
J. Fluid Mech. (2012), vol. 711, pp. 599–619. c© Cambridge University Press 2012 599
doi:10.1017/jfm.2012.412

Ageostrophic instability in a rotating
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Oceanic large- and meso-scale flows are nearly balanced in forces between
Earth’s rotation and density stratification effects (i.e. geostrophic, hydrostatic balance
associated with small Rossby and Froude numbers). In this regime advective cross-
scale interactions mostly drive energy toward larger scales (i.e. inverse cascade).
However, viscous energy dissipation occurs at small scales. So how does the energy
reservoir at larger scales leak toward small-scale dissipation to arrive at climate
equilibrium? Here we solve the linear instability problem of a balanced flow in
a rotating and continuously stratified fluid far away from any boundaries (i.e. an
interior jet). The basic flow is unstable not only to geostrophic baroclinic and
barotropic instabilities, but also to ageostrophic instabilities, leading to the growth
of small-scale motions that we hypothesize are less constrained by geostrophic cascade
behaviours in a nonlinear regime and thus could escape from the inverse energy
cascade. This instability is investigated in the parameter regime of moderate Rossby
and Froude numbers, below the well-known regimes of gravitational, centrifugal,
and Kelvin–Helmholtz instability. The ageostrophic instability modes arise with
increasing Rossby number through a near-degeneracy of two unstable modes with
coincident phase speeds. The near-degeneracy occurs in the neighbourhood of an
identified criterion for the non-integrability of the ‘isentropic balance equations’
(namely A − S = 0 with A the absolute vertical vorticity and S the horizontal strain
rate associated with the basic flow), beyond which development of an unbalanced
component of the flow is expected. These modes extract energy from the basic state
with large vertical Reynolds stress work (unlike geostrophic instabilities) and act
locally to modify the basic flow by reducing the isopycnal Ertel potential vorticity
gradient near both its zero surface and its critical surface (phase speed equal to basic
flow speed).

Key words: baroclinic flows, critical layers, stratified flows

1. Introduction
The oceanic general circulation and its meso-scale eddies are forced mainly at

planetary scales where rotation and stratification have strong influences. This regime is
often referred to as balanced dynamics because of the importance of the geostrophic,
hydrostatic force balance, which is known to inhibit energy transfer towards smaller
scales (Charney 1971). Dissipation is necessary for climate equilibration with the
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forcing. However, viscous energy dissipation can only occur at very small scales where
the loss of rotation and stratification influences leads to three-dimensional isotropic
motion in Kolmogorov’s paradigm for turbulence. McWilliams (2008) reviews several
possible routes for transition between the large- and small-scale dynamical regimes.
One of them, called the ‘interior route to dissipation’, is a forward cascade of energy
toward small scales. It implies an escape from rotational control to non-rotating,
unbalanced dynamics.

The concept of balance has quasi-geostrophic dynamics as its asymptotic regime
for strong rotation and stratification, but it has useful generalizations to higher-order
approximation models, called balance equations. Balance equations are characterized
by solvability (invertibility, integrability) conditions that are violated when rotation and
stratification effects are sufficiently weak, as expected at small scales. The hypothesis
of the interior route to dissipation is that energy transfers occur across these threshold
conditions, beyond which the dynamics will be wholly or partially unbalanced.

A mathematical framework for this transition is proposed in McWilliams et al.
(1998) as a breakdown in consistent balanced evolution in rotating, stratified fluids
away from boundaries. The limiting conditions for the time-integrability of the
conservative isentropic balance equations are sign changes within the spatial domain
of any of three quantities: (i) the density stratification N2 (i.e. the gravitational
stability threshold); (ii) Ertel potential vorticity PV (i.e. the centrifugal instability
threshold); or (iii) A − S, where A is the absolute vertical vorticity and S > 0 is the
magnitude of the horizontal strain rate of the horizontal flow. This third criterion has
also been identified by Dritschel & Viúdez (2003) for an alternative set of balance
equations, where the equivalent condition is the change of sign of the so-called Rellich
parameter. None of these conditions is violated for strong rotation and stratification.
Gravitational instability initiates convection, which is often induced by destabilizing
surface buoyancy fluxes. Centrifugal instability (ii) is favoured in regions with small
potential vorticity, e.g. fronts in the surface boundary layer (Capet et al. 2008; Taylor
& Ferrari 2009; Thomas & Taylor 2010) or near the equator (Hua, Moore & Le Gentil
1997; Ménesguen et al. 2009). The stability consequences of violating criterion (iii)
are less well understood. In some examples, (iii) has been shown to be approximately
associated (rather than having a sharp onset threshold) with what may be collectively
called anticyclonic ageostrophic instability, because A is smallest where the flow is
anticyclonic: a barotropic elliptical flow in an unbounded domain (McWilliams &
Yavneh 1998), barotropic boundary currents (Molemaker, McWilliams & Yavneh 2001;
Yavneh, McWilliams & Jeroen Molemaker 2001; McWilliams, Molemaker & Yavneh
2004), and the baroclinic Eady flow (Molemaker, McWilliams & Yavneh 2005).

This paper presents examples of linear destabilization of a geostrophic basic flow
into ageostrophic fluctuations in the neighbourhood of a threshold condition where the
evolution must be expected to manifest some unbalance, thus crossing the border out
of the realm of rotational dominance. Geostrophic instability modes are also found,
but they do not have the implication of loss of balance and forward energy cascade.
Because this and other instability calculations are linear, they are not enough to assess
whether the subsequent nonlinear turbulent evolution would manifest a forward energy
cascade.

Many other examples have been adduced of ageostrophic rotating, stratified, shear
instability. Well-known types are gravitational, centrifugal, and Kelvin–Helmholtz
instabilities, all of which are unbalanced in the sense defined above. Here we take
the view that these instabilities may not be the first ones encountered as rotational and
stratification influences weaken, hence our focus is on the regime before their onset
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conditions. Because instability problems for a continuous shear profile are difficult,
especially when the basic flow is multi-dimensional (non-separable), most published
examples are for simplified basic flows, such as a barotropic current, uniform PV
(e.g. as in Eady’s flow), or discretized into one or two uniform-density layers in the
vertical direction. Furthermore, highly idealized boundaries often play a dominant role,
either horizontal sides or the equator (which support Kelvin waves), layer interfacial
‘outcrops’ of zero thickness (which support frontal waves), or vertical boundary
temperature gradients (which can be viewed as PV ‘sheets’ that support vertical
edge waves). While many of these may come to be viewed as geophysically relevant,
this judgment should be made in the context of more generic ageostrophic instability
problems for continuous flow and stratification profiles away from boundaries, as we
do here. Furthermore, most of the published examples of ageostrophic instability have
not been assessed from the perspective of the A − S = 0 limit for balanced evolution,
nor, as yet, has any other general criterion been identified.

