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We discuss travelling wavefronts of a degenerate and singular parabolic equation in
non-divergent form with changing sign sources. Necessary and sufficient conditions
will be given for the existence of smooth or non-smooth and non-decreasing or
non-increasing solutions. We also study the regularity of such solutions.

1. Introduction

We consider mainly sharp conditions for the existence of smooth travelling wave-
fronts for the following parabolic equation in non-divergence form

∂u

∂t
= um div(|∇u|p−2∇u) + uqf(u), t � 0, x ∈ R

N , (1.1)

where m ∈ R, p > 1, q > 0 and f(s) is a smooth and sign-changing function with
some typical structure conditions.

Equation (1.1) is degenerate at the points where u = 0 if m > 0, and at the
points where ∇u = 0 if p > 2, while it is also singular at the points where u = 0 if
m < 0, and at the points where ∇u = 0 if 1 < p < 2. Another peculiarity is that
the equation is known as the non-divergence-form equation, although, in the case
in which m < 1, on replacing u by u1/(1−m), (1.1) could be transformed into the
following well-known polytropic filtration equation with a source:

∂u

∂t
= (1 − m) div(|∇uλ|p−2∇uλ) + g(u), λ =

1
1 − m

> 0.

During the last few years, these kinds of equations have received attention from
several authors. Some special properties of solutions have been discovered for the
case when m = 1 and p = 2, which appears in a biological model describing the
diffusive process for biological species (see, for example, [1, 4, 5]). In [8], Friedman
and McLeod studied another typical case, when m = p = 2, appearing in plasma
physics. In addition, there are also some further works for the case when m > 1 and
p = 2 arising in the theory of damage mechanics (see, for example, [3, 20, 22, 23]).
In these works some properties of solutions, such as the existence and the blow-up
properties, were investigated. For the case in which 0 < m < 1, many works have

1179
c© 2009 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210508000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000231


1180 J. Yin and C. Jin

been devoted to properties of solutions (see, for example, [18,24] and the references
therein).

We are mainly interested in travelling wave solutions to equation (1.1). By a
travelling-wave solution, we mean a solution u(x, t) of (1.1) in Q = {(x, t); x ∈
R

N , t > 0} of the form u(x, t) = ϕ(γ · x + t) with γ being a given vector, and
ϕ being a one-dimensional function. It was Luther [12] who first made mention of
travelling waves as solutions for a certain reaction diffusion equation in a report
drawing an analogy between the conduction of a nerve pulse and a crystallization
process. A modern version of his paper can be seen in [2]. The importance of special
solutions in travelling-wave form to equations like (1.1) lies in the fact that they
give insight into the behaviour of some classes of solutions of the same equation
with arbitrary initial conditions. In 1937, an important contribution was made
in two separate works [7, 11], both of which are related to the description of the
space–time distribution of an advantageous gene in a population which lives in a
one-dimensional domain. In [11], Kolmogorov et al . introduced a formal way in
which one can analyse the existence and the stability of the travelling wave for the
case when it is a solution of a type of parabolic equation. They stated their results
on existence for the one-dimensional heat equation with a source like u(1 − u) and
with the Heaviside function as an initial condition and also showed the stability
of travelling wave solutions. Since then, much research has been carried out in
an attempt to extend the original results to more complicated equations which
arise in a variety of fields. Many kinds of linear or semilinear equations have been
investigated (see, for example, [6, 10, 21] and the references therein). It should be
noted that only a few papers are concerned with travelling-wave solutions of the
degenerate or singular diffusion equations [9,13–16,19]. In particular, a typical case
when p = 2 for the non-divergence-form equation has also been investigated in [19].

The aim of this paper is to discuss the existence and regularity of smooth travel-
ling wavefronts of (1.1), namely, special solutions of the form u(x, t) = ϕ(γ · x + t)
with γ being a given vector. If we simply replace γ · x + t by t, then (1.1) is trans-
formed into

−|γ|pϕm(|ϕ′|p−2ϕ′)′(t) + ϕ′(t) = ϕq(t)f(ϕ),

which, for convenience of argument, will also be transformed into the following
system:

ψ′(t) = cϕ−m(|ψ|(2−p)/(p−1)ψ − ϕqf(ϕ)),

ϕ′ = |ψ|(2−p)/(p−1)ψ,

}
(1.2)

where ψ(t) = |ϕ′|p−2ϕ′ and c = 1/|γ|p is the wave speed.
Now we introduce the definition of travelling-wave solutions.

Definition 1.1. A function u(x, t) = ϕ(γ ·x+ t) with a given 0 �= γ ∈ R
N is called

a travelling wavefront solution of (1.1) if ϕ(t) : C(R) → [0, 1] and there exist t1, t2
with −∞ � t1 < t2 � +∞ such that

(i) ϕ(t) ∈ C2(t1, t2) and satisfies

−|γ|pϕm(|ϕ′|p−2ϕ′)′(t) + ϕ′(t) = ϕq(t)f(ϕ) for any t ∈ (t1, t2), (1.3)

(ii) ϕ(t1) = θ1 and ϕ(t2) = θ2, where θ1 and θ2 are equilibria of (1.3),
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(iii) ϕ(t) is strictly monotone in the interval (t1, t2), ϕ(t) = θ1 for t ∈ (−∞, t1)
and ϕ(t) = θ2 for t ∈ (t2, +∞),

(iv) if ϕ(t1) < ϕ(t2), then ϕ′(t2) = 0, while if ϕ(t1) > ϕ(t2), then ϕ′(t1) = 0.

Furthermore, if ϕ′
+(t1) = ϕ′

−(t2) = 0, we call ϕ(t) a smooth travelling-wavefront
solution, where ϕ′

+ and ϕ′
− denote the right and the left derivatives of ϕ.

Since it has been adopted by many authors, we restrict ourselves mainly to the
typical Huxley source, that is, the bistable case, under which we discuss the exis-
tence of smooth travelling wavefronts with at most one wave speed. Throughout
this paper, we assume that

(H) f(1) = f(a) = 0, f ′(1) < 0, f(s) < 0 for s ∈ [0, a) and f(s) > 0 for s ∈ (a, 1),
where a ∈ (0, 1) is a given constant.

It is worth noting that the solution may not belong to C1(R), though we call
it a smooth solution. We aim to find smooth travelling wavefronts connecting the
two equilibria 0 and 1, which is defined in definition 1.1. In fact, only the so-called
smooth travelling wavefront can be classical, namely only this kind of solution may
be extended into the whole domain (see § 4).

We focus our attention initially on the existence of smooth travelling wavefronts,
including both non-decreasing travelling wavefronts and non-increasing travelling
wavefronts. Sufficient and necessary conditions will be given for the existence of
non-decreasing solutions, non-increasing solutions and non-existence of solutions.
More precisely, (1.1) admits a smooth and non-increasing travelling wavefront if
and only if ∫ 1

0
sq−mf(s) ds < 0 or = −∞,

and in this case, the solution is unique, corresponding to a unique wave speed
c∗. While (1.1) admits a smooth non-decreasing travelling wavefront if and only if
m < 1 and ∫ 1

0
sq−mf(s) ds > 0,

and in this case the solution is still unique, corresponding to a unique wave speed, c∗.
In addition to all the above-mentioned situations, (1.1) always admits non-smooth
travelling wavefronts. After this, we will turn our attention to the regularity of
smooth travelling wavefronts, specifically, the finiteness of t1 for non-decreasing
travelling wavefronts and the finiteness of t2 for non-increasing travelling wave-
fronts.

2. The case m � 1

In this section we consider the case m � 1 and focus our attention on non-increasing
travelling wavefronts. We find that there exists at most one wave speed with which
the corresponding travelling wavefront is smooth. We attempt to determine neces-
sary and sufficient conditions under which the corresponding travelling wavefront
is smooth. Clearly, we have θ1 = 0, θ2 = 1. We see that there is no smooth and
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non-decreasing travelling wavefront for the case when m � 1, and only the smooth
and non-increasing travelling wavefront possibly exists.

