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Abstract We address the problem of defining Lyapunov exponents for an expansive homeomorphism
f on a compact metric space (X, dist) using similar techniques as those developed in Barreira and Silva
[Lyapunov exponents for continuous transformations and dimension theory, Discrete Contin. Dynam.
Sys. 13 (2005), 469–490]; Kifer [Characteristic exponents of dynamical systems in metric spaces, Ergod.
Th. Dynam. Sys. 3 (1983), 119–127]. Under certain conditions on the topology of the space X where f
acts we obtain that there is a metric D defining the topology of X such that the Lyapunov exponents of
f are different from zero with respect to D for every point x ∈ X. We give an example showing that this
may not be true with respect to the original metric dist. But expansiveness of f ensures that Lyapunov
exponents do not vanish on a Gδ subset of X with respect to any metric defining the topology of X.
We define Lyapunov exponents on compact invariant sets of Peano spaces and prove that if the maximal
exponent on the compact set is negative then the compact is an attractor.
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1. Introduction

In the study of dynamical systems an indication of chaos is given by the so called Lya-
punov exponents or characteristic exponents. This is well established in the case of
differentiable dynamics, and their use in physics was initially based on the following
consideration which in fact goes in the opposite direction: trying to ensure stability of
motions. Let the differential equation ẋ = F (x) define an autonomous dynamical system
where F : Ω ⊂ R

n → R
n is C1 and Ω is open. For x0 ∈ Ω, consider the solution ϕ(t, x0)

of the initial value problem {
ẋ = F (x),
x(0) = x0.

(1)

Assume that all solutions of (1) with initial condition x1 in a neighbourhood of x0 do
exist for t ∈ [0,+∞). An experimenter will probably have an error in the measurements
for initial data slightly altered and the initial data will be x1 = x0 + y instead of x0,
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where y is the error in the measurement which is assumed to be small. The dynamical
behaviour of the nearby solution can be described approximately by the linearization of
ẋ = F (x), that is, by the linear system of differential equations ẏ = DFx(ϕ(t, x0))y where
ϕ(t, x0) is supposed to be the ‘correct’ solution. If, for all small y, the solution ϕ̃(t, y)
of the system ẏ = DFx(ϕ(t, x0))y tends to zero when t → +∞ then this is seen as an
indication of (asymptotic) stability of the motion. A way to capture this is given by the
limit χx0(y) = limt→+∞(1/t) log(‖ϕ̃(t, y)‖) whenever this limit exists. In this case, this
limit gives information about exponential convergence (if χx0(y) < 0 for all y small) or
divergence (total instability if χx0(y) > 0 for all y small) of trajectories with respect to
the initial data problem. If the limit does not exist we can instead consider the lim sup if
we want to capture this by means of any kind of exponential divergence.

In the discrete case (i.e., t = n ∈ Z), when a C1-dynamical system is given by a differen-
tiable map f : M → M , where M is a compact smooth manifold, the Lyapunov exponent
is given for x ∈ M and v ∈ TxM by χ(x, v) = lim supn→∞(1/n) log(‖Dfn

x (v)‖). Here v
takes the place of the ‘error’ y via the inverse of the exponential map expx : TxM → M .

One problem with this approach is that in various situations we cannot assume that
the system given by f is differentiable and therefore the computations roughly described
above make no sense. Moreover, in several cases an experimenter has a collection of data
indicating that the map f is continuous and even differentiable, but has not enough data
to obtain an approximation of the differential map Df . So it seems of interest to introduce
some kind of Lyapunov exponents for the case of a continuous dynamical system. This
has been done by Barreira and Silva [1] for continuous maps f : R

n → R
n; see also [5]

for the case f : X → X where X is a compact metric space.
Indeed, in physics an approach is usually implemented which avoids the calculus of

derivatives for the estimate of the largest Lyapunov exponent, see [10].
We will address the problem of defining Lyapunov exponents for an expansive homeo-

morphism f on a compact metric space (X,dist) using similar techniques to those
developed in [1,5]. Under certain conditions on the topology of the space X where f
acts, we obtain that the Lyapunov exponents are different from zero, indicating that f
presents a chaotic dynamics. We define Lyapunov exponents Λ(f, μ)max and λ(f, μ)min

for an f -invariant measure μ. The case where Λ(f, μ)max > 0 and λ(f, μ)min < 0 can be
interpreted as a weak form of hyperbolicity for f . We prove that if M is a Peano space
then there is γ > 0 such that Λ(f, μ)max > γ and λ(f, μ)min < −γ. We also show that
the hypothesis that M is a Peano space is necessary to obtain positive maximal and
negative minimal Lyapunov exponent. Moreover, we define Lyapunov exponents for K, a
compact f -invariant subset of M and prove that if the maximal Lyapunov exponent of K
is negative then K is an attractor. When f is a diffeomorphism on a compact manifold,
these Lyapunov exponents coincide with the usual ones.