In the literature of ageostrophic instability, the dynamical mechanism is often
interpreted as a resonant coupling through the background shear of two neutral-
wave eigenmodes with coincident Doppler-shifted phase speeds, yielding a complex-
conjugate pair of eigenfrequencies (positive and negative imaginary parts implying
exponential growth and decay). From this perspective, an ageostrophic instability
is often a coupling that involves at least one mode that is essentially unbalanced
such as a Kelvin or an inertia–gravity wave. In shallow-water equations Hayashi
& Young (1987) shows an unstable coupling between Kelvin and inertia–gravity
waves for a shear flow on an equatorial beta-plane, and Dritschel & Vanneste
(2006) show a coupling between a balanced mode and an inertia–gravity mode for
a potential vorticity front. Wang & McWilliams (2012) show resonances between
a balanced shear wave and an inertia–gravity wave or between two inertia–gravity
waves in shallow-water equations on an f -plane with several continuous profiles
for a basic flow far from boundaries. Sakai (1989) analyses Phillips’ two-layer
flow in a bounded channel and shows the coupling between a Rossby wave in
the first layer and a Kelvin wave in the second or between two Kelvin waves.
Gula, Plougonven & Zeitlin (2009) analyse the same problem for a continuous
flow, which presents a sharp shear layer in the vertical. They reproduce the
coupling between waves occurring in the two-layer model. Kelvin and shear waves
are coupled in a barotropic boundary current (McWilliams et al. 2004). In a
centrifugally stable Taylor–Couette flow, an ageostrophic instability is shown that
results from the coupling of two shear-modified Kelvin waves (Molemaker et al.
2001; Yavneh et al. 2001). In the baroclinic instability in an Eady’s flow (Stone
1970; Nakamura 1988; Molemaker et al. 2005; Plougonven, Muraki & Snyder 2005),
the ageostrophic modes have a smaller scale than the geostrophic modes and are
associated with a coupling between a balanced shear wave and an inertia–gravity
wave near an inertia–critical layer (where the difference between the basic-state
velocity and the phase speed of the wave equals the Coriolis frequency divided by
the horizontal wavenumber; this layer is also a barrier for vertical propagation of
neutral inertia–gravity waves). This layer differs from a classical critical layer where
the phase speed equals the basic-state velocity. A critical layer is associated with
geostrophic instabilities of barotropic and baroclinic basic flows (Bretherton 1966).
Small-scale ageostrophic frontal instabilities are found in both layered models and
laboratory experiments (Griffiths, Killworth & Stern 1982; Griffiths & Linden 1982;
Killworth, Paldor & Stern 1984; Pennel, Béranger & Stegner 2012). Moore & Peltier
(1987) and Moore & Peltier (1990) also addressed the question with the linear
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primitive equation and were able to find small-scale ageostrophic growing eigenmodes
on a front with uniform potential vorticity (PV). However, a time-integration study
of Snyder (1995) did not support their results. Yamazaki & Peltier (2001) revisit
the problem of a front by adding a weak cross-front horizontal gradient of PV and
non-uniform stratification. They identify some small-scale instabilities, but it is not
clear whether those modes are well-resolved (‘The growth rates change significantly
as the truncation level increases’, Yamazaki & Peltier 2001) and whether or not
there are largely balanced instabilities associated with a boundary temperature gradient.
Barth (1994) examines the destabilization of a front in a realistic stratification with a
surface mixed layer and a surface boundary temperature gradient. He finds two types
of baroclinic instability: one with a deeper vertical extent and larger horizontal scale
and the other with a shallower and smaller scale. The latter may be similar to the
‘mixed-layer’ baroclinic instability of Boccaletti, Ferrari & Fox-Kemper (2007).

In this paper we show that ageostrophic instability arises in a non-separable basic
flow with continuous stratification far away from horizontal and vertical boundaries
and with small viscosity. In §§ 2–4 we solve the problem of the linear stability of
a geostrophic interior jet using both Boussinesq and a quasi-geostrophic models to
assess whether modes are essentially geostrophic or not. The unstable modes are
interpreted in relation to the A − S = 0 criterion and analysed in terms of their
energetics and feedback on the basic flow. The conclusions are discussed in § 5.

2. Non-dimenionalization and fluctuation equations
We solve the linear, normal-mode stability problem for a basic-state velocity V(x, z)

in geostrophic balance in a rotating, stably stratified fluid with Coriolis frequency
f > 0 and Brunt–Väisälä frequency N. To non-dimensionalize the governing equations,
we use a horizontal scale L, a vertical scale H, and a horizontal velocity scale V0

all based on the basic flow. The time scale is the inverse of the basic shear rate,
L/V0. Vertical velocity is scaled as λ(Ro/Bu)V0, where λ = H/L is the aspect ratio;
Ro = V0/f L is the Rossby number; and Bu = (NH/f L)2, the Burger number. Bu
is also defined as (Ro/Fr)2 with Fr = V0/NH the Froude number. The background
temperature field T

b
(z) is non-dimensionalized by T0 = (N2H)/(gα) with g the

gravitational acceleration and α the thermal expansion coefficient such that density
is ρ = −ρ0αT . The dynamical temperature T for the basic flow and the fluctuation T
are scaled with δT0 = (Ro/Bu)T0. The dynamical pressure field is non-dimensionalized
by (Ro/Bu)p0, with p0 = ρ0gαT0H = ρ0N2H2 the background scale. Henceforth, all
quantities are non-dimensional.

The flow is governed by five non-dimensionalized numbers. The Rossby number and
the Burger number are the primary parameters that we vary. The aspect ratio is kept
very small at 5× 10−3 to characterize balanced geophysical flows. The Ekman number
Ek = ν/f L2, which compares the effects of viscosity ν and rotation, is also kept very
small (usually ∼10−9) to focus on inviscid motion; it is formally retained to be able
to regularize fine spatial scales in the unstable modes, if needed. Finally, the Prandtl
number, Pr = ν/κ with κ the thermal diffusivity, is set to unity. This excludes the
instability of McIntyre (1970), which requires both large Pr and λ order one, hence is
not relevant for oceanic meso-scale flow.