Before going further, we first show that ϕ(t) is a smooth and non-decreasing
travelling wavefront of (1.1) with the following asymptotic boundary conditions:

ϕ(t+1 ) = 0, ϕ(+∞) = 1, (2.1)

if and only if ϕ(t) satisfies that

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

ψ1/(p−1) , ϕ ∈ (0, 1),

ψ(0) = ψ(1) = 0,

ψ(ϕ) > 0, ϕ ∈ (0, 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

Remark 2.1. By a smooth travelling wavefront we mean that ψ(0) = ψ(1) = 0,
while a non-smooth travelling wavefront means that ψ(0) �= 0, ψ(1) = 0.

Lemma 2.2. ϕ(ξ) is a smooth and monotone non-decreasing travelling-wave solu-
tion of the problem (1.1) with asymptotic boundary conditions (2.1) for some fixed
speed c > 0 if and only if ψ(ϕ) is a solution of the problem (2.2).

Proof. The necessary condition is now clear from the discussion above. So it suffices
to consider the sufficient one. Let ψ(ϕ) be a solution of the problem (2.2), and let
ϕ(ξ) be a solution of the equation

ϕ′(ξ) = ψ1/(p−1)(ξ).

Without loss of generality, we may assume that ϕ(0) = 1
2 and that ]α, β[ ⊂ R is the

maximal existence interval of ϕ. Firstly, we have

ϕm(|ϕ′|p−2ϕ′)′(ξ) = ϕmψ′(ϕ)ϕ′(ξ)

=
(

c − cϕqf(ϕ)
ψ1/(p−1)

)
ϕ′

= cϕ′ − cϕqf(ϕ).

That is, ϕ(ξ) satisfies (1.3). Moreover, ϕ(α+) = 0 and ϕ(β−) = 1. Therefore, when
both α = −∞ and β = +∞, ϕ is a smooth travelling wavefront, while if α > −∞,
then

lim
ξ→α+

ϕ′(ξ) = lim
ϕ→0+

ψ1/(p−1)(ϕ) = 0.

Similarly, if β < +∞, we have

lim
ξ→β−

ϕ′(ξ) = lim
ϕ→1−

ψ1/(p−1)(ϕ) = 0.

Furthermore, by virtue of (1.3) itself, we also have

lim
ξ→β−

(|ϕ′|p−2ϕ′)′(ξ) = 0.

Then we can extend the solution to [β,+∞) by taking ϕ(ξ) = 1 on [β,+∞). Thus,
ϕ(ξ) is a smooth travelling wavefront. The proof is complete.
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Figure 1. The path curve Γ (ϕ, ψ) of the approaching problem.

By using a simple method similar to [19], it is easy to obtain the following result.

Theorem 2.3. Assume that m � 1, and that (H) is satisfied. Then problem (2.2)
admits no solution for any c > 0, which means that there is no increasing and
smooth travelling wavefront for problem (1.1) with θ1 = 0, θ2 = 1.

We are now in a position to establish the existence results. In preparation, we
give the following basic existence result for non-decreasing travelling wavefronts,
with the smoothness determined later.

Theorem 2.4. Assume that m � 1, and that (H) is satisfied. Then problem (2.2)
admits a unique non-decreasing travelling wavefront with θ1 = a, θ2 = 1 and
ϕ′

+(t1) � 0, ϕ′
−(t2) = 0 for any c > 0, namely, the following problem admits a

unique solution:

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

ψ1/(p−1) , ϕ ∈ (a, 1),

ψ(1) = 0,

ψ(ϕ) > 0, ϕ ∈ (a, 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

Proof. The proof will be completed by using a phase-plane analysis approach and
then using an approximation to obtain the existence of solutions in the interval
ϕ ∈ [a, 1].

Consider the following approaching problem:

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

ψ1/(p−1) , ϕ ∈ (a, 1),

ψ(1) = ε,

ψ(ϕ) > 0, ϕ ∈ (a, 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

We are now able to apply the phase-plane arguments to this problem to show the
existence of solutions. In what follows, we denote the solution of (2.4) by ψε, and
denote the curve ψ(ϕ) = ϕq(p−1)fp−1(ϕ) by Γc. From figure 1, we see that curve
Γc divides the plane into three parts, E1, E2 and E3. From the first equation of

https://doi.org/10.1017/S0308210508000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000231


1184 J. Yin and C. Jin

problem (2.4), we see that ψ′(ϕ) > 0 if the point (ϕ, ψ) ∈ E1, while ψ′(ϕ) < 0 if
(ϕ, ψ) ∈ E2. Therefore, starting from point (1, ε), trajectory Γ (ϕ, ψ) of (2.4) must
be increasing before intersecting with Γc. It is also easy to see that Γ (ϕ, ψ) does
not intersect with the ϕ-axis when ϕ ∈ (a, 1), since ψ′(ϕ) < 0 when (ϕ, ψ) ∈ E2.

Next we show that ψε is increasing in ε. Otherwise, there exist ε1 and ε2 with
ε1 > ε2 > 0 and a point 0 < x0 < 1 such that ψε1(x0) < ψε2(x0). Let

x∗ = inf{x; x > x0, ψε1(x) � ψε2(x)}.

Then, for any ϕ ∈ (x0, x
∗), we have

ψ′
ε1

− ψ′
ε2

= cϕq−mf(ϕ)
ψ

1/(p−1)
ε1 − ψ

1/(p−1)
ε2

(ψε1ψε2)1/(p−1) · 1
ψε1 − ψε2

(ψε1 − ψε2)

= G(ϕ)(ψε1 − ψε2).

Obviously, we have G(ϕ) > 0 for ϕ ∈ (x0, x
∗). Integrating from x0 to ϕ yields

(ψε1 − ψε2)(ϕ) = (ψε1 − ψε2)(x0) exp
{ ∫ ϕ

x0

G(s) ds

}
.

Letting ϕ → x∗, we clearly have (ψε1−ψε2)(x
∗) < 0, which contradicts the definition

of x∗. Therefore, ψε is non-decreasing on ε. In addition, we also note that ψε �
maxϕ∈(a,1){ε+ϕq(p−1)fp−1(ϕ)}, which implies that ψε is uniformly bounded. Also,
since ψε is a solution of problem (2.4), we also have

ψp/(p−1)
ε (ϕ) = εp/(p−1) − pc

p − 1

∫ 1

ϕ

s−m(ψ1/(p−1)
ε (s) − sqf(s)) ds.

Since ψε is bounded uniformly and increasing on ε, there must exist a function
ψ � 0 such that ψε → ψ almost everywhere in (a, 1) as ε → 0. Letting ε → 0+

in the above equality and recalling the Lebesgue dominated convergence theorem
yields

ψp/(p−1)(ϕ) = − pc

p − 1

∫ 1

ϕ

s−m(ψ1/(p−1)(s) − sqf(s)) ds.

A phase-plane analysis approach yields that ψ(ϕ) > 0 for any ϕ ∈ (a, 1), which
implies that ψ is a solution of problem (2.3).

In what follows, we show the uniqueness.
Suppose to the contrary that there exists a c > 0 such that problem (2.3) admits

at least two solutions ψ1, ψ2. Without loss of generality, we assume that there exists
a ϕ0 ∈ (a, 1) such that ψ1(ϕ0) < ψ2(ϕ0). Then we have

(ψ2 − ψ1)′(ϕ0) = cϕq−mf(ϕ0)
(

1

ψ
1/(p−1)
1 (ϕ0)

− 1

ψ
1/(p−1)
2 (ϕ0)

)
> 0,

which means that (ψ2 − ψ1)(ϕ) > (ψ2 − ψ1)(ϕ0) for any ϕ > ϕ0, which contradicts
ψ2(1−) = ψ1(1−) = 0. Summing up, the proof is complete.

Remark 2.5. From the proof of theorem 2.4 we see that theorem 2.4 is valid for
m ∈ R.
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Figure 2. The path curve of Γ (ϕ, ψ).

