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38041 Grenoble, France

2Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Science,
Prospekt Lavrentyev 15, Novosibirsk 630090, Russia

(Received 20 August 2009; revised 17 July 2010; accepted 4 August 2010;

first published online 25 November 2010)

A joint theoretical and experimental study is performed on the generation of internal
gravity waves by an oscillating sphere, as a paradigm of the generation of internal
tides by barotropic tidal flow over three-dimensional supercritical topography. The
theory is linear and three-dimensional, applies both near and far from the sphere, and
takes into account viscosity and the unsteadiness arising from the interference with
transients generated at the start-up. The waves propagate in conical beams, evolving
with distance from a bimodal to unimodal wave profile. In the near field, the profile is
asymmetric with its major peak towards the axis of the cones. The experiments involve
horizontal oscillations and develop a cross-correlation technique for the measurement
of the deformation of fluorescent dye planes to sub-pixel accuracy. At an oscillation
amplitude of one fifth of the radius of the sphere, the waves are linear and the
agreement between experiment and theory is excellent. As the amplitude increases to
half the radius, nonlinear effects cause the wave amplitude to saturate at a value that
is 20 % lower than its linear estimate. Application of the theory to the conversion
rate of barotropic tidal energy into internal tides confirms the expected scaling for
flat topography, and shows its transformation for hemispherical topography. In the
ocean, viscous and unsteady effects have an essentially local role, in keeping the wave
amplitude finite at the edges of the beams, and otherwise dissipate energy on such
large distances that they hardly induce any decay.
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1. Introduction
Internal, or baroclinic, tides are a special form of internal gravity waves generated in

the ocean by ebb and flow of the surface, or barotropic, tide over seafloor topography.
Internal tides are thought to extract energy from the barotropic tide at a global rate
of about 1 TW over the world’s oceans, that is, one fourth of the total dissipation of
the barotropic tide, and to transfer this energy to abyssal mixing through their self-
interaction, their interaction with the mean flow and their reflection at the seafloor,
all of which may lead to breaking, local mixing events and the deposit of momentum
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Internal wave generation by oscillation of a sphere 309

(Garrett 2003). The large number of reviews devoted to these topics attest to the
current interest in internal tides (see e.g. St. Laurent & Garrett 2002; Kunze &
Llewellyn Smith 2004; Wunsch & Ferrari 2004; Nycander 2005; Ivey, Winters &
Koseff 2008; Ferrari & Wunsch 2009). Specific reviews have dealt with the theories
of internal tide generation (Vlasenko, Stashchuk & Hutter 2005; Garrett & Kunze
2007).

In the so-called ‘acoustic’ limit, namely at small barotropic excursion compared with
the horizontal scale of the topography, Bell (1975a, b) has shown that the internal
tide is a linear monochromatic internal wave, generated in the frame of reference
moving with the barotropic tide by the small horizontal oscillations of the topography.
The experiments by Baines & Fang (1985), Gostiaux & Dauxois (2007) and Zhang,
King & Swinney (2008) for continental slopes, and Peacock, Echeverri & Balmforth
(2008) and Echeverri et al. (2009) for ridges, have confirmed this theoretical analysis.
They have pointed out the separation of two regimes, subcritical and supercritical,
respectively, depending on whether the topographic slope is everywhere smaller or
locally larger than the slope of the wave rays, which is set by the frequency. The
internal tide is generated preferentially at the critical locations where the topography
and the rays are tangent to each other; it is accordingly more pronounced in the
supercritical case.

The semi-circular cylinder in two dimensions, and the hemisphere in three
dimensions, have slopes varying continuously between 90◦ at the bottom and 0◦

at the summit, making them supercritical at all frequencies. This revived the interest
in the classical problem of internal wave generation by oscillating cylinders and
spheres, and motivated the laboratory experiments and numerical simulations by
Zhang, King & Swinney (2007) for the cylinder and King, Zhang & Swinney (2009)
for the sphere.

Early theoretical studies took into account either the size of the forcing but not
the viscosity of the fluid (see Hurley 1969, 1972, 1997 and Appleby & Crighton 1986
for the cylinder, and Hendershott 1969, Sarma & Krishna 1972, Appleby & Crighton
1987 and Voisin 1991 for the sphere), or viscosity but not the size of the forcing
(see Thomas & Stevenson 1972; Gordon & Stevenson 1972). Using an approximate
representation of the cylinder or sphere introduced by Gorodtsov & Teodorovich
(1982, 1986), Ivanov (1989) and Makarov, Neklyudov & Chashechkin (1990) showed
how the two approaches can be combined together. Later, Hurley & Keady (1997)
and Hurley & Hood (2001) showed how the approximation can be avoided for the
cylinder.

These theoretical developments have relied closely on the simultaneous
developments of experimental techniques. Most techniques are two-dimensional
in that the signal is integrated across the width of the tank. Accordingly, they
have been applied primarily to the cylinder. Early techniques, either non-intrusive
such as Schlieren visualization (Görtler 1943; Mowbray & Rarity 1967), Schlieren
interferometry (Peters 1985; Merzkirch & Peters 1992), Moiré fringes (Ivanov 1988,
1989; Sakai 1990) and shearing interferometry (Makarov et al. 1990), or intrusive
such as buoyant drop tracking (Thomas & Stevenson 1972; Gordon & Stevenson
1972) and particle streaks (Xu et al. 1997), required a lot of effort while yielding access
to only a fairly modest portion of the wave field. The situation changed drastically
with the advent of digital image processing. Two new measurement techniques have
been introduced: synthetic Schlieren, developed by Sutherland et al. (1999) and
Dalziel, Hughes & Sutherland (2000), and applied by Sutherland et al. (1999, 2000),
Sutherland & Linden (2002), Ermanyuk & Gavrilov (2005, 2008), Mercier, Garnier &
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Dauxois (2008), Thomas, Marino & Dalziel (2009) and Clark & Sutherland (2009);
and particle image velocimetry (see e.g. Westerweel 1997), applied by Zhang et al.
(2007).

The three-dimensionality of the sphere complicates the measurements. With particle
streaks (McLaren et al. 1973; Lin, Boyer & Fernando 1994) and particle image
velocimetry (King et al. 2009), a light sheet allows the selection of a given plane
of fluid. With Schlieren techniques, one possibility is to consider the axisymmetric
problem of vertical oscillations, and to either use the integrated image directly, as
did Peacock & Weidman (2005), Chashechkin & Prikhod’ko (2007) and Chashechkin
(2007), or apply a simplified inverse tomographic transform developed by Onu,
Flynn & Sutherland (2003) and Flynn, Onu & Sutherland (2003), as did Flynn et al.
(2003) and Sutherland, Flynn & Onu (2003). For non-axisymmetric problems, the full
inverse tomographic transform has been developed by Décamp, Kozack & Sutherland
(2008), but remains to be applied.

The present paper considers the generation of internal gravity waves by an
oscillating sphere both theoretically and experimentally. The theory is linear and
based on Voisin (2003). It provides a counterpart for the sphere of the theory of
Hurley (1997) and Hurley & Keady (1997) for the cylinder. The solution satisfies the
free-slip condition at the sphere exactly, and applies at arbitrary distance from it. The
effect of viscosity on the propagation of the waves, and the effect of unsteadiness,
namely the interference with transients generated at the start-up, are both accounted
for. Only the physical implications of the theory are presented, while the details of
the derivations will be reported elsewhere (Voisin 2010a, b, c).

The experiments involve horizontal oscillations of the sphere. The advantages of
this configuration over vertical oscillations are twofold: conceptually the problem
becomes relevant to internal tides; and practically the wave field becomes directional,
such that energy is radiated parallel to the direction of oscillation, allowing absorption
at the tank walls perpendicular to this direction while the other two walls remain
available for visualization. Following Flynn et al. (2003), two spheres are used, one
large and the other small, so as to create bimodal waves governed primarily by the
size of the sphere and unimodal waves governed primarily by viscosity, respectively.
For the latter, two amplitudes of oscillation are considered, so as to create linear and
slightly nonlinear waves. The frequency of oscillation is larger than half the buoyancy
frequency, precluding the propagation of higher harmonics.

A new simple technique is developed for measuring isopycnal displacements, based
on the deformation of fluorescent dye planes. This technique has been introduced
by Hopfinger et al. (1991) for the qualitative visualization of lee waves, and applied
later by Bonnier, Bonneton & Eiff (1998) to the qualitative visualization of stratified
wakes and by Flór, Ungarish & Bush (2002) and Flór, Bush & Ungarish (2004) to
the quantitative manual measurement of isopycnal displacements in spin-up flows.
Here the measurement is made automatic, by developing an algorithm to process
the experimental dye lines and determine their displacement to sub-pixel accuracy.
Horizontal dye planes are used, illuminated by a vertical light sheet parallel to
the direction of oscillation of the sphere. The sheet is able to scan the tank at time
intervals small compared with the period of oscillation, allowing spatial reconstruction
of the three-dimensional density field. We focus on the structure of the waves in the
vertical plane through the centre of the sphere along its direction of oscillation.
The structure of the waves in perpendicular planes will be considered in a separate
paper (Ermanyuk, Flór & Voisin 2010), together with the generation of higher
harmonics.
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Internal wave generation by oscillation of a sphere 311

The paper is organized as follows. Section 2 introduces the theoretical expression
of the waves and § 3 analyses their structure. Section 4 discusses the relation of these
results to the literature. The experimental set-up and data processing are described
in § 5, and the processed data are compared with theory in § 6. Section 7 discusses
the application of the theory to internal tides, with emphasis on the conversion rate
of barotropic tidal energy into internal tides, for hemispherical topography and for
two flat bell-shaped topographies. The main findings of the paper are summarized in
§ 8, and the Appendix focuses on the emergence of the singularities of the wave field.
Throughout the paper a number of one-sided Fourier transforms are used silently in
the theory; they are taken from table 5 of Voisin (2003).

2. Wave calculation
2.1. General case

In an unbounded viscous uniformly stratified Boussinesq fluid of kinematic viscosity
ν and buoyancy frequency N , a source of mass starts at time t = 0 to release at the
frequency ω < N the volume q(x) exp(−iωt) of fluid per unit volume per unit time.
The source is characterized by its radius a and the amplitude A of the oscillations
of the released fluid, such that q(x) is a function of order ωA/a inside a region of
radius a around the origin, vanishing rapidly outside this region. The amplitude is
assumed much smaller than the radius, a condition expressed as Ke � 1 in terms of
the amplitude ratio or the Keulegan–Carpenter number

Ke =
A

a
, (2.1)

corresponding to the ‘acoustic’ limit of internal tides (Bell 1975a, b) and allowing
the linearization of the equations of motion. The hydrostatic approximation, which
would restrict the frequency range to ω � N , is not made. The radiation condition
is applied in its causal formulation, by adding to the real frequency an infinitesimal
positive imaginary part; namely, whenever necessary in order to set the determination
of multivalued functions of frequency, ω is replaced by ω + i0 = limε → 0(ω + iε) with
ε > 0. This procedure, discussed e.g. by Lighthill (1978, § 4.9), amounts to assuming
that the source has grown up slowly as eεt from zero at t = −∞ to its present level.

Internal waves are generated. The geometry of steady inviscid waves is well-known
(see e.g. Lighthill 1978, § 4.4) and has been described for a sphere by Hendershott
(1969), Appleby & Crighton (1987) and Voisin (1991). It is illustrated in figure 1 for
a sphere of radius a. The waves, which propagate at the angle θ = arccos(ω/N ) to
the vertical, are confined within a conical shell of thickness 2a delimited by the two
double cones of vertical axis and semi-angle θ tangent to the sphere above and below.
Taking the z-axis along the upward vertical and denoting a horizontal component
by a subscript h, we introduce conical polar coordinates (x±, ϕ, z±) in terms of the
cylindrical polar coordinates (rh, ϕ, z) through

x± = rh cos θ ∓ z sin θ, z± = ±rh sin θ + z cos θ. (2.2)

The part of the shell situated between the two upper cones x+ = −a and x+ = a defines
an upper wave beam, and the part of the shell situated between the two lower cones
x− = −a and x− = a defines a lower wave beam. Within them, the phase propagates
along the transverse coordinate x± with wavenumber vector (k± > 0, ϕk, m± =0), while
energy propagates along the longitudinal coordinate ±z± with group velocity vector
(0, ϕk, ±ω tan θ/k±).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


312 B. Voisin, E. V. Ermanyuk and J.-B. Flór

θ

z z+

x+

ϕ

z– x–

rhrh

2a

Figure 1. Coordinate systems for monochromatic internal waves and steady inviscid beam
geometry for an oscillating sphere.

When unsteadiness and viscosity come into play, the structure of the beams
is modified. It is governed by two dimensionless parameters: the product ωt

characterizing the number of periods elapsed since the start-up, and the Reynolds–
Stokes number

Re =
2ωa2

ν
, (2.3)

characterizing, for an oscillating body, the ratio of its radius a to the thickness
(2ν/ω)1/2 of the boundary layer at its surface (see e.g. Batchelor 1967, § 5.13). In the
following, both parameters are assumed large, such that ωt � 1 and Re � 1, allowing
steady inviscid waves to form at the source before being affected by unsteadiness and
viscosity as they propagate away. In particular, the boundary condition at the surface
of an oscillating body is approximately steady and inviscid (see Hurley & Hood 2001
for a flat plate and Davis & Llewellyn Smith 2010 for a circular disk).