We first specify the basic flow and stratification and then define two sets of the
linearized eigenmode problem for fluctuations around the basic flow: the Boussinesq
equations where ageostrophic flows may arise and the quasi-geostrophic equations
where only balanced flows are solutions.
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FIGURE 1. Vertical sections of (a) basic-state velocity V(x, z) and (b) isopycnal gradient of
Ertel potential vorticity ∂sPV(x, z) divided by Ro, both for Bu = 0.78 and Ro = 0.47. Black
dotted lines are basic-state isopycnals, and red lines are A − S = 0. (c) The spatial minimum
value of A− S versus Ro for Bu= 0.78.

2.1. The basic state
The basic state is designated as the (x, y, z) velocities plus the pressure and
temperature fields, i.e. {0,V(x, z), 0,P(x, z),T

t
(x, z)}. The superscript t denotes the

total temperature decomposed into a background stratification T
b
(z) and a T(x, z) field

which is in thermal wind balance with V:

T
t
(x, z)= T

b
(z)+ Ro

Bu
T(x, z), (2.1)

Tx(x, z)= V z. (2.2)

In this study we consider a simple, linear background stratification:

T
b
(z)= (z− zb). (2.3)

The basic-state flow that we use is an interior jet whose velocity has a central
maximum with both horizontal and vertical shear, located far away from boundaries:

V(x, z)=− exp(− (αzz)
4)/ (cosh(αxx))

2, (2.4)

with the particular profile coefficients αx = 1.49 and αz = 0.66 (figure 1a). Unstable
eigenmodes with similar behaviour to those shown below are also found with different
choices of αx and αz and with other basic flow profiles such as exp−(x2 + z4) or
exp−(x2 + z2). The basic state is not steady under diffusion, but we neglect this effect
by choosing small diffusivities and a smooth basic profile.

For the parameter space we investigate here, the basic state is chosen to be
gravitationally and centrifugally stable with T

t
z > 0 and f PV > 0 everywhere. PV is

the Ertel potential vorticity of the basic flow, defined as

PV = (RoVx + 1)T
t
z − RoV zT

t
x. (2.5)

These conditions are assured by limiting the range of values of Ro and Bu.
For geostrophic fluctuations the Rayleigh–Kuo–Fjørtoft necessary condition for

barotropic and baroclinic instability is that ∂xQ change sign within the domain, where
Q is the quasi-geostrophic potential vorticity of the basic state (§ 2.3). Charney
& Stern (1962) shows that variations of Q at constant depth are approximately
proportional to variations of PV along isopycnals (surfaces of constant T

t
, equivalent

to isopycnal surfaces). Hoskins (1976) generalizes the necessary condition for semi-
geostrophic balanced flow. Eliassen (1983) explicitly implicates the sign change of
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the isopycnal gradient of potential vorticity. The importance of ‘isopycnal potential
vorticity’ is extensively argued in Hoskins, McIntyre & Robertson (1985).

We define the unit vector s, along the basic-state isopycnals. In terms of (2.5), the
isopycnal horizontal gradient is

s ·∇PV = ∂sPV = ∂xPV − ∂xT

∂zT
t ∂zPV. (2.6)

Figure 1(b) illustrates ∂sPV(x, z) for the basic state. We see that the sign reversal
condition is well satisfied, and this continues to be true even for small Ro. Moreover,
for the particular parameters Bu= 0.78 and Ro= 0.47, the minimum value of the local
Richardson number Ri, defined as Ri = BuT

t
z/Ro2V

2
z , is 3.6, well above the threshold

value for Kelvin–Helmholtz instability. In our study of ageostrophic instability, we stay
within this regime of Ri > 1. Finally, figure 1(c) is a plot of the (x, z)-minimum of
A− S as a function of Ro for the basic state, with A= 1+ Ro(Vx − (∂xT/∂zT

t
)V z) and

S = Ro [(Vx − (∂xT/∂zT
t
)V z)

2]1/2. For Ro > 0.45, the basic state has a non-zero area
where A− S< 0. The red line contouring A− S= 0 is localized in the anticyclonic part
of the jet, the area where the implied breakdown of balance is more likely to occur.

2.2. Boussinesq equations
We assume normal-mode fluctuation solutions in the form of {u(x, z),
v(x, z),w(x, z), p(x, z),T(x, z)} exp(ily + σ t). The downstream wavenumber is l. The
positive real part of σ is the unstable growth rate, and the phase speed cp is minus
the imaginary part of σ divided by l. After substituting this form into the Boussinesq
equations and factoring the exponential function, we obtain the following eigenmode
system:

Ro[σu+ ilVu] − v + px − Ek1′u= 0, (2.7a)

Ro

[
σv + Vxu+ ilVv + Ro

Bu
V zw

]
+ u+ ilp− Ek1′v = 0, (2.7b)

Roλ2[σw+ ilVw] + Bu

Ro
pz − Bu

Ro
T − λ2Ek1′w= 0, (2.7c)

ux + ilv + Ro

Bu
wz = 0, (2.7d)

Ro

[
σT + Txu+ Ro

Bu
T zw+ T

b
z w+ ilVT

]
− Ek

Pr
1′T = 0, (2.7e)

with 1′ = ∂2
x2−l2+(∂2

z2/λ
2) the Laplacian operator. We choose the fluctuation boundary

conditions as no normal flow at the x and z boundaries (i.e. u = 0 and w = 0,
respectively) and no diffusive flux of velocity and temperature through zero normal
derivatives. All these conditions are conducive to small fluctuation amplitudes in the
far field away from the interior jet.

2.3. Quasi-geostrophic equations
For the quasi-geostrophic approximation the velocity field is decomposed into a
horizontal geostrophic component ug and an ageostrophic component ua, such that
u = ug + (Ro/Bu)ua. The Boussinesq equations (2.7) are expanded in small Ro and
λ for finite Bu to obtain the approximate quasi-geostrophic equation (2.8) below
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as a linear differential combination of (2.7). We introduce the streamfunction Φ

(where ∂xΦ = vg and ∂yΦ = −ug), and assume a fluctuation eigenmode solution
form of Φ(x, y, z) = φ(x, z) exp(ily + σ t) with quasi-geostrophic potential vorticity
q(x, z) exp(ily+ σ t). The resulting eigenmode system is

[σq+ ilVq] − ilφ

[
Vxx + 1

Bu
∂z

(
V z

T
b
z

)]
− Ek

Ro
1Hq= 0, (2.8a)[

∂2
xx − l2 + 1

Bu
∂z

(
1

T
b
z

∂z

)]
φ = q, (2.8b)

with

1H = ∂2
xx − l2 (2.9)

a horizontal Laplacian operator. Boundary conditions in x and z correspond to
zero normal flow and zero diffusive flux. As discussed in § 2.1, the relevant
quasi-geostrophic potential vorticity for instability of the basic state is Q = Vx +
Bu−1 ∂z[T/Tb

z ], where V =Φx and T =Φz.
The quasi-geostrophic model includes a diagnostic prescription of the associated ua

at O(Ro). Its instability, if any, is entirely controlled by the system (2.8), so we refer
to it as a geostrophic instability, reserving the terminology ageostrophic instability for
modes present in the Boussinesq model but absent in the quasi-geostrophic one.

