝ is the image of S on ŷ.
It is desirable for the inverse mapping y(ŷ) to be a continuous function of ŷ. This

property ensures that two fluid elements that are close to each other after the mapping
were close to each other prior to the mapping, thus preventing the introduction of
discontinuities into the velocity profile.

Because the map ŷ(y) is required to be measure-preserving, all velocity moments∫
un(y) dy are preserved by the map. (This property is analogous to the constancy of
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One-dimensional turbulence 281

area-integrated vorticity moments in incompressible two-dimensional Euler flow.) In
particular, the total streamwise momentum (n = 1) and energy (n = 2) are preserved.
(For S-flow, u and u2 are volume flux and momentum flux, respectively.)

Streamwise momentum and energy conservation (volume-flux and momentum-flux
conservation for S-flow) are essential properties, but the higher streamwise invariants
are artifacts. An additional artifact is that energy conservation is here enforced on a
particular velocity component.

These constraints do not arise in three-dimensional flow owing to the second eddy
mechanism: modification of the streamwise velocity within fluid elements. Namely, the
pressure-gradient term of the Navier–Stokes equation modifies velocity components
and thus the orientation of the velocity vector, inducing energy redistribution among
velocity components.

Here, this mechanism is omitted. This simplification necessarily fails for flows
in which imposed pressure gradients drastically alter the flow structure, such as
separating boundary layers. Even in the absence of imposed pressure gradients,
pressure fluctuations can have important effects whose omission may have an impact
on the performance of the model.

The ODT representation of an eddy is thus a mapping rule ŷ(y) that reflects only
one of two mechanisms of u(y) modification by an eddy. Moreover, the mechanism
that is represented is purely kinematical. However, aspects of turbulence energetics
are incorporated into the rule that determines the stochastic sequence of mapping
events (§ 2.4.1).

An important consequence of the proposed eddy representation is that the effect of
an eddy on u(y) is the same as on a passively advected scalar profile. If Pr = 1 and
the scalar and streamwise velocity have the same initial and boundary conditions,
then the scalar and velocity profiles evolve identically. In effect, the Reynolds analogy
is exact in ODT for Pr = 1. This implies PrT = 1, where PrT is the turbulent Prandtl
number. Measured values of PrT typically differ from unity by about 10 or 20%,
lending some preliminary support to the kinematical approach.

Monin & Yaglom (1971) note that mixing-length theories likewise formulate the
transfer of momentum as the transfer of a passive scalar, neglecting pressure-induced
momentum changes within fluid elements. This consideration led Taylor (1932) to
formulate a vorticity transfer theory based on the proposition that vorticity is trans-
ported more nearly as a passive scalar than is momentum. This proposition is based on
the exact analogy between vorticity and passive-scalar transport in two-dimensional
inviscid flow. In three dimensions, the analogy is less justified, so a vorticity formu-
lation is not necessarily advantageous (Monin & Yaglom 1971). A velocity rather
than a vorticity formulation is adopted in ODT, owing to its simplicity and ease of
interpretation.

The mapping rule ŷ(y) that is adopted is the ‘triplet map’ employed in the LEM
(Kerstein 1991). The rule is stated here in a more general form, although only the
particular form defined previously is implemented. In [y0, y0 + l], ŷ is taken to be a
three-valued function of y, as follows:

ŷ =

{
y0 + f1(y − y0)
y0 + f2l − (f2 − f1)(y − y0)
y0 + f2l + (1− f2)(y − y0).

(2.1)

Equation (2.1) maps the interval [y0, y0+l] onto each of three subintervals [y0, y0+f1l],
[y0 + f1l, y0 + f2l] and [y0 + f2l, y0 + l], where 0 < f1 < f2 < 1.

As in LEM applications, the choice f1 = 1
3
, f2 = 2

3
is implemented in all cases.
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(a) (c)

(b)

Figure 1. Effect of the triplet map on an initially linear velocity profile u(y, t). (a) Initial profile.
(b) Velocity profile after applying the triplet map to the interval denoted by ticks. (c) Discrete
representation of the initial profile, and illustration of the effect of a triplet map on an interval
consisting of nine cells. For clarity, arrows indicating formation of the central of the three images
of the original interval are dashed.

For this choice, figure 1 illustrates the effect on a linear profile u(y) ∼ y. The effect is
to replace the profile in [y0, y0 + l] by three compressed images of the original, with
the middle image inverted (flipped). This map reflects the compressive and rotational
attributes of eddy motion, as discussed in detail previously (Kerstein 1991). It causes
multiplicative increase of strain intensity and a corresponding multiplicative decrease
of strain length-scale. As discussed in § 3.1, these features lead to a self-similar eddy
cascade.

The choice f1 = 1
3
, f2 = 2

3
is simplest because it gives uniform strain intensity

multiplication and length-scale reduction within the eddy. Other choices would intro-
duce spatial variation of these properties within the eddy, governed by two empirical
parameters (or one if the symmetry f1 = 1− f2 is imposed). Allowing this empiricism
might be beneficial in some contexts. For example, f1 = 1− f2 � 1 would represent
a mildly compressive rotation in between thin high-compression zones. This might
increase the intermittency of the eddy cascade, and in the context of buoyant strati-
fied flow, might represent convective structures that overturn with little length-scale
reduction except in the high-strain regions on their periphery.

Although (2.1) is nominally a three-valued mapping, it can be approximated on
a discretized computational domain by a single-valued mapping that is simply a
permutation of the cells within the mapping interval [y0, y0 + l], and thus is measure-
preserving. The permutation rule, stated in its general form in Kerstein (1991), is
illustrated for a particular case in figure 1(c).

That figure illustrates the continuity of the inverse mapping, as follows. Fluid
elements that are nearest neighbours in the transformed profile are no more than
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three cells apart in the preimage. In contrast, nearest neighbours in the preimage
can be separated by more than half the eddy size in the transformed profile. This
distinction is minor for the nine-cell discretization illustrated in the figure, but becomes
increasingly significant as spatial resolution is improved. By considering the limit of
vanishing cell size, it can be shown formally that the inverse mapping is continuous
but that the forward mapping is discontinuous almost everywhere within the mapping
interval [y0, y0 + l].

2.2.2. Eddy rate distribution

As in the LEM, mapping events are governed by an ‘eddy rate distribution’ λ(l),
where λ(l) dl is the frequency of events in the size range [l, l + dl] per unit length
along the y-coordinate. Based on this definition, λ(l) has units (length2× time)−1. The
dimensional relation

λ(l) = 1/[l2τ(l)] (2.2)

expresses λ(l) in terms of a time τ(l) that is interpreted as an eddy time scale. A free
parameter, to be determined empirically, could be inserted in (2.2). This is not done
here because the principal objective here is to address qualitative behaviours with
minimal empiricism. For reasons explained shortly, a free parameter is included in
the expression for τ.

In the LEM, τ(l) is taken to be a mean time scale estimated by invoking the usual
turbulence phenomenology. Here, this picture is modified by treating τ(l) as a local,
instantaneous time scale, now denoted τ(l; y, t), whose evaluation is based on u(y, t).

Dimensional reasoning suggests that τ(l; y, t) is determined by the local strain
du(y, t)/dy, as discussed in § 2.1. A refinement of this proposal that accounts for
the finite spatial extent of an eddy is motivated by a Fourier picture corresponding
to the parameterization k = 1/l. Viewing individual eddies as Fourier wave pack-
ets (Tennekes 1976), the eddy time scale can be expressed in the form τk(y, t) ∼
1/[kuk(y, t)]. Here, kuk(y, t) is a Fourier-space representation of dul(y, t)/dy, where ul
is a smoothed u profile with smoothing scale l. This suggests the formulation

τ(l; y0, t) =
l

A∆u(y0, l)
, (2.3)

where ∆u(y0, l) represents the velocity difference across [y0, y0 + l] based on the
smoothed velocity profile ul(y, t), and A is a free parameter. Eddy location and size
are parameterized by y0 and l, defined as in § 2.2.1.

There is no uniquely preferable mathematical definition of ∆u(y0, l). The formulation
that is adopted here is

∆u(y0, l) = 2|ul(y0 + 1
2
l, t)− ul(y0, t)|, (2.4)

where

ul(y, t) =
2

l

∫ y+(l/2)

y

u(y′, t) dy′. (2.5)

Because numerical results may be sensitive to the functional form assumed for
∆u(y0, l), a free parameter A has been introduced in (2.3). A is determined either
empirically or by applying a self-consistency condition to the model, as appropriate
for each application.

Substitution of (2.3) into (2.2) gives

λ(l; y0, t) = 2A|ul(y0, t)− ul(y0 + 1
2
l, t)|/l3. (2.6)
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This formulation has been motivated without reference to random fluctuations, and
in fact, could be the basis of a purely deterministic model. To proceed further, it is
useful to form the event rate R(t) =

∫∫
λ(l; y0, t) dl dy0, where the integrations extend

over the allowed ranges of the arguments. Here, two statistical hypotheses (the only
such hypotheses in ODT) are introduced. First, the time sequence of mapping events
is assumed to be a Poisson process whose rate at time t is R(t). Second, the values
(l, y0) associated with an event occurring at time t are assumed to be randomly
sampled from λ(l; y0, t)/R(t), which in this context is the joint probability density
function (p.d.f.) of l and y0 at time t. These assumptions define a marked Poisson
process (Snyder 1975).

Though the values (y0, l) are determined for each event by independent sampling
from λ(l; y0, t)/R(t), values of (y0, l) for sequential events are correlated through
the effect of each event on u(y, t) and thus on the functional form of λ(l; y0, t)
that governs subsequent events. λ(l; y0, t) also evolves continuously in time owing
to viscous evolution of u(y, t). The unsteadiness of the eddy rate distribution is
both a fundamental property of the model and a key consideration in its numerical
implementation. Implementation is discussed in Appendix A. There it is noted that the
Poisson event sequence introduces a large-scale anomaly. A large-eddy suppression
mechanism that removes the anomaly in the class of flows that is most strongly
affected is therefore introduced, as explained in Appendix A.

Time correlation of events introduced through the time evolution of λ(l; y0, t) is the
mechanism that induces an eddy cascade in ODT (§ 3.1). However, this mechanism
does not reflect the simultaneity of multiple eddies at a given spatial location, and
therefore omits eddy interactions such as the sweeping of small eddies by large eddies.

This omission might be mitigated to some extent by delaying the implementation
of each designated mapping by a time interval equal to the eddy time scale τ, thereby
recognizing the distinction between the inception and the completion of an eddy
motion. At the moment of completion, τ can be recomputed based on the updated
velocity profile, and the implementation can be further delayed if the new τ value
exceeds the original value.

This procedure would enhance the spatio–temporal interaction among eddies. It
is not implemented, however, because the lack of finite eddy duration intrinsically
limits the realism of the model in this regard. In contrast, one-dimensional binary-tree
formulations (Aurell et al. 1997; Benzi et al. 1997) incorporate finite-time interactions
among multiple modes, and hence a fuller representation of eddy simultaneity. It
should be noted that the ultrametric spatial structure of binary-tree models precludes
their application to inhomogeneous turbulence.

It is not obvious that a representation of eddy simultaneity is essential to capture
the eddy-cascade observables of interest. ODT performance in this regard will be
compared elsewhere to the performance of binary-tree models.

2.3. Viscosity

2.3.1. Viscous evolution equation

Viscous effects are implemented in two ways, involving a continuous-time evolution
equation and a rule that suppresses certain mapping events. The latter mechanism is
discussed in § 2.3.2.

Continuous-time viscous evolution in the model is implemented as the one-
dimensional analogue of three-dimensional viscous processes. For T-flow, it is gov-
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erned by the evolution equation

ut = νuyy − Px/ρ, (2.7)

where ν is the kinematic viscosity, Px is an applied pressure gradient, and ρ is the
fluid density. Here, Px can depend on t but not on x because streamwise variations
are not represented within the T-flow formulation. (Time-developing channel-flow
simulations with constant Px have been implemented, but are not reported here.)
Likewise, each scalar θ is subject to molecular transport governed by

θt = κθyy, (2.8)

where κ is the molecular diffusivity. Here, ν and κ are taken to be constants. This
formulation is readily generalized to allow variable transport coefficients, non-Fickian
molecular transport, and multiple, chemically reacting scalars. These generalizations
have been implemented but are not reported here.

S-flows are treated in the boundary-layer approximation. The governing equations
are the momentum equation

uux + vuy = νuyy − Px/ρ, (2.9)

the continuity equation

ux + vy = 0, (2.10)

and the scalar transport equation

uθx + vθy = κθyy. (2.11)

Equations (2.9)–(2.11) can be incorporated as written into ODT although ODT
has no v profile. The reason is that v can be eliminated from these equations, except
for its value at one reference location. This is demonstrated by using continuity to
replace ux by −vy in (2.9), formally solving (2.9) for v, and substituting this solution
into (2.10) to obtain

ux = − v(ŷ)

u(ŷ)
uy + ν

uyy

u
− Px

ρu
+ uy

∫ y

ŷ

dy′

u2

(
νuyy − Px

ρ

)
, (2.12)

where ŷ is a reference location. The expression for the v profile determined from (2.9)
and (2.10) is

v =
v(ŷ)

u(ŷ)
u− u

∫ y

ŷ

dy′

u2

(
νuyy − Px

ρ

)
. (2.13)

If turbulent advection is omitted from ODT, then the stochastic simulation reduces
to a deterministic numerical solution of (2.7) or (2.12), as applicable, and hence to a
solution of the corresponding laminar initial-boundary-value problem. The numerical
method, discussed in Appendix A, is necessarily different from methods tailored to
laminar problems, owing to strong velocity gradients that develop when the turbulent
advection process is included.

2.3.2. Small-eddy suppression

Though viscous evolution as outlined in § 2.3.1 suppresses small-scale u fluctuations,
it does not prevent small mappings driven by large-scale fluctuations. In fact, for
fixed velocity gradient ∆u/l, τ is independent of l and λ is proportional to l−2,
diverging as l → 0. Despite this divergence, the effect of small mappings is minor
because their contribution to transport scales as l2/τ, and thus as l2 for fixed ∆u/l.
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This has been confirmed numerically by running representative cases at successively
higher resolutions to verify that results become independent of resolution, and thus
independent of the size of the smallest resolved mapping.

It is physically more appealing to recognize that the occurrence of these small
mappings is an artifact of the distinction between mappings and the u profile, and
therefore to suppress mappings that are incommensurate with the length scales of u
fluctuations. This suppression of small mappings is formulated to reflect the viscous
mechanism that suppresses the small-scale u fluctuations. Namely, a mapping is
suppressed if its time scale τ is longer than a time scale τd = l2/(16ν) that governs
viscous suppression of the eddy motion. The origin of the numerical factor is explained
in Appendix A. Note that τd is a rapidly increasing function of l, so its effect is to
suppress small eddies. (τ is typically a less rapidly increasing function of l.)

In § 3.2.4, simulations with and without small-eddy suppression are compared,
demonstrating that the effect of allowing the anomalous small eddies is minor for
shear-driven flow. However, there is a class of buoyancy-driven flows for which
small-eddy suppression is essential, as explained in § 2.4.1.

2.4. Buoyancy

2.4.1. Generalized eddy rate distribution

Equation (2.3) can be recast in a form that allows generalization to buoyant flow.
For this purpose, the total kinetic energy of the mapping-induced motion (the ‘eddy
kinetic energy’) is evaluated.

For clarity, consider triplet-map implementation on a discretized domain, imple-
mented as a permutation of the cells of the mapping interval (§ 2.2.1). The mapping-
induced displacement δ of a given cell implies a cell velocity v based on the assumption
that the time duration of the corresponding eddy in continuum flow is τ. Thus, the
estimate v = δ/τ is adopted. In Appendix C, it is shown that this relation can be used
to extract v fluctuation statistics from simulated realizations.

The corresponding cell kinetic energy is 1
2
ρwv2 = 1

2
ρwδ2/τ2, where w is the cell

width and ρ is the cell density, expressed as mass per unit width. (The dimensions of
density do not affect computed results because they are presented in non-dimensional
form.) Here, the Boussinesq approximation is adopted, so ρ is set equal to a reference
density ρ0 except in terms involving the gravitational acceleration g. (The model can
be extended to include some non-Boussinesq effects, but this is not implemented here.)

Summing over mapped cells, the total kinetic energy of the mapping-induced
motion (the ‘eddy kinetic energy’) is 1

2
ρ0l〈δ2〉/τ2, where 〈δ2〉 is the mean-square

fluid displacement in the mapping interval. For the triplet map (spatial continuum
definition), 〈δ2〉 = 4

27
l2 (Kerstein 1991), so the eddy kinetic energy becomes 2

27
ρ0l

3/τ2.
A kinetic energy density is obtained by dividing this quantity by l. Introducing the

expression (2.3) for τ, the relation 2
27
ρ0(l/τ)

2 = 2
27
ρ0(A∆u)2 can be interpreted as a

vortical kinetic energy density (left-hand side) fed by the kinetic energy of the local
shear (right-hand side). The proposed generalization to buoyant flow is

2
27
ρ0

(
l

τ

)2

= 2
27
ρ0(A∆u)2 − ∆Eg

l
, (2.14)

where

∆Eg = g

∫
[ρ̂(y)− ρ(y)]y dy (2.15)

is the change in gravitational potential energy upon application of a triplet map to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

53
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099005376


One-dimensional turbulence 287

the segment [y0, y0 + l]. In (2.15), ρ and ρ̂ respectively are the density profiles before
and after the application of the map.