We point out that another definition of Lyapunov exponents, χf (x), was recently intro-
duced in [9], based on concepts developed by Durand-Cartagena and Jaramillo in [3]
using the pointwise Lipschitz constant, similar to that given in [2, Section 2.1], which is
obtained by interchanging the limits taken in equations [5, (5), (6)]. The authors compare
their definition with others in the literature; among the results in [9] it is proved that
for Lyapunov stable points the value of χf (x) is less than or equal to the top Lyapunov
exponent Λ+(x) defined in [5], and in [9, Theorem 3.1] it is proved that these exponents
coincide with those in [2]. Also in [9] it is proved that the new exponents coincide with
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the classical ones for a large class of repellers and for hyperbolic sets of differentiable
maps. The authors also discuss the relation of the new exponents with the dimension
theory of dynamical systems for invariant sets of continuous transformations.

Let us observe that to us, from the mathematical point of view, there is no reason
to choose one or other definition of Lyapunov exponents to work with, and we adopted
that of [5], which seems more appropriate to apply in experimental sciences, where the
knowledge of derivatives is often substituted by numerical approximations (see [10]).

2. Lyapunov exponents for expansive homeomorphisms

Let f : M → M be a homeomorphism defined on a compact metric space (M,dist). Fol-
lowing [5], we define the maximal and minimal Lyapunov exponents with respect to the
distance dist : M × M → R for a homeomorphism f . Assume M has no isolated points.

Given N ∈ N and x ∈ M , we define the N -dynamical ball at x with radius δ by

B∗
x(δ,N) = {y ∈ M \ {x} : dist(f j(x), f j(y)) < δ, ∀ j = 0, 1, . . . , N}.

If N < 0, define

B∗
x(δ,N) = {y ∈ M \ {x} : dist(f j(x), f j(y)) < δ, ∀ j = N,N + 1, . . . ,−1, 0}.

For n ∈ Z, δ > 0 and x ∈ M , define

Aδ(x, n) = sup
y∈B∗

x(δ,n)

{
dist(fn(x), fn(y))

dist(x, y)

}
, aδ(x, n) = inf

y∈B∗
x(δ,n)

{
dist(fn(x), fn(y))

dist(x, y)

}
.

Remark 2.1. Note that Aδ(x, n) and aδ(x, n) can be interpreted respectively as the
maximal and minimal distortion of f on B∗

x(δ,N).

Let μ be a Borel f -invariant probability measure and assume that there is ε0 > 0 such
that, for all 0 < δ < ε0,

sup
n∈Z\{0}

1
|n|

∫
M

| log(Aδ(x, n))|μ(dx) < ∞ (2)

∣∣∣∣ inf
n∈Z\{0}

1
|n|

∫
M

| log(aδ(x, n))|μ(dx)
∣∣∣∣ < ∞.

In this case we define

Λ+
δ (x) = lim sup

n→+∞
1
n

log(Aδ(x, n)) and λ+
δ (x) = lim sup

n→+∞
1
n

log(aδ(x, n))

and, for n < 0,

Λ−
δ (x) = − lim sup

n→−∞
1
n

log(Aδ(x, n)) and λ−
δ (x) = − lim sup

n→−∞
1
n

log(aδ(x, n)).

The following result is proved in [5, Theorem 1].
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Theorem 2.2. For μ-almost every x ∈ M , the limits

Λ+
δ (x) = lim

n→+∞
1
n

log(Aδ(x, n)), λ+
δ (x) = lim

n→+∞
1
n

log(aδ(x, n)),

Λ−
δ (x) = − lim

n→−∞
1
n

log(Aδ(x, n)), λ−
δ (x) = − lim

n→−∞
1
n

log(aδ(x, n))

exist. Moreover, Λ+
δ (x) = −λ−

δ (x), λ+
δ (x) = −Λ−

δ (x), Λ+
δ (x) and λ+

δ (x) are f -invariant
μ-almost everywhere (a.e.). Similarly for Λ−

δ (x) and λ−
δ (x).

Since we are assuming that (2) is valid and Aδ(x, n) decreases when δ decreases to
zero, the limit Λ+(x) = limδ→0 Λ+

δ (x) exists. Analogously, since aδ(x, n) increases when
δ decreases, the limit λ+(x) = limδ→0 λ+

δ (x) exists. Similarly, Λ−(x) and λ−(x) exist
μ-a.e. Thus we introduce the following definition.