3. Methods
The Boussinesq equations are discretized using standard finite differences on a two-

dimensional vertical staggered grid. All variables are defined at cell centres except u
and w, which are respectively defined at the midpoints of the cell horizontal edges and
vertical edges. The quasi-geostrophic equations are discretized such that φ is located at
cell horizontal edges. Vertical discretization is applied on a Charney & Phillips (1953)
grid: φ, q and p are at the integer levels (cell centres) while T is at the half-integer
levels (cell bottom edges). For bottom and surface conditions, we use the Arakawa
& Moorthi (1988) discretization, following the quasi-geostrophic potential vorticity
generalization of Bretherton (1966).

This yields matrix eigenvalue problems for the two fluctuation equation systems.
The resulting matrices are large and sparse. For the Boussinesq equations, a spatial
resolution of 150 × 150 grid points implies a (112 500)2 sparse matrix system. A
direct method resolving the whole eigenmode spectrum was tested, but it is only
feasible for very coarse grids (e.g. 20 × 20). Because the modes we find need higher
spatial resolution, we investigate only the growing eigenmodes with the highest growth
rates (positive real σ ). We use the ‘implicitly restarted Arnoldi method’ implemented
in the ARPACK software package (e.g. Arnoldi 1951; Lehoucq & Sorensen 1996).
This method, based on Krylov subspaces, computes a partial result after a relatively
small number of iterations. These restrictions in grid resolution and growth rate
mean that we only find spatially smooth eigenmodes without the sharp critical-layer
near-singularity that could occur for small σ . These modes do not require diffusive
regularization (which would act to decrease their growth rate), so we choose to use
a very small value of Ek in the results shown. Using this method we cannot claim
to know the whole eigenmode spectrum. Instead we focus on particular modes as
examples of strong instability.
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FIGURE 2. (a) Growth rate and (b) phase speed for six different eigenmodes versus N,
where the grid size is N × N. The vertical dashed line indicates the standard resolution for
the results shown in subsequent figures. Convergence curves shown here are for Ro = 0.47
and Bu = 0.78 and for the three values of l associated with the near-degeneracy events for
different eigenmode pairs (marked with dash-dotted lines in figure 5a): black and grey curves
(l= 0.77), red and orange curves (l= 1.52), blue and green curves (l= 1.4).

In § 4 we examine a range of parameters, especially in Ro from small values that
satisfy the assumptions for the quasi-geostrophic equations to larger ones where we
expect and find departures from geostrophic balance. Scans in Ro, Bu and wavenumber
l were made, using small λ and Ek with Pr = 1. The geophysically most relevant
ageostrophic modes are those with Bu = O(1). Moreover, eigenvalue convergence has
been checked for grid sizes going from 50× 50 to 170× 170. In figure 2 are examples
of convergence curves with resolution. They are calculated with fixed values of Ro and
Bu at particularly interesting values of l corresponding to the near-degeneracy event
that occurs for the three pairs of unstable modes (discussed in § 4). For these modes
we note that the eigenvalues with non-dimensional growth rates σ higher than 0.05
are not far from convergence at the resolution of 150 × 150 (i.e. their phase speed
and growth rates have reached an asymptotic limit in grid number N). Curves for
smaller eigenvalues are not yet well converged. We use this level of σ as a rough
guide to computational accuracy for the modes of interest, indicated by a shaded area
in figures 3 and 5. Nevertheless, we do track some of the modes below this level as
they emerge and develop toward larger σ values with changes in Ro and l. We have
checked that the associated eigenmode shapes do not change greatly whether σ has
converged or not.

4. Unstable eigenmodes
4.1. Quasi-geostrophic and Boussinesq eigenmodes versus Ro

The Boussinesq eigenvalue problem is first solved for a range of Ro values with
fixed order-one values of Bu = 0.78 and l = 1.19 (figure 3). We trace each mode’s
growth rate and phase speed to obtain smoothly continuous curves for both those
quantities. In the quasi-geostrophic limit (Ro→ 0), only geostrophic eigenmodes have
a finite positive growth rate. At small Ro, Boussinesq eigenmodes are expected to
be close to these quasi-geostrophic modes, and this is confirmed for the three modes
analysed in figure 3. Furthermore, figure 4 compares u and v eigenfunction patterns
of the Boussinesq ‘black’ mode (black curve in figure 3 at small Ro) to its quasi-
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FIGURE 3. (a) Growth rate and (b) phase speed versus Ro for several Boussinesq eigenmodes
coded by colour. Cross-marks at Ro = 0 are for the equivalent quasi-geostrophic eigenmodes.
This plot is for Bu = 0.78 and l = 1.19. The arrow marks the Ro value where min(A − S)
changes sign, and the black dash-dotted line indicates the near-degeneracy point for the
‘black–grey’ mode pair (zoomed in figure 6). The shaded area is a guide to the computational
accuracy (§ 3). The black dotted vertical line at Ro = 0.47 is where an intersecting parameter
survey in l values is made in figure 5.

geostrophic equivalent. To aid this structural comparison, the modes are given a
common amplitude and (y, t)-phase normalization. The eigenfunction patterns are very
similar, corroborating the equivalence of the unstable mode in this limit of Ro→ 0.
In this quasi-geostrophic limit the mode realizes the permitted reflection symmetries
relative to the x and z axes, but we will see (figure 7) that the former symmetry is
lost at finite Ro. The importance of the critical surface where V(x, z) = cp is clear as
a zone of high gradient at the edge of the eigenmode in v. An inertia–critical surface
where V = cp ± 1/(lRo) cannot occur for small Ro and finite l and cp.