With no further assumption, Voisin (2003) derived expressions of the waves as
spectral integrals in which the contribution of each wavenumber is determined by
either of three mechanisms acting in isolation: the structure of the source through its
spectrum

q±(k±, ϕk, m±) = q(k) =

∫
q(x) exp(−ik · x) d3x; (2.4)

unsteadiness through cutoff at a distance |z±| at the wavenumber 1/(α|z±|) with

α =
1

ωt tan θ
; (2.5)

and viscosity through attenuation at the rate βk3
± per unit distance along rays

(Lighthill 1978, §§ 4.7 and 4.10) with

β =
ν

2ω tan θ
. (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


Internal wave generation by oscillation of a sphere 313

Combining the three expressions, (4.21), (5.12) and (6.5) in Voisin (2003) respectively,
we obtain for the velocity

u = ±cos θ

8π2
exp(−iωt)

∫ 2π

0

dϕk em±(ϕk)

∫ cos θ/(α|z|)

0

dk± exp
(
−βk3

±|z|/cos θ
)

× k±q±(k±, ϕk, 0) exp{ik±[rh cos θ cos(ϕk − ϕ) ∓ z sin θ]}, (2.7)

where the unit vector em± is related to the unit vectors (erh , eϕ, ez) of the cylindrical
polar coordinate system by

em±(ϕk) = ±erh sin θ cos(ϕk − ϕ) ± eϕ sin θ sin(ϕk − ϕ) + ez cos θ. (2.8)

The upper sign is used in the upper half-space and the lower sign in the lower half-
space, so that ± = sign z. The physical interpretation of this result is the superposition
of the contributions of all the wavenumber vectors (k±, ϕk, 0) satisfying the dispersion
relation m± = 0, subject to the radiation condition k± > 0 of no waves coming in from
infinity with vertical group velocity ±ω sin θ/k± opposite in sign to z. Its mathematical
derivation is intricate and will be reported elsewhere (Voisin 2010c).

As the waves propagate further away from their source, the longitudinal coordinate
becomes large, such that |z±|/a � 1, while the transverse coordinate remains moderate,
such that |x±|/a = O(1). The far field is reached, where the velocity becomes
longitudinal and given by

u ∼ ± cot1/2 θ

25/2π3/2
ez±

exp[−i(ωt + π/4)]

|z±|1/2

∫ 1/(α|z±|)

0

dk± exp
(
−βk3

±|z±|
)

× k
1/2
± q±(k±, ϕ, 0) exp(ik±x±), (2.9)

with ez± = ± erh sin θ + ez cos θ , as can be obtained formally from (2.7) by applying the
method of stationary phase to the azimuthal integral and retaining the contribution of
ϕk = ϕ while discarding that of ϕk =ϕ+π. This corresponds physically to retaining only
the wavenumber vectors (k± > 0, ϕ, 0) with group velocity vectors (0, ϕ, ±ω tan θ/k±)
pointing towards the observer.

In the laboratory, other quantities of interest are the vertical displacement ζ , related
to the vertical velocity w = ∂ζ/∂t , and the stability variation 	N2 = −N2∂ζ/∂z. Both
follow from the vertical components of (2.7) and (2.9), by multiplying their integrands
by i/(N cos θ) for ζ and ∓Nk± tan θ for 	N2.

2.2. Application to the sphere

When the forcing is an oscillating body, at which surface the interaction with the
fluid takes place, a natural approach is to replace the body by a distribution of
singularities at this surface. The condition of continuity of the normal velocity at the
surface becomes an integral equation for the distribution, hence the name boundary
integral method (see e.g. Pozrikidis 1992, 2002). Gorodtsov & Teodorovich (1982,
1986) pioneered its application to internal wave generation, for circular cylinders
and spheres. However, they did not solve the proper integral equation and assumed
instead that the distribution obtained for potential flow of a homogeneous fluid
remains approximately valid for internal waves in a stratified fluid. Later, for two-
dimensional internal tides in an ocean of finite depth, Llewellyn Smith & Young
(2003) solved the integral equation analytically for a vertical barrier and Nycander
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(2006) for an infinite array of such barriers, but for more complicated topographies –
triangular, polynomial, sinusoidal and Gaussian ridges – Pétrélis, Llewellyn Smith &
Young (2006) and Balmforth & Peacock (2009) had to resort to numerical procedures.

For the sphere, the integral equation can be solved analytically. Again, the derivation
is intricate and will be reported elsewhere (Voisin 2010a). We consider the oscillations
of a rigid sphere of radius a at the frequency ω >N with velocity U exp(−iωt). The
y-axis is taken perpendicular to the vertical plane of oscillation through the centre
of the sphere. In Cartesian coordinates (x, y, z), with r = |x| and U = (U, 0, W ), the
solution of the integral equation is

q(x) =

[
2U

1 + B(ω/N)

x

r
+

W

1 − B(ω/N )

z

r

]
δ(r − a), (2.10)

and has the spectrum

q(k) = −4iπa2

[
2U

1 + B(ω/N)

k

κ
+

W

1 − B(ω/N )

m

κ

]
j1(κa), (2.11)

where

B
( ω

N

)
=

ω2

N2

[
1 −

(
ω2

N2
− 1

)1/2

arcsin

(
N

ω

)]
, (2.12)

δ(x) is the Dirac delta function, k = (k, l, m) and κ = |k|. The notation Jµ(x) will
indicate a cylindrical Bessel function, and j1(x) = [π/(2x)]1/2J3/2(x) = (sin x)/x2 −
(cos x)/x is a spherical Bessel function.

The frequency dependence of the solution expresses the effect of the stratification on
the added mass of the sphere; in particular, it affects its dipole strength

∫
xq(x) d3x.

This effect will be considered in detail in Voisin (2010b) and is consistent with the
direct measurements of the added mass by Ermanyuk (2002) and Ermanyuk &
Gavrilov (2003). The limit ω/N → ∞ corresponds to oscillations too fast to be
affected by buoyancy, so that B(ω/N) → 1/3 and the approximation of Gorodtsov &
Teodorovich (1982, 1986) is recovered, namely

q(x) =
3

2
U · x

r
δ(r − a). (2.13)

At the frequencies ω <N of internal wave propagation, the determination of
B(ω/N) follows from analytic continuation according to the radiation condition. We
obtain

B
( ω

N

)
=

ω2

N2

{
1 −

(
1 − ω2

N2

)1/2 [
arccosh

(
N

ω

)
+ i

π

2

]}
, (2.14)

or, in terms of the angle of propagation θ = arccos(ω/N) to the vertical,

B(cos θ) = cos2 θ
{
1 − sin θ

[
arctanh(sin θ) + i 1

2
π
]}

, (2.15)

with variations illustrated in figure 2.
In the following, the sphere oscillates at the frequency ω <N with amplitude A � a

at the angle η to the horizontal. The position of its centre is A(cos η, 0, sin η) sin(ωt +
Θ), with Θ as the initial phase, so that for example η = 0 and Θ = 0 correspond
to horizontal oscillations started at t = 0 from the centre of oscillation to the right.
In complex notation we have U = ωA(cos η, 0, sin η) exp(−iΘ). Non-dimensionalizing
the position as X = x/a, so that (Rh, Z) = (rh, z)/a and (X±, Z±) = (x±, z±)/a, and the
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Figure 2. Variations of |B(cos θ )| (solid line) and ‘approximate’ value 1/3 in the absence of
stratification (dashed line).

wavenumber vector as K = ka, so that K± = k±a, we obtain for the velocity, from
(2.7) and (2.11),

urh

ωA
= cos θ sin θ exp[−i(ωt + Θ)]

∫ cos θ/(α|Z|)

0

dK± exp

(
− β

a2

K3
±|Z|

cos θ

)
K±j1(K±)

×
{

i
2 cos θ cos η

1 + B(cos θ)

[
J1(K±Rh cos θ)

K±Rh cos θ
− J0(K±Rh cos θ)

]
cosϕ

∓ sin θ sin η

1 − B(cos θ)
J1(K±Rh cos θ)

}
exp(−iK±|Z| sin θ), (2.16a)

uϕ

ωA
= cos θ sin θ exp[−i(ωt + Θ)]

∫ cos θ/(α|Z|)

0

dK± exp

(
− β

a2

K3
±|Z|

cos θ

)
K±j1(K±)

× i
2 cos θ cos η

1 + B(cos θ)

J1(K±Rh cos θ)

K±Rh cos θ
sinϕ exp(−iK±|Z| sin θ), (2.16b)

w

ωA
= cos2 θ exp[−i(ωt + Θ)]

∫ cos θ/(α|Z|)

0

dK± exp

(
− β

a2

K3
±|Z|

cos θ

)
K±j1(K±)

×
[

± 2 cos θ cos η

1 + B(cos θ)
J1(K±Rh cos θ) cosϕ + i

sin θ sin η

1 − B(cos θ)
J0(K±Rh cos θ)

]

× exp(−iK±|Z| sin θ). (2.16c)

The longitudinal component follows as uz± = ±urh sin θ +w cos θ . In the far field, this
component becomes dominant, according to

u
ωA

∼ cot1/2 θ

2

[
± 2 cos θ cos η

1 + B(cos θ)
cos ϕ − sin θ sin η

1 − B(cos θ)

]
ez±

exp[−i(ωt + Θ + 3π/4)]

|Z±|1/2

×
∫ 1/(α|Z±|)

0

exp

(
− β

a2
K3

±|Z±|
)

J3/2(K±) exp(iK±X±) dK±, (2.17)

either from (2.9) and (2.11), or from replacing the Bessel functions J0 and J1 in
(2.16) by their asymptotic expansions and retaining the outward terms varying as
exp(iK±Rh cos θ) while discarding the inward terms varying as exp(−iK±Rh cos θ).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


316 B. Voisin, E. V. Ermanyuk and J.-B. Flór

The normalized vertical displacement ζ/A and the stability variation (	N2/N2)(a/A)
follow from the normalized vertical velocity w/(ωA) by multiplying its integrand by
i and ∓K± sin θ , respectively.

3. Wave structure
Owing to the assumptions of large times ωt � 1 and low viscosity Re � 1, the

wave field is built by small unsteady and viscous effects around a steady inviscid
skeleton. We investigate the interplay of these effects separately in the near field,
corresponding to moderate propagation distances |Z±| =O(1), and in the far field,
corresponding to large propagation distances |Z±| � 1. The discussion is expressed
in terms of the vertical displacement, which is the quantity measured in the present
experiments.

3.1. Near field

Setting α = 0 and β =0 in (2.16c), and denoting henceforth a steady inviscid result
by a subscript 0, we obtain

ζ0

A
= cos2 θ exp[−i(ωt + Θ)]

{
± 2 cos θ cos η

1 + B(cos θ)

[
(X+ + 1)1/2(X− − 1)1/2

− (X+ − 1)1/2(X− + 1)1/2 +
1

2

(
X+ + 1

X− − 1

)1/2

− 1

2

(
X− − 1

X+ + 1

)1/2

+
1

2

(
X+ − 1

X− + 1

)1/2

− 1

2

(
X− + 1

X+ − 1

)1/2]
cos ϕ

X+ + X−

+
sin θ sin η

1 − B(cos θ)

[
i ln

(X+ + 1)1/2 − i(X− − 1)1/2

(X+ − 1)1/2 − i(X− + 1)1/2

+
1

2(X+ + 1)1/2(X− − 1)1/2
+

1

2(X+ − 1)1/2(X− + 1)1/2

]}
, (3.1)

where X+ must be understood as X+ + i0 sign Z and X− as X− − i0 sign Z. This
result, and the similar result for a pulsating sphere of the radial velocity U exp(−iωt)
represented by the source q(x) = Uδ(r − a), are equivalent to those of Hendershott
(1969), Sarma & Krishna (1972), Appleby & Crighton (1987) and Voisin (1991). They
are the analogues for the sphere of the result of Hurley (1997) for a horizontal circular
cylinder oscillating perpendicular to its axis. Their complexity, compared with the
simplicity of the latter, illustrates the difficulty of three-dimensional geometries.

The waves have singular amplitudes on the two critical double cones of vertical
axis and semi-angle θ tangent to the sphere above and below, and phase variations in
between, yielding the structure represented in figure 1: two wave beams are formed,
an upper beam |X+| < 1 delimited by the two upper cones and a lower beam |X−| < 1
delimited by the two lower cones, with an integrable inverse square root singularity
at the cones.

Of particular interest is the region, of biconical shape, with a close-up in figure 3,
where the beams overlap. At the poles Z = ± csc θ and equator Rh = sec θ of the
bicone, the critical cones intersect and the order of the singularity may become
higher. In order to determine it, we look at the waves on the polar axis and in the
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θ

Z

Rh

csc θ

sec θ

X– = 1

X– = –1

X+ = –1

X+ = 1

Rh

ϕ

Figure 3. Geometry of the overlap region.

equatorial plane. On the polar axis Rh = 0 we have

ζ0

A
= i cos2 θ exp[−i(ωt + Θ)]

sin θ sin η

1 − B(cos θ)

[
|Z| sin θ

1 − Z2 sin2 θ
+ arctanh(|Z| sin θ) + i

π

2

]
(1 < |Z| < csc θ), (3.2a)

ζ0

A
= i cos2 θ exp[−i(ωt + Θ)]

sin θ sin η

1 − B(cos θ)

[
|Z| sin θ

1 − Z2 sin2 θ
+ arccoth(|Z| sin θ)

]
(|Z| > csc θ), (3.2b)

and as the equatorial plane is approached from above or below, namely as Z → ± 0,
we have

ζ0

A
= cos2 θ exp[−i(ωt + Θ)]

[
±i

2 cos θ cos η

1 + B(cos θ)

Rh cos θ cosϕ(
1 − R2

h cos2 θ
)1/2

− sin θ sin η

1 − B(cos θ)

π

2

]

(1 < Rh < sec θ), (3.3a)

ζ0

A
= cos2 θ exp[−i(ωt + Θ)]

sin θ sin η

1 − B(cos θ)

[
1(

R2
h cos2 θ − 1

)1/2
− arcsin

(
1

Rh cos θ

)]

(Rh > sec θ), (3.3b)

with variations plotted in figure 4. At the top and bottom of the sphere, namely at
(Rh = 0, |Z| =1), we verify that w0 = −iωζ0 = ωA sin η exp[−i(ωt +Θ)] = W exp(−iωt),
consistent with continuity of the prescribed normal velocity.