Definition 2.1. The Lyapunov exponents for f at x ∈ M are defined by

Λ+(x) = lim
δ→0

Λ+
δ (x), λ+(x) = lim

δ→0
λ+

δ (x)

and similarly for Λ−(x) and λ−(x). As proved above, these quantities exist μ-a.e. and are
f -invariant.

3. Lyapunov exponents with respect to Fathi’s metric

Next we compute these Lyapunov exponents for an expansive homeomorphism. To do
so, let us recall that a homeomorphism f : X → X, X a compact metric space, is expan-
sive if there exists α > 0 such that, for all x, y ∈ X, if x �= y then there is n ∈ Z such
that dist(fn(x), fn(y)) > α. We will obtain these Lyapunov exponents with respect to a
hyperbolic metric adapted to the expansive homeomorphism, given by [4, Theorem 5.1].

Theorem 3.1. Let f : M → M be an expansive homeomorphism of the compact met-
ric space (M,dist). Then there exist a metric d : M × M → R on M , defining the same
topology as dist, and numbers k > 1, ε0 > 0 such that,

∀x, y ∈ M, max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ min{kd(x, y), ε0}.

Moreover, both f and f−1 are Lipschitz for d.

Remark 3.2. The existence of an expansive homeomorphism on M implies that the
topological dimension of M is finite; see [7].

To define Λ±(x) and λ±(x) for x ∈ M , we need to show that condition (2) is fulfilled.
To this end, we first verify the following lemma.
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Lemma 3.3. Let μ be a Borel probability measure invariant by f : M → M . If f is
expansive and d is the distance defined by Theorem 3.1 then

sup
n∈Z\{0}

1
|n|

∫
M

| log(Aδ(x, n))|μ(dx) < ∞

and ∣∣∣∣ inf
n∈Z\{0}

1
|n|

∫
M

| log(aδ(x, n))|μ(dx)
∣∣∣∣ < ∞.

Proof. By Theorem 3.1, f and f−1 are Lipschitz with respect to the metric d, that
is, there is a constant K > 1 such that

∀x, y ∈ M : x �= y,
d(f(x), f(y))

d(x, y)
≤ K and

d(f−1(x), f−1(y))
d(x, y)

≤ K.

From the last inequality it follows that, for all x, y ∈ M, x �= y, d(f(x), f(y))/d(x, y) ≥
1/K. Thus, supx,y∈M,x �=y(d(fn(x), fn(y))/d(x, y)) ≤ K |n| for all n ∈ Z, which implies
that log(|Aδ(x, n)|) ≤ |n| log(K) for all δ > 0, x ∈ M and n ∈ Z. Therefore

sup
n∈Z\{0}

1
|n|

∫
M

| log(Aδ(x, n))|μ(dx) < ∞ and condition (2) holds.

Moreover, since

aδ(x, n) = inf
y∈B∗

x(δ,n)
{d(fn(x), fn(y))/d(x, y)} =

(
sup

y∈B∗
x(δ,n)

{d(x, y)/d(fn(x), fn(y))}
)−1

=
1

Aδ(fn(x),−n)

and μ is f -invariant, we also have that∣∣∣∣ inf
n∈Z\{0}

1
|n|

∫
M

| log(aδ(x, n))|μ(dx)
∣∣∣∣ < ∞.

The proof is complete. �

Note that Lemma 3.3 and Theorem 2.2 imply that, for any f -invariant measure μ, the
numbers Λ+(x), λ+(x), Λ−(x), λ−(x) do exist μ-a.e. and are f invariant.

4. Lyapunov exponents for expansive homeomorphisms defined on Peano
spaces

Recall that M is a Peano space if it is a connected, locally connected compact metric
space. Next we give a positive lower bound of Λ+(x) and a negative lower bound of λ+(x)
for an expansive homeomorphism f : M → M defined on a Peano space. As remarked
above, this can be interpreted as a weak kind of hyperbolicity condition.
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Theorem 4.1. Let (M,d) be a Peano space, f : M → M an expansive homeo-
morphism and γ = log(k), k > 1, the constant given by Theorem 3.1. Then, for all
x ∈ M ,

Λ+(x) ≥ γ and λ+(x) ≤ −γ.