The two strongly unstable geostrophic modes shown above (‘black’ and ‘blue’)
initially show little change in growth rate and cp with increasing Ro, but a weakly
unstable geostrophic mode (‘orange’) amplifies strongly with Ro and several new
modes arise at finite Ro (figure 3). The latter appear in the neighbourhood of the
violation of the A − S > 0 balanced-integrability criterion represented by an arrow
on the abscissa. Two of the modes (‘grey’ and ‘green’) have no equivalent in quasi-
geostrophic dynamics; hence, these modes are inherently ageostrophic. Furthermore,
figure 3 illustrates a sharp transition for the ‘black’ and ‘grey’ modes at a critical
Ro ≈ 0.38, where they have similar phase speeds and growth rates. Here, two initially
distinct, unstable modes almost coalesce into two degenerated eigenmodes as the
control parameter Ro varies. Beyond this transition the dispersion curves diverge. This
phenomenon of near-degeneracy is also described in Salwen & Grosch (1972) and
Salwen, Cotton & Grosch (1980) for a Poiseuille flow in a circular pipe; Craik (1988)
reports these examples as a ‘near-bifurcation’ where dispersion curves almost meet
and where modes may exchange their identities. However, the term bifurcation is
commonly reserved for a change in the state of the fluid flow which is not obviously
the case here. Consequently, we will use the terminology ‘near-degeneracy’. We
analyse this event further in § 4.2.

A different parameter scan is made in the along-front wavenumber l for fixed values
of Bu = 0.78 and Ro = 0.47, with the resulting growth rate and phase speed curves
shown in figure 5 for the same Boussinesq eigenmodes as before (figure 3). The
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FIGURE 4. Vertical sections of normalized eigenfunctions u(x, z) (a,b) and v(x, z) (c,d) for
the ‘black’ mode, in (a,c) quasi-geostrophic and (b,d) Boussinesq equations at Ro = 0.03.
Contours are every 0.12 from −0.9 to 0.9 (solid positive, dashed negative). The bold dashed
line is the location of the critical surface where V = cp, where cp is the phase speed for the
mode. This plot is for Bu= 0.78 and l= 1.19.
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FIGURE 5. (a) Growth rate and (b) phase speed versus l for several eigenmodes with
Ro= 0.47 and Bu= 0.78: Boussinesq (solid lines) and quasi-geostrophic (dashed). The black
dotted line at l = 1.19 coincides with the Ro section in figure 3, and the eigenmode colour
scheme here is the same. The dash-dotted lines indicate near-degeneracy points, and the
shaded area is again a guide to the computational accuracy (§ 3).
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FIGURE 6. (a) Growth rate and (b) phase speed in a zoom of the near-degeneracy
neighbourhood of Boussinesq ‘grey’ and ‘black’ modes in figure 3, with the vertical line
here at the same Ro = 0.376 as the dash-dotted line there. Plus symbols indicate the data
points in the control parameter Ro.

dispersion curves for the equivalent quasi-geostrophic modes are also plotted with
dashed curves for the ‘black’ and ‘grey’ modes. The dispersion curves match closely
between the two models at small Ro (not shown). Here at finite Ro, the models differ
substantially, especially for larger l after the occurrence of near-degeneracy events
in the Boussinesq equations, both between ‘black’ and ‘grey’ modes (as before) and
between ‘blue’ and ‘green’ modes. Additional ageostrophic instability modes appear in
the large-l region with relatively weaker growth rate.

4.2. A nearly-degenerate Boussinesq eigenmode pair
We now focus on the ‘black’ and ‘grey’ pair of eigenmodes. Figure 6 is a zoom-in on
figure 3, showing the near-degeneracy as a continuous transition of the two modes, i.e.
without discontinuity in the growth rate and phase speed curves. Growth rate curves
cross at a Ro value close to the point where the phase speeds are close but themselves
do not cross. Note that the data points on the curves indicate the resolution in Ro,
which is fine enough to be certain of the tracking of the separate modes through the
event.

The spatial structure of the ‘black’ and ‘grey’ eigenfunctions is shown in figure 7
for a Ro value (0.370) just before the crossing of the growth curves at Ro = 0.378,
close to the near-degeneracy event. The velocity field of the ‘black’ mode (figure 7a,c)
is more confined about the critical surface (V = cp) than it was at the smaller Ro
value (figure 4b,d), and its structure is now quite close to that of the emerging
‘grey’ mode that it is pairing with (figure 7b,d). This is further manifestation of the
near-degeneracy of the mode pair. Both modes manifest a right–left asymmetry, in
contrast to the small-Ro geostrophic mode in figure 4(b,d). We have checked that the
location of the inertia–critical surface (V = cp ± 1/(lRo)) does not occur within the
domain for these modes, so it cannot be considered relevant. This is in contrast to
ageostrophic baroclinic instability in the Eady flow (§ 1), and we show in § 4.3 that the
near-degeneracy transition is a result of vertical shear instability and Reynolds stress
energy conversion rather than baroclinic conversion of potential energy.

The degree of eigenmode ageostrophy is illustrated in figure 8 for the relative
magnitude of the horizontally divergent component of the horizontal velocity, ∆ =
|udiv|/|u|, in a decomposition into horizontally divergent and rotational (i.e. carrying
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FIGURE 7. Vertical sections of normalized eigenfunctions u(x, z) (a,b) and v(x, z) (c,d) for
the Boussinesq eigenmodes: (a,c) ‘black’ and (b,d) ‘grey’. The parameters are for the near-
degeneracy event: Bu = 0.78, Ro = 0.37 and l = 1.19. The bold dotted line is the location of
the critical surface, V = cp.
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FIGURE 8. Vertical sections of ∆(x, z), the local fraction of the divergent component in the
horizontal velocity field: (a) ‘black’ mode and (b) ‘grey’ mode. Bu = 0.78, Ro = 0.37 and
l= 1.19. The maximum amplitude is 0.18 with a contour interval 0.022. The bold dashed line
shows the location of the critical surface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

41
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.412


Ageostrophic instability in a rotating stratified jet 611

0.10

0.08

0.06

0.04

0.02

0

H
or

iz
on

ta
l d

iv
er

ge
nc

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIGURE 9. Domain-averaged fraction of the divergent component of the horizontal velocity
field, δ, for the same eigenmodes as in figure 8. The arrow marks where min(A − S) changes
sign, and the vertical line is at Ro= 0.376 (as in figures 3 and 6).

the vertical component of relative vorticity) parts, u = udiv + urot. In quasi-geostrophic
theory, ∆ is vanishingly small with Ro. At finite Ro the Boussinesq eigenmodes
have large ∆ around the critical surface. The domain average of the horizontally
divergent part is plotted versus Ro in figure 9. We define δ = 〈|udiv|〉D/〈|u|〉D with
〈·〉D an average over the domain. As expected, eigenmodes with a quasi-geostrophic
counterpart have vanishing δ at small Ro. With increasing Ro, δ increases continuously
indicating the growth of an ageostrophic velocity component. At finite Ro, the
emerging ageostrophic modes (‘grey’ and ‘green’) have higher horizontal divergent
parts than the eigenmodes they are pairing with (respectively, the ‘black’ and ‘blue’
modes). The critical Ro for the near-degeneracy event is co-located in this graph with
a kink in the curves where the mode-pair δ values intersect. We stress the fact that,
in the parameter region where the near-degeneracy occurs, the pairing eigenmodes
are very similar in dispersion curves (figure 6), eigenmode patterns (figure 7), and
the rotational and divergent parts of their velocity fields. After the near-degeneracy
event, the increase with Ro of the horizontally divergent fraction continues in all the
eigenmodes.