In what follows, we investigate the decreasing travelling wavefronts of prob-
lem (1.1), and we will see that ϕ(t) is a decreasing and smooth travelling wavefront
with θ1 = 1, θ2 = 0 if and only if ψ(ϕ) satisfies

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

|ψ|1/(p−1)−1ψ
, ϕ ∈ (0, 1),

ψ(0) = ψ(1) = 0,

ψ(ϕ) < 0, ϕ ∈ (0, 1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

Consider the following problem:

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

|ψ|1/(p−1)−1ψ
, ϕ ∈ (θ, 1),

ψ(1) = 0,

ψ(ϕ) < 0, ϕ ∈ (θ, 1),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

where θ � 0, and (θ, 1) is the maximal existence interval of solutions. Using an
approaching method with ψ(1) = −ε < 0 for problem (2.6), similarly to the above
arguments, we see that there exists a path curve Γ (ϕ, ψ) of problem (2.6) entering
from (1, 0) into the region E = {(ϕ, ψ); 0 < ϕ < 1, ψ < 0}.

We need the following lemmas.

Lemma 2.6. Assume that m � 1. Let Γ (ϕ, ψ) be the path curve of the first equation
of (2.5) entering into E from (1, 0), and let ψ(ϕ) be the corresponding solution.
Then for sufficiently large c > 0, Γ (ϕ, ψ) does not intersect with the ϕ-axis when
ϕ ∈ [0, 1) and ψ(ϕ) → −∞ as ϕ → 0+.

Proof. From figure 2, we see that curve Γc : ψ(ϕ) = ϕq(p−1)|f |p−2f divides the plane
(0, 1) × R into three parts, E1, E2 and E3: ψ′ > 0 in E1 and E3 and ψ′ < 0 in E2.
Therefore, we see that ψ(ϕ) is increasing for ϕ ∈ [a, 1] along the orbit Γ (ϕ, ψ), which
implies that ψ(ϕ) < 0 for ϕ ∈ [a, 1). Next, we only need to find an appropriately
large c such that ψ does not intersect with Γc (for details, see [19]).
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Before going further, we give a comparison lemma as follows.

Lemma 2.7. Let ψi, i = 1, 2, be the solutions of the following problems with 0 �
α < β, ci > 0:

dψi

dϕ
= ciϕ

−m − ciϕ
q−mf(ϕ)

|ψi|1/(p−1)−1ψi
, ϕ ∈ (α, β)

ψi(β) = βi.

⎫⎪⎬
⎪⎭ (2.7)

If ψ1(ϕ)ψ2(ϕ) > 0 in (α, β) and there exists γ ∈ [α, β) such that f(ϕ) � 0 for ϕ ∈
(γ, β), then if c1 > c2 and c

(p−1)/p
1 β2 � c

(p−1)/p
2 β1, we have c

(p−1)/p
1 ψ2 > c

(p−1)/p
2 ψ1

for any ϕ ∈ (α, β).

Proof. From (2.7) we see that

d(c(p−1)/p
2 ψ1 − c

(p−1)/p
1 ψ2)

dϕ
− c

(p−1)/p
1 c

(p−1)/p
2 ϕq−mf(ϕ)

|ψ1ψ2|1/(p−1)

× (|c(p−1)/p
2 ψ1|1/(p−1)−1c

(p−1)/p
2 ψ1 − |c(p−1)/p

1 ψ2|1/(p−1)−1c
(p−1)/p
1 ψ2)

= c
(p−1)/p
1 c

(p−1)/p
2 ϕ−m(c1/p

1 − c
1/p
2 ).

For simplicity, we define ω1 = c
(p−1)/p
2 ψ1, ω2 = c

(p−1)/p
1 ψ2 and

F (ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ω1|1/(p−1)−1ω1(ϕ) − |ω2|1/(p−1)−1ω2(ϕ)
ω1(ϕ) − ω2(ϕ)

if ω1(ϕ) �= ω2(ϕ),

1
p − 1

|ω1|1/(p−1)−1(ϕ) otherwise.

Therefore, we have

d(ω1 − ω2)
dϕ

− c
(p−1)/p
1 c

(p−1)/p
2 ϕq−mf(ϕ)

|ψ1ψ2|1/(p−1) F (ϕ)(ω1 − ω2)

= c
(p−1)/p
1 c

(p−1)/p
2 ϕ−m(c1/p

1 − c
1/p
2 ).

Let

G(ϕ) = (ω1 − ω2)(ϕ) exp
{

− c
(p−1)/p
1 c

(p−1)/p
2

∫ ϕ

γ

sq−mf(s)F (s)
|ψ1ψ2|1/(p−1) ds

}
, ϕ ∈ (α, β).

Then we have

dG

dϕ
= c

(p−1)/p
1 c

(p−1)/p
2 ϕ−m(c1/p

1 − c
1/p
2 )

× exp
{

− c
(p−1)/p
1 c

(p−1)/p
2

∫ ϕ

γ

sq−mf(s)F (s)
|ψ1ψ2|1/(p−1) ds

}
.

Recalling that c1 > c2, c
(p−1)/p
1 β2 � c

(p−1)/p
2 β1, we obtain

dG

dϕ
> 0, lim

ϕ→β−
G(ϕ) � 0, ϕ ∈ (α, β).
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Therefore, we have
G < 0 for ϕ ∈ (α, β),

which implies c
(p−1)/p
1 ψ2 > c

(p−1)/p
2 ψ1 for ϕ ∈ (α, β). The proof is complete.

Lemma 2.8. Assume that m � 1. Let Γ (ϕ, ψ) be the path curve of the first equation
of (2.5) entering into E from (1, 0), and let ψ(ϕ) be the corresponding solution.

(i) If ∫ 1

0
sq−mf(s) ds � 0,

then, for any c > 0, Γ (ϕ, ψ) does not intersect the ϕ-axis when ϕ ∈ [0, 1) and
ψ(ϕ) → −∞ as ϕ → 0+.

(ii) If ∫ 1

0
sq−mf(s) ds < 0,

then, for sufficiently small c > 0, Γ (ϕ, ψ) intersects the ϕ-axis when ϕ ∈ [0, 1).

Proof. The proof is simple and similar to [19], so only an outline is given.

(i) Firstly, by throwing out the first term cϕ−m, and with the help of the fact that∫ 1

ϕ

sq−mf(s) ds > 0

for any 1 > ϕ > 0, it is easy to obtain that Γ (ϕ, ψ) does not intersect with the
ϕ-axis when ϕ ∈ [0, 1). Furthermore, by using this result, we consider this problem
in the domain (0, δ) for an appropriately small δ > 0 and obtain that ψ(ϕ) → −∞
as ϕ → 0+.

(ii) This result can be obtained simply by taking a large wave speed c0 such that
Γ (ϕ, ψ0) does not intersect with the ϕ-axis when ϕ ∈ [0, 1) (see lemma 2.6) and
combining with comparison lemma 2.7 (see [19] for more details).

Now we give a necessary and sufficient condition for the existence of smooth and
non-increasing travelling wavefronts.

Proposition 2.9. Assume that m � 1 and that (H) holds.

(i) If ∫ 1

0
sq−mf(s) ds � 0,

then, for any c > 0, (2.5) admits no solution. That is, there is no decreasing
and smooth travelling wavefront of (1.1) with θ1 = 1, θ2 = 0.

(ii) If ∫ 1

0
sq−mf(s) ds < 0,

then there exists a unique wave speed c∗ > 0 such that (2.5) admits a unique
solution. That is, (1.1) admits a unique decreasing and smooth travelling
wavefront with θ1 = 1, θ2 = 0 if and only if c = c∗.
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Proof. Part (i) is a direct consequence of lemma 2.8. So it suffices to show (ii). Let

Λ = {c > 0; Γ (ϕ, ψ) intersects the ϕ-axis when ϕ ∈ [0, 1)},

where Γ (ϕ, ψ) is the orbit of (1.2) entering from (1, 0) into E = {(ϕ, ψ); 0 < ϕ <
1, ψ < 0}. Lemmas 2.6 and 2.8(ii) imply that Λ is bounded and non-empty. Let
c∗ = supΛ. Then c∗ > 0. Let Γ ∗ be the corresponding orbit, and let ψ∗(ϕ) be the
corresponding solution of (1.2). We shall show that c∗ is the wave speed required.