Proof. Given a point x ∈ M , there is y ∈ M\{x} close to x such that d(f(x), f(y)) ≥
k d(x, y), where d(·, ·) is the distance given by Theorem 3.1. Otherwise, by the
theorem mentioned, for some δ > 0 and every point y ∈ B(x, δ) we have d(f(x), f(y)) <
k d(x, y), and therefore for all y ∈ B(x, δ) we have d(f−1(x), f−1(y)) ≥ k d(x, y). Thus
B(f−1(x), δ) ⊂ f−1(B(x, δ)). Moreover, we also have for all y ∈ B(f−1(x), δ) that
d(f−2(x), f−1(y)) ≥ k d(f−1(x), y). For we already know that, for every point z ∈
B(f−1(x), δ), the inequality d(f(z), f(f−1(x))) ≤ (1/k) d(f−1(x), z) holds. By induc-
tion we obtain a sequence of balls B(f−n(x), δ) such that, for all y ∈ B(f−n(x), δ), we
have d(f−n−1(x), f−1(y)) ≥ k d(f−n(x), y). Let z be an α-limit point of the sequence
{f−n(x)}. Then z is a Lyapunov stable point of f , contradicting that there are no
such points if f : M → M is expansive and M is compact connected and locally con-
nected; see [6, Proposition 2.7]. Hence, for every δ > 0; there is y ∈ B(x, δ)\{x} such that
d(f(x), f(y)) ≥ k d(x, y). Thus, given n > 0, taking ε0 > 0 as in Theorem 3.1, and δ > 0
sufficiently small in B∗

x(δ, n) = {y ∈ M \ {x} : d(f j(x), f j(y)) ≤ δ ∀ j = 0, 1, . . . , n}, we
obtain d(f j(x)f j(y)) ≤ ε0 for all j = 1, 2 . . . , n. Therefore

Aδ(x, n) = sup
y∈B∗

x(δ,n)

{d(fn(x), fn(y))/d(x, y)} ≥ kn,

implying that Λ+
δ (x) = limn→+∞(1/n) log(Aδ(x, n)) ≥ log(k) = γ > 0. Similarly, λ−

δ (x) ≤
− log(k) = −γ. Since this is valid for any small δ > 0, letting δ → 0, we obtain that
Λ+(x) ≥ γ and λ+(x) ≤ −γ, finishing the proof. �

Remark 4.2. As proved in [5] (see also [1]), when f : M → M is a diffeomorphism
on a compact manifold these Lyapunov exponents coincide with the usual ones. The
relations between classic Lyapunov exponents (under smoothness assumptions) and expo-
nents with topological flavour are treated by Kifer in [5, Remark 1], Barreira and Silva
in [1, Theorem 5] and Bessa and Silva in [2, Theorem A]. In [1] some assumptions are
considered beyond the differentiability. They considered a C1+α map f : R

m → R
m with

an f -invariant compact repeller on which f has α-bunched derivative and prove that in
this case the new Lyapunov exponents coincide with the classical ones. Let us recall that,
for α ∈ (0, 1], we say that a differentiable map f : R

m → R
m has α-bunched derivative on

the set J if Dfx is invertible and ‖(Dfx)−1‖1+α‖Dfx‖ < 1 for every x ∈ J . But the defi-
nitions of Lyapunov exponents given in [2, Subsection 2.1] enable the authors to obtain,
in the differentiable case, the equality of the classical Lyapunov exponents with those
that they defined without additional assumptions about the derivatives; see [2, Theorem
2.3].

Next we construct an example of an expansive homeomorphism defined on a compact
connected metric space exhibiting Lyapunov stable points, showing that the hypothesis
of locally connectedness cannot be neglected in Theorem 4.1.
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Theorem 4.3. The hypotheses of locally connectedness cannot be neglected in
Theorem 4.1.

Proof. Let fA : T
2 → T

2 be the Anosov map in the 2-torus T
2 induced by the matrix

A =
(

1 1
1 2

)
. (3)

Let p the fixed point of fA corresponding to the origin and vp, ‖vp‖ = 1, be an eigenvector
for the larger eigenvalue λ < 1 of A. Then the natural projection of {tvp, t ∈ R} into T

2

is dense in T
2 and corresponds to the stable manifold W s(p) of the fixed point p.

Now consider the interval I = [p, q] ⊂ R
3, perpendicular to the tangent space TT2(p) ⊂

R
3, and in R × R × I let H = {(p, q, q + tvp); t ≥ 0} and let A(p, q, q + tv) = (p, q, q +

λtv). Thus A induces a homeomorphism A : R
2 ×H → R

2 ×H. Note that H is a copy
of the stable manifold W s(p). Factoring out the integer lattice Z × Z in R

2, we obtain a
homeomorphism f : T

2 ∪ H → T 2 ∪H. As H is a copy of W s(p), it is a curve asymptotic
to T

2 and we obtain that X = T
2 ∪H is compact and connected. Furthermore, it is also

closed for W s(p) is asymptotic to T
2. We finally define a dynamics in X: in T

2 the
dynamics is induced by A and in H is the dynamics of W s(p). It turns out that this
dynamics in X is expansive. But the points in W s(p) = H are stable. In particular, so is
the point q, implying that the q has a unique Lyapunov exponent, which is strictly less
than zero, finishing the proof. �

5. Lyapunov exponents with respect to the original metric

A question that arises is what occurs when we compute Lyapunov exponents with respect
to the original metric. Observe that the bound γ > 0 is uniform with respect to every point
x ∈ M . But this may not be true with respect to another metric defining the topology of
M . Indeed, consider in T 2 = R

2/Z
2 the diffeomorphism given by

F (x, y) =
(

2x + y − 1
2π

sin(2πx) mod 1, x + y − 1
2π

sin(2πx) mod 1
)

.