On the polar axis, no vertical motion takes place for horizontal oscillations of the
sphere. For vertical oscillations, the phase jumps by π at the poles of the bicone
and the amplitude has an inverse first power singularity. As predicted by Appleby &
Crighton (1987), the two poles are higher-order focusing singularities at which the
velocity is no longer integrable. Simakov (1994) and Bühler & Muller (2007) have
investigated the fate of these singularities in more complex geometries. The present
analysis allows us to consider their regularization by unsteady and viscous effects.
Coming back to (2.16c) and introducing parameters

τu =
sin θ cos θ

α
= ωt sin2 θ, τv =

(
a2 sin θ cos θ

β

)1/3

= (Re sin2 θ)1/3, (3.4)
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Figure 4. Variations of the steady inviscid vertical displacement in (a, c) amplitude and
(b, d ) phase on (a, b) the polar axis Rh = 0 and (c, d ) the equatorial plane Z =0, for a
sphere oscillating horizontally (solid lines) or vertically (dashed lines). The displacement is
normalized by ζr = 2A exp[−i(ωt + Θ)] cos3 θ cos ϕ/[1 + B(cos θ )] for horizontal oscillations
and A exp[−i(ωt + Θ)] cos2 θ sin θ/[1 − B(cos θ )] for vertical oscillations.

we obtain at the foci

ζ

A
= − cos2 θ exp[−i(ωt + Θ)]

sin θ sin η

1 − B(cos θ)

×
∫ τu

0

exp
(
−K3

±/τ 3
v

)
K±j1(K±) exp(−iK±) dK±. (3.5)

The evolution of the amplitude with τu and τv is presented in figure 5. Figure 5(a),
in particular, exhibits how the amplitude increases with time until it reaches a steady
value at a time determined, together with the value itself, by the Reynolds–Stokes
number. For the experiments of Flynn et al. (2003), involving a small sphere with
Re = 350 and a large sphere with Re = 1000, oscillating vertically at ω/N = 0.49, the
steady state is predicted to start at, say, τu ≈ 9 for the former and 13 for the latter,
while the measurements were performed during the third period 4π < ωt < 6π, that
is, 9.5 <τu < 14. Accordingly, the waves were already steady at the foci for the small
sphere and almost steady for the large sphere.

Caution must be exerted, in interpreting figure 5(a) and the forthcoming figures 14
and 16, that the present results, though starting from ζ = 0 at t = 0 and hence
physically plausible for all t , were obtained on the assumption ωt � 1 and cannot
hold for ωt � 1. Being started up instantaneously from rest, the initial motion of
the fluid is potential (see e.g. Batchelor 1967, § 6.10, and Voisin 1991, Appendix B),
implying that ζ varies as t for ωt � 1 whereas (3.5) varies as t3 in the same limit. As
a rule, we expect the present results to hold, say, for ωt � 1.
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ωt sin2 θ

|ζ
/ζ

r|

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6(a) (b)

(Re sin2 θ)1/3

0 5 10 15 20 25 30

Figure 5. Evolution of the vertical displacement amplitude at the focusing singularities for
a vertically oscillating sphere, with (a) non-dimensional time ωt and (b) Reynolds–Stokes
number Re. In (a) the solid lines are plotted for Re = 350 (lower line) and 1000 (upper line),
and the dashed line in the inviscid limit Re → ∞; the horizontal segment corresponds to the
interval 4π <ωt < 6π at ω/N = 0.49. In (b) the solid line is plotted for ωt = 5π, and the dashed
line in the steady limit ωt → ∞; the bigger tick marks correspond to Re = 350 and 1000 for
ω/N = 0.49. The values of Re, ωt and ω/N are those for the small and large spheres in the
experiments of Flynn et al. (2003).

In the equatorial plane, the phase jumps at the equator of the bicone and the
amplitude has an inverse square root singularity. Accordingly, no higher-order
singularity is observed. What makes this annular singularity remarkable, however,
is that neither unsteady nor viscous effects affect it; there, nonlinear effects are
likely to be significant, vitiating the wave/vortex decomposition on which the theory
is based (Voisin 2003). In addition, for horizontal oscillations of the sphere, the
phase jumps by π as the equatorial disk 1 <Rh < sec θ is traversed, implying that
the upper and lower sides of the disk oscillate in opposition so that the velocity is
discontinuous.

The evolution of the horizontal amplitude profiles with distance from the equatorial
plane is illustrated in figure 6, calculated from (2.16c). Owing to unsteady and viscous
effects, the annular singularity separates into mild humps along the two critical cones
intersecting at the equator; one of the humps reaches the polar axis at the focusing
singularity and is reflected away from it; then, together with the other hump it
determines the edges of the wave beam. Figure 7 adds phase information to the
picture, transforming the amplitude profiles into isopycnal lines.

In order to get better insight into the structure of the beam, selected profiles are
plotted in figures 8 and 9 in the conditions of the experiments of § 6, namely at
the instant ωt =41π of the horizontal oscillations at ω/N = 0.74 of two spheres, one
large with Re = 1500 and the other small with Re = 520. For the large sphere, the
two humps are asymmetrical, with a major hump near the polar axis and a minor
hump away from it, yielding a double-peaked shape in which one may recognize the
outline of a ‘boa constrictor digesting an elephant’ (Saint-Exupéry 1946). As the waves
propagate away from the equatorial plane the profile becomes gradually symmetrical,
until at, say, |Z| =3 the far field is reached, where a more appropriate description
involves the transverse coordinate X± in which the profile is fully symmetrical. For
the small sphere, the profiles are plotted further away and include a single hump
at the centre of the beam, implying that the two humps have merged into one. The
explanation for this phenomenon requires the consideration of the far field.
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Figure 6. Horizontal profiles of the vertical displacement amplitude in the plane Y = 0,
for spheres oscillating (a) vertically at ω/N = 0.49, Re = 1000, ωt = 5π and Ke = 0.27,
corresponding to the large sphere in the experiments of Flynn et al. (2003), and (b) horizontally
at ω/N = 0.74, Re = 1500, ωt = 41π and Ke = 0.18, corresponding to the large sphere in the
present experiments. The plotted quantity is Z + |ζ |/a at Z = 0, 0.1, 0.2, . . . , and the dashed
lines represent the steady inviscid critical cones.

–2 –1 0 1 2 3

–3

–3

–2

–1

0

1

2

3

X

–3 –2 –1 0 1 2 3

X

Z

(a) (b)

Figure 7. Isopycnal lines in the plane Y =0. The mode of representation is the same as
in figure 6, except for the plotted quantity which is Z + ζ/a, and the time in (b) which is
ωt =40π + 3.06 as in figure 18. The initial phase is Θ = π, corresponding to spheres starting at
t = 0 to move (a) downwards and (b) to the left from the centre of oscillation.

3.2. Far field

Either writing X∓ ∼ |Z±| sin(2θ) � 1 and |X±| =O(1) in (3.1), or setting α = 0 and
β = 0 in (2.17), the steady inviscid skeleton becomes, in the far field,

ζ0

A
∼ cos3/2 θ

25/2 sin1/2 θ

[
∓ 2 cos θ cos η

1 + B(cos θ)
cos ϕ +

sin θ sin η

1 − B(cos θ)

]

× exp[−i(ωt + Θ)]

|Z±|1/2

[(X± + 1)1/2 − (X± − 1)1/2]3

(X± + 1)1/2(X± − 1)1/2
, (3.6)
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Figure 8. Horizontal profiles of the vertical displacement amplitude at (a) |Z| = 1.44,
(c) |Z| =2.08, (e) |Z| = 3.48, (g) |Z| = 4.08, and transverse profiles at (b) |Z±| = 1.94,
(d ) |Z±| = 2.80, (f ) |Z±| = 4.69, (h) |Z±| = 5.50. The positions of the horizontal profiles and
the parameters ω/N = 0.74, ωt =41π and Re = 1500 have been chosen to match those for the
measurements in figure 22. The positions of the transverse profiles have been chosen such
that the two types of profiles intersect at the centreline of the beams, indicated by bigger tick
marks. The solid lines represent the exact solution (2.16c) and the dashed lines its far-field
approximation (2.17).

where X± must be understood as X± + i0. In practice, as follows from the preceding
analysis, unsteady or viscous effects in the laboratory have taken the wave field over
long before the far field is reached, so that the adequate representation of the waves
there is (2.17) with α 
= 0 or β 
=0.
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Figure 9. Horizontal profiles of the vertical displacement amplitude at (a) |Z| = 5.80,
(c) |Z| = 6.80, and transverse profiles at (b) |Z±| = 7.82, (d ) |Z±| = 9.17. The positions of
the horizontal profiles and the parameters ω/N = 0.74, ωt =41π and Re = 520 have been
chosen to match those for the measurements in figure 23. The mode of representation is the
same as in figure 8.

An important consequence of (2.17) is that the transverse wave profile is
independent of the angle of oscillation η of the sphere, and described by the function

F (X±, σu, σv; n, µ) =

∫ 1/σu

0

exp
(
−σ 3

v K3
±
)
Kn

±Jµ(K±) exp(iK±X±) dK±, (3.7)

where n= 0 for the vertical displacement and the longitudinal velocity and 1 for the
stability variation, while µ = 3/2 for the sphere and 1 in the similar functions Ie

and Io introduced by Hurley & Keady (1997) for the cylinder. Two non-dimensional
parameters have been defined:

σu = α|Z±| =
|Z±|

ωt tan θ
, (3.8)

which quantifies the importance of unsteady effects and may be viewed as the ratio of
the transverse scale α|z±| of the waves governed by unsteadiness alone (Makhortykh &
Rybak 1990) to the transverse scale a of the waves governed by the size of the sphere
alone (Hendershott 1969; Appleby & Crighton 1987; Voisin 1991); and

σv =

(
β

a2
|Z±|

)1/3

=

(
|Z±|

Re tan θ

)1/3

, (3.9)

which quantifies the importance of viscous effects and may be viewed as the ratio of
the transverse scale (β|z±|)1/3 of the waves governed by viscosity alone (Thomas &
Stevenson 1972) to a. See Voisin (2003) for the consideration of all three effects in
parallel. The relation of Re and σv to the parameters λ and d introduced by Hurley &
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Keady (1997) and used by Sutherland & Linden (2002), Flynn et al. (2003) and Zhang
et al. (2007) is

λ =
β

a2
=

1

Re tan θ
, d = λ|Z±| = σ 3

v . (3.10)

The steady limit ωt → ∞ becomes σu → 0 and the inviscid limit Re → ∞ becomes
σv → 0.

In a given experiment, namely at given ωt and Re, the variations of σu and σv

are not independent. Instead, they are related to the variations of the propagation
distance |Z±| according to

ωtσu = Reσ 3
v = |Z±| cot θ. (3.11)

Let us imagine temporarily that the far-field solution is valid everywhere. Then σu and
σv take their minimal values at the sphere, 1/(ωt tan θ) and 1/(Re tan θ)1/3 respectively,
both small. The wave profile is close to the steady inviscid profile (3.6) and its envelope
|F | exhibits two sharp peaks at the edges |X±| =1 of the wave beams; such a profile
is called bimodal. As the distance increases, unsteady and viscous effects grow and
widen the peaks, which gradually overlap and merge. Ultimately, a single smooth
peak at the centre of the beams remains, with small oscillatory tails on either side if
σv is small so that the profile is close to unsteady inviscid, and without tail if σu is
small so that the profile is close to steady viscous; such a profile is called unimodal.

When near-field effects are taken into account, the wave profile loses its symmetry
close to the sphere but the transition from bimodality to unimodality remains, as has
been seen in figures 8 and 9.

The transition is illustrated in figure 10. It was observed first by Ivanov (1989)
and Makarov et al. (1990), the latter introducing the terms ‘unimodal’ and ‘bimodal’
together with a simple mathematical criterion for the transition: starting from the
source and travelling with the wave along the beam, the transition takes place the
last time the concavity of the amplitude profile at the centreline changes sign, from a
positive to a negative value so that the profile turns from convex into concave. The
associated transition distance is

Zc = max

{
|Z±|

∣∣∣∣
[

∂2|F (X±, σu, σv; n, µ)|
∂X2

±

]
X±=0

= 0

}
, (3.12)

with σu and σv related to |Z±| by (3.11). The transition equation (∂2|F |/∂X2
±)X± =0 = 0

has one single solution in the steady case σu = 0, and infinitely many solutions in
the inviscid case σv = 0 owing to the presence, in the amplitude profile, of secondary
peaks associated with transients.

In the (σu, σv)-plane, each experiment, namely each set of values of ωt and Re,
travels along a curve (3.11) as |Z±| varies, with (3.12) defining a transition threshold
(σuc

, σvc
) on the curve. The inviscid limit Re → ∞ corresponds to the σu-axis, and the

steady limit ωt → ∞ to the σv-axis. Considering all possible values of ωt and Re,
a transition boundary is obtained in the plane, to separate bimodal and unimodal
domains. We introduce the function

I (σu, σv; n, µ) = F (0, σu, σv; n, µ) =

∫ 1/σu

0

exp
(
−σ 3

v K3
±
)
Kn

±Jµ(K±) dK±, (3.13)

generalizing that introduced by Flynn et al. (2003). The transition equation becomes

I 2(σuc
, σvc

; n + 1, µ) = I (σuc
, σvc

; n, µ)I (σuc
, σvc

; n + 2, µ). (3.14)
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z+ = zc

z+ > zc

z+ < zc

(a)

(b)

z+ = zc

z+ > zc

z+ < zc

Figure 10. Wave beams from a sphere in (a) the steady viscous regime as ωt → ∞ with
Re = 280 and (b) the unsteady inviscid regime as Re → ∞ with ωt = 20. For definiteness the
beams are drawn for a pulsating sphere and the profiles represent the wave intensity or average
rate of energy flux per unit area. Distances are shown to scale with the sphere.