We first show that c∗ ∈ Λ. Suppose the contrary. Similarly to the proof of the last
part of lemma 2.8(i), it is easy to show that limϕ→0+ ψ∗(ϕ) = −∞. Take {ci}∞

i ⊂ Λ
with ci ↗ c∗ and ψi(ϕ), Γi being the corresponding solutions and orbit. Let ϕi be
the first point of intersection with the ϕ-axis on [0, 1) along the orbit Γi starting from
(1, 0). By lemma 2.7, we see that ϕi � 0 is non-increasing. Let ϕ0 = limi→∞ ϕi � 0.
If ϕ0 > 0, then ψ∗(ϕ0) = 0 from ψi(ϕi) = 0, which contradicts the statement that
Γ ∗ does not intersect with the ϕ-axis when ϕ ∈ [0, 1). Thus, ϕ0 = 0; namely,
limi→+∞ ϕi = 0. Furthermore, similar to the proof of proposition 3.2, we obtain

|ψ∗(ϕ)|p/(p−1) =
pc∗

p − 1

∫ ϕ

0
s−m|ψ∗(s)|1/(p−1)−1ψ∗(s) ds − pc∗

p − 1

∫ ϕ

0
sq−mf(s) ds

by letting i → ∞.
This is clearly a contradiction, since ψ∗(ϕ) → −∞ as ϕ → 0+. Therefore, we have

c∗ ∈ Λ, which means that Γ ∗ intersects the ϕ-axis when ϕ ∈ [0, 1). Denote the point
of intersection by (ϕ∗, ψ∗(ϕ∗)). In what follows, we show that ϕ∗ = 0. Suppose the
contrary; specifically, assume that ϕ∗ > 0. Note that ψ∗(ϕ) is increasing in (a, 1)
(see figure 2), which implies that ϕ∗ < a. Recall that f(s) < 0 for s ∈ [0, a) and

dψc

dϕ
= cϕ−m

(
1 − ϕqf(ϕ)

|ψc|1/(p−1)−1ψc

)
.

By the continuity of the curve with respect to c, indeed, by replacing ψ with −ψ,
we see that the above equality equals

ψp/(p−1)(ϕ) =
pc

p − 1

∫ 1

ϕ

(s−mψ1/(p−1)(s) + sq−mf(s)) ds.

It is clear that ψ is continuous on c for ψ > ε for any fixed ε > 0, while, for the
case in which ψ is near 0, by the fact that the term ψ1/(p−1) is small, we still have
continuous independence on c. Then we have

lim
c↘c∗,ϕ→ϕ∗

dψc

dϕ
= −∞.

Therefore Γ (ϕ, ψc) must intersect with Γc. By using a phase-plane analysis, it is
not difficult to see that ψc(ϕ) must admit two extreme points ϕ1, ϕ2 with 0 < ϕ1 <
ϕ∗ < ϕ2 < a as c > c∗ sufficiently approaches c∗, since Γ (ϕ, ψc) does not intersect
with the ϕ-axis according to the definition of c∗ and Λ. Thus, we have

dψc(ϕ1)
dϕ

=
dψc(ϕ2)

dϕ
= 0,
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which implies that

ψc(ϕi) = ϕq(p−1)|f(ϕi)|p−2f(ϕi), i = 1, 2.

Letting c ↘ c∗ yields

ψ∗(ϕ∗) = ϕ∗q(p−1)|f(ϕ∗)|p−2f(ϕ∗),

which implies that f(ϕ∗) = 0 since ψ∗(ϕ∗) = 0, that is, ϕ∗ = a, which is a con-
tradiction. In addition, the uniqueness of c∗ can be obtained from the proof of
lemma 2.7.

Finally, we discuss the uniqueness of solutions when the speed c = c∗. Suppose
the contrary, that is, that problem (2.5) admits at least two solutions ψ1 and ψ2.
Without loss of generality, we assume that there exists a ϕ0 ∈ (0, 1) such that
ψ1(ϕ0) < ψ2(ϕ0). Note that

(ψ2 − ψ1)′(ϕ0) = cϕq−mf(ϕ0)g(ϕ0)(ψ2 − ψ1)(ϕ0),

where

g(ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ψ2|1/(p−1)−1ψ2 − |ψ1|1/(p−1)−1ψ1

(ψ2ψ1)1/(p−1)(ψ2 − ψ1)
if ψ2 �= ψ1,

1
p − 1

|ψ1|−1/(p−1)−1 if ψ2 = ψ1.

Thus, if ϕ0 ∈ [a, 1), then we have (ψ2−ψ1)(ϕ) > (ψ2−ψ1)(ϕ0) for any ϕ > ϕ0, which
contradicts ψ2(1−) = ψ1(1−) = 0. If ϕ0 ∈ (0, a), then (ψ2 −ψ1)(ϕ0) < (ψ2 −ψ1)(ϕ)
for any ϕ < ϕ0, which contradicts ψ2(0+) = ψ1(0+) = 0. Summing up, we complete
the proof.

Combining lemmas 2.6 and 2.8 with proposition 2.9, we obtain the following
detailed conclusions for the existence of smooth or non-smooth solutions.

Theorem 2.10. Assume that m � 1 and that (H) holds, and let c∗ be given as in
proposition 2.9.

(i) If ∫ 1

0
sq−mf(s) ds � 0,

then, for any c > 0, (1.1) admits a unique decreasing and non-smooth travel-
ling wavefront ϕ(t) with θ1 = 1, θ2 = 0 and ϕ′

+(t1) = 0, ϕ′
−(t2) = −∞.

(ii) If ∫ 1

0
sq−mf(s) ds < 0,

then, for c > c∗, (1.1) admits a unique decreasing and non-smooth travelling
wavefront ϕ(t) with θ1 = 1, θ2 = 0 and ϕ′

+(t1) = 0, ϕ′
−(t2) = −∞. For

0 < c < c∗, (1.1) admits a unique decreasing travelling wavefront ψ(ϕ) with
θ1 = 1, θ2 = a and ϕ′

+(t1) = 0, −∞ < ϕ′
−(t2) < 0. If c = c∗, (1.1) admits a

unique decreasing and smooth travelling wavefront with θ1 = 1, θ2 = 0.
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a0
1

ψ

ϕ

Γc

Γ (ϕ,ψc)

Figure 3. The case in which travelling wavefronts are increasing for any c > 0.

We give a group of figures depicting trajectories for the case in which m � 1.
The cases in which travelling wavefronts are decreasing are shown in figures 4

and 5.

3. The case m < 1

In this section we consider the case in which m < 1 with f(s) satisfying assumption
(H). We first study non-decreasing travelling wavefronts.

Consider the following variational equation:

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

|ψ|1/(p−1)−1ψ
, ϕ ∈ (θ, 1),

ψ(1) = 0,

ψ(ϕ) > 0, ϕ ∈ (θ, 1),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where θ � 0 and (θ, 1) is the maximal existence interval of ϕ.
The local existence of the solution ψ(ϕ) is known from remark 2.5. As a prepara-

tion for establishing necessary and sufficient conditions for the existence of smooth
non-decreasing travelling wavefronts, we first present the following non-existence
result.

Proposition 3.1. Assume that m < 1. If∫ 1

0
sq−mf(s) ds � 0,

then, for any speed c > 0, there is no non-decreasing smooth travelling wavefront
connecting 0 and 1. However, problem (1.3) admits a unique non-decreasing travel-
ling wavefront with θ1 = a, θ2 = 1 and ϕ′

+(t1) � 0, ϕ′
−(t2) = 0 for any c > 0. That

is, problem (3.1) with θ = a admits a unique solution.

Proof. Suppose the contrary. Recall that

dψ

dϕ
= cϕ−m

(
1 − ϕqf(ϕ)

|ψ|1/(p−1)−1ψ

)
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a
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1

ψ

ϕ

Γ (ϕ,ψc)

(a)

(b)

(c)

Γc

Γc

Γ (ϕ,ψc)

Figure 4. The case in which
∫ 1
0 sq−mf(s) ds < 0: (a) 0 < c < c∗, (b) c = c∗, (c) c > c∗.

implies that

p − 1
p

d|ψ|(p−1)/p

dϕ
= cϕ−m|ψ|1/(p−1)−1ψ − cϕq−mf(ϕ) � −cϕq−mf(ϕ),

since ψ � 0. Integrating from ϕ to 1 yields

|ψ|(p−1)/p(ϕ) <

∫ 1

ϕ

csq−mf(s) ds.