4.3. Energetics
A diagnostic perspective on unstable eigenmodes is the nature of the energy
conversion from the basic flow to the growing fluctuations. We analyse the volume-
integrated energetics of eigenmodes in the limit of small fluctuation amplitude (e.g.
Gill 1982). These are derived from y-averaged evolution equations for the kinetic
energy density, Ke, and the available potential energy density, Pe, defined by

Ke= uu? + vv?
2

, (4.1a)

Pe= TT?

2BuT
b
z

. (4.1b)

The star denotes the complex conjugate.
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FIGURE 10. Quasi-geostrophic energy conversions versus Bu for the ‘black’ mode at
l= 1.19. This is the asymptotic result as Ro→ 0. The vertical line marks Bu= 0.78.

4.3.1. Quasi-geostrophic energy conversion
In the quasi-geostrophic equations, Ke is defined with the geostrophic components of

velocity, and the y-averaged fluctuation energy evolution equations are

Ro

2σ 〈Ke〉 + Vx〈ugv
?
g〉︸ ︷︷ ︸

−KmKe

− 1
Bu
〈waT?〉︸ ︷︷ ︸
PeKe

+ 1
Bu
∇ · (〈uaφ

?〉)︸ ︷︷ ︸
Press

= Ek〈[u?g1Hug + v?g1Hvg]〉︸ ︷︷ ︸
Diss

(4.2a)

Ro

2σ 〈Pe〉 + Tx

BuT
b
z

〈ugT?〉︸ ︷︷ ︸
−PmPe

+ 1
Bu
〈waT?〉︸ ︷︷ ︸
PeKe

= Ek

PrBuT
b
z

〈T?1HT〉︸ ︷︷ ︸
Diss

; (4.2b)

〈·〉 denotes an average over the y-direction. For the small Ek values we have used,
the dissipation terms Diss are negligible for the eigenmodes we are focusing on.
In a volume integral the pressure work Press is zero with our boundary conditions.
The remaining terms are PmPe, PeKe and KmKe, which convert energy, respectively,
from available potential energy of the basic-state flow to fluctuation available potential
energy, from fluctuation available potential energy to fluctuation kinetic energy, and
from basic-flow kinetic energy to fluctuation kinetic energy.

We characterize the geostrophic instability type by the relative importance of
PmPe and KmKe, i.e. baroclinic instability associated with the vertical shear V z

and horizontal buoyancy flux (i.e. 〈uT〉 6= 0) or barotropic instability associated with
the horizontal shear Vx and horizontal Reynolds stress (i.e. 〈uv〉 6= 0). Their volume
averages are evaluated as a function of Bu, normalized by the kinetic energy average,
and plotted in figure 10. Small Bu indicates a strong vertical shear compared to the
horizontal shear in the basic flow.

At small Bu (Bu < 0.8), the main source of instability is baroclinic conversion
of available potential energy (positive PmPe and PeKe). For Bu > 0.8, the main
source of instability is a barotropic conversion of kinetic energy (positive KmKe).
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FIGURE 11. Boussinesq energy conversions versus Ro for ‘black’ and ‘grey’ modes. Cross-
marks are for the equivalent quasi-geostrophic eigenmodes as on figure 3. The vertical dash-
dotted line marks the near-degeneracy event at Ro = 0.376, and the arrow marks where
min(A − S) changes sign. By chance KmKeH ≈ KmKeV for the ‘grey’ mode for Ro > 0.55
where their curves overlap. Bu= 0.78 and l= 1.19.

At Bu ∼ 1.5, PmPe crosses zero, indicating that the fluctuation displacements align
with the basic-state isopycnals, and for larger Bu it is even a sink of fluctuation energy.
The cases illustrated in figures 3–9 are for Bu = 0.78, where the flow has a mixed
baroclinic–barotropic instability with PmPe and KmKe both positive.

4.3.2. Boussinesq energy conversion
In the Boussinesq equations the y-averaged fluctuation energy evolution equations

are

Ro

2σ 〈Ke〉 + Vx〈uv?〉︸ ︷︷ ︸
−KmKeH

+ Ro

Bu
V z〈v?w〉︸ ︷︷ ︸
−KmKeV

− 1
Bu
〈w?T〉︸ ︷︷ ︸
PeKe

+ 〈uv? − u?v〉︸ ︷︷ ︸
Coriolis

+ ∇ · (〈u?p〉)︸ ︷︷ ︸
Press

= Ek

〈[
u?1′u+ v?1′v + λ2 Ro2

Bu2
w?1′w

]〉
︸ ︷︷ ︸

Diss

, (4.3a)

Ro

2σ 〈Pe〉 + Tx

BuT
b
z

〈uT?〉 + RoT z

Bu2T
b
z

〈wT?〉︸ ︷︷ ︸
−PmPe

+ 1
Bu
〈wT?〉︸ ︷︷ ︸
PeKe

= Ek

Pr

1

BuT
b
z

〈T?1′T〉︸ ︷︷ ︸
Diss

. (4.3b)

Again, the Diss terms are negligible, and Press has zero domain average. The
Coriolis term is purely imaginary and does not have an effect on the growth rate
of the fluctuation. The remaining terms are the same kinds of conversion as in (4.2).
However, the conversion from basic-flow kinetic energy to fluctuation kinetic energy
has both a horizontal part KmKeH and a vertical part KmKeV , whose sum is the total
KmKe. In the quasi-geostrophic limit, KmKeV does not contribute at leading order in
Ro, so KmKe= KmKeH .