Its solutions and the associated transition boundaries are plotted in figure 11 for n= 0
corresponding to the vertical displacement and the longitudinal velocity, and n= 1
corresponding to the stability variation, with µ = 3/2 corresponding to the sphere. In
the inviscid limit, the transition occurs at

σuc
= 0.18 (n = 0), 0.19 (n = 1), (3.15)

and in the steady limit at

σvc
= 0.22 (n = 0), 0.25 (n = 1). (3.16)

Similar equations, summarized by Chashechkin, Kistovich & Smirnov (2001), have
been obtained for an inclined flat plate oscillating along its plane (Kistovich &
Chashechkin 1999a, b) and a vertical circular cylinder oscillating along its axis
(Il’inykh, Smirnov & Chashechkin 1999).
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Figure 11. (a, c) Solutions of the transition equation and (b, d ) associated transition diagrams,
for (a, b) the vertical displacement and the longitudinal velocity and (c, d ) the stability variation.
The dashed lines represent the trajectories in the (σu, σv)-plane, as the distance |Z±| from the
sphere increases, of: the experiments of Flynn et al. (2003), in which ω/N = 0.49, ωt = 5π and
Re = 1000 for the large sphere (FL) and 350 for the small sphere (FS); the experiments and
simulations (K) of King et al. (2009), in which ω/N = 0.63, ωt = 16π and Re =2000; and the
present experiments, in which ω/N = 0.74, ωt = 41π and Re = 1500 for the large sphere (PL)
and 520 for the small sphere (PS). The dots indicate the distances at which the wave profiles
have been measured, namely |Z±| = 5 and 8 for Flynn et al. (2003), |Z±| =2, 3, 4, 5 and 6 for
King et al. (2009), and |Z±| = 1.94, 2.80, 4.69 and 5.50 for the large sphere and 7.82 and 9.17
for the small sphere in the present experiments.

4. Relation to the literature
At this point it is relevant to investigate the relation of the above theoretical results

to the literature. We start with the near field, which has only been considered very
recently. Table 1 recapitulates all the experimental and numerical studies of oscillating
cylinders and spheres known to the authors, together with the values of the relevant
non-dimensional parameters, namely the frequency ratio ω/N , the Reynolds–Stokes
number Re and the Keulegan–Carpenter number Ke. In all studies but Ermanyuk &
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Paper Body Aspect ratio Direction of oscillation ω/N Re Ke

Görtler (1943) Cylinder 1 Horizontal 0.4–0.8 0.2†
Mowbray & Rarity (1967) Cylinder 1 Horizontal 0.2–1.0 60–290‡ 0.2–0.5†
Thomas & Stevenson (1972) Cylinder 1 Horizontal 0.6 30‡ 0.3†
Gordon & Stevenson (1972) Cylinder 1 Vertical 0.9–1.1 10–20
Peters (1985) Cylinder 1 0.4–0.9 50–140 0.2–0.9†
Ivanov (1989) Cylinder 1 Vertical 0.2–1.0 180–1200‡ 0.02–0.3
Makarov et al. (1990) Cylinder 1 Vertical and inclined 0.4–0.7 5–350 0.03–0.7
Sakai (1990) Cylinder 1 Vertical 0.4–1.0 500–1300 0.2†
Xu et al. (1997) Cylinder 1 Horizontal and vertical 0.2–6.0 60–3500 0.3–4.0
Sutherland et al. (1999) Cylinder 1 Vertical 0.2–0.6 120–310 0.1, 0.2
Sutherland et al. (2000) Cylinder 1 Vertical and inclined 0.1–0.7 80–400 0.1–0.2
Sutherland & Linden (2002) Cylinder 1, 2, 3 Vertical 0.1–0.6 60–330 0.1–0.2
Ermanyuk & Gavrilov (2005) Cylinder 1 Vertical 0.7 110 0.6
Zhang et al. (2007) Cylinder 1 Horizontal 0.3, 0.4 70–1300 0.05–0.2
Mercier et al. (2008) Cylinder 1 Vertical 0.3 120 0.1
Ermanyuk & Gavrilov (2008) Cylinder 1 Horizontal and vertical 0.4–2.6 50–340 0.3–1.2
Thomas et al. (2009) Cylinder 1 Vertical 0.2 240‡ 0.2
Clark & Sutherland (2009) Cylinder 1 Vertical 0.7, 0.8 2700, 3500 0.7

McLaren et al. (1973) Sphere 1 Vertical 0.3–1.0
Lin et al. (1994) Sphere 1 Horizontal 0.02–0.8 30–550 0.2–4.8
Flynn et al. (2003) Sphere 1 Vertical 0.3–0.9 220–1700 0.1–0.3
Sutherland et al. (2003) Sphere 1 Vertical 0.5 350 0.3
Peacock & Weidman (2005) Sphere 1 Vertical 0.2–0.9¶ 240–1600 0.6
Chashechkin & Prikhod’ko (2007) Sphere 1 Vertical 0.4–1.1 240–960 0.2–1.2
King et al. (2009) Sphere 1 Horizontal 0.6 2000 0.05–0.6
Present paper Sphere 1 Horizontal 0.7 520, 1500 0.2, 0.5

† The amplitude was not specified as peak-to-peak or peak-to-node, and has been assumed peak-to-peak.
‡ The kinematic viscosity was not specified, and has been taken as ν = 1 mm2 s−1 typical of saline stratification.
¶ Owing to background rotation at the angular velocity Ω , the frequency ratio ω/N has been replaced with

√
(ω2 − 4Ω2)/(N 2 − 4Ω2).

Table 1. Experimental and numerical investigations of oscillating cylinders and spheres in the literature. All cylinders are circular, except for
Sutherland & Linden (2002), who considered an elliptical cylinder with horizontal and vertical principal axes; in this case, the radius is defined as
the arithmetic mean of the semi-axes and the aspect ratio as the ratio of the horizontal to vertical axes.
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Gavrilov (2005, 2008) the wave field is assumed steady, namely the condition ωt → ∞
is assumed to be effectively satisfied.

4.1. Near field

The main feature of the near field is the existence of distinct flow structures
inside and outside the biconical overlap region circumscribing the sphere. At small
amplitude Ke = 0.22, this region is clearly visible in figure 1(a) of the experiments
of Chashechkin & Prikhod’ko (2007) for the vertical oscillations of a sphere at
ω/N = 0.73 and Re =450, while their other figures and those of Chashechkin (2007)
exhibit the deformation of the region as the amplitude increases, leading ultimately
to mixing. Small-scale structures are observed near the poles and equatorial plane,
but the visualization method – classical Schlieren – does not allow the determination
of the flow field in their neighbourhood.

In two dimensions, an experimental study of the near field has been performed for
the horizontal oscillations of a cylinder by Zhang et al. (2007). Their figure 4 exhibits
the excellent quantitative agreement between the measurement of the flow field
across the diamond-shaped overlap region at ω/N = 0.40, Re = 1300 and Ke = 0.05,
and its theoretical prediction by Hurley & Keady (1997).

4.2. Far field

The main feature of the far field is the transition from bimodality to unimodality.
Only the steady case σu = 0 has been considered in the literature. The transition was
observed first for the cylinder by Ivanov (1989), who used the term ‘far field’ for the
unimodal region and proposed the estimate Zc ∝ Re tan θ for the transition distance,
and Makarov et al. (1990), who introduced the terms ‘bimodal’ and ‘unimodal’ and
noticed their connection with the concavity of the amplitude profile at the centreline.
The subsequent discussion of Makarov et al. (1990), however, focused instead on the
so-called viscous wave scale

�ν =
(gν)1/3

N
, (4.1)

such that the waves are everywhere bimodal for a > �ν while both bimodal and
unimodal regions are present for a < �ν , with g as the acceleration due to gravity.
It turns out that the occurrence of �ν was a mere artefact of a priori non-
dimensionalization of the coordinates based on the stratification scale g/N2,
characterizing the distance over which non-Boussinesq effects become significant,
even though these effects play absolutely no role in the dynamics. What can only
be said is that, in practice, experiments are designed for non-Boussinesq effects
to remain negligible, by ensuring that the tank size is much smaller than g/N2.
Accordingly, the propagation distance satisfies |Z±| � g/(N2a) over the whole tank,
so that the condition a > �ν yields |Z±| � Re, implying that the transition distance Zc

is never reached, while the opposite condition a < �ν leaves this possibility opened.
Later, Hurley & Keady (1997), for the cylinder, Kistovich & Chashechkin (1999a, b),

for an inclined plate oscillating along its plane, and Il’inykh et al. (1999), for a vertical
cylinder oscillating along its axis, replaced the transition distance by a transition
range, outside which the waves are said to be bimodal for lower σv and unimodal
for higher σv . Hurley & Keady (1997) based their definition, 0.1 <σv < 1.3 in the
present notation, on the longitudinal variations of the amplitude at the centreline:
the bimodal condition σv < 0.1 corresponds to the requirement that the amplitude
remains within 1 % of its value at σv = 0, and the unimodal condition σv > 1.3 to the
requirement that it is well approximated by its leading-order asymptotics as σv → ∞.
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Kistovich & Chashechkin (1999a, b) and Il’inykh et al. (1999) based their definition,
0.12 <σv < 0.33 for the plate in the present notation, on the concavity of the amplitude
profile at the centreline: for their specific forcing mechanisms, the equation of zero
concavity (∂2|F |/∂X2

±)X± =0 = 0 has three separate roots, and the transition range is
defined as the interval between the first and third roots.

Flynn et al. (2003) considered the two types of transition criteria in parallel, for the
cylinder and the sphere. First, definition (3.12) of the transition distance was used,
based on the concavity of the amplitude profile at the centreline. Values consistent
with (3.16) were obtained for the sphere, and the values obtained for the cylinder
have been verified experimentally by Zhang et al. (2007). Second, an alternative
definition was proposed, based on the longitudinal variations of the amplitude at the
centreline and placing the transition at the distance where this amplitude, normalized
by its dependence as |Z±|−ε at σv = 0, with ε =1/2 for the sphere and 0 for the
cylinder, reaches a maximum before decreasing ultimately according to its leading-
order asymptotics as σv → ∞. Mathematically this is expressed as

Z�
c = max

{
|Z±|

∣∣∣∣
[

∂|F (X±, σu, σv; n, µ)|
∂|Z±|

]
X±=0

= 0

}
. (4.2)

In terms of I (σu, σv; n, µ), the transition equation (∂|F |/∂|Z±|)X± = 0 = 0 becomes

I
(
σ �

uc
, σ �

vc
; n + 3, µ

)
+

Jµ

(
1/σ �

uc

)
(
σ �

uc

)n+1(
σ �

vc

)3
exp

[
−

(
σ �

vc

σ �
uc

)3]
= 0, (4.3)

and simplifies to I (0, σ �
vc
; n + 3, µ) = 0 in the steady case σu = 0 considered by Flynn

et al. (2003). However, this equation does not always admit of a solution, and when
it does this solution does not differ significantly from that of (3.14).

4.3. Wave profiles

The only quantitative measurements of the waves from a sphere in the literature have
been performed by Flynn et al. (2003), Sutherland et al. (2003) and King et al. (2009).

Flynn et al. (2003) and Sutherland et al. (2003) have considered vertical oscillations
experimentally. We focus on the former. Two spheres were used, one small with
Re = 350 and Ke = 0.15, 0.19 and 0.26, the other large with Re =1000 and Ke =0.10,
0.18 and 0.27, both oscillating at ω/N = 0.49. The initial phase was Θ = π, such that
the oscillations started from their centre downwards. For each sphere, two transverse
profiles were measured at the distances Z+ = 5 and 8, and two longitudinal profiles
along the centre X+ = 0 and inviscid edge X+ = −1 of the upper wave beam. The
plotted quantity was the amplitude |	N2| of the stability variation.

The axisymmetric geometry prevented absorbers from being positioned at the tank
walls, thus preventing all reflections while leaving the walls available for visualization.
As a consequence, the measurements had to be performed as early as possible, before
significant reflection could take place. Two periods after the start-up, the wave field
appeared to be steady. Accordingly, the measurements were performed during the
third period 2 < t/T < 3, with T = 2π/ω as the period of oscillation. The plots were
compared with theoretical predictions obtained by applying to the sphere the same
method that Hurley (1997), Hurley & Keady (1997) and Hurley & Hood (2001) had
applied to the cylinder; namely, writing the steady inviscid solution of Hendershott
(1969), Sarma & Krishna (1972), Appleby & Crighton (1987) and Voisin (1991) in
a form allowing the inclusion of the viscous attenuation factor derived by Lighthtill
(1978, §§ 4.7 and 4.10).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


Internal wave generation by oscillation of a sphere 329

|�
N

2 |
/(

A
N

2 /
�Z

+
)

|�
N

2 |
/(

A
N

2 /
�Z

+
)

0

2

4

X+

–3 0 3

X+

–3 0 3
0

2

4

(a) (b)

(c) (d )

Figure 12. Transverse profiles of the stability variation amplitude in the experiments of Flynn
et al. (2003), at (a, b) Z+ = 5 and (c, d ) Z+ = 8 for (a, c) the small sphere and (b, d ) the large
sphere. The grey lines represent the experimental data at Ke = 0.15 (black), 0.19 (grey) and
0.26 (light grey) for the small sphere, and Ke =0.10 (black), 0.18 (grey) and 0.27 (light grey)
for the large sphere. The colour lines represent the steady far-field theory with no effect of
stratification on added mass (blue), as used by Flynn et al. (2003), and its modification by the
cumulative addition of the effects of stratification on added mass (purple), of unsteady effects
at time t/T = 2.5 (dark green), and of near-field effects (light green). The amplitude has been
normalized by AN2 = (N2/2)(A/a) sin θ cos θ , and the bigger tick marks indicate the positions
of the longitudinal profiles from figure 13.