We therefore have
|ψ|(p−1)/p(ϕ) < 0

as ϕ → 0+. This is a contradiction.
The second conclusion is a direct result of theorem 2.4 and remark 2.5.
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a
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1

ψ

ϕ

Γ (ϕ,ψc)

Γc

Figure 5. The case in which
∫ 1
0 sq−mf(s) ds � 0 for any wave speed c > 0.

As a supplementation of the previous proposition, we consider the case in which∫ 1

0
sq−mf(s) ds > 0.

Proposition 3.2. Assume that m < 1 and that∫ 1

0
sq−mf(s) ds > 0.

Let Γ (ϕ, ψc) be the path curve of problem (3.1) starting from (1, 0), and let ψc(ϕ)
be the corresponding solution. There is c∗ > 0 such that

(i) if c = c∗, Γ (ϕ, ψc) connects 0 and 1,

(ii) if c < c∗, Γ (ϕ, ψc) does not intersect with the ϕ-axis when ϕ ∈ [0, 1),

(iii) if c > c∗, Γ (ϕ, ψc) intersects the ϕ-axis for ϕ ∈ (0, a].

Proof. For a fixed 0 < ϕ0 < a, let

M = sup
ϕ∈(a,1)

ϕqf(ϕ)
(ϕ − ϕ0)1/(p−1) , α = (2M)p−1 and ψ̄ = α(ϕ − ϕ0).

Then we have
dψ̄c

dϕ
= α.

A direct calculation yields

dψ̄c

dϕ
� cϕ−m

(
1 − ϕqf(ϕ)

ψ̄
1/(p−1)
c

)

for any c > 2α, ϕ � ϕ0. In addition, we also note that ψ̄c(1−) > ψc(1−). Then we
have ψ̄c(ϕ) > ψc(ϕ), which implies that ψc(ϕ) intersects the ϕ-axis at some point
ϕ � ϕ0. In addition, by a phase-plane argument, we see that Γ (ϕ, ψc) does not
intersect with the ϕ-axis for ϕ > a. Therefore, for sufficiently large c > 0, ψc must
intersect with the ϕ-axis at (0, a].
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In what follows, we show that when c is sufficiently small Γ (ϕ, ψc) does not
intersect with the ϕ-axis at [0, 1). Let ψ̃c = c−(p−1)/pψc for any c > 0. Then consider
the following problem:

dψ̃c

dϕ
= c1/pϕ−m − ϕq−mf(ϕ)

ψ̃
1/(p−1)
c

, ϕ ∈ (θ, 1),

ψ̃(1) = 0,

ψ̃(ϕ) > 0, ϕ ∈ (θ, 1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

where (θ, 1) is the maximal existence interval of ψ̃c. Firstly, we have

dψ̃c

dϕ
� −ϕq−mf(ϕ)

ψ̃
1/(p−1)
c

� −M
ϕq−m

ψ̃
1/(p−1)
c

,

where M = maxϕ∈[a,1] f(ϕ). Integrating from ϕ to 1 yields

ψ̃p/(p−1)
c (ϕ) � Mp

(p − 1)(q + 1 − m)
(1 − ϕq+1−m). (3.3)

In addition, by (3.2), we further obtain that

ψ̃p/(p−1)
c (ϕ) = −c1/pp

p − 1

∫ 1

ϕ

s−mψ̃1/(p−1)
c (s) ds +

p

p − 1

∫ 1

ϕ

sq−mf(s) ds

� −c1/p

(
p

p − 1

)(p+1)/p(
M

q + 1 − m

)1/p ∫ 1

ϕ

s−m(1 − sq+1−m)1/p ds

+
p

p − 1

∫ 1

ϕ

sq−mf(s) ds.

Clearly, when c is appropriately small, we have ψ̃c(ϕ) > 0 for any ϕ ∈ [0, 1), since∫ 1

ϕ

sq−mf(s) ds >

∫ 1

0
sq−mf(s) ds > 0.

In what follows, we show that there exists c∗ > 0 such that Γ (ϕ, ψ̃c∗) intersects
the ϕ-axis at (0, 0). Let c∗ = inf{c; c ∈ Λ̃}, where

Λ̃ = {c > 0; Γ (ϕ, ψ̃c) intersects the ϕ-axis when ϕ ∈ [0, 1)}.

From the above discussion, we see that c∗ is well defined. We now show that ψ̃c∗

connects 0 and 1. We first show that c∗ ∈ Λ̃. From the definition of c∗, we see that
there exists a sequence ci ∈ Λ̃ with ci ↘ c∗. Correspondingly, let ϕi be the first
point of intersection with the ϕ-axis on [0, a] along the orbit Γ (ϕ, ψ̃ci

) starting
from (1, 0). By lemma 2.7, we see that ψ̃ci

is increasing on i, which implies that ϕi

is decreasing, namely ϕi � ϕi+1 for any i ∈ N. Let

ϕ∗ = lim
i→+∞

ϕi, ψ̃c∗(ϕ) = lim
i→+∞

ψ̃ci(ϕ).
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Noting that ψi(ϕi) = 0 and that

d(|ψ̃i|p/(p−1))
dϕ

=
pc1/p

p − 1
ϕ−m|ψ̃i|1/(p−1)−1ψ̃i − p

p − 1
ϕq−mf(ϕ),

by integrating from ϕi to ϕ we see that

ψ̃i(ϕ)p/(p−1) =
pc1/p

p − 1

∫ ϕ

ϕi

s−mψ̃i(s)1/(p−1) ds − p

p − 1

∫ ϕ

ϕi

sq−mf(s) ds.

From Levi’s theorem [17], and noting that limi→+∞ ϕi = ϕ∗, we obtain

lim
i→+∞

∫ ϕ

ϕi

s−mψ̃i(s)1/(p−1) ds =
∫ ϕ

ϕ∗
s−mψ̃∗(s)1/(p−1) ds for any ϕ ∈ (ϕ∗, 1).

Thus, letting i → ∞, we obtain

ψ̃∗(ϕ)p/(p−1) =
pc1/p

p − 1

∫ ϕ

ϕ∗
s−mψ̃i(s)1/(p−1) ds − p

p − 1

∫ ϕ

ϕ∗
sq−mf(s) ds

and
ψ̃∗(ϕ∗) = 0.

In what follows, we show that ϕ∗ = 0; otherwise 0 < ϕ∗ < a. We have

lim
c↗c∗,ϕ→ϕ∗

dψ̃c

dϕ
= +∞,

since
dψ̃c

dϕ
= c1/pϕ−m − ϕq−mf(ϕ)

ψ̃
1/(p−1)
c

from the continuity of the curve with respect to c. Therefore, we also have that

lim
c↗c∗

dψ̃c

dϕ
= +∞

for ϕ ∈ [ϕ∗/2, ϕ∗], since ψ̃c is increasing for ϕ ∈ (0, a). In addition, recalling (3.3),
we also see that ψ̃c is bounded uniformly. Thus, Γ (ϕ, ψ̃c) must intersect with the
ϕ-axis as c < c∗ sufficiently approaches c∗, which contradicts the definition of c∗.
Moreover, by the definition of c∗ we see that, for any c < c∗, Γ (ϕ, ψ̃c) does not
intersect with the ϕ-axis for ϕ ∈ [0, 1). In addition, by the monotonicity of ψ̃c on
the c, and combining with the proof of lemma 2.7, it is also easy to see that, for any
c > c∗, Γ (ϕ, ψ̃c) must intersect with the ϕ-axis at (0, a). Summing up, we complete
the proof.

Combining propositions 3.1 and 3.2, we present the following existence results
for non-decreasing travelling wavefronts. In particular, a necessary and sufficient
condition for the existence of smooth solutions is given in the theorem.

Theorem 3.3. Assume that m < 1 and that (H) holds, and let c∗ be given by
proposition 3.2.
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(i) If ∫ 1

0
sq−mf(s) ds � 0,

then, for any c > 0, (1.1) admits no non-decreasing and smooth travelling
wavefront. However, it does admit a unique non-decreasing and non-smooth
travelling wavefront ϕ(t) with θ1 = a, θ2 = 1 and 0 � ϕ′

+(t1) < +∞, ϕ′
−(t2) =

0.