Equation (2.14) is analogous to an expression formulated by Stull & Driedonks
(1987) to determine the fluid-exchange time scale in their one-dimensional model
of time-average vertical turbulent transport in buoyant flow. Aside from being an
instantaneous rather than a time-average relation, the main difference between (2.14)
and their expression is the omission of energy dissipation from (2.14). This and other
aspects of buoyant-flow energetics in ODT are discussed in § 2.4.2.

Stull & Driedonks (1987) motivate their formulation by a closure of the turbulent
kinetic energy equation. Equation (2.14) can be regarded as an instantaneous analogue
of their formulation. However, (2.14) can be rationalized without reference to closure
modelling: it is obtained by assuming the additivity of kinetic and potential energy
contributions to vorticity production, and by requiring that (2.14) reduces to (2.3) for
constant-density flow.

In stable stratification, (2.14) can give a negative value on the right-hand side.
Application of the triplet map to [y0, y0 + l] is then deemed to be energetically
forbidden, so the map is prevented from occurring by setting τ equal to infinity.
A map on this interval may become energetically allowed at a later time, with a
commensurate value of τ, depending on the subsequent evolution of the u and ρ
profiles.

In applications considered here, density fluctuations are caused by temperature
variations imposed on the flow. The molecular transport of heat can be represented
by an equation of the form (2.8), with density determined from the equation of
state. For Boussinesq flow at low Mach number, density fluctuations are roughly
proportional, and opposite in sign, to temperature fluctuations. Therefore density can
be regarded as a diffusive scalar governed by

ρt = κρyy, (2.16)

where κ is the thermal diffusivity. This formulation, which is a standard approximation
for low-Mach-number Boussinesq flow, is adopted here.

Within this framework, the Richardson number

Ri =
∆ρ

ρ0

gL

U2
(2.17)

and the Rayleigh number

Ra =
∆ρ

ρ0

gL3

κν
(2.18)

are defined in the usual manner in terms of length and velocity scales L and U,
and a density difference ∆ρ, that are specified for each flow configuration. Scaling all
dimensional quantities in (2.14) and (2.15) in terms of L, U, and ρ0,(

l

τ

)2

= (A∆u)2 − 27Ri

2l

∫
[ρ̂(y)− ρ(y)]y dy (2.19)

is obtained, where all quantities are now non-dimensional.
For flows that involve characteristic length and velocity scales L and U, the non-

dimensional formulation is parameterized by Ri, by the Reynolds number Re = UL/ν,
and by the Prandtl and Schmidt numbers (Pr, Sc) governing the molecular diffusion
of heat and any other diffusive scalars advected by the flow. If there is no characteristic
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velocity scale, then the normalizing velocity U is replaced by ν/L, giving

Ri = Ra/Pr, (2.20)

where Pr = ν/κ. Thus, the usual parameterization by Ra and Pr (plus any applicable
Schmidt numbers) is obtained for flows of this type.

These flows are typically buoyant flows driven by locally unstable vertical variations
of density. An unstably stratified density profile can generate a self-sustaining cascade
of mapping events, irrespective of shear contributions. For unstably stratified flows
with no applied shear or pressure gradient, the velocity profile u(y, t) is identically
zero initially and is not modified by mappings or by viscous evolution, so it is
effectively decoupled from the simulated flow evolution. This special case of ODT
is denoted density-profile evolution (DPE). All computed results presented in § 5 are
obtained using DPE. In DPE, small-eddy suppression is the only operative mechanism
representing viscous effects, and thus is the mechanism that governs Pr dependences.

2.4.2. Buoyant-flow energetics

Equation (2.14) implies the conversion of gravitational potential energy into vertical
kinetic energy. This picture is oversimplified in several respects.

First, it neglects the conversion of a portion of the gravitational potential energy
into horizontal kinetic energy. This tends to cause an excessive intensity of induced
vertical motions. In DPE, horizontal motions play no explicit role in flow evolution.
In ODT with buoyancy and shear, only the shear forcing can contribute to the
total horizontal kinetic energy. Vertical motions generated by buoyant forcing cannot
affect the total horizontal kinetic energy because the y-integral of u2 (or of any
other function of u) is invariant under mappings. However, buoyant forcing (or
suppression, in stable stratification) can indirectly influence the viscous dissipation
of horizontal kinetic energy through the effect of mappings on the length scale of
u-profile fluctuations.

Second, it is implicit in the model that the vertical kinetic energy associated
with a mapping is entirely dissipated by that motion. There is no provision within
the model for that energy to drive subsequent motions, horizontal or vertical. In
principle, it is possible to define the vertical kinetic energy locally within ODT,
with (2.14) generalized accordingly. This would allow a local, instantaneous energy
balance, including a physically based mechanism for dissipating vertical kinetic energy.
However, the assumption that an eddy dissipates its kinetic energy in one turnover is
not a drastic oversimplification. The mechanism of this dissipation is energy transfer
to smaller-scale, shorter-lived motions, i.e. the turbulent cascade, terminating at the
viscous-dissipation length scales after a delay of the order of the eddy-turnover time.

For buoyancy-driven turbulence, details of the conversion of vertical kinetic energy
to other forms are generally unimportant because the prior step of potential energy
conversion to vertical kinetic energy dominates the flow kinematics. This point is
elaborated in the discussion of the Bolgiano–Obukhov scaling of the ODT buoyancy-
driven cascade (§ 5.1).

In contrast, important features of stably stratified turbulence are sensitive to the
conversion of vertical kinetic energy to other forms (heat, horizontal kinetic energy,
gravitational potential energy, and acoustic waves). The impact of the omission of
these conversion processes on ODT simulations of stably stratified flow regions is
noted in § 5.3 and § 6.3.

The cascade of horizontal kinetic energy is explicitly represented in shear-driven
ODT through the coupling between the u profile and the event-rate distribution
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(§ 2.2.2). With or without buoyancy, the ODT budget of the u component of turbulent
kinetic energy, 〈u′2〉/2, is self-contained. For non-buoyant shear-driven flow, this
budget is interpreted in Appendix B as the model analogue of the total (sum over
velocity components) turbulent kinetic energy budget. This is fairly accurate for
boundary-layer-type flows in which turbulence production is driven by the y variation
of u. For isotropic turbulence, however, 〈u′2〉/2 is interpreted as one-third of the total
turbulent kinetic energy. Thus, the ODT analogue of the energy-dissipation rate is

εODT = cν〈(du′/dy)2〉, (2.21)

where c = 1 for boundary-layer flows and c = 3 for isotropic turbulence.
Equation (2.21) is generalized to incorporate sources and sinks of gravitational

potential energy as follows. In accordance with (2.14), it is assumed that a mapping-
induced potential-energy decrement corresponds to a vertical-kinetic-energy increment
that is immediately dissipated. A potential-energy increment is possible if there is
shear forcing sufficient to make the right-hand side of (2.14) positive. This energy
storage mechanism is represented by decrementing the energy dissipation, so that
the aggregate energy dissipation balances the turbulent-kinetic-energy production
(Appendix C) minus the net potential energy change.

These considerations motivate generalization of (2.21) by subtracting the buoyancy
flux, giving

εODT = cν〈(du′/dy)2〉 − (g/ρ0)〈ρ′v′〉. (2.22)

For DPE, in which the u profile is absent, the additional term is the sole contribution to
εODT. For this case, (2.22) reflects the assumed immediate dissipation of gravitational-
energy losses.

In general, the justification for (2.22) is qualitative at best. For stably stratified
flows that are initially isotropic, (2.22) correctly implies less dissipation than for
isotropic turbulence with the same value of 〈u′2〉. However, the complexities of energy
transfers involving gravitational energy and the velocity components are not captured.
This reflects the primarily kinematical nature of ODT, with dynamical considerations
represented only in a limited sense, through (2.14) and (2.15). Therefore (2.22) should
be regarded as a postulated interpretation of ODT whose degree of validity must be
assessed empirically.

2.5. Parameter evaluation

ODT involves a single free parameter A in the relation (2.19) determining the eddy time
scale. Multiplying the viscous equation (2.7) and the initial and boundary conditions
for u by A, it is evident that for T-flows, A and u appear only in the combination
Au (except in the Px term, which is absent in cases considered here). Taking U and
L to be characteristic velocity and length scales, a simulation for given A and U is
therefore equivalent to a simulation for any A′ 6= A with rescaled characteristic velocity
U ′ = (A/A′)U. The respective Reynolds numbers are Re = UL/ν and Re′ = U ′L/ν,
indicating the Re rescaling Re′ = (A/A′)Re. Likewise, Ri′ = (A′/A)2Ri.

The relation dx = u dt between streamwise increments dx and Lagrangian time
increments dt in S-flow implies the rescaling dx′ = (A/A′)dx. Equations (2.9)–(2.11) are
invariant under the simultaneous application of this transformation and u′ = (A/A′)u,
showing that the stated Re and Ri rescalings apply also to S-flow.
A can be determined empirically or by invoking a self-consistency condition. If

the latter, then the model becomes wholly self-contained. DPE (§ 2.4.1) is likewise
self-contained because in DPE, the term containing A drops out of (2.19).
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The evaluation of the transverse velocity variance 〈v′2〉 in ODT is explained in
Appendix C. Because both 〈u′2〉 and 〈v′2〉 can be obtained from simulated realizations,
relaxation to isotropy in ODT simulations of homogeneous turbulence can be enforced
by requiring 〈v′2〉 = 〈u′2〉 in the regime of self-similar evolution. Based on computations
discussed in § 3.2.4, this procedure gives A = 0.82. This differs from the value A = 0.3
required to match the measured value of the Kolmogorov constant (§ 3.2.2).

Two shear flows are considered here: Couette flow and the planar boundary layer.
The empirical considerations determining A for non-stratified and stratified Couette
flow are discussed in § 4 and § 6.1. The planar boundary layer is considered in the
context of entrainment of stably stratified fluid. It is shown in § 6.3 that application
of a mathematical stability criterion for the onset of shear-driven entrainment yields
A = 0.5.

The difference between this and the value A = 0.82 obtained from isotropy consider-
ations indicates that the present formulation does not simultaneously satisfy all known
mathematical requirements for a fully quantitative analogy to three-dimensional flow.
This could perhaps be remedied by introducing additional free parameters. Possi-
bilities in this regard are noted in § 2.2 and Appendix C. The present focus is the
comparison of computed and measured trends and features for purposes of mecha-
nistic interpretation. Therefore, efforts to achieve consistent quantitative accuracy are
not pursued here.

3. Homogeneous turbulence
3.1. Eddy cascade

The ODT representation of the microstructure of turbulence, and of passive scalars
advected by turbulence (parameterized by the Prandtl number Pr = ν/κ), is consid-
ered. First, the mechanism that induces an eddy cascade within ODT is examined.
Consider the initial-value problem u(y, 0) = y, representing a uniform imposed shear.
According to (2.6), this yields the eddy rate distribution λ ∼ l−2, independent of y0.
With the occurrence of mappings, u(y, t) is changed. To determine the effect on λ,
consider u(y, t) after the occurrence of a single mapping of given size l. Within each
subinterval of the mapping interval (see (2.1)), the shear is tripled, causing a tripling
of λ for eddies contained within the subinterval. Thus, mapping events increase the
subsequent rate of occurrence of smaller events contained within them. The iteration
of this rate multiplication over successively smaller length scales is the mechanistic
basis for the occurrence of an eddy cascade within ODT.

The steepening of gradients and the wrinkling of the profile u(y, t) by mappings is
counteracted by the smoothing effect of the concurrent viscous process. The dominant
process at given l can be determined by comparing advective and viscous time scales.
Based on (2.3), the advective time scale is of order l/δl , where δl is a characteristic
velocity difference over a distance l. The viscous time scale is of order l2/ν. Advection
dominates provided that l/δl � l2/ν, or equivalently, lδl/ν � 1, where lδl/ν is a
Reynolds number for length scale l. If this inequality is obeyed for some l, then there
is a range of scales above l in which viscous inhibition of the cascade is negligible.
This is the model analogue of the inertial range of turbulence. Further application of
this reasoning suggests a transition to a viscous-dissipation range for small enough l.

The dimensional reasoning usually applied to turbulence scaling properties may
carry over, to some extent, to ODT. The reason is that the dimensional relations
determining turbulence scalings are implicit in two fundamental properties of the
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model. Namely, (2.3) enforces the dimensionally correct dependence of the advection
time scale on l and δl , while (2.7) or its S-flow analogue provides a literal implemen-
tation of viscous dissipation, albeit in one spatial dimension. A heuristic discussion
of the ODT analogues of various scaling properties of homogeneous turbulence is
presented, followed by examination of numerical results.

3.1.1. Inertial-range scaling

The first scaling to be considered is the inertial-range scaling of the energy spectrum
of transverse velocity fluctuations, here denoted E(k). Except for a low-wavenumber
scaling considered in § 3.2, the scaling properties of the transverse spectrum and
of the three-dimensional spectrum are the same so the distinction between these is
immaterial.

The Kolmogorov cascade picture that yields the scaling E(k) ∼ k−5/3 is summarized.
It is assumed that the transport of kinetic energy in wavenumber space is local
and non-dissipative from the energy-containing scales down to the viscous scales.
This identifies the energy dissipation ε as the only relevant parameter (subject to
intermittency corrections discussed shortly). The relation

E(k) = 24
55
CKε

2/3k−5/3, (3.1)

where CK is the ‘Kolmogorov constant,’ is then obtained as the unique dimensionally
consistent scaling law for E(k).

The factor 24
55

arises because CK is the amplitude coefficient of the three-dimensional
energy spectrum, but E(k) here denotes the energy spectrum of transverse velocity
fluctuations (Appendix B). The inertial-range amplitude ratio 24

55
for these spectra

follows immediately from the relation between the spectra (Hinze 1975).
The underlying assumptions of local and non-dissipative energy transfer are obeyed

by ODT, admitting the possibility of a Kolmogorov-type cascade in ODT. In the
inertial range of ODT, the viscous process is irrelevant and the mappings determine
the scaling properties. Because each mapping is a measure-preserving rearrangement
of the u profile, the mappings preserve the integral of u2 over the one-dimensional
domain. In fact, they preserve the integral of any moment of u over the domain. (This
property of ODT is reminiscent of incompressible two-dimensional Navier–Stokes
turbulence, in which any moment of the vorticity field is conserved by advection.
In other respects, the ODT cascade more closely resembles three-dimensional than
two-dimensional turbulence.)

Moreover, the transfer of spectral intensity of any function of u is predominantly
local in wavenumber. The threefold compression induced by each map corresponds to
a threefold increase of the characteristic wavenumber of profile fluctuations within the
segment. (There is also some spectral transfer to much higher wavenumbers because
the map introduces discontinuous derivatives.)

Because the ODT inertial-range cascade conserves u2 and is predominantly local in
wavenumber, the reasoning originally used to derive (3.1) is applicable. Namely, the
mean flux of kinetic energy to higher wavenumbers is the same at all wavenumbers,
and therefore is equal to ε, here interpreted as the mean rate of energy input at low
wavenumbers. (This interpretation is based on the usual equilibrium picture in which
the low-wavenumber energy input balances the high-wavenumber energy dissipation.
ODT can also simulate non-equilibrium transient flows in which the inertial-range
spectrum may deviate from Kolmogorov scaling.) The assumption that E(k) can
therefore depend only on ε and k then implies (3.1).

The usual caveat is likewise applicable. In ODT, as in three-dimensional flow, the
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local instantaneous value of ε is a random variable. The assumption that only its
mean value enters the scaling is simple and well validated empirically, but deviations
from (3.1) due to fluctuation effects (i.e. intermittency corrections) are not a priori
excluded. This point is discussed further in § 3.2.2.

3.1.2. Viscous-range scaling

As explained in § 2.3, viscous effects are implemented in ODT by continuous-time
evolution of u(y, t) and by a small-eddy-suppression mechanism. Viscous-range scaling
is considered initially with respect to the continuous-time evolution process only.
In § 3.2.4, the effect of small-eddy suppression on viscous-range scaling is discussed
and demonstrated numerically.

The inertial-range scaling is applicable at length scales l for which lδl/ν � 1. For l
small enough so that this inequality is reversed, viscous effects become dominant. The
transition between regimes occurs for l of order ν/δl . The analysis of the ODT inertial
range indicates that δl obeys the scaling that follows from the Kolmogorov cascade
picture. The transition length scale for ODT is therefore the usual Kolmogorov
microscale, η = (ν3/ε)1/4.

At length scales l � η, viscosity smooths eddy-induced fluctuations on a time
scale tl ∼ l2/ν that is much shorter than the eddy time scale τl . Therefore u(y) in
the viscous-dominated range is effectively a constant-gradient profile punctuated by
mapping-induced fluctuations that vanish rapidly, and hence have negligible effect
on the rate of subsequent mapping events. τl in the viscous range can therefore
be estimated by taking the velocity difference in the denominator of (2.3) to be
proportional to l, giving τl independent of l.

This allows a simple estimate of the kinetic-energy spectrum in the viscous range.
Dimensionally, E(1/l) ∼ δl

2l, where the parameterization k = 1/l is used for con-
venience. Size-l mappings applied to a constant-gradient u profile induce order-l
fluctuations, giving δl

2 ∼ l2. Owing to the rapid smoothing of these fluctuations
relative to their rate of creation, only a fraction tl/τl � 1 of the spatial domain
exhibits significant fluctuations at any instant. Multiplying δl

2 by this fraction and
substituting the l dependencies of the time scales, the spectral scaling E(k) ∼ k−5 is
obtained in the viscous range.