Energy conversions averaged over the domain and normalized by the kinetic energy
average are plotted in figure 11 for a range of Ro values at Bu = 0.78, again focusing
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on the ‘black’ and ‘grey’ eigenmode pair. At small Ro and finite Bu, the ‘black’
mode is, as in its quasi-geostrophic equivalent, a mixture of geostrophic baroclinic
(PeKe > 0) and horizontal-barotropic (KmKeH > 0 in figure 11b) instabilities. PmPe is
maximum as Ro→ 0, indicating the importance of baroclinic geostrophic instability.
As Ro increases the baroclinic conversion of available potential energy drops and
becomes negative, as does the PeKe conversion, while kinetic energy conversions from
the basic flow to the fluctuation increase (especially KmKeV). The companion ‘grey’
mode has no source of energy coming from baroclinic conversion (figure 11a). It
grows only through a conversion from kinetic energy of the basic flow to kinetic
energy of the fluctuation (figure 11b). Thus, with increasing Ro, the instability type for
those two modes progressively changes into a shear instability with large KmKeV > 0;
this is an inherently ageostrophic process associated with vertical Reynolds stress (i.e.
〈uw〉 6= 0). The near-degeneracy event is evident in an abrupt change of the energy
conversion curves in the neighbourhood of A− S= 0.

4.4. Isopycnal homogenization tendency for Ertel potential vorticity
As a complement to the integrated energy conversion view of the interaction of the
basic flow and the unstable Boussinesq eigenmodes (§ 4.3.2), we now make a local
analysis of the relation between the y-averaged flux of fluctuation Ertel potential
vorticity (pv) and PV(x, z) in the basic flow. We decompose the total potential vorticity
into its y-average, 〈PV〉(x, z, t) which may change due to the unstable fluctuations, and
the fluctuation pv defined by

pv =
(
λ2Ro2

Bu
ilw− Rovz

)
T

t
x −

Ro2

Bu
V zTx + Ro(vx − ilu)T

t
z +

Ro

Bu
(1+ RoVx)Tz. (4.4)

Initially, before the fluctuations grow to a significant amplitude, 〈PV〉 ≈ PV .
Subsequently, the fluctuations will act to modify the evolution of 〈PV〉 according
to the following balance relation with quadratic flux divergences in the fluctuation
fields:

∂t〈PV〉 + 〈U〉 ·∇〈PV〉 = −∇ ·F{PV}, (4.5)

where the flux vector in the (x, z) plane is F= {Fx,Fz} with components,

Fx{PV} = 1
2

Re(〈u pv?〉), (4.6a)

Fz{PV} = Ro

2Bu
Re(〈w pv?〉). (4.6b)

We next project F onto locally isopycnal and diapycnal directions, with unit vectors
s and n which are tangential and normal, respectively, to the basic-state isopycnal
surfaces in T

t
(x, z). We define isopycnal and diapycnal eddy diffusivities, κ s and κn by

the flux-gradient relations,

s ·F{PV} = −κ s∂s〈PV〉, (4.7a)
n ·F{PV} = −κn∂n〈PV〉. (4.7b)

Because in the mean flow evolution (equation (4.5)), only divergence of the flux
matters, we remove the y-rotational component for the vector F{PV} in the cross-flow
plane, although it is relatively small compared to the divergent component that we
show.
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FIGURE 12. Vertical sections of (a,c) κ s(x, z) and (b,d) κn(x, z) with colour shading for
(a,b) ‘grey’ and (c,d) ‘blue’ Boussinesq eigenmodes at Ro = 0.47, Bu = 0.78 and l = 1.19.
The black contours (positive solid, negative dashed) are the basic-state potential vorticity
isopycnal gradient: ∂sPV . Colouration of κ is suppressed where the corresponding gradient of
PV is very small. The dashed red line is the location of the critical layer, and horizontal dotted
lines are contours of the basic stratification T

t
. κ s is positive in the vicinity of the conjunction

of the critical surface and the sign change in ∂sPV .

An arguably better approach to estimate an eddy diffusivity of PV would have been
to remove the skew component of PV flux (i.e. the component normal to the mean
gradient of PV) which is advective in nature (Plumb & Ferrari 2005). Following the
transformed Eulerian-mean (TEM) formalism, we have estimated the residual PV flux
(i.e. raw flux minus its skew component, not shown here). We do see differences
between residual flux and the divergent component of raw flux, but mainly in areas
where the mean isopycnal PV gradient vanishes. Indeed, it is possible for raw PV flux
not to vanish even when the mean isopycnal gradient of PV vanishes, while residual
PV flux vanishes. But, in our study, the mean isopycnal gradient of PV vanishes very
locally at the edge of the jet. Thus, the residual PV flux vanishes only in confined
area, and the relative importance of the skew component is not too strong and the
main pattern of PV flux does not change. Hence, we choose to show in this paper the
simpler PV analysis in (4.5)–(4.7) rather than the more elaborate TEM analysis.

We make this analysis for two unstable eigenmodes with parameters well beyond
their near-degeneracy events, where the divergence amplitude δ and KmKeV energy
conversions clearly indicate ageostrophic behaviour (i.e. for Ro = 0.47 in figure 12).
This case is also beyond the violation of the A− S> 0 balanced-integrability condition
(cf. figure 1). The spatial distributions of the diagnosed κ fields are non-uniform and
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not everywhere positive. The TEM analysis mentioned before corrects the few negative
values of κ into positive values. Nevertheless, κs calculated here has large, positive
values in the vicinity of the critical surface (as predicted by Lindzen, Farrell & Tung
1980 in the quasi-geostrophic limit). Furthermore, κ s > 0 is largest around the sign
change of the isopycnal potential vorticity gradient ∂sPV , indicating the satisfaction of
the Rayleigh necessary condition for instability (§ 2.1). The positive value is consistent
with the fluctuations being created by the destabilization of the basic flow and then
acting to counteract the cause of its growth by diminishing the magnitude of ∂s〈PV〉
where it is largest in the neighbourhood of the critical surface. This is consistent
with the possibility of equilibration between the y-averaged flow and fluctuations at
finite amplitude (not shown here) toward a reduced PV gradient, sometimes referred as
homogenization. The tendency toward PV-homogenization along basic-state isopycnals
is also shown in Kuo, Plumb & Marshall (2005) and Cerovečki, Plumb & Heres
(2009) for a baroclinic instability example. The diapycnal diffusivity κn in figure 12 is
smaller than κ s and less generally positive, so we consider it as indicating a secondary
effect on 〈PV〉 without a ready interpretation.

Finally, notice that the amplitudes of both ∂sPV and κ s are larger on the left side
of V in figure 12, as are the eigenmodes (not shown), which is the anticyclonic side
where 0 < PV < T

b = 1 and A − S < 0 in figure 1. This supports a characterization of
the instability beyond the near-degeneracy event as an anticyclonic ageostrophic in its
type.