(ii) If ∫ 1

0
sq−mf(s) ds > 0,

then, for c �= c∗, (1.1) admits no non-decreasing and smooth travelling wave-
front with θ1 = 0, θ2 = 1. However, for c > c∗, (1.1) admits a unique non-
decreasing and non-smooth travelling wavefront ϕ(t) with θ1 = a, θ2 = 1
and 0 � ϕ′

+(t1) < +∞, ϕ′
−(t2) = 0. For 0 < c < c∗, (1.1) admits at least

one non-decreasing and non-smooth travelling wavefront ϕ(t) with θ1 = 0,
θ2 = 1 and ϕ′

−(t2) = 0, 0 < ϕ′
+(t1) < +∞. If c = c∗, (1.1) admits a unique

non-decreasing and smooth travelling wavefront with θ1 = 0, θ2 = 1.

Next we consider the non-increasing travelling fronts.
Consider the following variational problem:

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

|ψ|1/(p−1)−1ψ
, ϕ ∈ (θ, 1),

ψ(1) = 0,

ψ(ϕ) < 0, ϕ ∈ (θ, 1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

where (θ, 1) is the maximal existence interval of ϕ.
As for the non-decreasing solutions, we first present a non-existence result for

non-increasing solutions.

Proposition 3.4. Assume that m < 1. If∫ 1

0
sq−mf(s) ds � 0,

then, for any speed c > 0, the trajectory of problem (3.4) satisfies ψ(ϕ) < 0 for any
ϕ ∈ [0, 1).

Proof. Firstly, we see that

dψ

dϕ
= cϕ−m − cϕq−mf(ϕ)

|ψ|1/(p−1)−1ψ

> − cϕq−mf(ϕ)
|ψ|1/(p−1)−1ψ

.

Since ψc < 0, then we also have

p − 1
p

|ψ|p/(p−1)(ϕ) > c

∫ 1

ϕ

sq−mf(s) ds � 0,
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which means that ψ < 0 for any ϕ ∈ [0, 1); that is, ψc does not intersect with the
ϕ-axis. The proof is complete.

The following proposition supplements the results of the previous proposition by
considering the case in which ∫ 1

0
sq−mf(s) ds < 0.

Proposition 3.5. Assume that m < 1 and that∫ 1

0
sq−mf(s) ds < 0.

Let Γ (ϕ, ψc) be the path curve of the first equation of problem (3.4), and let ψc(ϕ) �
0 be the corresponding solution. Then there is c∗ > 0 such that

(i) if c = c∗, Γ (ϕ, ψc) connects 0 and 1,

(ii) if c > c∗, Γ (ϕ, ψc) does not intersect with the ϕ-axis when ϕ ∈ [0, 1),

(iii) if 0 < c < c∗, Γ (ϕ, ψc) intersects the ϕ-axis for ϕ ∈ (0, a).

Proof. We first show that, for sufficiently large c > 0, ψc does not intersect with
the ϕ-axis for ϕ ∈ [0, 1). Let

M = sup
ϕ∈(0,a)

ϕq(p−1)|f(ϕ)|p−1.

Then we have ψ′
c(ϕ) � cϕ−m for ϕ ∈ [a, 1). Integrating from a to 1 yields

ψc(ϕ) � − c

1 − m
(1 − a1−m).

Then for any c � M(1 − m)/(1 − a1−m), ψc does not intersect with Γc, which also
means that ψc does not intersect with the ϕ-axis. Now we show that, for sufficiently
small speed c, ψc intersects the ϕ-axis at some point ϕ ∈ (0, a). By lemma 2.7 we
see that, for any fixed c0 where ψc0 does not intersect with the ϕ-axis, we have

|ψc|p/(p−1) =
pc

p − 1

∫ 1

ϕ

s−m|ψc(s)|1/(p−1) ds +
pc

p − 1

∫ 1

ϕ

sq−mf(s) ds

� c

(
p

p − 1

(
c

c0

)1/p ∫ 1

ϕ

s−m|ψc0(s)|1/(p−1) ds +
p

p − 1

∫ 1

ϕ

sq−mf(s) ds

)
.

Therefore, for sufficiently small c > 0, there must exist a ϕ0 ∈ [0, a) such that
ψc(ϕ0) = 0, since ∫ 1

0
sq−mf(s) ds = 0.

Similarly to the proof of proposition 3.4, we define c∗ = sup{c; c ∈ Λ̂} with

Λ̂ = {c > 0; Γ (ϕ, ψc) intersects the ϕ-axis when ϕ ∈ (0, 1]}.

From the above discussion, we see that c∗ is well defined. The following arguments
are similar to those of proposition 3.4, and so we omit the proof.
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Figure 6. The case in which
∫ 1
0 sq−mf(s) ds � 0 for any c > 0.

Remark 3.6. Similarly to the proof of theorem 2.4 and proposition 2.9, it is not
difficult to obtain the uniqueness of trajectories connecting the two points (1, 0) and
(0, 0). It is also easy to obtain the uniqueness of trajectories starting from (1, 0)
and going to (a, ψ).

Combining propositions 3.4, 3.5 and remark 3.6, we present the following exis-
tence results for non-increasing travelling wavefronts. In particular, a necessary and
sufficient condition for the existence of smooth solutions is given in the theorem.

Theorem 3.7. Assume that m < 1 and that (H) holds, with c∗ given by proposi-
tion 3.5.

(i) If ∫ 1

0
sq−mf(s) ds � 0,

then, for any c > 0, (1.1) admits no decreasing and smooth travelling wave-
front. However, it does admit a unique decreasing and non-smooth travelling
wavefront ϕ(t) with θ1 = 1, θ2 = 0 and ϕ′

+(t1) = 0, −∞ < ϕ′
−(t2) < 0.

(ii) If ∫ 1

0
sq−mf(s) ds < 0,

then, for c �= c∗, (1.1) admits no decreasing and smooth travelling wavefront
with θ1 = 1, θ2 = 0. However, for c > c∗, (1.1) admits a unique decreasing and
non-smooth travelling wavefront ϕ(t) with θ1 = 1, θ2 = 0 and ϕ′

+(t1) = 0,
−∞ < ϕ′

−(t2) < 0. For 0 < c < c∗, (1.1) admits a unique decreasing and
non-smooth travelling wavefront ϕ(t) with θ1 = 1, θ2 = a and ϕ′

+(t1) = 0,
−∞ < ϕ′

−(t2) < 0. If c = c∗, (1.1) admits a unique decreasing and smooth
travelling wavefront with θ1 = 1, θ2 = 0.

Figures 6–9 depict the trajectories for the case m < 1. Figures 6 and 7 show the
case in which travelling waves are increasing, while figures 8 and 9 show the case
in which travelling waves are decreasing.

https://doi.org/10.1017/S0308210508000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000231


1198 J. Yin and C. Jin

a0
1

ψ

ϕ

ΓcΓ (ϕ,ψc)

(b)

a0
1

ψ

ϕ

Γc

Γ (ϕ,ψc)
(c)

a0

ψ

ϕ

ΓcΓ (ϕ,ψc)

(a)

1

Figure 7. The case in which
∫ 1
0 sq−mf(s) ds > 0: (a) 0 < c < c∗; (b) c = c∗; (c) c > c∗.

4. Regularity of smooth wavefronts

Now we turn our attention to the regularity of travelling wavefronts. More precisely,
for non-decreasing travelling wavefronts, we investigate the finiteness of t1, and for
decreasing travelling wavefronts, we investigate the finiteness of t2. It should be
noted that if t1 = −∞ or t2 = +∞, then the corresponding solutions are classical
in the whole domain R × (0, +∞). From §§ 2 and 3 we see that the equation may
have smooth non-increasing and non-decreasing travelling wavefronts. The following
theorem shows the regularity for non-increasing solutions, namely, the finiteness
of t2.

Theorem 4.1. Let ϕ(t) be the non-increasing and smooth travelling wavefront of
(1.1) with f satisfying (H) corresponding to c∗ as determined in proposition 2.9.
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a
0

1

ψ

ϕ

Γ (ϕ,ψc)

Γc

Figure 8. The case in which
∫ 1
0 sq−mf(s) ds � 0 for any wave speed c > 0.