The comparison is reproduced in figures 12 and 13, corresponding to figures 8–11 of
Flynn et al. (2003). The predicted transverse profiles are all bimodal and symmetrical,
whereas the measured profiles are bimodal at Z+ = 5, symmetrical for the large sphere
and asymmetrical for the small sphere, and unimodal at Z+ = 8, with a high noise
level; in addition, the amplitude is overpredicted for the large sphere by almost a
factor 2. The longitudinal profile is also overpredicted for the large sphere at X+ = −1,
and exhibits at X+ =0 an unexpected re-increase with distance.

In order to propose explanations for these discrepancies, we look more closely at
each approximation involved. The comparison of (2.15) of Flynn et al. (2003) with the
present (2.17) reveals that in addition to explicit far-field and steady approximations,
an implicit approximation B(cos θ) = 1/3 has been introduced inadvertently by Flynn
et al. (2003), equivalent to the approximation (2.13) of Gorodtsov & Teodorovich
(1982, 1986). Hurley (1997) and Hurley & Keady (1997) have shown that this
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Figure 13. Longitudinal profiles of the stability variation amplitude in the experiments of
Flynn et al. (2003), at (a, b) X+ = 0 and (c, d ) X+ = −1 for (a, c) the small sphere and (b, d ) the
large sphere. The mode of representation is the same as in figure 12, and the bigger tick marks
indicate the positions of the transverse profiles from figure 12.

approximation is erroneous for the cylinder; we see here that it is also erroneous
for the sphere. Indeed, reinstating the correct form (2.15) of B(cos θ) in (2.17) yields
satisfactory prediction of the peak amplitude for the large sphere in figures 12
and 13.

The steady approximation has been considered at the foci in figure 5(a), concluding
that the waves are effectively steady over the measurement period. Further away, the
steady state takes longer to reach: in figure 14 it is seen to start at, say, t/T = 3 for
the small sphere and 5 for the large sphere at Z+ = 5, and at, say, t/T = 5 for the
small sphere and 7 for the large sphere at Z+ = 8. Accordingly, none of the transverse
profiles is steady. Reinstating unsteady effects in (2.17), we see that the unimodal
character of the transverse profiles at Z+ =8 in figure 12(c, d ) is elucidated, consistent
with the transition diagram in figure 11(d ), and that the re-increase of the amplitude
with distance at X+ = 0 in figure 13(b) for the large sphere is also elucidated.

Detailed experimental studies of the temporal evolution of the waves from a
cylinder have been performed by Ermanyuk & Gavrilov (2005), who concluded that
for vertical oscillations at Re = 110 and ω/N = 0.70 the steady state is reached at,
say, t/T =5 for Z+ =5 and t/T = 6 for Z+ = 8, and Ermanyuk & Gavrilov (2008),
who concluded that for horizontal oscillations at Re = 100 and ω/N = 0.76 the steady
state is reached at, say, t/T =7 for Z+ =12. In both cases, a duration of 10 periods
after the start-up was considered a safe estimate, ensuring that the waves are steady
over typical measurement distances. Similar durations were observed for the sphere by
Chashechkin & Prikhod’ko (2007), who counted 10 periods for vertical oscillations
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Figure 14. Temporal evolution of the stability variation amplitude at the centreline, at
(a) Z+ = 5 and (b) Z+ = 8 for the large sphere (L) and the small sphere (S) in the experiments
of Flynn et al. (2003). The solid lines represent the exact prediction (2.16) and the dashed lines
its far-field approximation (2.17). The horizontal segments indicate the measurement interval
2 < t/T < 3.
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Figure 15. Transverse profiles of the longitudinal velocity in the experiments and simulations
of King et al. (2009). The profiles are measured in the seventh–tenth periods 6 < t/T < 10,
for (a) the instantaneous profile at Z+ = 2 and phase 11π/10 after the start of a period, and
(b) the amplitude profiles at Z+ = 2, 3, 4, 5 and 6 (from top to bottom). The dots represent
the experimental data (�) and the numerical data (�), while the solid lines represent the exact
prediction (2.16) and the dashed lines its far-field approximation (2.17).

at Re = 450 and ω/N = 0.73, and King et al. (2009), who counted six periods for
horizontal oscillations at Re = 2000 and ω/N = 0.63.

The far-field approximation is relaxed by replacing (2.17) by (2.16). The variations
of the amplitude at small distances at X+ = 0 in figure 13(b) for the large sphere
are seen to be attributable to near-field effects, but the asymmetry of the transverse
profile at Z+ =5 in figure 12(a) for the small sphere remains unexplained. As a rule,
the noise level in the measurements is too large for definitive conclusions to be drawn.
This provided the motivation for the present experiments.

Before moving on to them, we look briefly at the measurements of King et al.
(2009), who considered horizontal oscillations experimentally and numerically. A
single sphere was used in the experiments, with ω/N = 0.63, Re = 2000 and Ke = 0.09.
The initial phase was Θ = π/2, such that the oscillations started from their right
extremity to the left. Transverse profiles of the longitudinal velocity uz+

were measured,
instantaneous at Z+ = 2 and of the amplitude at Z+ = 2, 3, 4, 5 and 6, yielding
figures 3(c) and 6 of King et al. (2009), respectively. A comparison with the present
theory is proposed in figure 15. Quantitative agreement is excellent. The profiles are
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Figure 16. Temporal evolution of the longitudinal velocity amplitude at the centreline, at
(a) Z+ = 2 and (b) Z+ = 6 in the experiments and simulations of King et al. (2009). The solid
lines represent the exact prediction (2.16) and the dashed lines its far-field approximation
(2.17). The horizontal segments indicate the measurement interval 6< t/T < 10.

bimodal, as expected from figure 11(b). Near-field effects are seen to be responsible
for the shape of the profile near the centre of the beams, but fail to account for the
observed asymmetry of the peaks.

The measurements were performed in the seventh–tenth periods, that is, for
6 < t/T < 10, after determining numerically that, by the seventh period, the waves
were within 1.3 % of their asymptotic values at points in the wave field. The prediction
of the temporal evolution of the longitudinal velocity at Z+ =2 and 6 in figure 16
supports this view.

5. Experimental procedure
5.1. Set-up

The present experiments were conducted in a Plexiglas square tank of length 97 cm,
width 97 cm and height 50 cm, represented in figure 17. The tank was filled to a depth
of 47 cm with a linearly stratified fluid using the ‘double-bucket’ method (Fortuin
1960; Oster & Yamamoto 1963; Oster 1965). Salt was used as stratifying agent and
tap water as working fluid. The linearity of the stratification was checked by taking
samples at different heights in the fluid and measuring their density with a high-
precision Anton Paar density meter. The buoyancy frequency was kept constant for
the different experiments at N = 1.22 s−1, and the kinematic viscosity ν =1.2 mm2 s−1

was also constant.
The waves were generated by a Plexiglas sphere attached to a pendulum of length

l =1.3 m. The oscillations of the pendulum were driven by a wheel of 7 cm in
diameter, placed at mid-height and rotating around an eccentric axis. The pendulum
was pushed against the wheel by a counterweight mounted near the pivot. The
amplitude of the oscillations was varied by changing the vertical position of the
motor. Their frequency was kept constant at ω =0.905 s−1, so that their period was
T = 6.94 s and the frequency ratio was ω/N = 0.74. The amplitude A of the oscillations
of the sphere was kept small compared to the length of the pendulum (A/l < 0.016),
such that the motion of the sphere was in good approximation rectilinear and
horizontal. The initial phase was Θ = π, such that the oscillations started from their
centre to the left. Two spheres were used, one small of radius a = 1.85 cm and the
Reynolds–Stokes number Re =520, and the other large of radius a = 3.125 cm and
the Reynolds–Stokes number Re = 1500.
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97 cm

50 cm

Counterweight

Wave absorbers

Pendulum(a)

(b)

Motor

Fluorescent dye planes

Wave absorbers

Laser
plane

Figure 17. Experimental set-up in (a) side view and (b) top view. In the latter, the theoretical
isolines |ζ |/A = 0.04 are plotted for the large sphere at Z = −8, illustrating the position of the
waves just before reflection at the bottom of the tank.
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The waves were recorded from the side with a 12 bit DALSA camera with CCD
matrix of 1024 × 1024 pixels. The field of view was 37 × 37 cm2, with the sphere at
its centre. The analysed area was 0 � x � 18 cm by −16 � z � 10 cm in a Cartesian
coordinate system with origin at the centre of oscillation. Since the camera was
located at a distance of 1.5 m from the tank, parallax errors were negligibly small.

Reflection of the waves at the sidewalls was suppressed by taking advantage of
the radiation pattern of the waves, following from the factor cosϕ in (2.16)–(2.17),
such that, in the horizontal plane, the waves propagate in the direction of oscillation
and are attenuated in the perpendicular direction, as illustrated in figure 17(b).
This pattern has since been verified experimentally and numerically by King et al.
(2009). The two walls perpendicular to the direction of oscillation were equipped with
absorbers and the other two walls remained available for visualization. The absorbers
were made of three layers of a diagonally placed plastic grid of mesh size 2 × 2 cm2

separated from one another by about 2 cm. Their presence reduced the effective width
of the tank by about 10 cm on each side. The wave energy being proportional to the
wave amplitude squared, the range of azimuthal angles ϕ that the absorbers covered
(±52◦) represented 88 % of the total radiated energy, implying that this energy was
in good approximation dissipated by the absorbers. In practice, no wave reflection
was observed at the walls and less than 2 % of the total wave energy was radiated
towards the camera.

With wall reflection suppressed, it was possible to wait long enough for the steady
state to be reached. Under typical experimental conditions 10 periods were sufficient,
consistent with the discussion in § 4.3. In order to avoid any ambiguity, the data were
recorded after 20 periods, that is, in the interval 20 < t/T < 21.

5.2. Fluo-line technique

The waves were measured using the same method introduced by Hopfinger et al.
(1991) and Bonnier et al. (1998) for the visualization of lee waves and wakes, and
Flór et al. (2002, 2004) for the measurement of isopycnal displacements. Prior to the
experiment a rake of horizontally spanned thin cotton wires, soaked in a fluorescein
solution of high concentration and dried, was carefully displaced through the fluid
creating a set of equidistant dye planes about 2 cm apart. The sphere was introduced
carefully into the fluid and the whole system left in rest for about 10 min, so that
all perturbations could decay. During that time molecular diffusion, which was high
during the first two hours because of high gradients and small afterwards, caused a
Gaussian distribution of dye across each plane. Then the planes were illuminated by
a vertical laser sheet about 2 mm thick through the centre of the sphere along its
direction of oscillation, and the experiment started. To ensure sufficient contrast, a
black screen serving as background was fixed to the back wall of the tank. A typical
experimental image is reproduced in figure 18.

The Gaussian dye distribution allows for the accurate measurement of the position
of each plane, with sub-pixel resolution. Along a vertical line the light intensity I (z)
varies as a sequence of Gaussian distributions superposed with random noise. To
determine the centre of each distribution, we calculate the cross-correlation of the
experimental signal with a standard Gaussian function

G(z − z′, s) =
1

(2π)1/2s
exp

[
− (z − z′)2

2s2

]
, (5.1)
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Figure 18. Observed dye pattern for the large sphere at Ke = 0.18. The image is taken 20
periods and 3.38 s after the start-up and is 1024 pixels wide by 889 pixels high, the sphere
having a radius of 86 pixels.

of fixed width 2s and moving centre at z = z′. The cross-correlation function,

C(z) =

∫
I (z′)G(z′ − z, s) dz′, (5.2)

has maxima at the positions of the Gaussian maxima in the signal. For computational
efficiency it is written in the form

C(z) =

∫
G(z′′, s)I (z′′ + z) dz′′, (5.3)

namely the Gaussian function is calculated once with fixed centre and the experimental
signal is displaced with respect to it. This signal being measured in discrete coordinates
with an increment of 1 pixel, the Gaussian function Gj is also calculated in discrete
coordinates, on N = 4s + 1 pixels in order to make sure that its tails are sufficiently
close to zero. The cross-correlation function becomes

Cn =

N−1∑
j=0

GjIj+n. (5.4)

Its values Cn are used as nodes for interpolation by cubic splines, and the maxima of
the interpolated curve are determined with an accuracy of 0.1 pixel, corresponding
to the estimated noise level in the experiments (based on dye plane thickness and
picture quality). For very thin dye planes, the accuracy can be as high as 0.03 pixel.
The cross-correlation procedure is illustrated in figure 19.

The width 2s of the theoretical Gaussian function has been chosen to coincide with
the typical width of the experimental Gaussian distributions, determined by a least-
squares fit to the data. This choice represents a good compromise between spatial
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Figure 19. Profiles of light intensity I (solid line) and cross-correlation C with a moving
Gaussian function (dashed line) along a vertical line of pixels from figure 18.

resolution (which improves at lower s) and noise filtering (which improves at higher
s). In the present experiments the typical width was about 16 pixels, yielding s =8.
In addition, for each vertical line of pixels the intensity profile Ij was averaged over
six neighbouring lines, to reduce the duration of the calculations together with the
experimental noise arising from tiny defects (scratches and impurities) at the sidewalls
of the tank. The average did not affect the horizontal resolution of the determination
of isopycnal displacements, as it took place at a scale significantly smaller than the
scale of the displacements, set by the horizontal size of about 100 pixels of the sphere.