This is a slower falloff than indicated by analysis and three-dimensional numerical
simulation of the viscous range (Sirovich, Smith & Yakhot 1994). Small-eddy suppres-
sion steepens the falloff somewhat (§ 3.2.4), but slower-than-observed falloff persists
owing to the high-wavenumber content of the discontinuous derivatives introduced
by the triplet map.

3.1.3. Advected scalars: Pr dependence

Provided that Px = 0 in (2.7), the velocity profile u(y, t) in ODT evolves in the same
manner as a passive scalar that is subject to the same initial and boundary conditions,
and that has molecular diffusivity κ equal to ν, i.e. Pr = 1. Thus, the earlier discussion
of scaling properties of u carries over to a passive scalar with Pr = 1.

In particular, this equivalence implies Eθ = E, where Eθ is the one-dimensional
scalar spectrum with the normalization stated in Appendix B. In the inertial-convective
range, Eθ obeys the scaling (Lesieur 1990)

Eθ(k) = Cθεθε
−1/3k−5/3. (3.2)
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Equations (3.1) and (3.2) give

Eθ

E
=

55

24

Cθ

CK

εθ

ε
(3.3)

for k such that both scalings are obeyed. Based on Eθ = E and the measured
values CK = 1.5 (Sreenivasan 1995) and Cθ = 0.8 (Sreenivasan 1996), equation (3.3)
gives ε/εθ = 1.2. (CK and Cθ here denote Sreenivasan’s quantities 55

18
CK and 2Cθ

respectively.) This tends to favour the definition of ε based on the dynamical analogy
(giving ε/εθ = 1) over the kinematical analogy (giving ε/εθ = 3) that is adopted in
Appendix B. Further consideration of the criterion for defining ε in ODT is warranted.

For Pr � 1, analysis and computations based on the LEM (Kerstein 1991) indicate
that the scaling properties of the LEM inertial-diffusive range are slightly different
from those presumed to govern turbulent flow. The discrepancy, explained in detail
in the cited reference, is anticipated to occur in ODT as well. Scalars with Pr � 1
are not investigated here.

For Pr � 1, molecular-diffusive effects are significant at length scales l for which
the diffusion time scale tl ∼ l2/κ is less than the eddy time scale τl . As shown in § 3.1.2,
τl is independent of l in ODT for l � η, and thus is of order τη ∼ η2/ν. The Batchelor
scale LB marking the transition to molecular-diffusion dominance is determined by
equating the diffusion and eddy time scales, giving LB ∼ Pr−1/2η. This is the same
as the result obtained from the conventional analysis (Lesieur 1990) that assumes the
suppression of eddies smaller than η. The ODT result is unaffected by the presence
of eddies smaller than η because they do not introduce advective time scales shorter
than τη . This indicates that the excessive frequency of small eddies in ODT may not
have much impact on viscous-range properties of interest.

A corollary of this reasoning is that ODT spectra of high-Pr scalars should obey
Eθ ∼ εθε

−1/3k−5/3 in the inertial range l � η, Eθ ∼ εθ(ν/ε)
1/2k−1 in the viscous-

convective range η � l � LB , and Eθ ∼ LBεθ(ν/ε)
1/2(LBk)

−5 in the viscous-diffusive
range LB � l. Again, the ODT analysis parallels the conventional analysis (Lesieur
1990), except that considerations analogous to those of § 3.1.2 govern the viscous-
diffusive range.

3.2. Numerical results

3.2.1. Simulated flow configurations

ODT simulations of three T-flow configurations demonstrate the scalings discussed
in § 3.1. Two configurations involve sinusoidal initial u profiles, u(y, 0) ∼ sin (2πy/L0),
with periods L0 � Y and L0 = Y respectively, where Y is the size of the compu-
tational domain. For these configurations, periodic boundary conditions are applied.
For the first configuration, the simulation is restricted to a time interval over which
the flow macroscale L defined by (B 6) remains much smaller than Y , so the domain
is effectively infinite. This configuration corresponds to freely decaying turbulence.
The second configuration represents bounded decaying turbulence.

The third configuration corresponds to statistically stationary turbulence, forced
by the imposition of a constant (in y) initial shear u(y, 0) = y/Y and jump-periodic
boundary conditions, u(y + jY , t) = u(y, t) + j for any integer j. To prevent the
dominance of eddies larger than Y , mappings of size l > Y are disallowed.

The second and third configurations do not correspond to physically realizable
flows, but they are useful for demonstrating phenomena that occur in real flows. Direct
numerical simulation (DNS) and large-eddy simulation (LES) of these configurations
have provided valuable insights, and provide a basis for interpretation of ODT results.
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Figure 2. Power spectra of u, plotted in coordinates that demonstrate inertial-range scaling, for the
cases shown in table 1: ——, freely decaying turbulence; - - - -, bounded decaying turbulence; − .−,
stationary turbulence.

To illustrate the performance of the simplest possible formulation of ODT, the three
configurations are simulated without invoking small-eddy suppression. To assess the
impact of this, the first configuration is also simulated with small-eddy suppression
included.

For the decaying cases, the sinusoidal initial profile is chosen for simplicity. After a
transient interval, self-preserving decay is obtained that is insensitive to the functional
form of the initial profile.

The similarity scalings governing the decay are not considered in detail. The ODT
scalings are found to be consistent with the scaling laws known to govern freely
decaying turbulence (Chasnov 1994) and bounded decaying turbulence (Borue &
Orszag 1995), except that ODT low-wavenumber spectra in the former case scale
as k2 rather than k4. This difference is a direct consequence of the one-dimensional
formulation (Kerstein & McMurtry 1994b). Turbulence decay in ODT is therefore
governed by slightly different scaling laws than those presumed to govern three-
dimensional flow; see Chasnov (1994) for a discussion of the relationship between
low-wavenumber spectra and decay rates.

3.2.2. Spectral scalings: velocity

To test for inertial-range scaling, (3.1) is expressed in the form CK = 55
24
ε−2/3k5/3E(k).

In figure 2, the right-hand side of this relation is plotted versus k in order to
demonstrate the occurrence of the k−5/3 scaling, indicated by a plateau in the plot.
For all three flows, the model parameter A is assigned the value 0.3, chosen to match
the plateau level for the bounded decaying case to the measured value CK = 1.5
(Sreenivasan 1995). A determines the plateau level through the expression (B 1), or
equivalently (B 2), for ε, where time and viscosity in those expressions depend on A
as explained in § 2.5.

A Reynolds number ReL = 〈u′2〉1/2L/ν is formed using the definition (B 6) of
L. For simulations of each of the three homogeneous-flow configurations, values
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Free decay Bounded decay Stationary

ReL0
4600 118 000 167 000

ReL 330 6720 2000
ζ 1.67 1.67 1.73

Table 1. Computed inertial-range spectrum scaling exponents for three homogeneous flows.

of ReL corresponding to plotted spectra are shown in table 1. Also shown are
nominal initial Reynolds numbers ReL0

of the simulated flows. For the decaying

flows, ReL0
= 〈u′2〉1/20 L0/ν. For the stationary flow, ReL0

= 〈du/dy〉Y 2/ν.
After an initial transient, each of the simulated flows relaxes to the anticipated

asymptotic behaviour: stationarity for the stationary case and self-similar decay for
the other cases. For the stationary case, spectral and other statistical quantities are
accumulated continuously after transient relaxation is completed. For the free and
bounded decaying cases, self-similar decay begins at ReL = 500 and 7000 respectively.
Table 1 indicates the values of ReL corresponding to the results shown in figure 2,
which are based on order 103 simulated realizations.

Figure 2 indicates a larger dynamic range of k−5/3 scaling for bounded decay than
for free decay, owing to the large ReL value for the former. For the same A value,
these two cases give the same CK .

Numerical results for the exponent ζ in the scaling E(k) ∼ k−ζ are presented in
table 1. The Kolmogorov scaling ζ = 5

3
is obeyed for the decaying flows but the

stationary flow obeys power-law scaling with a different value of ζ.
It has been noted that departures from Kolmogorov scaling may be obtained in

simulations of forced stationary turbulence, possibly associated with intermittency
induced by the forcing (Borue & Orszag 1995). The ODT simulation of stationary
turbulence involves an arbitrary eddy-size cutoff l < Y that has no direct physical
analogue. These observations do not fully resolve the status of the inertial-range
scaling behaviour of ODT, but it can be stated that Kolmogorov scaling is obtained
for the physically realizable cases that have been simulated.

The inference in § 3.1.2 that the Kolmogorov microscale η marks the transition from
inertial to viscous dominance is tested by plotting spectra in universal dissipation-
range coordinates. Figure 3 shows that dissipation-range collapse of spectra is ob-
tained for all three homogeneous flows, including the stationary flow that deviates
from ζ = 5

3
in the inertial range. Comparison to figure 2 indicates the high sensitivity

of the figure 2 format to small deviations from k−5/3 scaling.
A curve representing the dissipation-range rolloff of measured spectra is also

shown. This curve was obtained by fitting She’s analytical form (Sirovich et al. 1994)
to a compilation of measured one-dimensional spectra (Monin & Yaglom 1975) and
then applying the transformation (B 5) analytically to obtain the transverse spectrum
directly comparable to ODT spectra.

As noted in Appendix B, a given energy dissipation rate corresponds to a
larger mean-square velocity cross-derivative in ODT, based on (B 2), than in three-
dimensional flow. Because the dominant contribution to ε is from the high-
wavenumber end of the inertial range, this implies an extension of the ODT in-
ertial range to larger ηk than in three-dimensional flow, as seen in figure 3. The k−5

scaling derived in § 3.1.2 for the far-dissipation range of ODT is not seen in this figure,
but it is seen in lower-ReL simulations that resolve more of the viscous range.
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Figure 3. Power spectra of figure 2, replotted in universal dissipation-range coordinates; − . . .−,
measured spectrum. Line segment indicates k−5 scaling.
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Figure 4. Power spectra of scalars in bounded decaying turbulence at ReL = 2040, rescaled as
explained in the text, plotted in universal high-wavenumber coordinates based on classical high-Pr
theory, for Pr = 1 (− . . .−), 20 (− .−), 40 (- - - - -), and 80 (——). Line segment indicates k−5/3

scaling.

3.2.3. Spectral scalings: advected scalars

As explained in § 3.1.3, the u profile can be interpreted as a passive-scalar field
with Pr = 1. The viscous-convective scaling in ODT is investigated by comparing
this scalar to other passive-scalar fields with Pr � 1, subject to the same initial and
boundary conditions as u.

Results for the bounded decaying case are plotted in figure 4 in coordinates that
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collapse the viscous-diffusive range kLB � 1 according to the high-Pr scaling analysis
of § 3.1.3. The coordinates are defined so that 1/k spectral scaling corresponds to a
plateau in the figure. The vertical axis is (ηε)−2/3kE∗θ , where E∗θ = (ε1/εθ)Eθ . (ε1 = ε/3
is the dissipation of the Pr = 1 scalar.)

Owing to the large dynamic range required to span the spectral ranges of interest,
results are shown for ReL = 2040, lower than the ReL value of table 1 for this
flow. ReL0

for this computation is the same as in table 1, but the results of figure
4 correspond to a later stage of decay than the bounded-decay results of figure 2.
Lower ReL gives larger η and therefore more dynamic range allocated to the viscous
regime.

For the Pr range shown in the figure, neither the viscous-convective spectral
scaling nor the high-wavenumber collapse is fully attained. For the highest Pr shown,
Eθ ∼ k−1.1 at the inflection point of the plotted curve. In the dissipation range, the
two intermediate-Pr curves suggest an approach to collapse, but the highest Pr does
not maintain this trend. The slight flare at high wavenumbers for the highest Pr
suggests aliasing caused by inadequate spatial resolution, so the apparent deviation
from dissipation-range collapse may be a numerical effect. Nevertheless, it is evident
that the computed results are broadly consistent with the classical high-Pr spectral
scaling properties.

3.2.4. Freely decaying turbulence

Aspects of freely decaying turbulence are considered in § 3.2.1 and § 3.2.2. This
flow is revisited for three reasons. First, small-eddy suppression is introduced in
order to assess its impact on computed results. (All subsequent computations include
small-eddy suppression.) Second, the isotropy condition (§ 2.5) is used to determine A,
thereby eliminating the need for empirical input to determine A. Third, a procedure
for determining the initial u profile corresponding to a turbulence-generating grid is
formulated. This procedure introduces no empiricism. The predicted decay of grid
turbulence, obtained computationally in this manner, is compared to experimental
results.

In figure 5, the spectrum of figure 3 is replotted, along with two spectra from an
identical computation, except that small-eddy suppression has been introduced. As in
figure 3, the plotted results are based on A = 0.3, for which the measured value of the
Kolmogorov constant CK is reproduced. A slight but discernible effect on the shape
of the spectrum is seen at the high-wavenumber end of the inertial range. The two
curves based on the new formulation collapse in accordance with dissipation-range
scaling.

The computation that includes small-eddy suppression is reinterpreted in the con-
text of grid turbulence. The decay of velocity fluctuations in grid turbulence is
considered. For this purpose, the isotropy condition 〈u′2〉 = 〈v′2〉 is more relevant
than the numerical value of CK . Enforcement of this condition in the self-similar
decay regime of the simulation gives A = 0.82. As noted in § 2.5, the present formu-
lation of ODT is not designed to reproduce all turbulence properties of interest with
quantitative accuracy for a given A value.

It is also noted in § 2.5 that a change of A value implies a rescaling of the Reynolds
number associated with a given simulation. For A = 0.82, the simulation Reynolds
number is ReL0

= 1680 rather than the value indicated in table 1.
The initial velocity profile is u(y, 0) = u0 sin(2πy/L0), with L0 set equal to the mesh

spacing M of the turbulence-generating grid, and u0 is chosen so that the u variance
u2

0/2 of u(y, 0) is equal to a simple estimate of the variance of u in the plane of
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Figure 5. Computed power spectra of u in decaying homogeneous turbulence, plotted in universal
dissipation-range coordinates. (η = (ν3/ε)1/4 is the Kolmogorov microscale.) ReL = 140 (- - - - -),

260 (——–), and 330 (− .−), where ReL = 〈u′2〉1/2L/ν, based on L = 〈u′2〉3/2/ε. The ReL = 330
curve, replotted from figure 3, is from a simulation that omits small-eddy suppression. The other
curves are from a simulation that incorporates small-eddy suppression. A line segment of slope − 5

3
identifies the inertial range.

the grid. An estimate rather than a measured value is used in order to avoid the
introduction of empiricism. Denoting the grid solidity as S , it is assumed that the flow
in the grid plane consists of an area fraction S for which u = 0 and a fraction 1− S
for which u has the constant value U/(1 − S), chosen so that the mean flow in the
grid plane matches the mean flow U in the homogeneous region downstream of the
grid. This gives a grid-plane u variance U2S/(1 − S) and thus u0 = U

√
2S/(1− S).

For the experiments considered here, S = 0.34. Computational time is converted to
streamwise distance using the relation x = Ut.

Figure 6 compares the computed decay of u and v variance to empirical far-field
correlations (Yoon & Warhaft 1990) for decaying grid turbulence. It is seen that
reasonable quantitative agreement is obtained over the streamwise range of typical
grid-turbulence experiments (ranging up to x/M of several hundred), despite the
complicated near-field behaviour of this flow. The persistent small-scale anisotropy
of this flow, reflected in the empirical correlations, is not reproduced because isotropy
has been deliberately enforced.

This ODT grid-turbulence model may be useful for addressing aspects of grid
turbulence, and passive-scalar mixing therein, that have been examined experimentally.
In this regard, the artifact discussed in Appendix A is relevant. Namely, large eddies
with τ values greatly exceeding the elapsed time t occur infrequently in ODT, but
their effect on transport is disproportionate. In particular, the root-mean-square
(r.m.s.) fluctation of a scalar with non-zero mean gradient is determined by the scalar
displacements in the gradient direction, and hence is sensitive to this anomalous
transport. Consequently, it is found in ODT grid-turbulence simulations with an
imposed scalar gradient that the streamwise profile of the scalar r.m.s. fluctuation
exceeds the measured profile by roughly a factor of six, based on the empirical
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Figure 6. Computed evolution of streamwise and transverse velocity variance in decaying grid
turbulence: − .−, streamwise variance; − . . .−, transverse variance. Empirical correlations (Yoon &
Warhaft 1990): ——–, 〈u′2〉/U2 = 0.0712(x/M)−1.31; - - - - -, 〈v′2〉/U2 = 0.0652(x/M )−1.34.

correlation in figure 10 of Yoon & Warhaft (1990). Anomalous dispersion of scalars
released from localized sources is likewise anticipated. This issue has been addressed
in detail in the context of the LEM (Kerstein 1991, 1992; de Bruyn Kops & Riley
1998).

4. Wall-bounded flow
ODT simulations of Couette flow, channel flow, pipe flow (based on a cylindrical

formulation not presented here), and the spatially developing planar boundary layer
have been performed. Results are presented here for Couette flow, because it is the
base case for stratified boundary-layer problems considered in § 6.

Couette flow is simulated by applying the boundary conditions u(0, t) = 0,
u(Y , t) = U to the computational domain [0, Y ]. The initial velocity profile is linear,
but this is immaterial because only the statistically steady flow that follows tran-
sient relaxation is considered. Following convention, this flow is characterized by the
half-width Reynolds number Re = UY /(2ν).