(i) If m � 1 with 0 < q < 1, or m < 1 with 0 < q < 1 and m + p > 1 + q, then
t2 < +∞.

(ii) If q � 1, or 0 < q < 1 with m < 1 and m + p � 1 + q, then t2 = +∞.

Proof. (i) When m � 1, let

A = min
0�ϕ�a/2

{|f(ϕ)|}, σ = min
{

a

2
,

(
2p−1c∗

q(p − 1)Ap−1

)1/(m+q(p−1)−1)}

and

ψ∗(ϕ) = −
(

A

2

)p−1

ϕq(p−1).

We assert that ψ(ϕ) < ψ∗(ϕ) for all ϕ ∈ (0, σ). Indeed, if the assertion were not
true, then there would exist ϕ0 ∈ (0, σ) such that ψ(ϕ0) � ψ∗(ϕ0). Thus, we have

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

= c∗ϕ−m
0

(
1 − ϕq

0|f(ϕ0)|
|ψ(ϕ0)|1/(p−1)

)

� c∗ϕ−m
0

(
1 − ϕq

0|f(ϕ0)|
|ψ∗(ϕ0)|1/(p−1)

)

� −c∗ϕ−m
0 .

In addition, we also note that

dψ∗

dϕ

∣∣∣∣
ϕ=ϕ0

= −q(p − 1)
(

A

2

)p−1

ϕ
q(p−1)−1
0

> −c∗ϕ−m
0

� dψ

dϕ

∣∣∣∣
ϕ=ϕ0

,

since

ϕ0 < σ �
(

2p−1c∗

q(p − 1)Ap−1

)1/(m+q(p−1)−1)

.
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a0
1

ψ

ϕ

Γc

Γ (ϕ,ψc)

a0
1

ψ

ϕ

a
0

1

ψ

ϕ

Γ (ϕ,ψc)

(a)

(b)

(c)

Γc

Γc

Γ (ϕ,ψc)

Figure 9. The case in which
∫ 1
0 sq−mf(s) ds < 0: (a) 0 < c < c∗; (b) c = c∗; (c) c > c∗.

Let

G = {ϕ ∈ [0, ϕ0); ψ(ϕ) < ψ∗(ϕ)}.

We will show that G = ∅. Otherwise, let

ϕ1 = sup{ϕ ∈ [0, ϕ0); ψ(ϕ) < ψ∗(ϕ)}.

We clearly have ϕ1 > 0, since ψ(0) = ψ∗(0) = 0, and we also have ψ(ϕ1) = ψ∗(ϕ1)
from the definition of ϕ1. According to the above arguments, we obtain

dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

>
dψ

dϕ

∣∣∣∣
ϕ=ϕ1

.
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From the definition of ϕ1, we also have

dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

� dψ

dϕ

∣∣∣∣
ϕ=ϕ1

.

This leads to a contradiction. Thus, we have ψ(ϕ) � ψ∗(ϕ) for all ϕ ∈ [0, ϕ0). We
further obtain

dψ∗

dϕ
>

dψ

dϕ
for any ϕ ∈ (0, ϕ0).

Integrating from 0 to ϕ yields

ψ(0) > ψ(ϕ) − ψ∗(ϕ) + ψ∗(0) � 0,

which contradicts the fact that ψ(0) = ψ∗(0) = 0. Hence, we have, for all ϕ ∈ (0, σ),

dϕ

dt
= |ψ(ϕ)|1/(p−1)−1ψ(ϕ)

< |ψ∗(ϕ)|1/(p−1)−1ψ∗(ϕ)

= − 1
2Aϕq.

Take τ1 ∈ (t1, t2) such that ϕ(τ1) = σ/2. Then ϕ(t) ∈ (0, σ) for all t ∈ (τ1, t2).
Integrating from τ1 to τ2 with t1 < τ1 < τ2 < t2, we obtain

τ2 − τ1 � − 2
A

∫ ϕ(τ2)

ϕ(τ1)

1
sq

ds � 2
A

∫ 1

0

1
sq

ds =
2

A(1 − q)
,

since 0 < q < 1. According to the arbitrariness of τ2 with τ2 < t2, we conclude that
t2 < +∞.

When m < 1, let A = min0�ϕ�a/2{|f(ϕ)|},

ψ∗ = −αϕβ ,

where β = max{(p − 1)(1 − m + q)/p, q(p − 1)} and α is a sufficiently small con-
stant that is to be determined. In what follows, we show that ψ(ϕ) < ψ∗(ϕ) for
ϕ ∈ (0, a/2). Suppose, to the contrary, that there exists a ϕ0 ∈ (0, a/2) such that
ψ(ϕ0) � ψ∗(ϕ0). Then we have

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

= c∗ϕ−m
0

(
1 − ϕq

0|f(ϕ0)|
|ψ(ϕ0)|1/(p−1)

)

� c∗ϕ−m
0

(
1 − Aϕq

0

α1/(p−1)ϕ
β/(p−1)
0

)
.

By a direct calculation, we see that

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

<
dψ∗

dϕ

∣∣∣∣
ϕ=ϕ0

is ensured by

c∗ϕ1−m−β
0 + αβ <

c∗A

α1/(p−1) ϕ
1−m−β+q−β/(p−1)
0 .
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Clearly, if we choose sufficiently small α then the above inequality holds, since
β � q(p − 1), 1 − m − β + q − β/(p − 1) � 0. We claim that ψ(ϕ) � ψ∗(ϕ) for
ϕ ∈ (0, ϕ0). Indeed, if this is not true, we define

Γ = {ϕ ∈ (0, ϕ0); ψ(ϕ) < ψ∗(ϕ)}.

Then Γ �= ∅. Let
ϕ1 = sup

ϕ∈Γ
ϕ.

Clearly, we have 0 < ϕ1 < ϕ0 and ψ(ϕ1) = ψ∗(ϕ1), since ψ(0) = ψ∗(0) and
ψ(ϕ0) > ψ∗(ϕ0). Then we have

dψ

dϕ

∣∣∣∣
ϕ=ϕ1

<
dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

.

On the other hand, by the definition of ϕ1, we also have

dψ

dϕ

∣∣∣∣
ϕ=ϕ1

� dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

,

which is a contradiction. That is, ψ(ϕ) � ψ∗(ϕ) for ϕ ∈ (0, ϕ0). As above, we
further have

dψ

dϕ
<

dψ∗

dϕ
.

Integrating from 0 to ϕ for ϕ ∈ (0, ϕ0) yields

ψ(ϕ) < ψ∗(ϕ),

which is also a contradiction. Accordingly, we have ψ(ϕ) < ψ∗(ϕ) for ϕ ∈ (0, a/2).
Set τ1 with ϕ(τ1) ∈ (0, a/2). Then ϕ(t) ∈ (0, a/2) for all t ∈ (τ1, t2). Integrating
from τ1 to τ2 with t1 < τ1 < τ2 < t2, we obtain

τ2 − τ1 =
∫ ϕ(τ2)

ϕ(τ1)

1
|ψ|1/(p−1)−1ψ(s)

ds

=
∫ ϕ(τ1)

ϕ(τ2)

1
|ψ|1/(p−1) ds

�
∫ 1

0
α−1/(p−1)s−β/(p−1) ds

� p − 1
p − 1 − β

α−1/(p−1),

since β < p − 1. Furthermore, by the arbitrariness of τ2 with τ2 < t2, we conclude
that t2 < +∞.

(ii) First we consider the case in which q � 1. Let B = max0�ϕ�a |f(ϕ)|p−1 > 0.
For any fixed ϕ0 ∈ (0, a), if

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

� 0,

https://doi.org/10.1017/S0308210508000231 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210508000231


Travelling wavefronts 1203

then
ψ(ϕ0) � ϕ

q(p−1)
0 |f(ϕ0)|p−2f(ϕ0) � −Bϕ

q(p−1)
0 ,

while if
dψ

dϕ

∣∣∣∣
ϕ=ϕ0

> 0,

let

ϕ1 = inf
{

ϕ ∈ (0, ϕ0);
dψ

dϕ

∣∣∣∣
ϕ=s

> 0 for all s ∈ (ϕ, ϕ0)
}

.