The fixed point (x, y) = (0, 0) is non-hyperbolic (the matrix DF(0,0) = ( 1 1
0 1 )) and hence

the classical Lyapunov exponents of F in (0, 0) vanish. But F is an expansive homeomor-
phism of T 2 and hence conjugated to an Anosov diffeomorphism (in fact the linear one
given by A(x, y) = (2x + y, x + y)), [6].

Observe that, with respect to the maximal Lyapunov exponent as defined in
Definition 2.1, there is a positive continuous function γ(x, y) such that γ(x, y) → 0 when
(x, y) → (0, 0)* and ‖DF k

(x,y)‖ ≤ (1 + γ(x, y)k)‖DF k
(0,0)‖ for all (x, y) ∈ B∗

(0,0)(ε, n) and
k = 0, . . . , n.

* Indeed γ(x, y) = 4(1 − cos(2π
√

x2 + y2)) is a bound, as can be easily checked.

https://doi.org/10.1017/S0013091519000579 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000579


420 M. J. Pacifico and J. L. Vieitez

Let v ∈ R
2 such that (x, y) = exp(0,0) v, where ‖v‖ = r. Then if n + 2 is a linear bound

to ‖DFn
(0,0)‖ we get

dist(Fn(x, y), Fn(0, 0)) ≤
∫ 1

0

‖DFn(sv)‖ds ≤ (1 + γ(x, y))n (n + 2).

It follows that Aδ(0, 0) ≤ (1 + γ(x, y))n (n + 2) and so Λ+
δ ((0, 0) ≤ log(1 + γ(δ)), where

‖(x, y)‖ ≤ δ, implying that Λ+(0, 0) vanishes when δ → 0. Thus we cannot expect to have
positive Lyapunov exponents at every point of M .

But, although we do not in general have a positive bound for Λ+(x) in the original
metric, Theorem 5.5 below proves that Λ+ is positive for a Baire set of the second category
(i.e., a Gδ subset of M), and that λ+ < 0 also for a Gδ subset. Since the intersection
of Gδ subsets is again a Gδ subset it follows in particular that Λ+ > 0 and λ+ < 0
simultaneously in a residual (hence dense) subset of M .

Remark 5.1. By the definition of A+
ε (x, n) it is easy to prove that A+

ε (x, n + m) ≤
A+

ε (x, n) · A+
ε (fn(x),m), that is, log(A+

ε (x, n)) is subadditive.

Let us recall that in a compact Peano space M , given a pair of points x, y ∈ M , a
geodesic (hence rectifiable) arc joining them is defined; see [8]. This arc, say ξ, can be
parameterized by a function ϕ : [0, 1] → M , ξ = ϕ([0, 1]), ϕ(0) = x and ϕ(1) = y. Hence
we may speak of a point z between x and y inside the arc ξ; meaning that there is
t ∈ (0, 1) such that ϕ(t) = z.

We will denote a subarc ϕ([t0, t1]) where ϕ(t0) = z and ϕ(t1) = w by [zw].

Theorem 5.2. Let M be a compact Peano space equipped with a metric dist : M ×
M → R

+ ∪ {0} and f : M → M an expansive homeomorphism such that there is K > 0
such that dist(f(x), (f(y))/dist(x, y) ≤ K for every pair x, y ∈ M , x �= y. Then Λ+(x) <
+∞ and there are points x ∈ M such that Λ+(x) > 0.

Proof. The existence of K ensures that Λ+(x) < +∞. Let 0 < ε < α/2, where α is an
expansivity constant. Let x, y ∈ M , ε/2 > dist(x, y) = δ > 0. Join them with a geodesic
arc ξ of length, say, �. There is j0 ∈ Z such that dist(f j0(x), f j0(y)) ≥ ε. We may assume
without loss of generality that j0 > 0.