The model parameter A is assigned the value 0.23 because this value is found to
give a good match to the friction law and growth law of the spatially developing
planar boundary layer. (Results for this flow are not presented here.) With this choice,
Couette-flow results are compared to measurements without introducing additional
empiricism.

Computed results are shown for Re = 2900 and 18 000, values for which Reichardt
measured mean velocity profiles in Couette flow. Computed results are compared
to his measurements, reported by Schlichting (1979), in figure 7. Reasonable overall
agreement is obtained.

The computed mean velocity profiles are replotted in wall coordinates in figure
8. (Here, u+ = 〈u〉/uτ and y+ = yuτ/ν, where uτ = (νd〈u〉/dy|y=0)

1/2 is the friction
velocity.) Precise collapse of the wall-scaled profiles is obtained, with a wide zone
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Figure 7. Mean velocity profiles in Couette flow. Computations: Re = 2900 (——–), 18 000
(- - - - -). Measurements by Reichardt (Schlichting 1979): Re = 2900 (�), 18 000 (4).
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Figure 8. Computed mean velocity profiles of figure 7, replotted in wall coordinates. Also plotted
are the functions u+ = 3.8 ln y+ − 1.5 (——–) and u+ = y+ (− .−) that identify the log-law and
viscous layers, respectively.

of logarithmic dependence. The log-region scaling corresponds to a value κV = 0.26
of the von Kármán constant, close to the value 0.25 obtained from the spatially
developing boundary-layer simulation. The measured value is 0.41 (Hinze 1975).

The conformance of the computed results to familiar scaling properties of the
boundary layer stems largely from the fact that these properties can be derived from
momentum conservation in conjunction with fairly mild assumptions concerning
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Figure 9. Transverse-velocity fluctuation profiles computed for Couette flow: Re = 2900 (——–),
18 000 (- - - - -). Measurements in channel flow (Wei & Willmarth 1989): Re = 2970 (4), 14 914 (�).

the structure of the near-wall and outer flows. These assumptions should be no
less applicable to ODT than to three-dimensional turbulence. Nevertheless, it is
noteworthy that ODT reproduces diverse facets of boundary-layer phenomenology
within a simple modelling framework.

The computed profiles of 〈v′2〉1/2, plotted in wall coordinates, are compared to
channel-flow measurements (Wei & Willmarth 1989) in figure 9. The model un-
derpredicts the peaks of the measured profiles roughly to the same extent that it
underpredicts peaks of 〈u′2〉1/2/uτ profiles (not shown). Thus, the model is internally
consistent in its representation of u and v fluctuations, lending support to the for-
mulation of v fluctuation statistics in Appendix C. The degree of predictive accuracy
indicated by figure 9 is typical of second-order fluctuation statistics computed for
wall-bounded flows.

In figure 10, computed terms of the budget of 〈u′2〉/2 for Re = 2900 are compared to
the turbulent kinetic energy budget from channel-flow DNS at Re = 3300 (Mansour,
Kim & Moin 1988). (〈u′2〉/2 is the model analogue of turbulent kinetic energy in
boundary-layer flows, as explained in Appendix C.)

Comparisons by Mansour et al. (1988) and by Eggels et al. (1994) of the channel-
flow results to results for the planar boundary layer and for pipe flow indicate that
the near-wall energy balance is insensitive to flow configuration. Channel DNS at
Re = 7900 (Antonia et al. 1992) indicates slight increases of the production peak and
of the near-wall dissipation relative to the Re = 3300 results.

The DNS results are plotted on the negative y+-axis for ease of comparison. The
computed terms of the balance, based on (C 6), are expressed in wall coordinates by
normalizing by u4

τ/ν. In this plot, the scaling of the horizontal coordinate depends on
A, but the height of the profiles does not.

The ODT energy balance is seen to be in fairly good quantitative as well as
qualitative agreement with the DNS energy balance. This is possible only because
pressure transport is a minor contribution to the energy balance in the boundary
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Figure 10. Computed near-wall turbulent kinetic energy balance in Couette flow based on ODT for
Re = 2900 (positive y+), and in channel flow based on DNS for Re = 3300 (Mansour et al. 1988;
negative y+): ——–, production (upper curve), dissipation (lower curve); - - - - -, turbulent transport;
− .−, viscous transport; − . . .−, pressure transport (DNS only; ODT has no pressure-transport
mechanism).

layer, so its omission from ODT does not impose large perturbations on the other
terms.

Numerous second-order closures, reviewed by So et al. (1991), have been proposed
for near-wall turbulence. Several of them provide better overall representations of
one-point statistics up to third order than does ODT. This comparison is noted
in order to emphasize that the simple approach adopted here is neither designed
nor intended to outperform models tailored to reproduce the low-order one-point
statistics of particular flows. The present goal is to capture diverse features of many
flows within a unified framework that allows straightforward extension to variable-
property flows, reacting flows, and related problems. This addresses both the scientific
goal of conceptual unification and the practical objective of reliably extrapolating
from constant-property conditions to engineering problems involving many strongly
coupled physical processes.

5. Buoyancy-driven flow
5.1. Homogeneous buoyancy-driven turbulence

As noted in § 2.4.1, (2.14) implies a simple method for simulating buoyancy-driven
turbulence with no applied shear. The u profile is omitted entirely, yielding self-driven
density-profile evolution (DPE). All flows considered in § 5 are simulated in this
manner.

In buoyancy-driven turbulence, as in shear-driven turbulence, the most fundamental
property is the eddy cascade. The buoyancy-driven cascade is not as well understood as
the shear-driven cascade. Detailed assessments of recent theoretical and experimental
work are provided by Grossmann & L’vov (1993) and by Siggia (1994).

Procaccia & Zeitak (1989) proposed that the temperature spectrum measured by Wu
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et al. (1990) in buoyancy-driven turbulence could be interpreted as a manifestation of
the Bolgiano–Obukhov (BO) scaling, originally predicted to occur in stably stratified
turbulence. L’vov (1991) noted that the locality of interactions between eddies and
density fluctuations implies that scaling in the buoyancy-dominated wavenumber
range should be indifferent to the direction of the stratification. Various analytical and
computational models of buoyancy-driven turbulence have subsequently reproduced
the BO scaling.

Here, a scaling analysis is developed that reflects the presumed governing
mechanism. The analysis is based on the features of buoyancy-driven turbulence
that are incorporated into ODT, thereby identifying the origin of BO scaling within
the ODT framework.

Density fluctuations are assumed to cascade toward high wavenumbers due to
mapping-induced reduction of fluctuation length scales. Because mappings conserve all
scalar properties, this cascade conserves the spectral intensity of density fluctuations,
denoted ρ2

k , at wavenumbers k below the wavenumber range (identified shortly) in
which molecular diffusion is significant.

Assume, subject to self-consistent verification, that the cascade time scale τk de-
creases with increasing k, so that the high-k cascade equilibrates rapidly with respect
to low-k transients. A quasi-steady analysis can then be applied.

In a quasi-steady cascade that conserves ρ2
k , the flux of ρ2

k to higher k is of order
ρ2
k/τk and is independent of k, giving ρ2

k ∼ τk . (In this and subsequent scaling analyses,
numerical coefficients are omitted.) The power spectrum Eρ(k) of density fluctuations,
which scales dimensionally as ρ2

k/k, is determined by ρ2
k ∼ τk and one additional

relation involving ρk and τk . The additional relation follows from (2.14) and (2.15),
specialized to DPE. For l = 1/k, the density difference in the integrand of (2.15) is
of order ρk and the y dy-integration introduces an additional factor of k−2. Equation
(2.14) then gives ρ0/(kτk)

2 ∼ ρk/k. In conjunction with ρ2
k ∼ τk , this gives ρk ∼ k−1/5

and thus Eρ(k) ∼ k−7/5, which is the BO scaling of the density spectrum.
This result may be interpreted as follows. Equation (2.14) implies that size-l eddies

are driven by density fluctuations of comparable size. This locality property of the
buoyancy-driven cascade, analogous to the presumed locality of the inertial cascade,
has been proposed as the mechanistic basis of the dimensional relations underlying
the BO scaling (L’vov 1991).

Because kinetic energy is not explicit within DPE, DPE cannot address the possibil-
ity that the kinetic-energy cascade, rather than the density cascade, governs buoyancy-
driven turbulence. Evidence supporting this possibility is discussed by Siggia (1994).

To derive crossovers from BO scaling to other scaling regimes, consider the following
initial-value problem for ODT. A constant, unstable density gradient is imposed
initially on a size-Y domain. Jump-periodic boundary conditions, as defined in § 3.2.1,
are applied in order to emulate an imposed density gradient on an unbounded domain.
Mappings larger than Y are disallowed. This restriction is arbitrary from a physical
viewpoint, but convenient for deriving and computationally demonstrating scalings
of interest.

A large-k crossover to a regime dominated by molecular transport occurs at a
wavenumber such that the eddy time scale τk is comparable to the smaller of the two
molecular time scales 1/(k2ν) and 1/(k2κ). Consider Pr 6 1, for which the latter is
smaller. Substituting earlier results into τk ∼ 1/(k2κ), the scaling Y kB ∼ (RaPr)5/16 is
obtained for the crossover wavenumber kB , where Ra is based on the length scale Y .

For Pr 6 1, the density spectrum is suppressed at k above kB by molecular
dissipation of density fluctuations. In three-dimensional flow with Pr < 1, velocity
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fluctuations at k above kB cascade from wavenumber kB , at which they are driven
by density fluctuations, to a higher-k cutoff at which they are suppressed by viscous
dissipation. This cascade is governed by the usual inertial-range dynamics, giving
k−5/3 scaling of the energy and density spectra in this subrange (Grossmann & L’vov
1993).

In DPE, there is no mechanism other than density fluctuations to drive fluid
motions. For k greater than kB but below the viscous cutoff, scaling analysis of DPE
(details omitted) gives k−9/2 scaling of the density spectrum. In contrast, for shear-
driven stably stratified flow, ODT captures the inertial-range dynamics leading to the
k−5/3 subrange, for the same reasons that ODT captures this subrange in non-buoyant
flow.

For Pr > 1, analogous considerations give Y kB ∼ (Ra/Pr)5/16, where kB is now the
viscous cutoff. Eddies are suppressed at k above this cutoff, but density fluctuations
persist up to a higher wavenumber corresponding to the molecular-diffusive cutoff.
The subrange between these cutoffs is a viscous-convective subrange with respect to
density, so 1/k scaling of the density spectrum is anticipated (Lesieur 1990). DPE as
well as shear-driven ODT captures the mechanism that causes this scaling.

For any Pr, eddies and density fluctuations are suppressed at sufficiently high
k. Scaling analysis (details omitted) indicates that the high-k falloff of the density
spectrum is faster than power law but slower than exponential. This behaviour
is qualitatively consistent with current understanding of the far dissipation range
(Sirovich et al. 1994).

The BO scaling predictions and the predicted scaling of kB agree with the predictions
of L’vov (1991), reflecting the fact that DPE and L’vov’s analysis are both predicated on
the locality of the buoyancy-driven cascade. Procaccia & Zeitak (1989) derived the BO
scaling from a different viewpoint, obtaining a different scaling of kB . Measurements
by Tong & Shen (1992) confirm L’vov’s prediction, lending support to the locality
principle underlying his analysis and DPE.

These predictions (except Pr dependences) are tested by simulating the imposed-
density-gradient configuration with maximum event size Y for two Ra values with
Pr = 1. Figure 11 shows density spectra (defined in accordance with the scalar spec-
trum formulation in Appendix B) determined from the statistically steady evolution
of this configuration after transient relaxation. The axes are scaled to demonstrate
the Ra5/16 scaling of kB . It is seen that the BO spectral scaling and the anticipated
Ra dependence of kB are obeyed. In conjunction with the results of § 3, it is thus
demonstrated that (2.14) encompasses the physics governing both the inertial cascade
and the buoyancy-driven cascade, and thereby provides an opportunity for future
study of cascades in mixed convection.

5.2. Rayleigh convection

5.2.1. Heat-transfer analysis

The structure of statistically steady convection between horizontal plates, driven
by thermal boundary conditions applied at the plates, is of considerable practical
importance and raises scientific issues at the frontier of turbulence research (Siggia
1994). Heat transfer in this flow is the key issue, both from a practical and a
fundamental viewpoint. Heat transfer is also a convenient focal point for a general
discussion of Rayleigh convection.

Therefore the dependence of the Nusselt number Nu on Ra and Pr is considered,
where Nu is the mean heat flux divided by the heat flux in the absence of fluid motion.
In statistically steady convection, the mean heat flux is independent of y between the
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Figure 11. Computed power spectra of density fluctuations in stationary homogeneous buoy-
ancy-driven turbulence, normalized to demonstrate the scaling of the high-wavenumber cutoff,
for Pr = 1: ——–, Ra = 1011; - - - - -, Ra = 1012. A line segment of slope − 7

5
identifies the

Bolgiano–Obukhov scaling regime.

plates, so it is equal to −κd〈T 〉/dy|y=0, the heat flux at the lower plate. (Here, plates
are located at y = 0 and L. The factor ρ0c is omitted because it drops out of all
normalized fluxes, assuming constant heat capacity c.) In motionless fluid, d〈T 〉/dy
is equal to −∆/L for all y, where ∆ is the magnitude of the imposed temperature
difference, and the heat flux is κ∆/L. These relations give

Nu = −L
∆

d〈T 〉
dy

∣∣∣∣
y=0

. (5.1)

In DPE, Rayleigh convection is simulated by maintaining an unstable density
difference across the y interval [0, L]. In the Boussinesq approximation, density
and temperature differences are proportional, but opposite in sign, so the thermal
interpretation of this configuration follows directly.

In normalized units, this flow is characterized by Ra and Pr. The dependence of Nu
on Ra and Pr in DPE is considered. This dependence is sensitive to several features
of wall-bounded buoyancy-driven flow in DPE.

The key assumption in the classical similarity analysis of Rayleigh convection
is that near-wall flow structure is independent of plate separation L for large Ra.
The mixing-length similarity scalings that follow from this assumption explain many
features of Rayleigh convection and related flows (Adrian et al. 1986; Siggia 1994).
However, nonclassical scalings attributed to bulk-flow effects are observed in some
high-Ra flow regimes (Siggia 1994).

As in three-dimensional Rayleigh convection, it is anticipated that mixing in the
interior of the DPE simulation suppresses the mean density gradient, which therefore
resides primarily in conduction-dominated wall layers. This picture is verified self-
consistently through scaling analysis, supported by numerical results. The focus of
the scaling analysis is estimation of the thickness yκ of the conduction layers. In
particular, the possible dependence of conduction-layer structure on L is considered.
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The thickness yκ is determined by the balance of diffusive broadening of the
layers and advective transfer of wall-layer fluid to the interior. Layer broadening and
erosion may be visualized as a renewal process in which the layer grows diffusively
until advective disruption occurs, followed by regrowth. Diffusive scaling implies
y2
κ ∼ κtκ, where tκ is the characteristic disruption time.
Though this picture of successive disruptions is reminiscent of the periodic gen-

eration of thermals observed in convection at moderate Ra (Sparrow, Husar &
Goldstein 1970), neither the model nor its interpretation relies on a direct correspon-
dence between individual events within the simulation and observed fluid motions. The
performance of the model reflects the scalings governing the ensemble of simulated
events.

For estimation purposes, a disruption is defined as a mapping of size yκ or larger
whose closest approach to the wall is less than yκ. Then tκ is the mean time between
such events. In principle, mappings smaller than yκ may affect the scaling, e.g.
through their contribution to an eddy diffusivity κe > κ governing diffusive-layer
growth. However, it follows from the ensuing analysis that mappings smaller than yκ
can occur in DPE only if Pr < 1, and that κe is of order κ in this Pr range.

Thus, large events (l > yκ) determine tκ. Small events (l < yκ) enhance diffusive
growth of the conductive layer, but not enough to affect scalings.

Consider the mean time tκ(l) between disruptions by mappings of characteristic size
l > yκ. For estimation purposes, each mapping is deemed to redistribute fluid from
the zone [0, yκ] uniformly throughout [0, l]. (For clarity, the lower layer is considered
here.) Therefore (2.15) gives ∆Eg ∼ g∆ρyκl, where ∆ρ is the imposed density difference
across [0, L]. (For high Ra, roughly half of this density difference resides within each
wall layer.) Equation (2.14) then gives the l-eddy time scale τl ∼ l/

√
g′yκ, where g′

denotes g∆ρ/ρ0.
To express tκ(l) in terms of τl , note that (2.2) determines the event-rate distribution

λ in terms of l and τl . The event rate for order-l eddies with 0 6 y0 6 yκ can be
estimated by dl-integration of λ over [l, 2l] and dy0-integration over [0, yκ]. This gives
the rate of order-l disruption events, whose inverse is the disruption time scale tκ(l).
Thus, tκ(l) ∼ lτl/yκ, giving tκ(l) ∼ l2/

√
g′y3

κ.
Now, tκ is taken to be the smallest tκ(l) such that l > yκ. In the absence of

viscous effects, this gives tκ = tκ(yκ). However, viscosity is implemented in DPE by
disallowing events for which τl > l2/(16ν). The smallest allowed event is therefore of
size yν ∼ ν/√g′yκ.

It follows from the ensuing solution for yκ that this minimum size exceeds yκ only
for Pr > 1. Therefore Pr > 1 and Pr 6 1 are considered separately. (Owing to
numerical coefficients omitted from the scalings, the crossover between Pr regimes
actually occurs at non-unity Pr; see § 5.2.2.)