Then
dψ

dϕ

∣∣∣∣
ϕ=ϕ1

= 0 and
dψ

dϕ
> 0 for all ϕ ∈ (ϕ1, ϕ0).

It is obvious that 0 < ϕ1 < ϕ0, since ψ(0) = 0 and ψ(ϕ) < 0 for ϕ ∈ (0, 1).
Therefore, we also have

ψ(ϕ0) > ψ(ϕ1)

= ϕ
q(p−1)
1 |f(ϕ1)|p−2f(ϕ1)

� −Bϕ
q(p−1)
1

> −Bϕ
q(p−1)
0 .

Thus, we obtain that, for all ϕ ∈ (0, a),

dϕ

dt
= |ψ(ϕ)|1/(p−1)−1ψ(ϕ) � −B1/(p−1)ϕq.

Integrating the above inequality from τ1 to τ2 with t1 < τ1 < τ2 < t2, we obtain

B1/(p−1)(τ2 − τ1) � −
∫ ϕ(τ2)

ϕ(τ1)

1
sq

ds

=
∫ ϕ(τ1)

ϕ(τ2)

1
sq

ds.

Letting τ2 → t2, and noting that ϕ(t2) = 0 and q � 1, we obtain t2 = +∞.
Furthermore, if q < 1, m < 1 and m + p � 1 + q, by noting that

dψ

dϕ
= c∗ϕ−m − c∗ϕq−mf(ϕ)

|ψ(ϕ)|1/(p−1)−1ψ(ϕ)

� − c∗ϕq−mf(ϕ)
|ψ(ϕ)|1/(p−1)−1ψ(ϕ)

,

we may infer that

d|ψ|p/(p−1)

dϕ
� − pc∗

p − 1
ϕq−mf(ϕ) � Apc∗

p − 1
ϕq−m.
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Integrating from 0 to ϕ yields

|ψ(ϕ)| �
(

Apc∗

(p − 1)(q − m + 1)
ϕq−m+1

)(p−1)/p

,

which implies that

ψ(ϕ) � −
(

Apc∗

(p − 1)(q − m + 1)
ϕq−m+1

)(p−1)/p

.

Thus,

dϕ

dt
= |ψ(ϕ)|1/(p−1)−1ψ(ϕ)

� −
(

Apc∗

(p − 1)(q − m + 1)
ϕq−m+1

)1/p

.

Integrating the above inequality from τ1 to τ2 with t1 < τ1 < τ2 < t2, we obtain(
Apc∗

(p − 1)(q − m + 1)

)1/p

(τ2 − τ1) � −
∫ ϕ(τ2)

ϕ(τ1)
s−(q−m+1)/p ds.

Letting τ2 → t2, and noting that ϕ(t2) = 0 and (q − m + 1)/p � 1, we obtain
t2 = +∞.

The proof of the theorem is now complete.

We now turn to a discussion of the regularity of smooth non-decreasing travelling
wavefronts, and more specifically, the finiteness of t1.

Theorem 4.2. Let ϕ(t) be the non-decreasing and smooth travelling wavefront of
(1.1) with f satisfying (H) for c = c∗, which is determined by proposition 3.2. Then

(i) if m + p > min{2, 1 + q}, then t1 > −∞,

(ii) if m + p � min{2, 1 + q}, then t1 = −∞.

Proof. (i) Let A = min0�ϕ�a/2{|f(ϕ)|}. Then by the equation

dψ

dϕ
= c∗ϕ−m − c∗ϕq−mf(ϕ)

ψ1/(p−1)

it is easy to see that

dψ

dϕ
� c∗ϕ−m and

dψ

dϕ
� −c∗ϕq−mf(ϕ)

ψ1/(p−1)

for 0 < ϕ � a/2. Integrating from 0 to ϕ for ϕ < a/2 yields

ψ(ϕ) � c∗

1 − m
ϕ1−m

and

ψ(ϕ) �
(

Apc∗

(p − 1)(q + 1 − m)
ϕq+1−m

)(p−1)/p

.
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Setting τ2 with ϕ(τ2) ∈ (0, a/2), for any τ1 with t1 < τ1 < τ2 < t2, we see that

τ2 − τ1 =
∫ ϕ(τ2)

ϕ(τ1)

1
ψ1/(p−1)(s)

ds

�
∫ ϕ(τ2)

ϕ(τ1)
Bs−q∗

ds,

where

B = max
{(

1 − m

c∗

)1/(p−1)

,

(
(p − 1)(q + 1 − m)

Apc∗

)1/p}

and

q∗ = min
{

1 − m

p − 1
,
q + 1 − m

p

}
.

By a simple calculation we see that q∗ < 1, since m + p > min{2, 1 + q}. Letting
τ1 → t1 and noting that ϕ(t1) = 0, we obtain t1 > −∞.

(ii) Let A = max0�ϕ�a{|f(ϕ)|} and ψ∗ = αϕβ , where

β = min
{

1 − m,
(p − 1)(q + 1 − m)

p

}

and α is a sufficiently large constant to be determined. We claim that ψ(ϕ) � ψ∗(ϕ)
for ϕ ∈ (0, a/2). Otherwise there exists a ϕ0 ∈ (0, σ) such that ψ∗(ϕ0) < ψ(ϕ0).
Then

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

= c∗ϕ−m
0

(
1 − ϕq

0f(ϕ0)
ψ1/(p−1)(ϕ0)

)

� c∗ϕ−m
0

(
1 − ϕq

0f(ϕ0)

α1/(p−1)ϕ
β/(p−1)
0

)
.

A direct calculation yields

dψ

dϕ

∣∣∣∣
ϕ=ϕ0

<
dψ∗

dϕ

∣∣∣∣
ϕ=ϕ0

, (4.1)

which is ensured by

c∗ϕ1−m−β
0 +

c∗Aϕ
1−m+q−(pβ)/(p−1)
0

α1/(p−1) < αβ.

Observe that 1 − m − β � 0, 1 − m + q − (pβ)/(p − 1) � 0 since

β = min
{

1 − m,
(p − 1)(q + 1 − m)

p

}
.

Therefore, for sufficiently large α, (4.1) holds. Thus, we have

ψ(ϕ) � ψ∗(ϕ) for ϕ ∈ (0, ϕ0).
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Indeed, if this were not true, we let

Γ = {ϕ ∈ (0, ϕ0); ψ(ϕ) < ψ∗(ϕ)}.

Then Γ �= ∅. Let

ϕ1 = sup
ϕ∈Γ

ϕ.

Clearly, we have 0 < ϕ1 < ϕ0 and ψ(ϕ1) = ψ∗(ϕ1), since ψ(0) = ψ∗(0) and
ψ(ϕ0) > ψ∗(ϕ0). Then, similarly to (4.1), we have

dψ

dϕ

∣∣∣∣
ϕ=ϕ1

<
dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

.

Furthermore, by the definition of ϕ1, we also have

dψ

dϕ

∣∣∣∣
ϕ=ϕ1

� dψ∗

dϕ

∣∣∣∣
ϕ=ϕ1

,

which is a contradiction. Hence ψ(ϕ) � ψ∗(ϕ) for ϕ ∈ (0, ϕ0). Similarly to (4.1),
we obtain

dψ

dϕ
<

dψ∗

dϕ
for ϕ ∈ (0, ϕ0).

Integrating from 0 to ϕ for ϕ ∈ (0, ϕ0), we obtain

ψ(ϕ) < ψ∗(ϕ),

which is also a contradiction. Therefore,

ψ(ϕ) � ψ∗(ϕ) for ϕ ∈ (0, a/2).

Hence, fixing τ2 with ϕ(τ2) ∈ (0, a/2), and for any τ1 with t1 < τ1 < τ2 < t2, we
obtain

τ2 − τ1 =
∫ ϕ(τ2)

ϕ(τ1)

1
ψ1/(p−1)(s)

ds

�
∫ ϕ(τ2)

ϕ(τ1)
α−1/(p−1)ϕ−β/(p−1) ds.

Note that β/(p − 1) � 1, since m + p � min{2, 1 + q}. Letting τ1 → t1, and noting
that ϕ(t1) = 0+, we have t1 = −∞. The proof is complete.
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