We pick y′ ∈ ξ such that, for every point between x and y′, no point z has the
property that dist(f j0(x), f 0j(z)) ≥ ε, which implies that dist(f j0(x), f j0(y′)) = ε More-
over, we choose 0 < j0 minimum with the property that dist(f j0(x), f j0(y′)) = ε. Clearly
length([xy′]) ≤ �. Renaming the points if necessary, let us assume that y = y′. Let z be the
middle point of [xy] in the arc ξ. By the triangle inequality either dist(f j0(x), f j0(z)) ≥
ε/2 or dist(f j0(y), f j0(z)) ≥ ε/2. Again, replacing z by another point z′ if necessary, we
may assume that equality holds and the point z′ is at a distance less than or equal to
z from the respective point x or y and, for every point w between [xz] or between [zy],
we have that dist(f j0(x), f j0(w)) < ε/2. To fix ideas, suppose that dist(f j0(x), f j0(z)) =
ε/2. By compactness of M there is N0 > 0, depending only on ε/2 and f , such that
dist(f j0+j1(x), f j0+j1(z) ≥ ε for some 0 < j1 < N0. Again we may assume that equality
holds, reducing the distance between x and z if necessary, and that, for all points w of [xz]
different from z, we have dist(f j0+j1(x), f j0+j1(w)) < ε. Moreover, we choose j1 such that,
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for every 0 < i < j1 and every point w ∈ [xz], the inequality dist(f j0+i(x), f j0+i(w)) < ε
holds. Let us rename x1 = x and y1 = z. On the other hand, if dist(f j0(y), f j0(z)) = ε/2
then there would exist j1, 0 < j1 < N0, such that dist(f j0+j1(y), f j0+j1(z) ≥ ε, and
assuming, as we can, that equality holds and that all conditions similar to those described
above hold, we rename x1 = y and y1 = z. We then repeat this procedure, finding a point
z1 in the arc ξ such that [x1z1] and [z1y1] have the same length and such that either
dist(f j0+j1(x1), f j0+j1(z1) ≥ ε/2 or dist(f j0+j1(y1), f j0+j1(z1) ≥ ε/2. As we noticed pre-
viously, we may assume that equality holds and all the conditions previously prescribed
are fulfilled. In the case where dist(f j0+j1(x1), f j0+j1(z1) = ε/2 we rename x2 = x1 and
y2 = z1, otherwise x2 = y1 and y2 = z1. Again there exist j2 > 0, j2 < N0 such that
dist(f j0+j1+j2(x2), f j0+j1+j2(y2)) ≥ ε and, repeating the previous procedure infinitely
many times, we find a pair of sequences {xn} and {yn} in ξ such that the arcs [xn, yn] ⊂ ξ
have the property that [xn, yn] ⊂ [xn−1, yn−1] for every n ≥ 1, dist(xn, yn) → 0 and the
length of [xn, yn] is less than or equal to �/2n. Moreover, we have that

dist(f j0+
∑ n

k=1 jk(xn), f j0+
∑ n

k=1 jk(yn)) = ε for all 0 < jk < N0,

and k = 1, 2, . . . , n,

dist(f j0+
∑ n−1

k=1 jk+i(xn), f j0+
∑ n−1

k=1 jk+i(yn)) < ε for 0 ≤ i < jn.

The previous conditions imply that in the arc ξ there is a unique β such that xn → β
and yn → β when n → +∞. Now, it is easy to see that for every n ≥ 1 we have

dist(f j0+
∑ n

k=1 jk(xn), f j0+
∑ n

k=1 jk(β)) ≥ ε/2

or
dist(f j0+

∑ n
k=1 jk(yn), f j0+

∑ n
k=1 jk(β)) ≥ ε/2.

This implies that Aε(β, j0 +
∑n

k=1 jk) ≥ ε/2/�/2n = 2n−1ε/� and so

1
j0 +

∑n
k=1 jk

log
(

Aε

(
β, j0 +

n∑
k=1

jk

))

≥ 1
j0 + nN0

log(2n−1ε/�) → 1
N0

log(2) when n → ∞.

Thus,

Λ+
ε (β) =

1
N0

log(2) > 0.

If we take ε/2 < ε′ < ε the same bound N0 can be used, because if

dist(f j+
∑ n

k=1 jk(xn), f j+
∑ n

k=1 jk(yn)) = ε

then a fortiori
dist(f j+

∑ n
k=1 jk(xn), f j+

∑ n
k=1 jk(yn)) ≥ ε′,

and we may take points x′
n between xn and β, and y′

n between β and yn, such that
equality above holds. Therefore Λ+

ε′(β) ≥ (1/N0) log(2) too.
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Finally, if 0 < ε′ ≤ ε we may choose xn and yn so close to each other such that
dist(xn, yn) < ε′ and since

dist(f j0+
∑ n

k=1 jk(xn), f j0+
∑ n

k=1 jk(yn)) = ε, for 0 < jk < N0 and for all k = 1, 2, . . . , n,

there are 1 ≤ h < n and 0 < i < N0 such that

dist(f j0+
∑ h

k=1 jk+i(xn), f j0+
∑ h

k=1 jk+i(yn)) ≥ ε′,

with 0 < jk < N0 for every k = 1, 2, . . . , h,

and also with the property that dist(fs(xn), fs(yn)) < ε′ for every 0 ≤ s <

j +
∑h

k=1 jk + i. Moreover, h → +∞ when n → +∞ since dist(xn, yn) → 0 when n →
+∞. Therefore, lim supn→+∞ Λ+