For Pr > 1, tκ = tκ(yν) is evaluated in the relation y2
κ ∼ κtκ to obtain, after some

manipulation, yκ ∼ (κν2)2/9/g′1/3. The estimate Nu ∼ L/yκ, based on (5.1) and the
order-∆ temperature drop in the yκ-layer, gives

Nu ∼ Ra1/3Pr−1/9, (5.2)

where Ra is given by (2.18).
For Pr 6 1, tκ = tκ(yκ). This gives yκ ∼ (κ2/g′)1/3 and thus

Nu ∼ (RaPr)1/3. (5.3)

Equations (5.2) and (5.3) necessarily conform to the mixing-length scaling Nu ∼
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f(Pr)Ra1/3, which follows from the assumed insensitivity of near-wall behaviour to L
(Siggia 1994). Support for this assumption in the present context is provided shortly.

The Pr dependence in (5.3) is simply a reflection of the irrelevance of the viscosity
in the low-Pr limit. The Pr dependence in (5.2) follows from the suppression of
fluid motions below the viscous cutoff in DPE. A more complete high-Pr theory
that accounts for viscous-scale fluid motions (Kraichnan 1962) gives Nu ∼ Ra1/3,
independent of Pr.

Measurements suggest that neither this result nor (5.2) is entirely accurate. (Kraich-
nan notes that a key assumption in his theory is unlikely to be strictly correct.)
Evidence that Nu is an increasing function of Pr for high Pr is noted shortly.

A corollary of the derivation of (5.2) is the relation yν/yκ ∼ Pr1/3 for high Pr. In
contrast, Kraichnan’s theory predicts that this ratio of viscous-layer and thermal-layer
thicknesses scales as Pr1/2 for high Pr.

A complication that may affect the Ra as well as the Pr dependence is the occur-
rence of large-scale interior flows in some high-Ra convection regimes (Siggia 1994).
The proposed governing mechanisms involve flow phenomena that are not repre-
sented within DPE. Nevertheless, DPE results may have some bearing on measured
Nu scalings that have been attributed to these phenomena. Before examining the
computed results, large-scale effects in the DPE formulation of Rayleigh convection
are analyzed.

Only Pr > 1 is considered because all properties of interest are independent of Pr
for low Pr. As noted earlier, this insensitivity is shown by comparing κ to the eddy
diffusivity κe of mappings of size yκ or less contained within [0, yκ]. Straightforward
extension of the foregoing analysis gives κe ∼ y2

κ/τκ, and consequently κe ∼ κ, for
low Pr. This establishes the claimed insensitivity to Pr for low Pr, so only Pr > 1 is
considered in the remainder of the analysis.

At high Ra, the large-scale flow is characterized by L and the potential energy
input rate Nuκg∆ρ/L ∼ κg∆ρ/yκ. In steady state, the energy input equals the kinetic
energy dissipation rate, of order ρ0v

3/L, where v is a characteristic large-scale velocity.
This is equivalent to the usual analysis based on the heat flux driven by the imposed
temperature difference (Adrian et al. 1986), but is more direct for purposes of flow
analysis. Then v ∼ (κg′L/yκ)1/3.

The large-scale flow governs the wall-layer thickness yκ, and thus Nu, only if it
disrupts the wall layer on a time scale shorter than the time scale tκ determined
by considering only the near-wall flow. The large-eddy time scale is τL ∼ L/v. As
in the analysis of wall-layer disruption by size-l eddies, τL is multiplied by L/yκ to
obtain the time scale for disruption of the wall layer by large eddies. Combining
results thus far, it is found that large-scale flow dominates only for Ra < Pr17/15. For
given Pr, large-scale effects are negligible at sufficiently high Ra. Thus, DPE does
not capture the transition back to large-scale dominance at exceedingly high Ra that
was predicted by Kraichnan (1962) and possibly observed in a recent experiment
(Chavanne et al. 1997).

5.2.2. Heat-transfer results

Rayleigh convection is simulated in DPE by choosing an arbitrary initial density
profile, applying constant-density boundary conditions at y = 0 and y = L with
ρ(0) < ρ(L), and running the simulation until transients are relaxed before gathering
statistics. Heat-transfer properties based on simulations performed for various Ra
and Pr values are shown in figures 12 and 13.

Figure 12 is scaled so that, for given Pr, (5.2) corresponds to no dependence of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

53
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099005376


308 A. R. Kerstein

105

Ra

10–2

106 107 108 1010

R
a

–1
/3

N
u

10–1

109

Figure 12. Heat transfer in Rayleigh convection, using high-Pr scaling. Computations: �, Pr = 10;
�, Pr = 100; 4, Pr = 1000; ∗, Pr = 10 000. Dashed lines are separated by factors of 101/9.
Measurements: lower solid line, Pr = 6.5 (Goldstein & Tokuda 1980); upper solid line, Pr = 2750
(Goldstein et al. 1990).

plotted quantity on Ra. It is seen that the Ra1/3 scaling of Nu is obeyed for Ra > 107.
Results for Pr = 10, 100, 1000 and 10 000 are shown. The dashed lines are separated
by factors of 101/9 to indicate the vertical displacement between successive Pr values
that is prescribed by (5.2). The anticipated Pr dependence is obtained for Pr > 100.

The solid lines represent the Ra1/3 scaling of Nu inferred by Goldstein & Tokuda
(1980) from measurements at Pr = 6.5 (lower line), and by Goldstein, Chiang & See
(1990) from measurements at Pr = 2750 (upper line). Their results indicate a slight
increase of Nu with increasing Pr. Earlier measurements (Globe & Dropkin 1959)
indicate the same trend, with stronger Pr dependence (Nu ∼ Pr0.074). It appears that
DPE as presently formulated gives fairly accurate heat-transfer results for Pr of order
10 (corresponding to Rayleigh convection in water), with increasing deviation from
measured results as Pr increases.

Results for Pr ranging from 0.01 to 10 are plotted in figure 13. The scaling is
chosen so that the data should collapse on a horizontal line if (5.3) is obeyed. The
anticipated Pr dependence is seen for Pr below 0.1. High-Ra onset of the anticipated
Ra dependence is apparent, though the results are not definitive in this regard.

Figures 12 and 13 indicate that the transition between high-Pr and low-Pr scaling
occurs near Pr = 10. Experiments, however, indicate that the transition occurs near
Pr = 0.1 (Siggia 1994). As noted in § 2.4.1, the Pr value in DPE is governed by small-
eddy suppression. The suppression criterion involves a somewhat arbitrary numerical
factor (Appendix A) that could in principle be adjusted to match the Pr value at
which the transition between scalings is observed. Empirical adjustments of this sort
are useful for obtaining quantitatively accurate, calibrated models of particular flows,
but are not attempted here.

In the DPE results and in measurements, transitional Ra dependences of Nu are
seen for Pr of order unity or less. Summarizing their own and previous measurements,
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Figure 13. Heat transfer in Rayleigh convection, using low-Pr scaling. Computations: ◦, Pr = 0.01;
5, Pr = 0.1; ×, Pr = 0.7; +, Pr = 1; �, Pr = 10. Line segments: - - - - -, Nu ∼ Ra1/4; ——–,
Nu ∼ Ra2/7.

Cioni, Ciliberto & Sommeria (1997) conclude that the power of Ra appearing in the
Nu scaling is 0.26 at low Pr, near 2

7
at Pr of order unity, and near 1

3
at high Pr.

Large-scale motions are observed that depend on vessel shape and on Pr, but at
Pr of order unity, the suppression of these motions by screens does not change the
heat-transfer scaling.

Cioni et al. (1997) note the difficulty of reconciling these and other observations
with various models that have been proposed. The models typically involve the
application of mixing-length concepts to a proposed schematic picture of the flow.
The models for different regimes bear no obvious relation to each other.

It is interesting in this regard that DPE exhibits significant (two decades or longer)
transitional Nu scalings that are consistent with the 0.26 and 2

7
exponents seen at low

and moderate Pr respectively. Also consistent with measurements is the robustness
of Ra1/3 scaling at high Pr. The DPE results for low Pr are especially interesting
because they indicate Nu ∼ Ra1/4 transitional scaling and also indicate a Re scaling
that is consistent with measurements (§ 5.2.4). In contrast, a low-Pr mixing-length
analysis that reproduces Nu ∼ Ra1/4 scaling disagrees with the measured Re scaling
(Cioni et al. 1997).

Thus, DPE reconciles a variety of behaviours that have not previously been ex-
plained within a single framework. Application of mixing-length analysis to DPE
itself does not explain the performance of the model. As shown in § 5.2.1, Nu ∼ Ra1/3

is predicted for all Pr regimes of the DPE simulation. The additional transitional
scalings seen in the DPE numerical results highlight the distinction between con-
ventional mixing-length analysis and mixing-length physics as embodied in DPE
(or more generally, in ODT). Equation (2.3) is a mixing-length relation applied
to an individual eddy, rather than to an ensemble-averaged flow property. Owing
to the strong two-way coupling between mapping events and the velocity profile,
this formulation admits the possibility of flow evolution qualitatively different from
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the evolution predicted by conventional mixing-length analysis applied to ensemble-
averaged properties. The agreement between the heat-transfer regimes of DPE and
measured behaviours suggests that DPE does in fact capture physics not described
by conventional mixing-length analysis. The simplicity of the model suggests that the
relevant physics is not specific to boundary-layer structure, large-scale flow, or plume
development, all of which have been proposed as possible governing mechanisms
(Siggia 1994; Cioni et al. 1997).

5.2.3. Thermal structure

Profiles of moments of the temperature profile in Rayleigh convection have been
obtained for Pr = 0.7 from DNS (Kerr 1996). Analogous profiles are obtained from
DPE simulations which have been performed for Ra and Pr values corresponding to
those of the DNS study. DPE and DNS values of scaling exponents governing the
Ra dependence of features of these profiles are compared.

Following Kerr (1996), the structure of the temperature variance profile is char-
acterized by ∆c/∆, ∆w/∆, and λT/L, where ∆c is the centerline r.m.s. temper-
ature fluctuation, ∆w is the peak r.m.s. fluctuation, and λT is the distance of
the peak from the wall. Classical mixing-length theory predicts ∆c ∼ Ra−1/9 and
λT ∼ Ra−1/3, but an alternative mixing-length analysis predicts ∆c ∼ Ra−1/7 and
λT ∼ Ra−2/7 (Castaing et al. 1989). DPE obeys both classical scalings although it
obeys a non-classical Nu scaling in this parameter range (§ 5.2.2). The DNS re-
sults (Kerr 1996) do not clearly discriminate between the classical and non-classical
scalings. Both DPE and DNS indicate that ∆w decreases more slowly with Ra
than ∆c. Collectively, the thermal-structure and heat-transfer results indicate various
transitional behaviours that are not readily subsumed within a conventional mixing-
length picture.

5.2.4. Flow properties

The principal characterization of flow as distinct from thermal properties of
Rayleigh convection is the Reynolds number Re = vL/ν, where the characteristic
velocity v is taken to be the r.m.s. vertical velocity fluctuation 〈v′2〉1/2 midway be-
tween the walls. The parametric dependences of Re are estimated using conventional
mixing-length theory. It is assumed that the energy dissipation, of order ρ0v

3/L, is pro-
portional to the potential energy input rate Nuκg∆ρ/L. This gives the mixing-length
prediction (Siggia 1994)

Re ∼ (NuRa/Pr2)1/3 (5.4)

for all Pr.
This relation is expressed in terms of Nu, rather than substituting a particular

dependence of Nu on Ra and Pr, so that it may in principle subsume all Nu scaling
regimes. However, the scaling ρ0v

3/L assumed for the energy dissipation may not
be applicable if the dissipation is governed by the interaction between a large-scale
interior flow and the wall layer. Siggia (1994) shows that near-sidewall velocity
measurements for Pr near unity deviate from (5.4) in a manner that suggests such an
interaction.

DPE lacks the mechanism that causes this deviation. Accordingly, figure 14 shows
that the DPE results obey (5.4) over the entire range of Pr and Ra spanned by the
simulations, except for possible low-Re deviations.

Also plotted in figure 14 are experimental and numerical data correlations. The
DNS results of Kerr (1996) for Pr = 0.7 suggest a departure from the Ra dependence
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Figure 14. Computed Re in coordinates based on mixing-length theory. Symbols as in figures
12 and 13; - - - - -, linear fit to computed results. Correlations inferred from measurements: ——–,
Pr = 0.7 (Fitzjarrald 1976); − .−, Pr = 7 (Tanaka & Miyata 1980). − . . .−, correlation based on
direct numerical simulation for Pr = 0.7 (Kerr 1996). Correlations are plotted over the ranges of
the respective data sets.

implied by (5.4), but interior-flow velocity measurements for Pr = 0.7 (Fitzjarrald
1976) and Pr = 7 (Tanaka & Miyata 1980) obey that Ra dependence. The Pr = 7
result is obtained by assuming isotropy of the interior flow. The accuracy of this
assumption was not checked, so the difference between the two measured correlations
does not necessarily imply a deviation from the Pr dependence of (5.4). A flow
Reynolds number inferred from thermal time histories has also been found to obey
(5.4) for given Pr (Cioni et al. 1997). The ODT results and the comparisons to DNS
and experimental results indicate that the definition of velocity in terms of the cell
displacement and the event time scale in § 2.4.1 is consistent with the classical mixing-
length theory of Rayleigh convection and yields reasonably accurate quantitative
results.

5.3. Penetrative convection

A key feature of atmospheric-boundary-layer (ABL) dynamics is the daytime growth
of the buoyancy-driven mixed layer as it penetrates the stably stratified layer estab-
lished earlier by nocturnal surface cooling (Stull 1988). Deardorff’s (1970) convective
scalings have been used to correlate a variety of laboratory and field measurements
and numerical simulations of mixed-layer structure (Adrian et al. 1986; Coleman &
Ferziger 1996). The correlations indicate that important features of the scaled struc-
ture are insensitive to Reynolds number, mean shear, Coriolis effects, and transient
growth of the layer.

Deardorff & Willis (1985) performed a shear-free penetrative-convection experiment
that has become a benchmark for mixed-layer data correlations. Their configuration
is an initially linear, stable thermal stratification, heated from below.

In DPE, this configuration is simulated by applying a constant density flux −Q at
the bottom of a linear, stable initial density profile characterized by the length scale
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Figure 15. Computed mean density profiles in penetrative convection, referenced to the density at
the wall, in wall coordinates, for Pr = 6, Rem = 1544 (——–), 2044 (- - - - -), and 2488 (− .−).

L ≡ ρ0/(dρ/dz). Computed results are normalized using either wall-layer (conduction)
scalings

vw = (gκQ/ρ0)
1/4, yw = κ/vw, ρw = Q/vw (5.5)

or mixed-layer (convection) scalings

ym, vm = (gymQ/ρ0)
1/3, ρm = Q/vm, (5.6)

where ym is a measure of mixed-layer depth (Adrian et al. 1986). The mixed-layer flow
is characterized by Pr and the Reynolds number Rem = vmym/ν. Computations were
performed for Pr = 6, corresponding to the experimental conditions of Deardorff &
Willis (1985), and also for Pr = 1. Flow evolution was simulated until Rem = 2500
was reached. Coleman & Ferziger (1996) estimated that the typical Rem value for the
Deardorff–Willis experiment was 2000.

The collapse of conduction-scaled mean density profiles obtained from the Pr = 6
simulations is shown in figure 15. A slight unstable stratification is seen in the mixed
layer, but Deardorff & Willis (1985) obtained a slight stable stratification.

Away from the conduction layer, collapse of convection-scaled quantities is ob-
tained for Rem above 1200, with one exception that is noted shortly. Plotted profiles
correspond to Rem in the vicinity of 2000.

The scaled flux profiles (density flux for the simulation, heat flux for the experiment)
shown in figure 16 indicate almost uniform heating of the mixed layer, owing to the
suppression of thermal gradients by turbulent transport. The profiles show flux
reversal above the mixed layer, reflecting entrainment of fluid from the stable capping
layer. The mixed-layer depth ym is defined as the y location of the most negative flux
(Deardoff, Willis & Stockton 1980).

The experiment indicates stronger flux reversal than the simulation. To assess
how this affects the growth rate of the mixed layer, it is important to distinguish
between entrainment and encroachment (Turner 1991). Encroachment is growth of
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Figure 16. Computed (——) and measured (Deardorff & Willis 1985; symbols) vertical profiles of
density flux, normalized by its wall value, for Pr = 6. (Measured profile is the thermal analogue of
this quantity.)

the near-constant-property layer caused by the influx of the conserved property at
the boundary, irrespective of advection within the layer.

A simple model of this process is obtained by assuming that ρ is independent of
y in the mixed layer y < ym and has its initial, linear functional form for y > ym.
For constant Q, this yields t1/2 growth of ym. The predicted growth is found to
be in good numerical agreement with the computed evolution of ym. Analogous
reasoning led Deardorff, Willis & Lilly (1969) to a good prediction of mixed-layer
growth in their penetrative convection experiment. Thus, encroachment rather than
advective entrainment appears to be the dominant growth process in this shear-free
flow configuration, so differences between computed and observed rates of advective
entrainment have little impact on the overall growth rate.

The simplicity of this picture of mixed-layer growth is specific to penetrative convec-
tion. Shear-driven entrainment involves additional considerations that are examined
in § 6.3.