Figure 20 illustrates how the above procedure has been applied. Vertical
interpolation by cubic splines has been used to transform the discrete measurement of
the isopycnal displacements at the dye planes into a continuous measurement of the
displacements through the column of fluid. Over 20 periods, slow but detectable noise
was visible in these measurements, arising both from the drift in electronic equipment
and the physical drift of the dye planes. In order to filter it, it was chosen to plot
the differential displacement 	ζ (t) = ζ (t + 	t) − ζ (t) between two successive images
taken with time increment 	t =1 s. A similar filtering technique had been used in the
past with time increment 	t small compared with the period of oscillation T , so that
the ratio 	ζ/	t was in good approximation a temporal derivative ∂ζ/∂t; namely,
	t/T =0.07 for Sutherland et al. (1999), 0.008 for Sutherland & Linden (2002) and
0.06 for Sutherland et al. (2003). Here, with 	t/T = 0.14, the time increment is too
large for the ratio to be considered a derivative.

A second source of measurement error is the fact that the waves are observed
through a perturbed fluid, causing optical distortions between the laser sheet and the
front wall of the tank. These can be estimated by combining the optical theory of
Onu et al. (2003), Flynn et al. (2003) and Décamp et al. (2008) with the wave theory
of § 2; namely, by combining expression (5) of the light ray displacement in Décamp
et al. (2008), with the first term in curly braces in its right-hand side dropped, with
the expression of 	N2 derived from (2.16c) above, and integrating the result between
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Figure 20. Analysis of the dye pattern from figure 18 on the right of the sphere, transforming
(a) the corresponding portion of the pattern, 452 pixels wide by 889 pixels high, into (b) a plot
of the differential displacement 	ζ/A in the plane Y =0.

the front wall and the laser sheet. The optical distortions appear to be two orders
of magnitude smaller than the vertical displacement of the dye planes. Accordingly,
they can safely be neglected when processing the experimental data.

6. Experimental measurements and comparison with theory
Two series of experiments have been performed, one at small oscillation amplitude

Ke =0.18 so that linear theory applies, and the other at larger amplitude Ke = 0.50
so that nonlinear effects manifest themselves. Except when stated otherwise, all the
other parameters were kept the same in both series.

6.1. Linear regime

At small amplitude Ke = 0.18, seven successive images were used for the large
sphere, taken 1 s apart starting 0.38 s into the 21st period. Figure 18 reproduces
the fourth image and figure 21 the associated theoretical prediction based on (2.16).
The agreement between experiment and theory is good, but because of the smallness of
the deformation of the dye lines, further fine-tuned processing by the cross-correlation
technique of § 5.2 is required for a quantitative comparison.

Four dye lines were selected, namely the third and fourth lines Z = 1.44 and 2.08
above the midplane Z = 0 and the sixth and seventh lines Z = −3.48 and −4.08 below
it, respectively. The two upper lines were chosen so as to avoid the shadow of the
sphere, visible in figure 21 and preventing measurement near the axis X = 0. The two
lower lines were chosen so as to reach larger vertical distances |Z| than is possible
above the sphere, owing to the reflections at the surface and bottom; these reflections,
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Figure 21. Theoretical dye pattern for figure 18. A close-up near the sphere was provided
earlier in figure 7(b).

visible in figure 20(b), restrict the usable vertical range to, say, −5 <Z < 2.5, and the
usable horizontal range to, say, 0< X < 4 for the two upper lines and 1 <X < 6 for
the two lower lines. The antisymmetry of the vertical displacement field with respect
to the plane Z = 0 was used to translate the measurements above this plane into
measurements below it, so that the evolution of the wave profiles with |Z| could be
monitored.

The position of the dye lines in the transition diagram in figure 11(b) implies that
the horizontal profiles are expected to be bimodal, consistent with the theoretical
amplitude profiles in figure 8. This is verified by the experimental profiles in
figure 22. A comparison with the exact theoretical prediction (2.16) and its far-
field approximation (2.17) shows that only the former can account for the zero
differential displacement observed at the axis X = 0, and for the ratio between the
major and minor peaks. Around |Z| =3 the far-field approximation becomes valid
for the amplitude, while the phase remains slightly distorted by it.

Two dye lines at Z = −5.8 and −6.8 and five successive images starting 0.17 s into
the 21st period were used for the small sphere. Consistent with figures 9 and 11(b), the
experimental profiles in figure 23(a, c) are unimodal and compare excellently with the
exact and far-field theoretical predictions, which are practically indistinguishable.

6.2. Nonlinear regime

Increasing the oscillation amplitude of the small sphere to Ke = 0.50 and monitoring
the same dye lines on five successive images starting 0.20 s into the twenty-first period,
the profiles in figure 23(b, d ) are obtained. Their shape remains essentially unchanged,
but their amplitude is overestimated by the theory by about 20 %.

This nonlinear effect called saturation, or its absence, has already been reported
in the literature for oscillating cylinders and spheres, as listed in table 2. Saturation
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Figure 22. Horizontal profiles of the differential displacement at (a, b) Z = −1.44,
(c, d ) Z = −2.08, (e, f ) Z = −3.48 and (g, h) Z = −4.08, for the large sphere at Ke = 0.18.
The lines represent the exact theory (a, c, e, g) and the far-field theory (b, d, f, h), and the
dots the experimental data at successive times 0.38 s (light brown), 1.38 s (dark brown), 2.38 s
(dark green), 3.38 s (light green), 4.38 s (light blue) and 5.38 s (dark blue) into the 21st period
of oscillation.

appears to depend not only on the Keulegan–Carpenter number Ke, but also on
the Reynolds–Stokes number Re; specifically, saturation has only been observed for
Re > 200 and the associated threshold Kec varies with Re.
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Ke

Paper Body Re Linearity Saturation

Peters (1985) Cylinder 74 0.42–0.94
Peters (1985) Cylinder 110 0.22–0.56
Peters (1985) Cylinder 130 0.24–0.62
Makarov et al. (1990) Cylinder 8 0.03–0.67
Sutherland et al. (1999) Cylinder 260 0.13 0.19
Sutherland & Linden (2002) Cylinder 140 0.11–0.19
Zhang et al. (2007) Cylinder 1300 0.05–0.15 0.15–0.20
Ermanyuk & Gavrilov (2008) Cylinder 99 0.30, 0.60, 0.90

Flynn et al. (2003) Sphere 350 0.15, 0.19 0.26
King et al. (2009) Sphere 2000 0.05–0.30 0.30–0.60
Present paper Sphere 520 0.18 0.50

Table 2. Observations of wave amplitude versus oscillation amplitude in the literature.
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Figure 23. Horizontal profiles of the differential displacement at (a, b) Z = −5.8 and
(c, d ) Z = −6.8, for the small sphere at (a, c) Ke = 0.18 and (b, d ) Ke = 0.50. The lines represent
the exact theory, and the dots the experimental data at successive times 0.17 s (light brown),
1.17 s (dark brown), 2.17 s (dark green) and 3.17 s (light green) for Ke = 0.18, and 0.20 s (light
brown), 1.20 s (dark brown), 2.20 s (dark green) and 3.20 s (light green) for Ke = 0.50, into
the 21st period of oscillation.

On the basis of the observations of Ermanyuk & Gavrilov (2008) for the circular
oscillations of a horizontal cylinder in the vertical plane, saturation seems to be
caused by the loss of wave energy to mixing in the vicinity of the oscillating body.
For vertical rectilinear oscillations, Ivanov (1988) observed that mixing close to the
cylinder was related to the alternative Reynolds number,

Res = ReKe2 =
2ωA2

ν
, (6.1)
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Figure 24. Instability thresholds of the oscillatory boundary layer at (a) a circular cylinder
and (b) a sphere. The dots represent the observations of linear variation (�) and saturation (�)
of the wave amplitude according to table 2. The lines represent the two alternative thresholds
(6.3), based on the linear theory of Hall (1984) and Otto (1992) for a homogeneous fluid (solid
lines), and (6.2), based on the observations of Ivanov (1988) in a stratified fluid (dashed lines)
applied for definiteness not only to the cylinder but also to the sphere.

in which the radius of the cylinder is replaced by the amplitude of oscillation, and that
for Res < 5π ≈ 16 the flow was fully attached while for Res > 16 vorticity generation
and mixing took place. A first value of the saturation threshold follows,

Kec =
4

Re1/2
(circular cylinder). (6.2)

Now, the Reynolds number Res is known to characterize, in a homogeneous fluid,
the steady streaming flow formed, in an outer boundary layer of the thickness
(2ν/ω)1/2a/A, by the Reynolds stresses in the inner Stokes boundary layer of
the thickness (2ν/ω)1/2; see e.g. Batchelor (1967, § 5.13) and Riley (2001). In the
approximation Re � 1, the linear stability analysis of the outer layer yields a critical
value of Res given by 6.00Ke1/2 for the cylinder (Hall 1984) and 16.96Ke1/2 for the
sphere (Otto 1992). On the assumption that these values remain unchanged in a
stratified fluid, a second, alternative value of the saturation threshold follows,

Kec =
2.45

Re1/4
(circular cylinder),

4.12

Re1/4
(sphere). (6.3a,b)

This assumption is supported by the flow regime diagrams in the (Re, Ke)-plane
drawn, in a stratified fluid, by Lin et al. (1994) for the horizontal oscillations of
a sphere and Xu et al. (1997) for the horizontal oscillations of a cylinder; namely,
the boundaries between fully attached flow and attached vortices for the sphere, and
weakly detached flow and localized mixing for the cylinder, correspond approximately
to the second threshold. As the oscillation amplitude increases over the threshold, the
visualizations of Chashechkin & Prikhod’ko (2007) and Chashechkin (2007) for the
vertical oscillations of a sphere seem to indicate that vorticity generation and mixing
escape from the streaming layer and invade the whole overlap region of the wave
beams, ultimately transforming it into jets aligned along the direction of oscillation.

Figure 24 plots together the observations of linear amplitude variation and
saturation and the two threshold predictions in the (Re, Ke)-plane. The observations
of saturation are too scarce to draw definite conclusions, all the more so since
saturation was not studied per se in most cases, so that the analysis in table 2 is
mostly a reinterpretation of the observations; in particular, saturation is reported by
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Sutherland et al. (1999) and Flynn et al. (2003) to be fairly weak and possibly fall
within the experimental noise. Accordingly, nonlinear scaling is still an open question.

7. Energy radiation and application to internal tides
Having validated linear theory, we return to the original motivation of our study,

namely internal tides. In this context, the quantity of interest is the average radiated
power, characterizing the conversion rate of barotropic energy into internal tides.
Only the steady inviscid limit has been considered in the literature, often, but not
always, on the hydrostatic approximation. Various topographies have been considered,
either two- or three-dimensional and either flat or upright. Combining the results,
the conversion rate is seen to scale as (N2 − ω2)1/2h2|U |2 in two dimensions and
(N2 − ω2)1/2�h2|U |2 in three dimensions, with U as the velocity amplitude of the
barotropic flow, h as the height of the topography and � as its half-width; see e.g. Bell
(1975a, b), Llewellyn Smith & Young (2002, 2003), Pétrélis et al. (2006), Nycander
(2006) and Bühler & Muller (2007).

The average radiated power P may be calculated by integrating the average rate
of energy flux, I = Re[pu∗]/2 with p as the perturbation pressure and ∗ as a complex
conjugate, over a biconical surface crossing the wave beams at a given distance |z±|.
The integration is performed in the far field, implying that, for steady inviscid waves,
the non-integrable singularities in the overlap region of the wave beams are avoided
and only the integrable singularities at the beam edges remain; accordingly, the steady
inviscid limits α → 0 and β → 0 are uniform. Combining the three results (4.42), (5.19)
and (6.14) of Voisin (2003), we obtain

P =
ρ0N cos θ sin θ

32π2

∫ 2π

0

dϕk

∑
±

∫ 1/(α|z±|)

0

dk± exp
(
−2βk3

±|z±|
)
|q±(k±, ϕk, 0)|2, (7.1)

with no need of the hydrostatic approximation.
For the sphere, represented by the source (2.10) of the spectrum (2.11), this becomes,

in the steady inviscid case,

P0 =
π2

3
ρ0(N

2 − ω2)1/2a3 ω

N

[
|U |2 2ω2/N2

|1 + B(ω/N)|2 + |W |2 1 − ω2/N2

|1 − B(ω/N )|2

]
, (7.2)

and evaluates otherwise to

P

P0

=
6

π

∫ 1/σu

0

exp
(
−2σ 3

v K3
±
)
j 2
1 (K±) dK±, (7.3)

implying that the parameters σu and σv provide an adequate characterization of
unsteady and viscous effects on the conversion rate.

For internal tides, we set W = 0. The sphere translates to a hemisphere in a flow
of the velocity −Ue−iωt , with U = (U, 0, 0), and the source (2.10) represents the
combination of the hemisphere and its image through the plane ocean bottom z =0.
In order to study the effect of the criticality of the topography, we consider not
only the supercritical hemisphere but also flat topographies of a slope much smaller
than the slope of the wave rays; namely, we consider topographies of the elevation
f (xh), with xh = (x, y), satisfying h/� � ω/N with h as the maximum value of f (xh)
and � its scale of variation. Such topographies are subcritical by nature, and may be
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Figure 25. Beam geometry for internal tides from (a) a hemisphere and (b) a flat topography
(for definiteness a witch of Agnesi). For the hemisphere, the beam width is set by the critical
rays tangent to the topography and its image through the bottom. For flat topography, the
beam width is set by the rays emanating from the base of the topography.

represented by the source

q(x) = −2U
∂

∂x
f (xh)δ(z), q(k) = −2iUkf (kh), (7.4)

where kh = (k, l); see e.g. Voisin (2007) in the context of lee waves. In the steady
inviscid case, the power radiated in the half-space z > 0 is obtained immediately as

P0 =
ρ0(N

2 − ω2)1/2|U |2
8π2

∫∫
k2

κh

|f (kh)|2 d2kh, (7.5)

where κh = |kh|, consistent with Bell (1975b), Llewellyn Smith & Young (2002) and
Bühler & Muller (2007).