ε′(β) ≥ (1/N0) log(2) for every ε′ > 0. Indeed, we have

Aε′

(
β, j0 +

h∑
k=1

jk + i

)
≥ ε′/2

�/2n
= 2n−1ε′/�

and hence

1

j0 +
∑h

k=1 jk + i
log

(
Aε′

(
β, j0 +

h∑
k=1

jk + i

))
≥ 1

j0 + (h + 1)N0
log(2n−1ε′/�)

≥ 1
j0 + nN0

log(2n−1ε′/�) → 1
N0

log(2) when n → +∞.

Letting ε ↘ 0, it follows that Λ+(β) > 0 and, moreover, its value is bounded from below,
finishing the proof. �

Remark 5.3. Since the initial points x, y are chosen arbitrarily we conclude that
the set of points where Λ+ > 0 constitute a dense subset D of M . Moreover, Λ+ > 0
is bounded away from zero on D. Similarly, we can prove that the set of points where
λ+ < 0 is dense in M too and that λ+ is bounded from above.

Proposition 5.4. Let M and f as in Theorem 5.2. Let A+
ε (x0, n) = γ and δ > 0.

There is r > 0 such that, for every x ∈ B(x0, r), the inequality A+
ε (x, n) > γ − δ holds,

that is, A+
ε (x, n) is bounded from below by a positive number. That is, A+

ε (·, n) is lower
semi-continuous.

Proof. Aε(x0, n) being a supremum, for any δ, 0 < δ < ε, there is yn ∈ B∗
x0

(ε, n)
such that γ ≥ dist(fn(x0), fn(yn))/dist(x0, yn) > γ − δ/2. Since fn is continuous there is
r > 0 such that if x ∈ B(x0, r)\{x0} then x ∈ B∗

x0
(ε, n), dist(f j(x0), f j(x)) < η, for every

j = 0, 1, . . . , n, and dist(fn(x), fn(yn))/dist(x, yn) > γ − δ. Choosing 0 < η < min{ε −
dist(f j(x0), f j(yn)) j = 0, 1, . . . , n} and the corresponding r > 0, we have that Aε(x, n) >
γ − δ. Thus, the thesis follows. �

Theorem 5.5. There is a residual subset R+ of M such that, for every x ∈ R+, we
have Λ+(x) > 0.
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Proof. Since log(A+
ε (x)) is subadditive, there exists a limit limn→+∞(log(Aε

(x, n))/n) = Λ+
ε (x). Since Aε(x, n) is lower semi-continuous on x, it is positive and

bounded from below in a dense open subset by Proposition 5.4 and Remark 5.3. Thus
Λ+

ε (x) is positive and bounded from below in that open dense subset. Taking the count-
able intersection on 1/k, k ∈ Z

+, of the open dense subsets where Λ+
1/k(x) > 0, we find a

residual subset where Λ+ > 0. �

Analogously we may find R− residual where λ− < 0. Since the intersection of residual
subsets is again a residual subset we may conclude that, for f : M → M an expansive
homeomorphism defined on a compact Peano space, there is a residual (in particular
dense) subset of M where both Lyapunov exponents defined do not vanish.

6. Negative exponents on compact sets and attractors

In this section we extend the definition of the Lyapunov exponent for compact invari-
ant sets K ⊂ M . The main result in this section establishes that negative (respectively,
positive) Lyapunov exponents for compact invariant sets on Peano spaces imply that the
compact set is an attractor (respectively, repeller), improving [9, Theorem 5.1].

Let M be a (non-trivial) compact Peano space and f : M → M a homeomorphism. For
A ⊂ M , A �= ∅ and x ∈ M , we define dist(x,A) = inf{dist(x, y) : y ∈ A}.

Let K ⊂ M be a compact f -invariant subset of M (i.e., f(K) = K). For N ∈ N, define

B∗
K(δ,N) = {y ∈ M \ K : dist(f j(y),K) < δ, ∀ j = 0, 1, . . . , N}.

If N < 0, define

B∗
K(δ,N) = {y ∈ M \ K : dist(f j(y),K) < δ, ∀ j = N,N + 1, . . . ,−1, 0}.

For n ∈ Z and δ > 0, let us define

Aδ(K,n) = sup
y∈B∗

K(δ,n)

{
dist(K, fn(y))

dist(K, y)

}
,

aδ(K,n) = inf
y∈B∗

K(δ,n)

{
dist(K, fn(y))

dist(K, y)

}
.