In figure 17, computed density-fluctuation profiles are compared to temperature
fluctuations measured by Deardorff & Willis (1985). The computed Pr = 6 profile,
corresponding to measurement conditions, reproduces the observed features, includ-
ing the fluctuation enhancement above the mixed layer caused by entrainment of
upper-layer fluid. Significant Pr dependence of this feature is seen, suggesting that
fluctuations in the entrainment zone may be governed by a local Reynolds number
that is much smaller than Rem. Significant Rem dependence of this feature is also
found throughout the Rem range of the computations. Values of Rem much larger
than those of the experiment and the computations may be needed to obtain complete
mixed-layer similarity. This may partly explain the difference between laboratory and
field measurements of temperature fluctuations in the entrainment zone of penetra-
tive convection, although the field measurements involve other complications that
preclude a definitive interpretation (Deardorff & Willis 1985).
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Figure 17. Vertical profiles of density variance, normalized by the convective density scale, plotted
as in figure 16. A profile computed for Pr = 1 is also shown (– – – – –).
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Figure 18. Vertical profiles of vertical-velocity variance, normalized by the convective velocity
scale, plotted as in figure 16.

Computed vertical-velocity variance profiles for Rem above 1200 exhibit mixed-layer
collapse with no significant Pr sensitivity. A representative profile, shown in figure 18,
agrees with the measured peak but falls off too rapidly above the mixed layer. This
discrepancy may reflect the absence of wave phenomena in the model. It has been
proposed that impingement of turbulent eddies on the stable layer induces internal
waves in that layer that induce property fluctuations in and above the entrainment
zone (Townsend 1964). The absence of this effect in the model may not be a major
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shortcoming because internal waves are unlikely to enhance mixing unless they break.
Moreover, figure 17 indicates that the model captures the temperature fluctuations
associated with entrainment.

Several second-order closure methods (Lumley, Zeman & Siess 1978; Mellor &
Yamada 1982) reproduce the principal features of penetrative convection, albeit
with considerable empirism not required by DPE. Those studies reach different
conclusions concerning the mechanistic basis of model performance. Clarification
might be provided by application of the same formulations to Rayleigh convection.
Application of second-order closure to Rayleigh convection has not yet been reported,
although other closure methods have been applied to this flow (Hanjalić & Vasić
1993; Hanjalić, Kenjeres̆ & Durst 1996; Canuto, Dubovikov & Dienstfrey 1997).

6. Stratified boundary layers
6.1. Monin–Obukhov similarity

The atmospheric boundary layer is the principal motivation for the study of buoyant
stratified boundary layers. Some laboratory results have been obtained (Rey, Schon
& Mathieu 1979), but ABL field measurements are the main source of information
on this class of flows. In particular, field studies are the main source of support
for Monin–Obukhov (MO) similarity (Kaimal & Finnigan 1994). This similarity
hypothesis states that certain near-wall flow properties scaled by wall parameters are
universal functions of y/L, where the Obukhov length

L =
ρ0u

3
τ

κV gFρ
(6.1)

(here expressed in terms of density flux Fρ rather than the usual temperature formu-
lation) governs the transition from near-wall shear dominance to far-field buoyancy
dominance in stratified boundary layers. L is positive (negative) for stable (unstable)
stratification.

In terms of uτ and T0 ≡ −Fθ/uτ, where Fθ is the surface temperature flux, MO
similarity is obtained for the following quantities:

φm =
κVy

uτ

d〈u〉
dy

, (6.2)

φh =
κVy

T0

d〈θ〉
dy

, (6.3)

φv =
〈v′2〉1/2
uτ

, (6.4)

φθ =
〈θ′2〉1/2
|T0| , (6.5)

φε =
κVyε

u3
τ

, (6.6)

ruv =
〈u′v′〉

〈u′2〉1/2〈v′2〉1/2 , (6.7)

rθv =
〈θ′v′〉

〈θ′2〉1/2〈v′2〉1/2 , (6.8)
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insofar as the ABL data allow a determination. Despite the apparent MO similarity
of ruv , horizontal velocity fluctuations have been found to exhibit deviations from
MO similarity. This has been explained on the basis of bulk motions, scaling with
the convective-layer thickness, that are primarily vertical in the bulk but are deflected
horizontally near the wall (Yaglom 1994).

The following empirical similarity functions have been obtained for unstable strat-
ification in the y range −2L 6 y 6 0:

φm = (1 + 16|y/L|)−1/4, (6.9)

φh = (1 + 16|y/L|)−1/2, (6.10)

φv = 1.25(1 + 3|y/L|)1/3, (6.11)

φθ = 2(1 + 9.5|y/L|)−1/3, (6.12)

φε = (1 + 0.5|y/L|2/3)3/2. (6.13)

For stable stratification in the y range 0 6 y 6 L, the empirical similarity functions

φm = φh = φε = 1 + 5y/L, (6.14)

φv = 1.25(1 + 0.2y/L)1/3, (6.15)

φθ = 2(1 + 0.5y/L)−1, (6.16)

have been obtained. The measured correlations are ruv = −0.35 (−L < y < L),
rθv = 0.5 (−2L < y < 0) and rθv = −0.4 (0 < y < L). These are the functional forms
reported by Kaimal & Finnigan (1994), except for (6.15), which is an updated result
(Kaimal 1996, personal communication).

ODT exhibits MO similarity of the quantities (6.2)–(6.8), and also of the quantity
φu = 〈u′2〉1/2/uτ that does not obey MO similarity in the ABL. The latter artifact
reflects the absence of pressure effects that deflect vertical motions horizontally. In
ODT, u(y) is a scalar field rather than a component of a vector field.

In figure 19, the empirical similarity functions (6.9)–(6.16) are compared to ODT
simulations of statistically stationary Couette flow (as in § 4), with density stratifi-
cation introduced by maintaining a density difference ∆ρ across the flow domain
[0, Y ]. Couette flow is chosen because the constant-density simulation (§ 4) exhibits
a substantial logarithmic range of u(y), as required for MO similarity, at moderate
Re. Density statistics are interpreted as temperature statistics, as explained in § 2.4.1.
Computed results for φh are not shown because they are almost indistinguishable
from computed results for φm. (Because u is a scalar field in ODT, computed results
for these two quantities are equivalent for this configuration if Pr = 1; the two differ
slightly in the present computations because the value Pr = 0.7 corresponding to
ambient air was adopted.) For each stratification, computed results are shown for
several conditions, parameterized by Ri = gY ∆ρ/(ρ0U

2), in order to demonstrate
MO similarity. (Here, negative Ri corresponds to unstable stratification.)

Owing to ill-defined boundary conditions at the Earth’s surface, the ODT parameter
A is not assigned on the basis of earlier comparisons to laboratory flows. Rather, it
is chosen to give the best fit to the MO similarity functions determined from ABL
measurements. The computed similarity functions φm, φh, and φε for the stable ABL
are far more sensitive to A than any of the others, so in effect A is chosen to fit
these functions to the empirical correlation (6.14). On this basis, the value A = 0.33
is assigned.

MO similarity is applicable above the viscous sublayer but below the y range
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Figure 19. Monin–Obukhov similarity functions for stratified boundary layers. Re = 12 500 for
all computed cases (based on A = 0.33). Computations: Ri = −1.25 (- - - - -), −2.5 (——–),
−5 (− .−), 0.5 (——–), 1 (- - - - -). Thick curves are empirical similarity functions (Kaimal &
Finnigan 1994; Kaimal 1996, personal communication). (a) Computed and empirical similar-
ity functions φε (higher curves) and φm (lower curves) for unstable stratification (Ri < 0).
The empirical function φh is also shown. (b) Computed and empirical similarity functions
φv (upward-trending curves) and φθ (downward-trending curves) for unstable stratification.
(c) Computed similarity functions φm (higher curves) and φε (lower curves) for stable stratifi-
cation (Ri > 0). Empirical functions for the quantities φm, φh and φε are identical (thick curve).
(d) Computed and empirical similarity functions φθ (higher curves) and φv (lower curves) for stable
stratification.

subject to outer-flow effects such as mixed-layer scaling. The correlations of ABL
field data are extrapolations to y = 0, reflecting the very high Re of the ABL. The
computations, performed at moderate Re, exhibit viscous-sublayer behaviour, and
consequent deviation from MO similarity, for y/L below 0.1. Deviation of some, but
not all, computed similarity functions is seen at large y. Apart from these anticipated
deviations, conformance to MO similarity is evident for all quantities, with the possible
exception of φε in unstable stratification. It is unclear whether this quantity deviates
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from MO similarity or whether the apparent deviations are due to especially high
sensitivity to outer-flow effects.

For stable stratification, the computed functions φm, φh, and φε are roughly linear
in y, and φv and φθ are roughly constant in y, except at small y/L. These behaviours
correspond to constancy in y of the quantities d〈u〉/dy, d〈θ〉/dy, 〈v′2〉, 〈θ′2〉 and ε.
In this flow, the energetically allowed eddies that govern local properties are smaller
than the distance to the wall layer, so local properties interact with the viscous
sublayer only through the gradients d〈u〉/dy and d〈θ〉/dy. This behaviour is the
model analogue of the ‘z-less’ scaling (Stull 1988) seen in the stably stratified ABL. (z
is the conventional notation for the vertical coordinate in the geophysics literature.)

Computed correlations are roughly constant in y, as indicated by measurements,
with computed values rθv =−ruv = 0.6 for unstable stratification and rθv = ruv =−0.6
for stable stratification. ODT does not capture the measured differences between the
magnitudes of rθv and ruv for the same reason that it does not capture the difference
between φm and φh.

6.2. Implications for atmospheric-boundary-layer modelling

Closure modelling has yielded good predictions of the principal MO similarity func-
tions, based on formulations involving various degrees of empiricism (Mellor &
Yamada 1982; Tsarenko 1989). Moreover, closure modelling is directly applicable to
the transient evolution of the ABL, but the requisite parameter adjustments become
somewhat arbitrary in some instances (Mellor & Yamada 1982; Stull 1988; Zhang &
Stull 1992).

Though there are some significant differences between computed and measured
MO similarity functions, it is evident that ODT provides a model of the ABL that is
sufficiently quantitative for many purposes. ODT simulation of the ABL would require
less empiricism than closure models, yet would provide a mechanistically more literal
representation of transient phenomena. The stochastic nature of the simulation allows
the generation of multiple realizations for given initial and boundary conditions,
allowing an estimate of the degree of predictability of a particular transient as well
as an estimate of its ensemble-mean behaviour. In contrast, closures predict mean
behaviour whose relation to a particular field measurement may not be readily
apparent. Parameter adjustment in this context is particularly problematic.

For ABL applications, ODT cannot provide full resolution of the shear-dominated
surface layer in a simulation that spans the entire ABL. One possible approach
would be to run simulations at lower resolution, using an eddy viscosity (as in
three-dimensional large-eddy simulations) to represent the unresolved scales. This
formulation might be used as a boundary-layer subgrid model in large-scale circu-
lation models that do not resolve the ABL. ODT might capture ABL transients
not represented by parameterized average properties. Alternatively, ODT might be
used to develop or test parameterizations of mixed-layer growth and related localized
phenomena (Stull 1988).

6.3. Shear-driven entrainment

Entrainment of quiescent, stably stratified fluid into a turbulent mixed zone is an
important feature of geophysical flows. Buoyancy-driven entrainment, a key ABL
growth mechanism, has been considered in § 5.3. Shear-driven entrainment occurs in
many contexts (Fernando 1991). Wind shear drives turbulence that deepens the upper-
ocean mixed layer, and in some circumstances is the dominant growth mechanism of
the ABL.
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It was noted that mixed-layer growth in penetrative convection is dominated by
the encroachment mechanism, governed by the influx of a conserved property. The
turbulent kinetic energy produced by applied shear is not a conserved quantity, owing
to viscous dissipation and possible conversion to internal-wave energy. Therefore the
parameterization of shear-driven entrainment is based on postulated scalings rather
than exact relations.

Several different parameterizations have been proposed, reflecting the abundance
of dimensional quantities characterizing the flows of interest (Fernando 1991). For
a given parameterization, different experiments indicate different functional depen-
dences, reflecting the absence of a unifying principle. A rough empirical correlation
is obtained by plotting ue/U versus RiU , where ue is the entrainment velocity, U
is the velocity jump across the interface, and RiU = g∆ρh/(ρ0U

2) is the overall
Richardson number based on U, the thickness h of the mixed layer, and the density
jump ∆ρ across the interface (Fernando 1991). Computed results presented here are
compared to functional dependences proposed by Christodoulou (1986) based on this
parameterization.

The simulated flow is a planar boundary layer in the domain y > 0 with the
initial and boundary conditions u(y, 0) = 0 and u(0, t) = U0. As in most studies of
shear-driven entrainment, the coordinate system is chosen so that the shear-free fluid
at large y is at rest. A stable, linear initial density profile is imposed, characterized by
the length scale L = ρ0/|dρ/dy|.

This flow is chosen because it is simple (governed by the buoyant-to-advective
time-scale ratio Ω = (U2

0/ν)
√
L/g and Pr), it spans a relatively wide range of RiU

in each simulation, and it is analogous to the penetrative convection simulation
of § 3.4. In both flows, a stable, linear density profile is destabilized by a flux applied
at y = 0 (density flux for penetrative convection, momentum flux for shear-driven
entrainment).

No experiment performed to date corresponds precisely to this flow configura-
tion. The present objective is to compare computed results to empirical correlations
reflecting diverse experimental results.

For this flow, the parameter A in (2.14) is determined by invoking a mathematical
stability criterion for shear-driven entrainment. Unbounded parallel shear flows are
stable to infinitesimal disturbances when the gradient Richardson number Rig =
−(g/ρ0)(dρ/dy)/(du/dy)2 exceeds 1

4
(Fernando 1991). The ODT analogue of this

marginal stability criterion is obtained by setting the right-hand side of (2.14) equal
to zero. Assuming linear profiles of ρ and u, ∆u in (2.14) is equal to l|du/dy| for
a size-l mapping, based on (2.4) and (2.5). For a size-l mapping of a linear density
profile, (2.15) gives ∆Eg = 2

27
gl3|dρ/dy|. Combining these results, the marginal stability

criterion for ODT becomes Rig = A2. The criterion Rig = 1
4

then gives A = 0.5. This
value of A is adopted for shear-flow entrainment simulations, so this application
requires no empirical input.

This reasoning is not meant to imply that ODT accurately represents the flow
instability mechanism. Rather, the choice A = 0.5 forces the ODT instability threshold
to be consistent with the mathematically prescribed threshold. (See § 2.5 for further
discussion of parameter evaluation.)

Runs were performed for Ω = 4500, 10 000, and 31 600, respectively, for Pr = 0.7.
These computations span three decades of RiU . Results discussed shortly indicate
that mean-flow evolution is insensitive to Ω. (Fluctuation properties of this flow are
not considered here.) The purpose of varying Ω is to vary the range of RiU covered
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Figure 20. Computed mean profiles of velocity (higher curves) and density (lower curves) in
shear-driven entrainment with an initially linear stable density profile, Ω = 10 000. Profiles plotted
for RiU = 0.02 (- - - - -) and 0.2 (——–).

in each run. A more comprehensive sensitivity study, including fluctuation properties,
would be of interest, but the present objective is a limited initial study of the mean
entrainment rate.

The quantities U, h, and ∆ρ are defined in a manner that allows consistent
comparison to other flows. Following Ellison & Turner (1959), the definitions

U =

∫
〈u〉2 dy

/∫
〈u〉 dy (6.17)

and

h = (1/U)

∫
〈u〉 dy (6.18)

are adopted. Their definition of ∆ρ is specific to flows that have constant density in
the shear-free zone, so the more generally applicable formulation of Kato & Phillips
(1969) is adopted. Namely, the initial density profile is averaged over 0 6 y 6 h and
this average is subtracted from the initial density at y = h. In effect, the density profile
is modelled as a perfectly mixed layer abutting a region unaffected by mixing (or by
molecular diffusion). For a linear initial profile, this gives

∆ρ = ρ0h/(2L). (6.19)

Figure 20 shows computed mean profiles of u and ρ for two RiU values. As RiU
increases, the profiles develop shoulders in the region of transition from the mixed
zone to the stable outer zone. Experiments indicate analogous behaviour.

Figure 21 shows ue/U plotted as a function of RiU , where ue = dh/dt is the
entrainment velocity. Where results for different Ω values overlap, no noticeable
sensitivity to Ω is seen.

Solid line segments are empirical correlations developed by Christodoulou (1986).
The slopes are based on various proposed scaling regimes of shear-driven entrainment.
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Figure 21. Normalized entrainment velocity ue/U versus RiU , computed for Ω = 4500 (�), 10 000
(�), and 31 600 (4). Lines: empirical correlations (Christodoulou 1986), slopes 0, − 1

2
, and − 3

2
(——–); proposed intermediate scaling, slope −1 (− .−); presumed high-RiU asymptote of the
model, slope −2 (- - - - -).

The scatter of measured ue/U values for different flow configurations is typically an
order of magnitude for given RiU . Within this scatter, it is not possible to discriminate
whether there is an intermediate Ri−1 range between the Ri−1/2 and Ri−3/2 ranges. In
fact, the aggregate data do not convincingly support any power-law scaling. (More
convincing power-law regimes have been obtained from grid-turbulence experiments
involving no mean shear; see Turner 1973. In the absence of mean shear, U is taken
to be a measure of turbulence intensity.)

Owing to the experimental scatter, the agreement between the computed results
and the empirical correlation must be interpreted carefully. The level of the horizontal
line is based on the measured spreading rate of constant-density turbulent jets, as
interpreted in this context by Ellison & Turner (1959). The computed result is based
on an A value determined by a buoyancy criterion, so the agreement with constant-
density flow behaviour may be fortuitous.