The presence of the spectrum f (kh) indicates that the structure of the internal tide is
set by the horizontal scale � of the topography. As illustrated in figure 25, the natural
wave scale is the beam half-width � cos θ and the natural non-dimensionalization
of the coordinates is (X+, Z+) = (x+, z+)/(� cos θ) in real space and K+ = k+� cos θ

in Fourier space. When unsteady and viscous effects come into play, so does the
Reynolds–Stokes number

Re =
2ω3�2

N2ν
, (7.6)

yielding for the parameters σu and σv the same final expressions as for the hemisphere,
namely

σu =
Z+

ωt tan θ
, σv =

(
Z+

Re tan θ

)1/3

. (7.7)

The conversion rate becomes

P =
ρ0(N

2 − ω2)1/2|U |2
8π2�3

∫ 2π

0

dϕk cos2 ϕk

∫ 1/σu

0

dK+ exp
(
−2σ 3

v K3
+

)
K2

+|f (kh)|2, (7.8)

with

kh =
K+

�
(cosϕk, sinϕk). (7.9)
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The most frequent examples of seafloor topography, considered e.g. by Llewellyn
Smith & Young (2002), are the witch of Agnesi

f (xh) = h

(
1 +

r2
h

�2

)−3/2

, f (kh) = 2πh�2 exp(−κh�), (7.10)

and the Gaussian bump

f (xh) = h exp

(
− r2

h

2�2

)
, f (kh) = 2πh�2 exp

(
−κ2

h�
2

2

)
, (7.11)

of the same volume 2πh�2. The associated conversion rates are, for the former,

P0 =
π

8
ρ0(N

2 − ω2)1/2�h2|U |2, (7.12)

P

P0

= 4

∫ 1/σu

0

exp
(
−2σ 3

v K3
±
)
K2

+ exp(−2K+) dK+, (7.13)

and for the latter,

P0 =
π3/2

8
ρ0(N

2 − ω2)1/2�h2|U |2, (7.14)

P

P0

=
4

π1/2

∫ 1/σu

0

exp
(
−2σ 3

v K3
±
)
K2

+ exp(−K2
+) dK+. (7.15)

We compare these rates for all three topographies, namely the hemisphere, the witch
of Agnesi and the Gaussian bump.

7.1. Steady inviscid case

Consider the steady inviscid case first. For flat topographies, the conversion rate
exhibits the anticipated dependence as (N2−ω2)1/2�h2|U |2, implying a maximum at the
frequency ratio ω/N =0 at the fixed velocity amplitude U and ω/N =

√
(2/3) ≈ 0.82

at the fixed excursion A= |U |/ω. For the hemisphere, the frequency dependence is
more complicated and the conversion rate is a maximum at ω/N = 0.71 at fixed U

and 0.85 at fixed A.
In the more general situation, relevant to the laboratory, of a sphere oscillating

at an arbitrary angle η to the horizontal, the variations of the radiated power with
frequency are plotted at the fixed excursion in figure 26. They are compared with
those for a circular cylinder, based on the calculation of the radiated power by Hurley
(1997), namely

P0 =
π

2
ρ0(N

2 − ω2)1/2a2(|U |2 + |W |2), (7.16)

independent of η and exhibiting the same frequency dependence as for flat
topographies. The variations are similar for the cylinder and the sphere, and are
consistent with the experimental measurements by Ermanyuk & Gavrilov (2002,
2003). In particular, the radiated power for the cylinder is at its maximum at frequency
ratio 0.82 independent of η, and for the sphere varying weakly with it, between 0.83
and 0.85.

This latter result has interesting implications in another area, namely internal wave
generation by turbulence. It has been observed in several circumstances that a region
of turbulent motion in a stratified fluid generates internal waves with a well-defined
spectrum, peaked at frequency ratio 0.8 for a two-dimensional mixed region released
at its neutral buoyancy level (Wu 1969), 0.7 when the release takes place above this
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Figure 26. Frequency dependence of the steady inviscid power output of (a) a sphere
oscillating at varying angle η to the horizontal and (b) a circular cylinder, normalized by
Pr = ρ0N

3a3A2 for the sphere and ρ0N
3a2A2 for the cylinder, with A = (|U |2 + |W |2)1/2/ω the

excursion. For internal tides, the steady inviscid conversion rate varies according to (a) with
η = 0◦ for a hemisphere and (b) for a semi-circular cylinder; for flat topography, the frequency
dependence is the same as in (b).
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Figure 27. Power decay owing to (a) unsteadiness alone and (b) viscosity alone, for the
hemisphere (solid lines), the witch of Agnesi (dashed lines) and the Gaussian bump

(dotted lines).

level (Cerasoli 1978) and 0.5 for a freely decaying three-dimensional turbulent field
(Riley, Metcalfe & Weissman 1981). If a turbulent region can be thought of as an
incoherent assembly of turbulent patches oscillating at random frequency in random
directions with all about the same excursion, then the existence of a maximum
of radiation at a fixed frequency independent of the direction of oscillation might
account for the presence of the peak.

7.2. Unsteady and viscous dissipation

Coming back to internal tides, we consider the unsteady and viscous decay of the
conversion rate. Figure 27 illustrates this decay in the limits σv → 0 and σu → 0,
corresponding to unsteadiness and viscosity acting in isolation, respectively, for the
hemisphere, the witch of Agnesi and the Gaussian bump. The associated asymptotics
are given in table 3. The decay is initially faster for the hemisphere. Ultimately
it becomes identical for the three, as 1/σ 3

u i.e. 1/|Z±|3 when unsteady effects are
dominant, and 1/σ 3

v i.e. 1/|Z±| when viscous effects are dominant, corresponding to
such large distances that the size of the topography is insignificant and only the
multipolar order of the forcing matters, a situation described in table 3 of Voisin
(2003).
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σv = 0 σu = 0

Topography
P

P0

∣∣∣∣
σu � 1

P

P0

∣∣∣∣
σu � 1

σud

P

P0

∣∣∣∣
σv � 1

P

P0

∣∣∣∣
σv � 1

σvd

Hemisphere 1 − 3

π
σu

2

9πσ 3
u

0.41 1 − 3

π
21/3Γ

(
2

3

)
σv

1

9πσ 3
v

0.28

Witch 1 − 2
exp(−2/σu)

σ 2
u

4

3σ 3
u

0.75 1 − 15σ 3
v

2

3σ 3
v

0.51

Gaussian 1 − 2

π1/2

exp
(
−1/σ 2

u

)
σu

4

3π1/2σ 3
u

0.92 1 − 8

π1/2
σ 3

v

2

3π1/2σ 3
v

0.64

Table 3. Asymptotic power decay owing to unsteadiness alone (left column) and viscosity
alone (right column), and associated dissipation thresholds.

0.2 0.4 0.6 0.8 1.00
0

0.2

0.4

0.6

0.8

1.0

σu

σv

Figure 28. Dissipation threshold for the hemisphere (solid line), the witch of Agnesi (dashed
line) and the Gaussian bump (dotted line).

Since the rate of decay varies with distance, another quantity must be introduced
to characterize the dissipation of energy. We define a dissipation distance Zd as the
distance where the radiated energy has been divided by two, namely

P

P0

∣∣∣∣
|Z±|=Zd

=
1

2
. (7.17)

As for the transition from bimodality to unimodality in (3.12), this condition defines
a boundary in the (σu, σv)-plane, plotted in figure 28. The associated thresholds σud

and σvd
are slightly larger than the transition thresholds σuc

and σvc
in figure 11.

Plotting in figure 29(a) the energy decay with distance in the experiments of Flynn
et al. (2003), King et al. (2009) and in the present experiments, all the measurements
are seen to have taken place before the dissipation thresholds.
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Figure 29. Power decay in (a) existing laboratory experiments for the sphere, with the same
notations as in figure 11, and (b) typical oceanic conditions for the hemisphere (solid line), the
witch of Agnesi (dashed line) and the Gaussian bump (dotted line).

7.3. Application to oceanic parameters

In order to assess the relevance of these concepts for the ocean, we borrow the values
of the buoyancy frequency N = 5×10−4 s−1, the barotropic frequency ω = 2×10−4 s−1

and the velocity amplitude U = 1.4 cm s−1 from Llewellyn Smith & Young (2002),
and the turbulent kinematic viscosity ν = 10 mm2 s−1 from Di Lorenzo, Young &
Llewellyn Smith (2006). For the witch of Agnesi and the Gaussian bump, we
borrow the values of the height h = 320 m and the half-width � =1.6 km from
Llewellyn Smith & Young (2002), who deduced them from seamount statistics in the
Pacific. For the hemisphere, the radius a = (3h�2)1/3 ≈ 1300 m is chosen such that the
volume of all three topographies is the same. Unsteady effects, difficult to quantify in
the ocean, are ignored.

The smallness of the Keulegan–Carpenter numbers, of the order of 10−2, legitimates
the linear approach. The inviscid radiated power P0 is of the order of 10 kW for
the flat topographies, consistent with Llewellyn Smith & Young (2002), and one
order of magnitude larger for the hemisphere. The hugeness of the Reynolds–Stokes
numbers, of orders 107 for the flat topographies and 108 for the hemisphere, leaves
no room for viscosity to dissipate this power; for example, the dissipation thresholds
in figure 28 translate to dimensional distances of order 109 m. Figure 29(b) represents
the power decay with distance, implying that 10 % decay requires propagation over
non-dimensional distances of about 5 × 104 for the hemisphere, 3 × 105 for the witch
of Agnesi and 106 for the Gaussian bump, corresponding to dimensional distances
of order 108 m, larger than the circumference of the Earth 4 × 107 m! For the same
reason, we do not expect the transition from bimodality to unimodality to be observed
in the ocean for supercritical topography.

8. Conclusions
A joint theoretical and experimental study has been presented on the generation

of internal gravity waves by an oscillating sphere. The theory considered oscillations
at an arbitrary angle to the horizontal, by superposition of horizontal and vertical
oscillations, while the experiments involved horizontal oscillations. The theory was
applied to the calculation of the conversion rate of barotropic tidal energy into
internal tides, for several seafloor topographies either hemispherical or flat.
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Experimentally, the dye-line technique of Hopfinger et al. (1991) for the
measurement of isopycnal displacements has been developed and automated,
providing both high-precision data, with sub-pixel accuracy, and readily interpretable
images of the flow. Use has been made of the radiation pattern of the waves to
effectively prevent reflection at the tank walls. The dye-line technique has been
applied to the measurement of the waves in the vertical plane along the direction of
oscillation through the centre of the sphere. A separate paper (Ermanyuk et al. 2010)
will present the three-dimensional reconstruction of the wave field.

Theoretically, the boundary integral method has been shown to provide an adequate
representation of the sphere, satisfying the free-slip boundary condition at its surface.
In order to reproduce the variety of experimental configurations here and in the
literature, near-field effects, viscous effects and the unsteady effects arising from
the interference with transients generated at the start-up must all be taken into
account. Near-field effects are significant within 1 diameter above the top or below
the bottom of the sphere. Two dimensionless parameters have been introduced to
quantify unsteady and viscous effects, and a transition diagram has been drawn in the
two-parameter plane to separate an inner bimodal zone, with bimodal wave profiles,
and an outer unimodal zone, with unimodal profiles. Bimodal profiles have steady
inviscid singularities at the critical rays tangent to the sphere, with unsteady and
viscous effects acting locally at these rays to keep the waves finite. Unimodal profiles
are governed primarily by unsteady and viscous effects. The parameter quantifying
viscous effects derives from that introduced by Hurley & Keady (1997) for a cylinder.
Unsteady effects become negligible after a time depending on the extent of the wave
field considered; under typical experimental conditions, this time varies between 5
and 10 oscillation periods.

At small oscillation amplitude, of 0.2 times the sphere radius, the waves are
linear and the agreement between experiment and theory is excellent. Increasing the
amplitude to a higher value, of 0.5 times the radius, gives rise to nonlinear effects
which manifest themselves through a saturation of the wave amplitude, 20 % smaller
than its linear prediction, owing to the loss of wave energy to mixing at the sphere.
The choice of an oscillation frequency above half the buoyancy frequency prevents
the propagation of higher harmonics, which will be considered in Ermanyuk et al.
(2010).

The application of the theory to internal tides revealed several interesting features.
The existence of bimodal profiles, and the transition to unimodal profiles with distance,
are specific to supercritical topographies, of slope locally larger than the slope of the
rays. For subcritical topographies, of slope everywhere smaller than the ray slope,
the profiles are always unimodal. The conversion rate of barotropic tidal energy
into internal tides scales as (N2 − ω2)1/2�h2U 2 for flat topographies, of infinitesimal
slope, with N as the buoyancy frequency, ω as the frequency and U as the velocity
amplitude of the barotropic flow, and h as the height and � as the half-width of
the topography; for the hemisphere, the dependence on ω/N is more complicated.
Unsteady and viscous effects induce a decay of the conversion rate with distance, but
in oceanic conditions the decay is so slow that it is unlikely to be observed. Similarly,
the transition from bimodality to unimodality takes place at such large distances in
the ocean that it is unlikely to be observed.