5. Conclusions and discussion

We solve the linear stability problem of an interior two-dimensional jet V(x, z) with
both horizontal and vertical shear in a continuously stratified, rotating, Boussinesq
flow. We examine a range of small and intermediate values of Ro where the
balanced basic flow is stable to unbalanced instabilities (i.e. gravitational, centrifugal
and Kelvin–Helmholtz) known to occur at even larger Ro. The basic flow satisfies
the Charney & Stern (1962) necessary condition for geostrophic baroclinic and
barotropic instability. Indeed, geostrophic eigenmodes are found, and at small Ro
the Boussinesq eigenmodes have equivalent quasi-geostrophic eigenmodes. In addition
to these expected geostrophic instabilities, we demonstrate the existence at finite Ro of
ageostrophic eigenmodes that have no counterpart in the companion quasi-geostrophic
model and that exhibit growth rates as large as the geostrophic ones. For all unstable
modes, discernible departures from geostrophic balance occur at finite Ro values.

In the examples presented here, the attainment of significant growth rate for an
unstable ageostrophic mode – comparable to that of the geostrophic modes – coincides
with a near-degeneracy event between pairs of unstable modes with nearly coincident
phase speeds and structurally similar eigenfunction patterns. The near-degeneracy
events occur for Ro values that are in the neighbourhood of the condition A − S = 0,
hence they can be viewed as anticyclonic, ageostrophic in type, similar to previous
examples for more limited basic flows. This supports the conjecture that the limits to
integrability of balance equations may coincide with the onset of unbalanced evolution
(as is known for other integrability criteria associated with gravitational and centrifugal
instability; McWilliams et al. 1998). Unlike a common interpretation of ageostrophic
instability as a shear-assisted resonance of two neutral modes near marginal instability
(§ 1), the near-degeneracy event is between two unstable modes well away from either
one’s marginal instability.
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The characteristics of the modes change as parameter values vary across the near-
degeneracy event. At parameter values before a near-degeneracy event, the instabilities
are either geostrophic or have a very weak growth rate (consistent with growth rates
that are exponentially small, σ ∼ exp(−1/Ro) as Ro→ 0, for the ageostrophic modes
in Vanneste & Yavneh 2007). In our examples, the quasi-geostrophic instability is
primarily a baroclinic instability, with PmPe > 0 energy conversion and a secondary
horizontal-shear KmKeH > 0 conversion. During and after the event the ageostrophic
modes here have their energy generation through vertical and horizontal Reynolds
stress correlations with the shear of the basic flow (KmKeV > KmKeH > 0), unlike a
baroclinic instability or a geostrophic one with vanishing KmKeV . The ageostrophic
amplitude (i.e. relative magnitude of the horizontally divergent part of the velocity
field) is largest in the neighbourhood of the critical surface (V = cp). This location is
also where the eigenmodes and basic flow most strongly interact, with a fluctuation
potential vorticity flux pattern that acts to reduce the potential vorticity isopycnal
gradient of the basic flow in the neighbourhood of its zero surface. This last
property is most clearly seen by decomposing the raw PV flux into skew and
residual components and by evaluating the diffusivity from the residual component.
The residual flux is then always down-gradient. This result supports diffusive closures
for the PV flux even in flows with unbalanced components.

Because of the combination of the near-degeneracy transition and the importance
of KmKeV > 0 beyond it, the unstable ageostrophic modes in this more generic
interior shear flow V(x, z) are dissimilar from many of the previous ageostrophic
instability examples in simpler flows (§ 1). More commonly shared characteristics are
the importance of A − S ≈ 0 and the relatively smaller spatial scales (i.e. larger l
and sharper critical surface structure) in the ageostrophic modes compared to the
primary geostrophic modes. Contrary to the ageostrophic baroclinic instability modes
in an Eady flow, no inertia–critical surface is evident in the spatial structure of our
ageostrophic instability examples, but ordinary critical surfaces do have a clear imprint.
Because our computational ability to obtain eigenmodes with small scales and small
growth rates is limited, we do not yet have an overview of all possible ageostrophic
modes for this basic flow; rather our results provide a few examples from an as yet
unknown population.

Thus, ageostrophic shear instability of balanced flows in the interior provides a
viable transition route from geostrophic to ageostrophic dynamics in the regime where
balance-equation evolution is not fully integrable, which may lead to forward energy
cascade toward micro-scale dissipation. Much still remains to be learned about when
this occurs and how significant a role it plays in the energy cycle of the ocean.
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CEROVEČKI, I., PLUMB, R. A. & HERES, W. 2009 Eddy transport and mixing in a wind- and
buoyancy-driven jet on the sphere. J. Phys. Oceanogr. 39, 1133–1149.

CHARNEY, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1094.
CHARNEY, J. G. & PHILLIPS, N. A. 1953 Numerical integration of the quasi-geostrophic equations

for barotropic and simple baroclinic flows. J. Meteorol. 10, 71–99.
CHARNEY, J. G. & STERN, M. E. 1962 On the stability of internal baroclinic jets in a rotating

atmosphere. J. Atmos. Sci. 19, 159–172.
CRAIK, A. D. D. 1988 Wave Interactions and Fluid Flows. Cambridge University Press.
DRITSCHEL, D. G. & VANNESTE, J. 2006 Instability of a shallow-water potential-vorticity front.

J. Fluid Mech. 561, 237–254.
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MÉNESGUEN, C., HUA, B. L., FRUMAN, M. D. & SCHOPP, R. 2009 Intermittent layering in the
Atlantic equatorial deep jets. J. Mar. Res. 67.

MOLEMAKER, M. J., MCWILLIAMS, J. C. & YAVNEH, I. 2001 Instability and equilibration of
centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 5270–5273.

MOLEMAKER, M. J., MCWILLIAMS, J. C. & YAVNEH, I. 2005 Baroclinic instability and loss of
balance. J. Phys. Oceanogr. 35, 1505–1517.

MOORE, G. W. K. & PELTIER, W. R. 1987 Cyclogenesis in frontal zones. J. Atmos. Sci. 44,
384–409.

MOORE, G. W. K. & PELTIER, W. R. 1990 Nonseparable baroclinic instability. Part II.
Primitive-equations dynamics. J. Atmos. Sci. 47, 1223–1242.

NAKAMURA, N. 1988 Scale selection of baroclinic instability – effects of stratification and
nongeostrophy. J. Atmos. Sci. 45, 3253–3268.
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