Deviation from constant ue/U indicates buoyant suppression of entrainment. An
eventual transition to Ri−2

U falloff is anticipated, based on the following eddy-diffusivity
picture of shear-driven entrainment in ODT. The turbulent diffusivity in the mixed
layer is of order Uh. This gives dh2/dt ∼ Uh, and thus ue ∼ U, if buoyant suppression
is absent. Consider the modification of this relation caused by buoyant suppression
at high RiU . Order-h eddies are assumed to dominate the entrainment, but their
maximum penetration beyond the mixed layer, denoted δ, is assumed to be much
less than h. Eddies that would penetrate farther than δ yield a negative value on
the right-hand side of (2.14), and hence do not occur. This reduces the frequency
of penetrating eddies by a factor of order δ/h relative to their frequency in the
absence of buoyant suppression. With buoyant suppression, the mixed-layer growth
per penetrating eddy is of order δ rather than order h, contributing an additional
factor of δ/h. Thus, ue/U ∼ (δ/h)2 at high RiU .
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The maximum penetration, δ, is estimated by setting the right-hand side of (2.14)
equal to zero and substituting the estimates ∆u ∼ U, l ∼ h, and ∆Eg ∼ g∆ρhδ. The
last estimate is based on the order-h downward displacement of a fluid parcel of
width δ that is less dense, by an amount ∆ρ, than the mixed-layer fluid. The result is
δ/h ∼ Ri−1

U .
Based on this estimate, the high-RiU scaling ue/U ∼ Ri−2

U is obtained. This is a faster

falloff than the Ri
−3/2
U scaling that is seen experimentally, and that has been inter-

preted in terms of instability mechanisms at strongly stabilized interfaces (Fernando
1991). ODT omits two phenomena that promote high-RiU entrainment: internal-wave
formation and breaking, and eddy distortion at the interface. (Buoyancy affects the
eddy time scale in ODT, but it does not change the functional form of the triplet map.)

The dimensional analysis underlying the model formulation may nevertheless be
physically relevant. The Ri−2

U scaling may be a lower bound on the high-RiU falloff.
In turbulent entrainment with no mean shear, Ri−2

U falloff has been reported, though
slower falloff is more common (Fernando 1991).

Figure 21 indicates that the ODT falloff may in fact be steeper than Ri−2
U . This is

possible because the mean velocity and density profiles do not relax to an invariant
shape, but rather, the shoulders seen in figure 20 are increasingly accentuated with
increasing RiU . This evolution can modify any scaling based on the assumption
of self-preservation. This caveat applies to experimental results as well as to ODT,
and may account for the absence of a unified picture of shear-driven entrainment
(Fernando 1991).

As a practical matter, the high-RiU trend of the computed results implies entrain-
ment rates below the experimental range for RiU greater than unity. As in other
applications, ODT has some limitations, but may nevertheless prove useful for in-
vestigating interactions among multiple effects. For entrainment problems, there is
a particular need to gain better understanding of flows involving combinations of
shear, turbulent-diffusive, and buoyant forcings.

7. Discussion
One-dimensional turbulence (ODT) as formulated here is intended to identify the

range of turbulence phenomena that can be captured with a minimal representation
of the interplay of advection, viscosity, and buoyant forcing in turbulent flow. The
essential elements of such a representation are identified as a mechanistically literal
implementation of molecular-diffusive transport (requiring, at a minimum, one spa-
tial coordinate), a stochastic advection process incorporating the essential ingredients
of vortical motion (compressive strain and rotational folding), and a simple dimen-
sionally based prescription of the ensemble of such motions. To incorporate these
elements in a one-dimensional formulation, the triplet map, (2.1), is adopted as a
one-dimensional representation of a turbulent eddy and the relation (2.14) is used
to determine the eddy rate distribution as a function of the instantaneous profiles
of streamwise velocity and density. Diverse phenomena are reproduced by integrat-
ing these elements into a numerical simulation in which the initial and boundary
conditions corresponding to various turbulent flow configurations can be imposed.

It has been noted that adjustable parameters can be introduced into the large-eddy
and small-eddy suppression mechanisms and the triplet-map definition. To maintain
a focus on physical mechanisms rather than data fitting, these generalizations have
not been implemented in the present, minimal formulation. The present formulation
involves at most a single parameter that is determined either empirically or by
applying a self-consistency condition, as appropriate for each application.
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ODT may be viewed as a method of applying dimensional reasoning, in the spirit
of mixing-length theory, to individual turbulent eddies rather than to ensemble-
averaged properties. In this regard, a distinction can be drawn between mixing-length
physics and mixing-length theory as conventionally applied. It has been shown here
that mixing-length physics, as embodied in ODT, captures a variety of observed
phenomena whose relation to mixing-length concepts is not self-evident. Notable
among these are the sensitivity of the inertial-range spectral scaling to the nature of
the large-scale forcing (§ 3.2.2), details of the structure of the turbulent kinetic energy
balance near a wall (§ 4), non-classical heat-transfer scalings in Rayleigh convection
(§ 5.2.2), the spatial structure of fluctuation properties of penetrative convection (§ 5.3),
salient features of the Monin–Obukhov similarity functions (§ 6.1), and the dependence
of shear-driven entrainment on stratification at low to moderate Ri (§ 6.3). Related
results, presented elsewhere, include reproduction of observed non-classical scalings
of buoyancy-driven flow between vertical walls, and reproduction of the observed
dependence of the component flux ratio on the component density ratio at a turbulent
double-diffusive interface.

The demonstration that ODT captures this variety of observed behaviours suggests
that the manifestations of mixing-length physics in turbulence are significantly broader
and deeper than heretofore supposed. The evidence presented here does not constitute
a proof of this statement, but is substantial enough to indicate that this hypothesis
merits further consideration.

ODT is particularly suited for simulation of molecular mixing in turbulence. The
representation of molecular mixing in present-day turbulent-reacting-flow models is
more rudimentary than the representation of advective transport. In this regard,
ODT subsumes the demonstrated capabilities of the LEM, which has been applied
successfully to otherwise intractable turbulent mixing problems (Kerstein & McMurtry
1994b; Kerstein, Cremer & McMurtry 1995). ODT extends LEM capabilities by
incorporating two-way couplings between flow and scalar properties, such as buoyancy
effects, that the LEM cannot capture.

Finally, the potential contribution of ODT to turbulence theory and analysis is
considered. Like the LEM, ODT per se appears to be analytically intractable owing
to the spatial non-locality of the advection process. (This non-locality has physically
significant manifestations, e.g. admitting the possibility of countergradient transport.)
Nevertheless, the LEM has spawned several analytical studies, including analysis of a
simplified formulation (Holzer & Pumir 1993) and novel analytical approaches used
to interpret LEM numerical results (Kerstein & McMurtry 1994a,b).

Analogous ties between ODT and theory can be envisioned. For example, Stull
(1984) has formulated a one-dimensional non-local turbulent transport model ap-
plicable to geophysical flows. His evolution equation for mean properties is directly
applicable to ODT. ODT simulations can therefore be used to estimate the turbulent
exchange coefficients in his model and to test refinements and generalizations of his
approach. More generally, ODT may broaden the analogy between random processes
and microstructural properties of turbulence (Vainshtein et al. 1994).

The author would like to thank J. C. Kaimal, J. C. Klewicki, P. A. McMurtry and
Z. Warhaft for helpful discussions. Special thanks are extended to Oscar P. Manley
for encouraging this effort. The support provided by the Division of Engineering and
Geosciences, Office of Basic Energy Sciences, US Department of Energy, is gratefully
acknowledged.
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Appendix A. Numerical implementation
A complete mathematical specification of ODT consists of
(i) the mapping rule (2.1) with f1 = 1− f2 = 1

3
;

(ii) the stochastic process governing the eddy event sequence, based on the sta-
tistical hypotheses applied to the rate distribution (2.6) or its S-flow analogue (see
below);

(iii) large-eddy suppression to mitigate a large-scale anomaly;
(iv) the viscous evolution equation (2.7) or (2.12) and any corresponding scalar

equations, involving fluid properties ν and κ;
(v) small-eddy suppression; and

(vi) the flow-dependent initial and boundary conditions for u and any advected
scalars.
Here, some aspects of numerical implementation, including the extraction of statistical
information from simulated realizations, are elaborated.

The one-dimensional domain [0, Y ] is discretized into cells of uniform size. The
permutation rule (Kerstein 1991) for discrete implementation of the triplet map, (i),
requires the number of cells comprising the mapping interval to be a multiple of
3, and no smaller than 6. This determines the smallest resolvable eddy size. The
largest possible eddy size is the domain size Y . These constraints affect the discrete
implementation of the eddy selection procedure, (ii), whose continuum formulation is
outlined next.

For purposes of eddy selection, the allowed range of the nominal eddy location y0

(namely, the lower terminus of the mapping interval) is the entire domain [0, Y ]. If the
upper terminus y0 + l exceeds Y , the mapping is not invoked except in simulations of
homogeneous turbulence, in which periodic (or in some cases jump-periodic) boundary
conditions are applied. (In all cases, l is not permitted to exceed Y .) For wall-bounded
flows, this procedure confines eddies to the physical flow domain provided that walls
are allowed only at y = 0 and Y . For the planar boundary layer, Y is assigned a
value much larger than the layer thickness so that the omission of eddies extending
beyond Y has negligible impact. No other provision is made for modification of the
eddy space–time sequence owing to wall effects. Wall-flow structure is thus obtained
solely by exclusion of eddies that violate physical confinement, in conjunction with
the no-slip boundary condition applied to the viscous evolution equation.

Eddy selection can be implemented numerically by determining a total event rate
and a joint p.d.f. of y0 and l directly from (2.6). This procedure requires frequent
reconstruction of the joint p.d.f., at prohibitive cost, so an equivalent but more
efficient method is used. Specializing to T-flow, the event distribution during a given
time interval ∆t is expressed as

λ(l; y0, t) ∆t = P (l; y0, t,∆t)f(l)g(y0), (A 1)

where f(l) and g(y0) can be any desired p.d.f.s, and P (l; y0, t,∆t) is defined so that the
appropriate ensemble of events is generated. Operationally, one pair of values (l, y0)
is chosen at each time step ∆t by sampling from the p.d.f.s f and g. This identifies a
candidate eddy, that may or may not be implemented. The implementation probability
P is computed by substituting the chosen values of l and y0 into (A 1) and using (2.6)
to evaluate λ(l; y0, t). For any choices of f and g that include all allowed l and y0

values, this procedure is equivalent to sampling the rate distribution λ in the limit of
vanishing ∆t. Sufficient numerical accuracy is obtained if ∆t is small enough so that
P � 1. This implies that the number of trials must greatly exceed the number of
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events implemented. The method is nevertheless advantageous because costly p.d.f.
reconstructions are avoided; at each time step, λ is evaluated for only one pair of
values (l, y0).

The functional forms chosen for f and g do not affect the statistics of simulated
realizations, but they may affect computational efficiency. Ideally, f and g should be
chosen to minimize the variability of P , thereby maximizing the allowable ∆t. In all
reported computations, g(y0) is the uniform distribution over [0, Y ] and f(l) = Bl−2

over the allowed range of l, where B is the p.d.f. normalization. These choices are not
optimal, but they are found to be reasonably efficient for the flows simulated thus
far. Adaptive time stepping within subdomains is implemented where advantageous.

For S-flow, eddy selection is implemented in the same manner, with the proviso
that t is elapsed time in the Lagrangian sense, i.e. along the trajectories of individual
fluid elements. The time increment corresponding to a given spatial increment dx
is therefore dt(y) = dx/u(y, x). dt is y dependent owing to the y dependence of
streamwise velocity. The equivalent relation d/dt = u d/dx yields the familiar evolu-
tion operator of boundary-layer equations. (See § 2.3.1 for the S-flow formulation of
viscous evolution.)

The eddy time scale can thus be expressed as an eddy streamwise increment
χ(l; y0, x) = u(ỹ, x)τ(l; y0, x), where ỹ is a nominal eddy location. The obvious choice
is ỹ = y0 + l/2. The choice is inconsequential if l is less than the transverse distance
over which u varies significantly. However, this does not hold in general, indicating
that the relation between dt and dx cannot be implemented in an exact manner.

The spatial analogue of the eddy rate distribution is obtained by using χ in place
of τ and substituting the definition of χ to obtain the eddy spatial distribution

λ(l; y0, x) = A/[l2u(ỹ, x)τ(l; y0, x)]. (A 2)

The statistical hypotheses for this formulation are analogous to the T-flow statistical
hypotheses.

The statistical hypotheses cause a large-scale anomaly, (iii), as follows. Consider
the planar mixing layer with free-stream velocity difference ∆, with the initial velocity
jump at y = 0 on the unbounded domain (−∞,∞). The turbulent transport coefficient
associated with eddies of size l � L, where L is the integral scale at time t, is of order
l2/τ(l;−l/2, t). This is of order l∆, diverging with increasing l.

In reality, transport due to eddies of size l � L is negligible. In the model, as in
turbulent flow, the characteristic time scale τ of eddies much larger than L exceeds the
elapsed time t. Accordingly, the typical evolution of a simulated realization conforms
to the usual shear flow growth laws. However, the statistical hypothesis allows the
occasional occurrence of very large (l � L) events. These rare, unphysical events
dominate the total transport, analogous to a previously noted artifact of the LEM
(Kerstein 1991).

This artifact is more readily mitigated in ODT than in the LEM because in ODT, the
instantaneous flow field is explicitly represented. For this purpose, (2.14) is modified
by setting τ equal to∞ (hence zero eddy rate) if the eddy interval contains more than a
specified maximum fraction of laminar fluid. The fraction may be chosen empirically,
but has arbitrarily been assigned the value 1

2
in applications to date. Operationally,

the laminar zone at time t consists of regions in which u(y, t) is equal to its initial
value u(y, 0), within a small tolerance. (In DPE, this criterion is applied to ρ rather
than u.) Computed results are found to be insensitive to the specified tolerance.

This large-eddy suppression mechanism is inoperative for homogeneous turbulence,
which has no laminar outer flow. However, the smoothing effect of (2.5) at length scales
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326 A. R. Kerstein

larger than the turbulence integral scale tends to mitigate the large-scale anomaly
in homogeneous turbulence. Physically reasonable velocity statistics are obtained,
but fluctuation properties of a passive scalar subject to an imposed gradient show
excessive sensitivity to rare events, as noted in § 3.2.4.

The only flow regimes considered here for which large-eddy suppression is operative
are the spatially developing boundary layer (mentioned briefly in § 4), penetrative
convection (§ 5.3), and shear-driven entrainment (§ 6.3). For the latter two cases, the
large-eddy suppression mechanism is non-essential owing to eddy suppression by the
stable stratification of the laminar zone.

The key consideration in the numerical implementation of viscous evolution, (iv),
is the effect of the concurrent advection process on the u profile. The advection
process generates strong gradients and points of discontinuous du/dy, as illustrated
in figure 1(b). Conventional finite-differencing is appropriate for solving (2.7), but
numerical methods typically used for solving (2.12) are ineffective in this situation.
To see why, consider the alternative S-flow formulation (2.9), (2.13). An Eulerian
numerical method requires the streamwise increment ∆x to be small enough so that
the transverse displacement v(y)∆x/u(y) is smaller than the u-profile fluctuation length
scale. Owing to the integral on the right-hand side of (2.13), v(y) at large y can be of
a magnitude that requires exceedingly small ∆x.

For present purposes, the following Lagrangian method is advantageous. The u
profile is updated by solving (2.9) numerically in the fluid frame, i.e. with the transverse
advection term vuy omitted. The streamwise increment (∆x)u for this step is set by
stability requirements, a less stringent criterion than the criterion determining ∆x for
the Eulerian method. The induced transverse velocity required to enforce continuity is
computed by solving (2.13) with a coarser increment (∆x)v . At each (∆x)v increment,
a profile of displacements v(y)(∆x)v/u(y) determines a dilatation of the u profile, a
costly but relatively infrequent operation. This operation can be infrequent because
the only consideration determining (∆x)v is that the displacements should be small
compared to the size of the turbulent zone.

In the numerical implementation, viscous evolution is invoked at increments (∆x)v .
At each increment, (∆x)v/(∆x)u Lagrangian finite-difference steps are implemented
based on (2.9) with vuy omitted. Then a dilatation maps the Lagrangian update onto
the Eulerian spatial domain. Domain decomposition with locally adaptive refinement
of the streamwise increment is used for viscous as well as advective processes.

Small-eddy suppression, (v), is implemented by disallowing a mapping if its time
scale τ is longer than the time scale τd = l2/(16ν) for viscous suppression of eddy
motion. Here, τd is defined as the e-folding time for viscous dissipation of the turbulent
kinetic energy within the mapping interval.