A remarkable feature of the solution for the sphere, pointed out by a referee, is the
simple form of the surface source distribution (2.10) equivalent to the sphere: in order
to account for the singularity of the waves at the critical rays, some kind of peculiar
behaviour of the distribution was expected at the points where the rays are tangent to
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the sphere. The explanation, detailed in the Appendix, lies in the generation process
of the waves, discussed by Lighthill (1978, § 4.10): in order to generate the waves, the
source distribution is successively integrated in planes perpendicular to the direction
of propagation of the phase, differentiated in this direction to one-halfth order, split
into the sum of travelling waves moving in opposite directions, and the split waves
sent diagonally along the rays. Each step of this process is susceptible to introducing
singularities. One step, the splitting into travelling waves, amounts to adding to the
source an out-of-phase component given by plus or minus its Hilbert transform.

For two-dimensional supercritical topographies, Pétrélis et al. (2006) and
Balmforth & Peacock (2009) used vertical and horizontal equivalent source
distributions, respectively. The associated integral equations were solved numerically,
and singular distributions were obtained. The singularities, however, were not located
at the points where the critical rays are tangent to the topography, but at other
points. A close inspection reveals that the origin of the singularities is numerical,
and that it is linked with the use of vertical and horizontal source distributions,
which typically exhibit discontinuities at the vertical and horizontal extremities of the
topography, respectively, and with the discretization of the topography in terms of
straight segments. We anticipate that if a contour source distribution is used instead,
and the topography is discretized in terms of more complex boundary elements such
as circular arcs or cubic splines (see e.g. Pozrikidis 2002, ch. 3), then the distribution
will be regular.
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Appendix. Generation process
We consider steady inviscid far-field waves in the vertical plane represented in

figure 1, combining a half-plane of the azimuthal angle 0 � ϕ0 < π on the right with
the complementary half-plane of the angle ϕ0 + π on the left. Following Lighthill
(1978, § 4.10) and Voisin (2003), local Cartesian coordinates are introduced, denoted
say by (x ′

±, y ′
±, z′

±) and defined by

x = x ′
± cos θ cosϕ0 − y ′

± sinϕ0 ± z′
± sin θ cosϕ0, (A 1a)

y = x ′
± cos θ sinϕ0 + y ′

± cosϕ0 ± z′
± sin θ sin ϕ0, (A 1b)

z = ∓x ′
± sin θ + z′

± cos θ, (A 1c)

such that x ′
± = x± and z′

± = z± in the right half-plane and x ′
± = −x∓ and z′

± = z∓ in
the left half-plane, with y ′

± =0 everywhere in the plane. Coordinates (x ′
+, y ′

+, z′
+) are
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used in the first and third quadrants, and coordinates (x ′
−, y ′

−, z′
−) in the second and

fourth quadrants. Expression (2.9) of the velocity becomes

u0 ∼ ± cot1/2 θ

25/2π3/2
ez′

±

exp[−i(ωt + π/4)]

|z′
±|1/2

∫ ±∞ sign z

0

|k′
±|1/2q ′

±(k′
±, 0, 0|ϕ0) exp(ik′

±x ′
±) dk′

±,

(A 2)
where q ′

±(x ′
±, y ′

±, z′
±|ϕ0) = q(x) and q ′

±(k′
±, l′

±, m′
±|ϕ0) = q(k).

As pointed out by Lighthill (1978, § 4.10), this expression highlights the way the
wave field is constructed. Fractional derivatives are involved, defined at order µ, with
n � Reµ < n + 1, and for a function f (x) of the spectrum f (k), as

f (µ)(x) =
1

Γ (n + 1 − µ)

∫ x

−∞

f (n+1)(ξ )

(x − ξ )µ−n
dξ,

=
1

2π

(
e−iµπ/2

∫ 0

−∞
+ eiµπ/2

∫ +∞

0

)
|k|µf (k) exp(ikx) dk. (A 3a)

First, the source is integrated in planes perpendicular to the x ′
±-direction of

propagation of the phase (in other words, in planes tangent to the surfaces of
constant phase along the rays), according to

g(x ′
±|ϕ0) =

∫∫
q ′

±(x ′
±, y ′

±, z′
±|ϕ0) dy ′

± dz′
± =

1

2π

∫ +∞

−∞
q ′

±(k′
±, 0, 0|ϕ0) exp(ik′

±x ′
±) dk′

±.

(A 4)
Then the integrated source is differentiated to one-halfth order, yielding

g(1/2)(x ′
±|ϕ0) =

(
eiπ/4

2π

∫ +∞

0

+
e−iπ/4

2π

∫ 0

−∞

)
|k′

±|1/2q ′
±(k′

±, 0, 0|ϕ0) exp(ik′
±x ′

±) dk′
±. (A 5)

Finally, the one-halfth derivative, viewed as a standing wave, is split into the sum of
two travelling waves moving in opposite directions, and the waves are sent diagonally
along the rays. One wave,

g(1/2)
> (x ′

±|ϕ0) =
eiπ/4

2π

∫ +∞

0

(k′
±)1/2q ′

±(k′
±, 0, 0|ϕ0) exp(ik′

±x ′
±) dk′

±, (A 6)

travels towards positive x ′
± and is sent upwards and downwards to the right, while

the other wave,

g(1/2)
< (x ′

±|ϕ0) =
e−iπ/4

2π

∫ 0

−∞
(−k′

±)1/2q ′
±(k′

±, 0, 0|ϕ0) exp(ik′
±x ′

±) dk′
±, (A 7)

travels towards negative x ′
± and is sent upwards and downwards to the left. These

last two steps (differentiation to one-halfth order and splitting) may be applied in
any order. Back in the original coordinates (x±, ϕ, z±), the velocity becomes

u0 ∼ ∓i
cot1/2 θ

23/2π1/2
ez±

exp(−iωt)

|z±|1/2 g(1/2)
> (x±|ϕ). (A 8)

We note that the splitting technique, based on one-sided Fourier transforms, is
precisely that applied experimentally by Mercier et al. (2008) to separate the waves
propagating along each arm of the St Andrew’s cross for an oscillating cylinder.
It is equivalent to adding to the forcing (once reduced to a function of the single
variable x ′

±) an out-of-phase component given by plus or minus its Hilbert transform,
a standard technique in signal processing to determine the analytic signal associated
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with a real signal (see e.g. Roddier 1978, § 13.2), and a mechanism identified for
internal tides over two-dimensional flat topographies by Bühler & Muller (2007).

A.1. Sphere

In the two-dimensional case of an oscillating cylinder, no fractional derivative is
involved and the algebraic singularity of the waves at the critical rays tangent to the
cylinder arises from the first step in the process, namely the integration of the source
along the rays, as mentioned by Ivanov (1989).

For the sphere, the singularity at the critical rays |X′
±| =1, where X′

± = x ′
±/a, is only

a discontinuity in the integrated source

g(x ′
±|ϕ0) = 2πa

[
2U cos θ

1 + B(cos θ)
cosϕ0 ∓ W sin θ

1 − B(cos θ)

]
X′

±H (1 − |X′
±|), (A 9)

with H (x) as the Heaviside step function. It is turned into an algebraic singularity by
the next step, namely the differentiation to one-halfth order, according to

g(1/2)(x ′
±|ϕ0) = −23/2(πa)1/2

[
2U cos θ

1 + B(cos θ)
cosϕ0 ∓ W sin θ

1 − B(cos θ)

]

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[X′
± − (X′2

± − 1)1/2]3/2

(X′2
± − 1)1/2

H (X′
±) (|X′

±| > 1),

−
sin

(
3

2
arccosX′

±

)
(1 − X′2

±)1/2
(|X′

±| < 1).

(A 10)

Subsequent splitting into travelling waves yields

g(1/2)
> (x ′

±|ϕ0) = −(2πa)1/2

[
2U cos θ

1 + B(cos θ)
cos ϕ0 ∓ W sin θ

1 − B(cos θ)

]

×
exp

[
−3

2
arccosh(X′

± + i0)

]
[(X′

± + i0)2 − 1]1/2
, (A 11)

with g(1/2)
< as the complex conjugate of g(1/2)

> . Each step of the process is illustrated in
figure 30. The resulting velocity, which may be written

u0 ∼ i
cot1/2 θ

25/2

[
± 2U cos θ

1 + B(cos θ)
cos ϕ − W sin θ

1 − B(cos θ)

]
ez±

exp(−iωt)

|Z±|1/2

× [(X± + 1 + i0)1/2 − (X± − 1 + i0)1/2]3

(X± + 1 + i0)1/2(X± − 1 + i0)1/2
, (A 12)

consistent with (3.6), has a bimodal profile with algebraic singularities at the critical
rays, a specific property of supercritical wave generators.

A.2. Flat topographies

In contrast, for the flat topographies considered in § 7, necessarily subcritical, unimodal
profiles are expected. We verify this for the witch of Agnesi, which becomes, upon
integration,

g(x ′
+|ϕ0) = 8hU

cosϕ0

cos θ

X′
+

(1 + X′2
+)2

, (A 13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


352 B. Voisin, E. V. Ermanyuk and J.-B. Flór
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Figure 30. Transformation of the source function into the wave profile, for the sphere
(solid lines), the witch of Agnesi (dashed lines) and the Gaussian bump (dotted lines), in
three steps: integration perpendicular to the direction of propagation of the phase, yielding
profile (a); differentiation to one-halfth order along this direction, yielding profile (b); splitting
into travelling waves propagating in opposite directions, yielding the in-phase profile (c),
out-of-phase profile (d ) and amplitude profile (e). The normalization constant g0 has been
chosen such that the integrated sources are X′

+H (1− |X′
+|), X′

+/(1+X′2
+)2 and X′

+ exp(−X′2
+/2)

for the sphere, the witch of Agnesi and the Gaussian bump, respectively, and g1 has been
taken as g0/a

1/2 for the sphere and g0/(� cos θ )1/2 otherwise.
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differentiation to one-halfth order,

g(1/2)(x ′
+|ϕ0) = 3

(π

�

)1/2

hU
cos ϕ0

cos3/2 θ

cos

(
5

2
arctan X′

+ − π

4

)
(1 + X′2

+)5/4
, (A 14)

and splitting,

g(1/2)
> (x ′

+|ϕ0) =
3

2

(π

�

)1/2

hU
cos ϕ0

cos3/2 θ

exp

[
i

(
5

2
arctanX′

+ − π

4

)]
(1 + X′2

+)5/4
. (A 15)

It bears close similarity to the examples considered by Lighthill (1978, § 4.10). The
velocity profile, described by

u0 ∼ 3

2

h

�

U cos ϕ

sin1/2 θ cos3/2 θ
ez+

exp[−i(ωt + 3π/4)]

Z
1/2
+

1

(1 − iX+)5/2
, (A 16)

is plotted in figure 30 and is indeed unimodal.
The Gaussian bump yields more complicated expressions, upon integration,

g(x ′
+|ϕ0) = 23/2π1/2hU

cos ϕ0

cos θ
X′

+ exp

(
−X′2

+

2

)
, (A 17)

differentiation to one-halfth order,

g(1/2)(x ′
+|ϕ0) = −23/2

(π

�

)1/2

hU
cosϕ0

cos3/2 θ
exp

(
−X′2

+

4

)
D3/2(−X′

+), (A 18)

and splitting,

g(1/2)
> (x ′

+|ϕ0) =
3

2
e−iπ/4

(π

�

)1/2

hU
cosϕ0

cos3/2 θ
exp

(
−X′2

+

4

)
D−5/2(−iX′

+), (A 19)

involving the parabolic cylinder function Dµ(x) related to the more familiar modified
Bessel function Iµ(x) by

D3/2(−x) = −π1/2x5/2

8
(3I3/4 − 2I−1/4 − I−5/4 + 3I−3/4 − 2I1/4 − I5/4)

(
x2

4

)
, (A 20)

D−5/2(−ix) =
π1/2x5/2

6
[3I3/4 − 2I−1/4 − I−5/4 + i(3I−3/4 − 2I1/4 − I5/4)]

(
x2

4

)
. (A 21)

However, the velocity profile, described by

u0 ∼ 3

25/2

h

�

U cos ϕ

sin1/2 θ cos3/2 θ
ez+

exp[−i(ωt + 3π/4)]

Z
1/2
+

exp

(
−X2

+

4

)
D−5/2(−iX+), (A 22)

and plotted in figure 30, is similar. It is consistent with the theoretical predictions
by Bühler & Muller (2007), who did not use the far-field approximation, and with
the experimental measurements by Peacock et al. (2008), who considered a two-
dimensional Gaussian bump of non-small h/� ≈ 0.7.
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Flór, J.-B., Bush, J. W. M. & Ungarish, M. 2004 An experimental investigation of spin-up from
rest of a stratified fluid. Geophys. Astrophys. Fluid Dyn. 98, 277–296.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


Internal wave generation by oscillation of a sphere 355
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fluid using the Moiré fringe method. Preprint No. 189, Institute of Applied Physics, Academy
of Sciences of the USSR, Gorkii (in Russian).

Ivanov, A. V. 1989 Generation of internal waves by an oscillating source. Izv. Atmos. Ocean. Phys.
25, 61–64.

Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much
mixing? Annu. Rev. Fluid Mech. 40, 169–184.

King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a
stratified fluid. Phys. Fluids 21, 116601.

Kistovich, Y. V. & Chashechkin, Y. D. 1999a Generation of monochromatic internal waves in a
viscous fluid. J. Appl. Mech. Tech. Phys. 40, 1020–1028.

Kistovich, Y. V. & Chashechkin, Y. D. 1999b An exact solution of a linearized problem of
the radiation of monochromatic internal waves in a viscous fluid. J. Appl. Math. Mech. 63,
587–594.

Kunze, E. & Llewellyn Smith, S. G. 2004 The role of small-scale topography in turbulent mixing
of the global ocean. Oceanography 17, 55–64.

Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.

Lin, Q., Boyer, D. L. & Fernando, H. J. S. 1994 Flows generated by the periodic horizontal
oscillations of a sphere in a linearly stratified fluid. J. Fluid Mech. 263, 245–270.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004209


356 B. Voisin, E. V. Ermanyuk and J.-B. Flór
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