Let us also define

Λ+
δ (K) = lim sup

n→+∞
1
n

log(Aδ(K,n)) and λ+
δ (K) = lim sup

n→+∞
1
n

log(aδ(K,n)),

Λ−
δ (K) = − lim sup

n→−∞
1
n

log(Aδ(K,n)) and λ−
δ (K) = − lim sup

n→−∞
1
n

log(aδ(K,n)).

Since fn(K) = K and B∗
K(δ, n + k) ⊂ B∗

K(δ, n), if k ≥ 0, we have

Aδ(K,n + k) = sup
y∈B∗

K(δ,n+k)

{dist(K, fn+k(y))/d(K, y)}

= sup
y∈B∗

K(δ,n+k)

{(
dist(K, fn(y))

d(K, y)

)
·
(

dist(K, fn+k(y))
d(K, fn(y))

)}
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≤ sup
y∈B∗

K(δ,n)

{dist(K, fn(y))/d(K, y)} · sup
z∈B∗

K(δ,k)

{dist(K, fk(z))/d(K, z)}

= Aδ(K,n) · Aδ(K, k).

Therefore, letting Y (δ,K, n) = log(Aδ(K,n)), we obtain a subadditive function and there
is the limit Λ+(K, δ) of (1/n) log(Aδ(K,n)) for n → +∞. Since log(Aδ(K,n)) is monotone
in δ, there exists Λ+(K) = limδ→0 Λ+(K, δ).

As for the case of a point x ∈ M , the following theorem can be proved.

Theorem 6.1. Λ+
δ (K) = −λ−

δ (K) and λ+
δ (K) = −Λ−

δ (K).

Proof. We have that

aδ(K,n) = inf
y∈B∗

K(δ,n)

{
dist(K, fn(y))

dist(K, y)

}
=

(
sup

y∈B∗
K(δ,n)

{
dist(K, y)

dist(K, fn(y))

} )−1

=
(

sup
y∈B∗

K(δ,−n)

{
dist(K, f−n(y))

dist(K, y)

})−1

= A−1
δ (K,−n).

Therefore λ+
δ (K) = limn→+∞(1/n) log(aδ(K,n)) = − limn→−∞(1/|n|) log(Aδ(K,−n)) =

−Λ−
δ (K). Similarly, it can be proved that Λ+

δ (K) = −λ−
δ (K). �

Again, since Λ+
δ (K) is monotone with δ, the limit Λ+(K) = limδ→0+ Λ+

δ (K) exists.
Similarly, there exists λ+(K) = limδ→0+ λ+

δ (K).
Given a compact invariant set K ⊂ M , we say that K is an attractor if there is a

neighbourhood U of K such that if y ∈ U then limn→+∞ dist(fn(y),K) = 0. Analo-
gously, K is a repeller if there is a neighbourhood U of K such that if y ∈ U then
limn→−∞ dist(fn(y),K) = 0.

Theorem 6.2. Let M be a compact Peano space and K ⊂ M be an invariant com-
pact set. If Λ+(K) < 0 then K is an attractor. Analogously, if λ−(K) > 0 then K is a
repeller.

Proof. Since Λ+(K) = limδ→0 Λ+(K, δ) < 0 there is δ0 > 0 such that, for all 0 <
δ ≤ δ0, we have Λ+(K, δ) < 2

3Λ+(K) < 0. Since limn→+∞(1/n) log(Aδ(K,n)) = Λ+(K, δ)
there is n0 ∈ N such that, for all n ≥ n0 = n0(δ0), we have (1/n) log(Aδ0(K,n)) < 1

2
Λ+(K) < 0. A fortiori, for all n ≥ n0 and 0 < δ ≤ δ0, we have (1/n) log(Aδ(K,n)) <
1
2Λ+(K) too. Let us write −γ = 1

2Λ+(K). Choose δ0 > δ1 > 0 such that if dist(y,K) <
δ1 then dist(f j(y),K) < δ0, for all j = 0, 1, 2, . . . , n0. Finally, let U = {y ∈ M :
dist(y,K) < δ1}. If y ∈ U , since

1
n

log(Aδ(K,n)) =
1
n

log
(

sup
y∈B∗

K(δ,n)

{
dist(K, fn(y))

dist(K, y)

} )
< −γ,
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we have that dist(K, fn(y))/dist(K, y) < e−γn. But dist(y,K) < δ1 < δ0 and so
dist(K, fn(y)) < e−γn δ0 < δ0 for all n ≥ n0 and we can apply induction. Thus
dist(K, fn(y)) tends to zero when n → +∞ and K is an attractor.

The proof that λ−(K) > 0 implies that K is a repeller is similar. �
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