This definition is somewhat arbitrary. Inclusion of a free parameter would be
appropriate, but the present objective is to minimize empiricism where possible. The
development that follows is not a derivation of τd, but rather is a physically motivated
basis for the selection of this quantity. Namely, τd is estimated by means of an analogy
to the dissipation rate of Ku = 〈u′2〉/2 in ODT, which equals ν〈(du′/dy)2〉 (Appendix
C). The local analogue of the quantity 〈(du′/dy)2〉 within the mapping interval is
taken to be (∆u/l)2. Based on the definition (2.4) of ∆u, ∆u/2 can be interpreted as
the amplitude of a period-l sinusoidal component of the instantaneous u profile. The
corresponding mean-square u fluctuation is 1

2
(∆u/2)2. Therefore the local analogue of

〈u′2〉/2 is (∆u)2/16.
According to the definition of τd that has been adopted, the dissipation rate of Ku

is Ku/τd. Substituting local quantities in the expression for the dissipation rate of Ku,
the relation (∆u)2/(16τd) = ν(∆u/l)2 is obtained, giving τd = l2/(16ν).
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Boundary conditions, (vi), are applied in the usual manner in the viscous solution.
They affect the advection process only through limitation of the physical domain
in which eddies can be implemented, as mentioned earlier. Initial conditions are
analogous to higher-dimensional formulations.

Statistics are gathered as from any unsteady flow simulation, except that transverse
fluxes require special treatment owing to the implementation of transverse advection
by means of an event sequence rather than a transverse velocity field. For example,
the Reynolds stress 〈u′v′〉 in a T-flow is evaluated at given y by expressing it as the
net transverse flux of u at y induced by turbulent advection. This is obtained from
the simulation by summing the u values of domain cells that cross location y during
each mapping event, with appropriate normalization; see Appendix C. (Each u value
is multiplied by a sign corresponding to the flux direction.)

Appendix B. Three-dimensional interpretation of one-dimensional
quantities

The relation between ODT properties and analogous properties of three-dimensional
flow is based on the interpretation of the ODT profile u(y, t) as a transverse profile of
streamwise velocity. This interpretation is affected by differences between ODT con-
servation laws and those governing three-dimensional flow. For instance, ODT cannot
redistribute kinetic energy among velocity components, as occurs in three-dimensional
flow. Nevertheless, expressions for kinetic energy production and dissipation and other
quantities of interest can be formulated that are at least roughly valid for the flows
considered here.

In three-dimensional flow, the turbulent kinetic energy (per unit mass, assuming
constant-density flow) is q2/2 = (u′2 + v′2 + w′2)/2, where u′, v′ and w′ are the
deviations of the three velocity components from their ensemble-average values. In
isotropic homogeneous turbulence, the average turbulent kinetic energy K ≡ 〈q2/2〉
is 3

2
〈u′2〉. It is reasonable to interpret the quantity 3

2
〈u′2〉 in ODT as the kinetic energy

of isotropic homogeneous turbulence. (Henceforth, all discussion of energy refers to
the average turbulent kinetic energy K .) Likewise, the ODT quantity

εODT = − 3
2
d〈u′2〉/dt (B 1)

can be interpreted as the model analogue of the energy dissipation rate ε = −dK/dt.
In Appendix C, it is shown that the dissipation rate of 〈u′2〉/2 in ODT is equal to

ν〈(du′/dy)2〉. From this and (B 1), the energy dissipation rate can be expressed as

εODT = 3ν〈(du′/dy)2〉 (B 2)

for isotropic homogeneous turbulence. This is the model analogue of the three-
dimensional isotropic relation ε = 15

2
ν〈(du′/dy)2〉 (Monin & Yaglom 1975). Owing

to the different numerical coefficients in (B 2) and the three-dimensional relation,
ODT cannot simultaneously match the three-dimensional energy dissipation rate and
mean-square velocity cross-derivative. This artifact is due to the treatment of the u
profile as a scalar from a mathematical viewpoint, evolving with no explicit coupling
to other velocity components.

Different considerations apply to shear flows. Assume that the energy production
is driven by the y variation of u, as is roughly valid for boundary-layer-type flows. In
this case, the production of 〈u′2〉/2 within ODT approximates the energy production.
In three-dimensional shear flow, this energy is redistributed among the three velocity
components prior to its eventual dissipation, but in ODT, this energy remains in the
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streamwise velocity component, owing to the conservation laws obeyed by the model.
Therefore the dissipation rate of 〈u′2〉/2 within the model can be interpreted as the
energy dissipation rate, i.e.

εODT = ν〈(du′/dy)2〉 (B 3)

for boundary-layer-type flows.
It is appealing to view model energetics as a self-contained represention of flow

energetics and therefore apply (B 3) to isotropic turbulence as well, instead of adopting
the kinematical picture that motivates (B 2). The lack of a unique, kinematically
and dynamically consistent analogy between ODT and three-dimensional flow is an
inherent limitation of the model. Here, (B 2) is applied to isotropic flows, though
evidence favouring (B 3) is noted in § 3.1.3.

Consider now the production and dissipation of fluctuations θ′ of a passive scalar θ.
Three-dimensional scalar advection involves no redistribution of fluctuation intensity
among vector components, so the ODT scalar fluctuation intensity θ′2/2 is analogous
to θ′2/2 in three-dimensional flow, whether homogeneous or boundary-layer like. The
ODT balance equation for 〈θ′2〉/2 is formally equivalent to the balance equation
for 〈u′2〉/2 (Appendix C), so the scalar dissipation rate εθ,ODT ≡ − 1

2
d〈θ′2〉/dt can be

expressed as

εθ,ODT = κ〈(dθ′/dy)2〉. (B 4)

Here, the scalar dissipation rate is defined as the rate of change of −〈θ′2〉/2 to
emphasize the analogy between θ and u. (Some authors omit the factor 1

2
.) This

analogy is more literal in ODT than in three-dimensional flow, because the profile
u(y, t) evolves as an advected scalar in ODT. Functionally, u is not a passive scalar
because it determines the eddy rate distribution. Nevertheless, u is formally equivalent
to a passive scalar because a passive scalar θ, with Pr = 1 and the same initial and
boundary conditions as u, is subject to the same mapping events and the same
molecular transport as u.

The ODT power spectrum of u, EODT(k), is defined as the Fourier transform of the
spatial autocorrelation 〈u′(y)u′(y+ δ)〉. With the normalization

∫ ∞
0
EODT(k) dk = 〈u′2〉,

EODT is formally equivalent to the energy spectrum of transverse velocity fluctuations,
conventionally denoted E2(k) (Hinze 1975). Here, spectra are considered solely in
the context of incompressible isotropic flows. For such flows, E2 is related to the
commonly measured spectrum E1 of longitudinal velocity fluctuations according to
(Hinze 1975)

E2 =
1

2

(
E1 − k ∂E1

∂k

)
. (B 5)

Although this is readily inverted to obtain E1(E2), it is convenient to work with E2 in
order to avoid numerical issues related to the transformation of computed spectra. E2

can also be expressed in terms of the three-dimensional spectrum E that is commonly
used in theoretical analysis. The three-dimensional spectrum is not considered here.
Henceforth, E denotes E2, or equivalently, EODT.

The ODT power spectrum of θ, Eθ,ODT(k), is defined as the Fourier transform of
the spatial autocorrelation 〈θ′(y)θ′(y + δ)〉. Eθ,ODT is formally equivalent to the one-
dimensional scalar-fluctuation spectrum Eθ1 of three-dimensional flow, and can be
transformed in the usual manner (Hinze 1975) to obtain the three-dimensional scalar-
fluctuation spectrum Eθ . The normalization

∫ ∞
0
Eθ,ODT(k) dk = 〈θ′2〉, used by some but

not all authors, is adopted. Henceforth, Eθ denotes Eθ,ODT, or equivalently, Eθ1.
Many definitions of the turbulence integral scale L have been proposed. The
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definitions used here are stated in the discussions of the individual flow configurations.
For homogeneous turbulence, the commonly used definition

L = 〈u′2〉3/2/ε (B 6)

is adopted. For application to computed results, ε is evaluated using either of the
equivalent relations (B 1) or (B 2).

Appendix C. Statistical properties of flow realizations
Model results are compared to measurements by averaging over ensembles of

simulated flow realizations. For the purpose of formulating and interpreting these
ensemble averages, it is useful to write a truncated form of the Navier–Stokes
equation containing only those terms that are represented in some manner in ODT.
Therefore consider the evolution equation

∂u

∂t
+ (W · ∇)u = ν∇⊥2u (C 1)

subject to the continuity constraint

∇ ·W = 0, (C 2)

where W denotes the vector (u, v). Here, v represents the ⊥-component of velocity,
including vortical advection (represented by triplet maps in ODT) as well as the
viscous contribution to v discussed in § 2.3. Although these continuum equations
cannot fully describe the evolution of a simulated ODT realization, it is shown
that ODT realizations can be ensemble averaged to obtain quantities analogous to
averages involving the quantity v in (C 1).

Indeed, v can be defined within individual realizations as well as in ensemble
averages. To see this, (C 1) is transformed into an equation that is demonstrably
obeyed by a simulated ODT realization. Specializing to Cartesian coordinates, (C 1)
becomes

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (C 3)

As noted in § 2.1, ODT represents evolution either in t (for T-flow) or in x (for S-flow),
so the first or second term of (C 3) may be dropped, depending on the flow type.
Equation (C 3) formally corresponds to (2.9) specialized to the case of no streamwise
pressure forcing for S-flow, and corresponds to the same specialization of (2.7) for
T-flow, though as noted, v is now taken to include triplet-map advection. S-flow is
considered for illustration, so the time derivative is dropped; the T-flow analogue of
this analysis is straightforward.

For S-flow, (C 2) is used to write (C 3) in the form

∂

∂x
(u2) +

∂

∂y
(uv) = ν

∂2u

∂y2
. (C 4)

Integration over a strip (y0,∞) in y, (x, x+ dx) in x gives∫ ∞
y0

u2(x+ dx, y) dy −
∫ ∞
y0

u2(x, y) dy = u(x, y0)v(x, y0) dx− ν ∂u(x, y0)

∂y
dx (C 5)

to leading order in dx, where terms evaluated at y = ∞ are assumed to vanish.
Formally, this is a conventional boundary-layer control-volume analysis (Kays &
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Crawford 1980). It is reproduced here in order to highlight the physical significance
of (C 5) in the present context. The left-hand side of (C 5) is the net transfer of
streamwise momentum flux to the half-space y > y0 within the streamwise interval
(x, x+ dx). The last term is the corresponding viscous transfer of momentum flux. By
subtraction, u(x, y0)v(x, y0) dx must represent the only other momentum-flux transfer
mechanism, advective transfer.

This deduction of the meaning of u(x, y0)v(x, y0) dx demonstrates that no as-
sumptions are necessary concerning the nature of the advection process. The term
u(x, y0)v(x, y0) dx is simply the net momentum-flux transfer by all mechanisms other
than viscous gradient transport. In ODT, these mechanisms are advection by mapping
events and the v-flow, (2.13), induced by viscous evolution.

The flow induced by viscous evolution is analogous to advective momentum-flux
transfer in laminar flow. Namely, with the mappings omitted, implementation of ODT
reduces to the solution of a conventional boundary-value problem for (C 4), and (C 5)
has its conventional meaning. When mappings are introduced to represent turbulent
advection, (C 4) no longer has a straightforward interpretation, but (C 5) remains valid
provided that the mapping contribution is included in the advective transfer term.

To incorporate this contribution, the quantity u(x, y0)v(x, y0) dx is evaluated for
given x and y0 in a simulated realization by monitoring momentum-flux trans-
fers across y0, induced by (2.13) and by mapping events, in the streamwise inter-
val (x, x + dx). This data gathering is implemented in ODT simulations although
u(x, y0)v(x, y0) dx can alternatively be deduced by evaluating the other terms of
(C 5). Advective-transfer monitoring serves to verify that simulated realizations sat-
isfy momentum-flux balance to within the numerical accuracy of the algorithm. For
higher-order balances, discussed shortly, the contribution of numerical dissipation is
non-negligible. In this situation, indirect deduction of advective contributions would
be unreliable.

The validity of this procedure is predicated on the fact that the triplet map, both in
its continuum mathematical definition and in its discrete numerical implementation,
is a measure-preserving map that advects fluid elements without changing properties
of fluid elements. Were this not the case, mappings might modify integrands on
the left-hand side of control-volume balances such as (C 5) in a manner that is not
captured by the flux-monitoring procedure.

The foregoing analysis allows the model analogue of uv (and, by extension of this
reasoning, unv for n > 0) to be defined on a local, instantaneous basis, but it does not
provide a physically sound representation of the instantaneous evolution of uv. For in-
finitesimal dx, there is an infinitesimal probability of mapping-induced transfer across
y0 in the interval (x, x+dx). If such transfer does occur, a huge value of uv is implied.
Thus, the streamwise evolution of uv in a given ODT realization does not mimic the
evolution in continuum flow. In ODT, quantities like uv are ‘generalized functions’
(Lighthill 1970), physically meaningful only in the context of ensemble averages.

To form averages of interest, it is noted first that v is defined in ODT by control-
volume analysis, analogous to (C 5), of the continuity equation (C 2). It is found that
v(x, y0) dx corresponds to the advective transfer of volume flux (i.e. of u) across y0 in
the interval (x, x+ dx). Control-volume analysis of un−1 times (C 4) likewise indicates
that u(x, y0)

nv(x, y0) dx corresponds to the advective transfer of un+1 for n > 0. The
quantity 〈unv〉 therefore corresponds to 1/(dx) times the ensemble average of the
advective transfer of un+1 across y0 in the interval (x, x+ dx). For T-flow, analogous
reasoning indicates that 〈unv〉 corresponds to 1/(dt) times the ensemble average of
the advective transfer of un across y0 during the time interval (t, t+ dt).
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These relations allow the determination of averaged transverse fluxes such as
the Reynolds-stress component 〈u′v′〉. (Here, the arguments x and y0 of averaged
variables are suppressed.) Where it arises in relations obtained by Reynolds averaging
the Navier–Stokes equation, this quantity can be expressed in the form 〈u′v′〉 =
〈uv〉− 〈〈u〉v〉− 〈u〈v〉〉+ 〈u〉〈v〉 = 〈uv〉− 〈u〉〈v〉. The intermediate expression is included
here in order to indicate that this derivation does not carry over directly to ODT.
In ODT, 〈ψv〉 refers to an average of the advective transfer of the quantity ψ. The
meaning of this averaging process is not obvious if ψ is itself an averaged quantity
(e.g. 〈u〉) rather than a quantity that has an instantaneous definition.

Nevertheless, the decomposition 〈u′v′〉 = 〈uv〉 − 〈u〉〈v〉 provides an operational
definition of 〈u′v′〉 in terms of quantities that can be evaluated within ODT. As noted,
the usual method for deriving relations of this type is not applicable within ODT.
Therefore, when relations of this type are used to evaluate terms in an ODT balance
equation, the validity of the resulting balance equation within ODT must be verified
by control-volume analysis.

Analogous reasoning applies to the evaluation of scalar fluxes 〈θ′v′〉. In fact,
averages involving arbitrary powers of v can be evaluated by monitoring mapping-
induced transfers of the v velocity, viewed as a cell property. In § 2.4.1, the velocity
attributed to a mapped cell is δ/τ, where δ is the mapping-induced cell displacement.
The ensemble-average net rate of transfer of this quantity across y0 can then be
interpreted as the advective contribution to 〈v2〉. The method can be generalized
to evaluate 〈vp〉 for any p> 1 by monitoring transfers of the quantity (δ/τ)p−1 by
mapping events. Computed results for 〈v′2〉 are presented for several flows in § 4, § 5,
and § 6. For these flows, 〈v〉 = 0, so 〈v′2〉 = 〈v2〉.

The foregoing treatment of transverse fluxes allows the evaluation of all terms in
higher-order balance equations based on (C 2) and (C 4). It has been noted that those
equations imply control-volume balances such as (C 5) that are obeyed by ODT. The
control-volume balances are general enough in their treatment of advection so that
the terms of the balances can be defined operationally within ODT. The model is
not governed by relations such as (C 2) and (C 4) per se, but such relations are useful
shortcuts for deriving ODT balance equations by conventional methods (subject to
verification by control-volume analysis).

For example, consider the balance of the u-component of turbulent kinetic energy,
here denoted Ku. The derivation of the balance equation is entirely analogous to the
conventional analysis (Hinze 1975) and therefore is omitted. In fact, ODT balances
are simply subsets of the terms in conventional balances.

For S-flow, the ODT balance of Ku = 〈u′2〉/2 is written in the form

C = P + T + V − D, (C 6)

where the rates of convection, production, turbulent transport, viscous transport, and
dissipation, respectively, are

C = 〈u〉∂Ku

∂x
+ 〈v〉∂Ku

∂y
,

P = −2Ku

∂〈u〉
∂x
− 〈u′v′〉∂〈u〉

∂y
, T = −1

2

∂

∂x
〈u′3〉 − 1

2

∂

∂y
〈u′2v′〉,

V = ν
∂2Ku

∂y2
, D = ν

〈(
∂u′

∂y

)2
〉
.
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For T-flow, the convection term is replaced by ∂Ku/∂t, and x-derivatives in the other
terms are identically zero.

One consequence of (C 6) is the identification of the dissipation rate D of Ku,
discussed in Appendix B. It was noted there that the production and dissipation
of Ku in ODT should be interpreted as the production and dissipation of the total
turbulent kinetic energy K in boundary-layer-type flows, owing to the conservation
laws enforced in ODT. Therefore (C 6) is interpreted as the ODT analogue of the
three-dimensional balance equation for K for purposes of comparing computed terms
of (C 6) to measurements. On the other hand, computed profiles of 〈u′2〉1/2 are com-
pared to measured streamwise velocity fluctuation profiles, owing to the kinematical
interpretation of u(y) as the streamwise velocity profile. These two interpretations
cannot simultaneously be quantitatively accurate because the measured turbulent
kinetic energy includes contributions from the v and w velocity components.
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